Applied Intelligence (2024) 54:4668-4688
https://doi.org/10.1007/510489-023-05153-8

®

Check for
updates

Conditional probability table limit-based quantization for Bayesian
networks: model quality, data fidelity and structure score

Rafael Rodrigues Mendes Ribeiro' (% - Jordao Natal' - Cassio Polpo de Campos? - Carlos Dias Maciel’

Accepted: 1 November 2023 / Published online: 3 April 2024
© The Author(s) 2024

Abstract

Bayesian Networks (BN) are robust probabilistic graphical models mainly used with discrete random variables requiring
discretization and quantization of continuous data. Quantization is known to affect model accuracy, speed and interpretability,
and there are various quantization methods and performance comparisons proposed in literature. Therefore, this paper intro-
duces a novel approach called CPT limit-based quantization (CLBQ) aimed to address the trade-off among model quality,
data fidelity and structure score. CLBQ sets CPT size limitation based on how large the dataset is so as to optimize the balance
between the structure score of BNs and mean squared error. For such a purpose, a range of quantization values for each variable
was evaluated and a Pareto set was designed considering structure score and mean squared error (MSE). A quantization value
was selected from the Pareto set in order to balance MSE and structure score, and the method’s effectiveness was tested using
different datasets, such as discrete variables with added noise, continuous variables and real continuous data. In all tests,
CLBQ was compared to another quantization method known as Dynamic Discretization. Moreover, this study assesses the
suitability of CLBQ for the search and score of BN structure learning, in addition to examining the landscape of BN structures
while varying dataset sizes and confirming its consistency. It was sought to find the expected structure location through a
landscape analysis and optimal BNs on it so as to confirm whether the expected results were actually achieved in the search
and score of BN structure learning. Results demonstrate that CLBQ is quite capable of striking a balance between model
quality, data fidelity and structure score, in addition to evidencing its potential application in the search and score of BN
structure learning, thus further research should explore different structure scores and quantization methods through CLBQ.
Furthermore, its code and used datasets have all been made available.
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1 Introduction

Bayesian Networks (BN) stand out as robust probabilis-
tic graphical models for modelling and reasoning [1, 7,
30], in addition to being extensively employed in diverse
domains such as medical problems [30], water quality [1],
risk assessment [33], and network traffic prediction [26]. A
BN comprises a directed acyclic graph (DAG) and associ-
ated parameters able to capture probabilistic dependencies
among random variables represented as nodes [9, 12, 15].
BN exhibit versatility in handling both continuous and dis-
crete random variables [10]. However, an application of
continuous random variables demands assumptions regard-
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ing parametric statistical distributions, leading to its infre-
quent use [10]. Conversely, discrete random variables neces-
sitate data discretization by employing Conditional Probabil-
ity Tables (CPTs) to quantify relationships between variables
[7, 12], enabling BNs to effectively model intricate and
nonlinear relationships [10]. Such a discrete approach has
been widely embraced by authors across numerous appli-
cations [10]. Additionally, prominent algorithms for BN
model learning predominantly rely on discrete and quan-
tized time series data [2], given that discretization transforms
continuous signals into sampled representations while quan-
tization diminishes precision in specific data points [21]. Itis
known that a quantization of variables substantially affects
the accuracy, computational efficiency and interpretability of
resulting BN models [4].

The significance of quantization has led to the devel-
opment of numerous quantization techniques for Bayesian
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Networks (BNs). Friedman and Goldszmidt [8] introduced a
quantization approach based on Minimal Description Length
capable of balancing quantization levels using the learned
(DAGs), thence accentuating its fidelity in modelling train-
ing data. Notably, its assessment is primarily centred on
model prediction accuracy. Monti and Cooper [18] put forth
a technique for multivariate discretization and quantization,
and has thoughtfully considered inter-variable interactions.
This approach introduces a Bayesian scoring metric aimed
to evaluate variable quantization within the context of a BN
structure. However, it is worth observing that an evaluation of
its efficacy was notably absent in the original paper. Mabrouk
etal. [16] proposed a multivariate quantization algorithm able
to systematically assess learned dependencies while employ-
ing clustering techniques based on expectation maximization
through the Gaussian mixture model. Furthermore, this algo-
rithm outperformed the method devised by Friedman and
Goldszmidt [8] in terms of prediction accuracy, quality of
learned structures and computational efficiency. Moreover,
Chen et al. [4] devised a quantization technique fashioned
in such a way as to be used with the K2 algorithm in BN
structure learning. Such an innovative quantization method
optimizes quantization levels based on network structure
by considering the relationships with quantified variable’s
parents, offspring and wives. The approach underwent a rig-
orous evaluation consisting in comparisons with a Bayesian
quantization method utilizing datasets found in literature and
mean cross-validated log-likelihood assessments. Addition-
ally, Fang et al. [6] presented a unique quantization method
grounded in matrix decomposition, specifically designed to
enhance the accuracy of BN inference. Notably, this tech-
nique was tested using a two-node BN in order to exhibit its
functional capabilities.

In recent years, Talvitie et al. [29] introduced an algorithm
for Bayesian Network (BN) structure learning by incor-
porating an adaptive quantization approach for continuous
variables. This method utilizes quantile quantization exhibit-
ing considerable flexibility in adapting between 2 and 7
divisions based on the inherent structure parameters of the
model. Comparative evaluations pitted this proposed algo-
rithm against other structure learning methods in order to
assess both the accuracy of discovered structures and predic-
tive performance. The proposed approach outperformed its
counterparts in these evaluations. Furthermore, Ciunkiewicz
et al. [5] developed an open-source implementation of a
dynamic quantization technique, leveraging relative entropy
to intelligently select intervals that faithfully represent the
underlying data distribution. Testing this methodology on
datasets asserted its superiority in enhancing variable quan-
tization when compared to static methods. Notably, while
achieving improved quantization, the predictive performance

exhibited no significant deviation from the performance of
tested methods.

Numerous research publications have undertaken com-
prehensive comparisons of various discretization and quan-
tization techniques for BNs. Notably, Nojavan et al. [20]
conducted a meticulous comparative analysis of quantization
methods within the context of BNs by focusing on a prede-
termined structure. Critical aspects were considered in their
evaluation, such as CPTs, predictive modelling and practi-
cal management recommendations. Their findings revealed
a nuanced landscape, where no single method emerged as
definitively superior. In parallel, Beuzen et al. [2] undertook
an assessment comparing manual, supervised and unsuper-
vised quantization techniques employing a 4-node BN having
a predetermined structure as testing ground. Outcomes were
unsatisfactory, as each method possesses unique strengths
and limitations. Moreover, Toropova and Tulupyeva [31]
delved into the impact of diverse quantization approaches on
BN performance, particularly while estimating behavioural
rates. Results prominently highlighted that equal width quan-
tization reached the highest and average levels of precision
among methods under consideration.

It must also be noted that these studies should have taken
into account the fundamental requirements for ample datasets
while learning BN so as to effectively model variable dis-
tributions [10, 32]. Insufficient data may lead to ill-informed
or missing probabilities within CPTs, ultimately undermin-
ing the quality of model performance [17, 24]. Furthermore,
the size of CPTs is intricately tied to the number of vari-
able states, as well as its number of parents [22]. Thus, data
adequacy depends on the BN structure.

To address the aforementioned data quantity limitation,
Mayfield et al. [17] introduced the concept of Structure-
Aware Discretization (SAD), a structure-aware quantization
algorithm. SAD dynamically adjusts bin ranges and the num-
ber of bins to strike a balance between ensuring robust CPT
coverage and providing sufficient bins for a reasonable res-
olution. If compared to Equal Cases Discretization (ECD)
and the method proposed with no structure-unaware stage
discretization (SUD), both SAD and SUD demonstrated
comparable performance, notably surpassing ECD. A strate-
gic reduction of bins in SAD ensures that each bin contains a
predefined minimum number of instances while simultane-
ously diminishing the occurrence of CPT combinations with
insufficient data. Depending on data distributions and sample
sizes, rigidly adhering to a minimum limit for each category
can potentially reveal modelling inaccuracies.

A notable omission in the majority of these studies per-
tains to the application of these quantization methods within
the context of search and score of BNs structure learning,
i.e. a pivotal technique for deriving BN structures from data
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[19]. Interestingly, only Friedman and Goldszmidt [8], Chen
et al. [4] and Talvitie et al. [29] extended their methods
to the domain of BN structure learning. However, it is of
paramount importance to observe that their evaluations pri-
marily focused on the final structure attained at the end of
the structure learning process. This approach may potentially
constrain the scope of the analysis, given that these methods
do not inherently ensure an identification of the global opti-
mum [19]. A more comprehensive exploration of the entire
landscape within the search space is warranted to adequately
address such issue.

Our paper introduces a novel approach differing from
Mayfield et al. [17], as the critical aspects of CPT completion
are addressed along with BN structure-aware discretiza-
tion and quantization. In our CPT limit-based quantization
(CLBQ) method, a CPT size constraint derived from the
dataset size was established so as to ensure a minimum level
of CPT filling. Such limitation guarantees that CPT size
remains within acceptable bounds for all CPTs in a given
BN structure, meticulously examining the largest number of
categories that system variables can accommodate. Subse-
quently, our algorithm systematically evaluates the number
of bins within the range of 2 to this defined limit, while con-
currently assessing BN structure scores and mean squared
errors (MSE) between original and quantized data. The
search process is concluded upon identifying a quantization
value within the Pareto set [11], with a 2-degree divergence
from the minimum score point. Such a meticulous approach
ensures that variable quantization is conducted in a structure-
aware manner, thus expertly balancing the trade-off between
MSE and structure score while maintaining comprehensive
CPT coverage.

Our method has been tested for the quantization of three
different kinds of dataset: simulated discrete data with added
noise, simulated continuous data and real data. CLBQ was
compared to the Dynamic Discretization (DD) algorithm
proposed in Ciunkiewicz et al. [5] considering the selected
quantization and its mean squared error (MSE) in all datasets.
Also, its suitability for employment in the search and score
of BN structure learning was evaluated through landscape
analysis. The key contributions of our proposed algorithm
are:

e balance between data fidelity and structure score while at
the same time maintaining CPT coverage during variable
quantization;

e examining its potential influence on BN structure learn-
ing considering the reshaping the entire DAG search
space.

This comprehensive assessment extends beyond the scope of
prior studies, as unexplored facets of BN structure learning
are addressed.

@ Springer

2 Related works

A detailed literature review conducted on Scopus in early
2023 resulted in the identification of a total of sixteen schol-
arly works. The investigation was centered on the domains of
“Bayesian Network™ and either “Discretization” or “Quan-
tization”. Information theory is employed to ascertain the
appropriate quantization of variables for BNs. The determi-
nation of the quantization threshold in BN structural learning
can be influenced by a metric derived from the Minimal
Description Length principle (MDL) [8]. In the context of
a specified structure, non-uniform partitions can be imple-
mented as a strategy to mitigate the loss of information
resulting from quantization, as suggested by Kozlov and
Koller [13]. Furthermore, relative entropy error can be used
to detect intervals that do not sufficiently capture the char-
acteristics of the underlying distribution. This methodology
makes it feasible to ascertain the intervals that ought to be
merged or divided to get intervals that effectively represent
the fundamental distribution [5].

Other studies utilize the expectation-maximization algo-
rithm and likelihood functions to ascertain the appropriate
quantization of variables for Bayesian networks. A scoring
methodology can be implemented to assess the structure of
BNs and the process of data quantization. This approach
is a component of a multi-variable quantization technique,
wherein each continuous variable is discretized based on
its interactions (dependencies) with other variables [18]. An
alternative methodology for BN structural learning involves
the application of expectation maximization on the Gaus-
sian mixture model, which is utilized to represent bins and
determine quantizations by considering the clustering pat-
terns within the distribution of variables [16]. In addition,
an alternative approach in BN structural learning involves
choosing the quantization with the highest probability based
on the available data, considering the dependencies imposed
by the BN structure. This method can be combined with the
K2 algorithm for BN structural learning [4].

Furthermore, there are numerous varied approaches to
tackle the matter of quantization. The approaches under
consideration have distinct characteristics that set them
apart from earlier methodologies. One possible approach
for quantization is exploiting the significant correlation in
high-dimensional data in conjunction with a non-parametric
dimensionality reduction technique and a Gaussian mixture
model, as Song et al. [27] suggested. Alternatively, a Genetic
Algorithm can be employed to minimize the Normalized
Root Mean Square Error (NRMSE) of a mainly selected out-
put variable, considering the values of peaks and valleys [14].

In the study conducted by Fang et al. [6], an alternative
approach to quantization is proposed, which involves employ-
ing matrix decomposition techniques to quantize variables
that exist in different states with differing probabilities.
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Alternatively, an adaptive quantization technique can be
employed to optimize the selection of quantile bins for each
variable within the range of 2 to 7 [29]. An alternative
approach involves employing a structure-aware quantization
technique that dynamically modifies the bin ranges and the
number of bins to strike a suitable equilibrium between effec-
tively completing the CPT and ensuring an adequate level
of resolution. One approach to achieve this objective is to
decrease the number of bins to ensure that each bin con-
tains a pre-established minimum number of instances, hence
diminishing the number of combinations in the CPT that have
inadequate cases [17].

Various methods of quantization can be compared. A
potential avenue of research is conducting a comparative
study on quantization methods in BNs. This analysis would
aim to evaluate the effects of different quantization methods
and the number of intervals on the resulting BNs, employ-
ing a specified structure as Nojavan et al. [20] outlined. In
their study, Nojavan et al. [20] found that no single tech-
nique simultaneously demonstrated superior performance
in CPTs, prediction, and recommendation. Instead, each
method shows excellence in one of these domains.

An alternative methodology for evaluating quantization
approaches involves comparing manual, supervised, and
unsupervised techniques within a pre-established framework
while considering the model’s accuracy and F-score accu-
racy [2]. The analysis conducted by Beuzen et al. [2] showed
that manual quantization methods yielded BNs with greater
semantic significance. On the other hand, supervised meth-
ods resulted in BNs with enhanced predictive capabilities.
Additionally, unsupervised methods were deemed desirable
due to their computational simplicity and versatility.

The quantization techniques for BN in a classification task
can be examined to assess and contrast various quantization
approaches, considering the classifier’s performance [23]. In
their study, Ropero et al. [23] compared the performance
of four different methods: Equal Frequency, Equal Width,
Chi-Merge, and Minimum Description Length principle. The

findings of their study revealed that the Chi-Merge approach
exhibited exceptional average performance across the con-
ducted tests. In a study by Sari et al. [25], a comparison was
made between equal-width, equal-frequency, and K-means
methods for analyzing earthquake damage data. The results
of the tests indicated that the K-means approach yielded the
highest level of accuracy. Toropova and Tulupyeva [31] con-
ducted a comparable study to estimate the behavioural rate
and compare different quantization methods, including equal
width, frequency, EF_Unique, and expert quantization. The
findings revealed that equal-width quantization yielded the
highest level of precision on average.

In contrast to the quantization methods discussed in this
part, CLBQ can perform data quantization on a fixed BN
structure or during BN structural learning. The utilization
of structural learning, as observed in several literary works,
is often limited to examining the final outcome, neglecting
the comprehensive exploration of the entire search space, a
distinctive feature of the present study. Moreover, the CLBQ
technique also addresses the impact of quantization on the
size of the CPT and the structural score. This aspect of CLBQ
contributes to its originality and sets it apart from alternative
approaches.

3 Material and methods

This section describes the proposed quantization method and
its evaluations. The CLBQ algorithm was introduced and
tested based on simulated and real datasets. A summary of
test cases and datasets used on each of them can be seen in
Table 1.

3.1 CPT limit-based quantization (CLBQ)
Figure 1 shows a flowchart of the proposed method and its

key steps and components. Numerous samples are required
to model the conditional distributions of variables. A lack

Table 1 Summary of test cases and datasets used in each of them by detailing their type, number of samples, number of variables and equations
and figures used to find its generation equation, expected structure, and signal and distributions of its variables

Test case Dataset Type Number of Number of Equation Expected Signal  and
samples variables structure distribution of
variables
Functionality test D4 Discrete with 10° 4 Equation (8) Figure 3 Figure 6
added noise
Simulated con- XYZ Continuous 10° 3 Equation (9) Figure 4 Figure 7
tinuous data test
XYZ3 Continuous 100 Equation (10) Figure 5 Figure 8
Real-data land- ‘Weather Real 107,802 4 — — Figure 9

scape analysis
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Fig.1 Flowchart of CLBQ illustrating the steps taken to quantize data given a BN structure. It covers the discovery of the quantization limits, the
order of selection of variables for analysis and the selection of quantization for each variable

of samples can result in missing or uninformed probabilities
in the CPT, thus leading to poor model performance [10,
17, 32]. Given the above, the initial step of CPT limit-based
quantization (CLBQ) is to identify a limit size for the CPT
considering the number of samples the dataset has to enhance
distribution modeling and achieve good model quality. This
is performed according to the following equation.

Number of samples
n

M= (1

@ Springer

where M is the CPT size limit, and 7 is the number of desir-
able samples for each element of the CPT so as to achieve
good model quality. This only defines the limit, thus CPTs
can achieve better modelling than that at the end of the pro-
cess. n = 3 was used in our test. This value only controls
the upper quantization limit. Since BIC score increases as
there is smaller quantization, this upper limit and value of n
exert no influence on CLBQ quantization, once the dataset
has enough data. When data is lacking, n ensures a certain
level of model quality for all quantization values considered



Conditional probability table limit-based quantization...

4673

by the CLBQ. The value of = 3 was selected on account
of the fact that the worst-case scenario, i.e. a uniform dis-
tribution, has three points for each element of the CPT, thus
offering modelling of acceptable quality.

Once CPT size limit and BN structure are defined, it is
possible to calculate the dimension of CPTs of each variable
considering the number of states (quantization) each variable
has. The CPT dimension of a variable is given by

p
Ly=q ][4 )

i=1

where £, is the CPT dimension for a variable, g, is the vari-
able quantization, p is the number of parents of the variable

and [q1, ..., gp] are the quantization of parent variables.
Then, the operation of checking whether £, < M can be
computed given each variable quantization. Thus, a heuristic
method was used to compute the quantization limit of each
variable considering their restrictions. The method consists
in initializing the quantization of each variable in 1, increas-
ing them one at a time by 1 and checking whether all £, still
comply with £, < M. This is performed using the matrix
product by creating a quantization matrix and a dependency
matrix able to store which node is the parent of which node
and the node itself, thus storing which quantization values
are needed to compute each CPT dimension. This depen-
dency matrix does not store correlation measurements, but
only reveals if that node must be considered on the CPT
dimension computation with a 1 or with a 0 if it is not needed.
ay a -+ aiy |

[ ] az) azz - - dpp
qg1492 -~ qn| X

Adnl Ap2 -+ Apn
- 3)

qiail qiai2 --- qi1din
q2a21 42432 -+ q2a3,

qdnlnl 9nan2 * - gnlnn_|

where a;; € {0, 1} represents relationships between vari-
ables, thus selecting which ¢; values must be included in the
calculation of CPT size. Then, the values of g;a;; = 0 are
replaced by 1, and a column-wise product is carried out so
as to calculate all CPTs sizes.

Ly = H‘]iaiv (4)

i=1

When a variable reaches its limit (if increased, £, < M
forv € [1,2, ..., n]isbroken) its quantization is fixed on the
limit, and the process continues to increase the other variables

and test the condition. The process is over when all variables
have their quantization fixed on their limit value.

Afterwards, an analysis of quantization values between
2 and the previously found quantization limit is carried out
so as to select a quantization value having good trade-off
between the mean squared error (MSE) of original values
and quantized values as well as the BN structure score. For
such a purpose, variables are selected one at a time according
to the priority list below: (i) higher maximum quantization
value (ii) greater number of parents. Once a variable has been
selected, quantization values, starting from g, = 2, are used
to evaluate the BN score considering quantized data and the
MSE between the quantized data and original data. For each
evaluation, an angle is calculated as follows.

AMSE,
0, = arctan [ ——— ©)
AScore,
MSE — MSE
AMSE, = | MIN gl ©)

IMSEp ;v — MSEpax|

[Scorep sy — Scorey|
AScore, = @)
a |Scoreyr ;v — Scoreprax|

MSE);;n is found by considering the quantization limit of
the variable. MSEy;4x and Scorejy 4x considers g, = 2.
Scoreysry is calculated considering all variables in their
quantization limit. An example of what angle 6 represents
can be seen in Fig. 2.

The analysis of increasing values of g, is stopped after
ten increasing ¢, values where 6 < 2. With these values,
a Pareto set is created, and the smallest quantization value
belonging to the Pareto set where 6 < 2 is selected as the
variable quantization value.

MSEmax 1
MSE, 1
w
w0
=
MSEmn
N o &
0&‘“\ 00& O@W
o o
BIC

Fig. 2 Example of what angle 6 represents. BIC is a structure score
used in it. The quantization value under analysis is depicted in orange
and the blue line represents the curve of all quantization values for the
variable under analysis
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After a quantization value is selected, it is fixed and the
maximum quantization value of the other variables is updated
accordingly. To evaluate the score and MSE, quantizations
of variables that are not under analysis are set to the high-
est quantization value found or their selected quantization
value. This process is repeated until all system variables have
been analyzed. The algorithm of this process can be seen in
Algorithms 1 and 2. The code of CLBQ is available at https://
www.doi.org/10.5281/zenodo.8368057.

Algorithm 1 CLBQ - Part 1.
1: function CLBQ(dag, data, score, 1)

2: M =int(len(data)/n)

3: Owmax = get_quantization_limit(dag, len(data), )

4: fixed_values = [False, False, ..., False]

5:  Scoreyn = score(dag, equal_quantization(data, Qprax))

6:  while not(all(fixed_values==True)) do

7: v = select_node(fixed_values, Q y4x, dag) > Selects the

variable to be analysed

8: MSE ;v = mse(data, equal_quantization(data, Qp4x))
9: Omaxlv] =2

10: MSE 4x = mse(data, equal_quantization(data, Qp4x))
11: MSEyax = score(dag, equal_quantization(data, Qpax))
12: score_list =[]

13: mse_list =[]

14: angle_list = []

15: q_list={]

16: i=0

17: for g, in range(2, gypax) do

18: q_list < gy

19: Omaxvl = qy

20: Score, = score(dag, equal_quantization(data, Qprax))
21: score_list <— Score,,

22: MSE, = mse(data, equal_quantization(data, Qp4x))
23: mse_list < MSE,

24 if MSE ;4 x==MSE;;n then

25: AMSE =0

26: else

27: AMSE = [MSE 17y — MSE, |/IMSE; 5 —MSE A x|
28: end if

29: AScore = |Score sy — Scorey |/|Scorey v — Scorepax |
30: if AScore == 0 then

31: 6=0

32: else

33: 6 = arctan(AMSE/AScore)

34: end if

35: angle_list < 6

36: if 6 < 2 then

37: i=i+1

38: if i > 10 then

39: break

40: end if

41: end if

42: end for

3.2 Datasets

This section describes all datasets used for testing. The first
one was a discrete simulated dataset with added noise so as to

@ Springer

Algorithm 2 CLBQ - Part 2.

43: pareto = get_pareto(score_list, mse_list)
44: e = 00

45: if len(pareto)==1 then

46: qc = q_list[pareto[0]]

47: else

48: for j in pareto do

49: if angle_list[ j]< 2 then

50: if g_list[j]< g, then

51: qc =q_list[j]

52: end if

53: end if

54: end for

55: end if

56: if g == oo then

57: q. = q_list[pareto[-1]]

58: end if

59: Omaxlvl =qc

60: fixed_values[v] = True

61: Omax = adjust_quantizations(Qpax, dag, len(data), n,

fixed_values)
62:  end while
63: end function

identify the ideal quantization and enhance and ease the anal-
ysis of its quantization results. Afterwards, two continuous
simulated datasets were used to analyze how CLBQ would
perform with no ideal quantization. Finally, a continuous
real data dataset using variables with different characteris-
tics, ranges and distributions was used to confirm whether
results would remain true to real data.

3.2.1 D4

D4 is a simulated dataset comprising four nodes (A, B, C,
and D) generated by

A’ = rand_int(0, 9)

B’ = rand_int(0, 9)
C'=A"+PB

D’ = A’ +rand_int(0, 9)

A=A +Nu=00=04)
B=B +Nu=00=04)
C=C'+Nu=00=04
D=D +Nu=0,0=04)

®)

where rand_int(0, 9) is a uniform sample of integers in [0, 9]
and M (u = 0, 0 = 0.4) is a sample of a normal distribution
with © = 0 and o = 0.4. Thus, it is observed that the ideal
quantization of variables would be g4 = 10,gp = 10,q9¢c =
19, and gp = 19. This dataset has 10° samples. A figure
showing the dataset variables and their distribution can be
seen in Fig. 6. The expected structure for this dataset can be
seen in Fig. 3.


https://www.doi.org/10.5281/zenodo.8368057
https://www.doi.org/10.5281/zenodo.8368057

Conditional probability table limit-based quantization...

4675

g
O *®

Fig.3 Expected BN structure for D4 dataset obtained from its genera-
tion equation found in (8)

3.2.2 XYZ

The XYZ dataset is a three-variable dataset (X, Y, and Z)
generated by

X=Nu=0,0=1)
Y=3-X4+1+Npn=0,0=1) )
Z=2-X+2+Nu=0,0=1)

where N (i, o) is a sample of normal distribution. This
dataset has 10° samples. A section of dataset variables and
their distribution can be seen in Fig. 7. The expected structure
for this dataset can be seen in Fig. 4.

3.2.3 XYZ3

The XYZ3 dataset is composed of three variables (X, Y, and
Z) generated by

X= Nu=-2,0=01)UN(@=0,0=0.1)
UN(u=2,0=0.1)

Y= 3-X+14+07«Nu=0,0=1)

Z= 2-X424+07*N(u=0,0=1)

(10)

where N (i, o) is a sample of normal distribution. This
dataset has 10° samples. A section of dataset variables and

Fig. 4 Expected BN structure for the XYZ dataset obtained from its
generation equation found in (9)

Fig. 5 Expected BN structure for the XYZ3 dataset obtained from its
generation equation found in (10)

their distribution can be seen in Fig. 8. The expected structure
for this dataset can be seen in Fig. 5.

3.2.4 Weather

Weather dataset was acquired in Imperatriz (5° 31’ 33" S,
47° 28 33” W), a Brazilian city in the state of Maranhdo,
containing hourly measurements of temperature, humidity,
radiation and wind speed. Measurements started at 23:00 on
02/03/2008 and ended at 14:00 on 21/01/2022. Such data
was obtained from the National Institute of Meteorology
(INMET), a public and open dataset, able to be accessed
at https://tempo.inmet.gov.br/TabelaEstacoes/A225. A sec-
tion of dataset variables and their distribution can be seen in
Fig. 9.

3.3 Functionality test

Dataset D4 was used to test the functionality of CLBQ. It
was performed by following a step-by-step quantization pro-
cess considering the expected structure for the dataset. In this
process, tested quantization values, their score, MSE and
angle & were saved and plotted so as to better understand
the algorithm dynamics. An example of how data results
are presented can be seen in Fig. 10. In addition, the result
was compared to the ideal quantization from D4, as it is a
discrete system with added noise. Ideal and CLBQ quantiza-
tions were compared considering the MSE of each variable
between original values and quantized values, as well as the
total MSE, i.e. a sum of the MSE of all variables. CLBQ was
also compared to the Dynamic Discretization (DD) algorithm
proposed in Ciunkiewicz et al. [5] considering its quantiza-
tion and MSE for each variable. DD was selected, as its code
was provided. The quantization selected by DD was also
plotted in a histogram with the distributions of variables so
as to observe how well the selected quantization modelled
the distributions.

D4 was also used to test the fitness of CLBQ to be used
on the search and score BN structure learning. For such a
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Fig.6 Plot of a section of the A B
signal of each variable and the 101 1o/
distribution of each variable for
dataset D4. Each variable is 81 8
represented using different
colors and their name can be 61 61
seen at the top of each subplot. 4] "
The y-axis shows the value of
this variable for all plots. The 2 21
x-axis shows the sample index o
for the signal plot and density 01
for the distribution plot oL ‘ ‘ ‘ J 2 ‘ J ‘
0 25 50 75 100 0.0 0.1 0 25 50 75 100 0.0 0.1
n Density n Density
C D
20 201
151 15]
10 10+
5 1 5 4
0 1 0 4
0 25 50 75 100 0.0 01 0 25 50 75 100 0.0 01
n Density n Density

purpose, a landscape analysis was performed to investigate
how the search space of BN structures would change using
CLBQ, and all 543 possible DAGs were scored consider-
ing the data quantized by CLBQ. It was carried out for 103,
10*, and 10° samples. The time taken by CLBQ to select a
quantization for each structure was saved and also analysed.

Numeric values were assigned to each DAG to plot the results
in a figure. Thus, DAGs were sorted by the number of edges,
and they were sorted by score inside each group using the
same number of edges. The score used for sorting was the
one using 10° samples. Each group was then equally spaced
in the interval [number of edges, number of edges+1). By

Fig.7 Plot of a section of the X Y
signal of each variable and the 1s
distribution of each variable for 41
dataset XYZ. Each variable is 101
represented using different 21
colors and their name can be 51
seen at the top of each subplot. 01 0]
The y-axis shows the value of
this variable for all plots. The -2 -5
x-axis is the index of the sample ~10]
for the signal plot and density —41
for the distribution plot : : : ‘ ‘ -15+, ‘ ‘ . 4 :
0 25 50 75 100 0.00 0.25 0 25 50 75 100 0.0 0.1
n Density n Density
Y4
304
204
10+
0 4
—10+
_20 4
0 25 50 75 100 0.00 0.05
n Density
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Fig.8 Plot of a section of the X Y
signal of each variable and the 104
distribution of each variable for 21
the XYZ3 dataset. Each variable
is represented by a different 14 51
color and their names can be
seen at the top of each subplot. 01 ol
The y-axis shows the value of
this variable for all plots. The -1
x-axis is the sample index for =51
the signal plot and density for —27
the distribution plot : : : : : ‘ : : ‘ ‘ : . .
0 25 50 75 100 O 1 0 25 50 75 100 0.0 0.1
n Density n Density
Z
204
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0,
_10,
0 25 50 75 1000.00  0.05
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30
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25
40
20
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0 25 50 75 100 0.0 0.1 0 25 50 75 100 0.000 0.025
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3000
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Fig.9 Plotof a section of the signal of each variable and the distribution
of each variable for the Weather dataset. Each variable is represented
using different colors and their names can be seen at the top of each

subplot. The y-axis is the value of this variable for all plots. The x-axis
is the sample index for the signal plot and density for the distribution

plot
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/
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Fig. 10 Example of how data on BIC, MSE and 6 are going to be pre-
sented in the functionality test. The number at the top in bold letters
indicates which step it is and the name of the variable under analysis
on it is on its side. BIC is plotted in purple and MSE in green. Num-
ber of bins is the variable quantization. The Pareto front is plotted in
blue. The Pareto set quantizations are depicted in orange on both plots.
The quantization selected by the CLBQ is in red. Angle 6 is indicated
by annotation at the bottom plot for the selected quantization and its
neighbors. This indication contains the quantization value - 6

doing so, the differences and similarities between the search
spaces considering different numbers of samples could be
observed. One example of how the numbering of DAGs was
performed can be seen in Fig. 11.

3.4 Simulated continuous data test

As means to further test the CLBQ, two simulated continuous
datasets were used to observe its application using continu-
ous data. The initial test was the quantization found by CLBQ
for datasets XYZ and XYZ3, which was plotted against the
actual variable distribution in order to analyze if the quantiza-
tion was able to model well the distribution of the variables.
CLBQ was again compared to DD by considering the chosen
quantization and its MSE. DD quantization was also plotted
against the variables’ distribution to find if quantization has
well modelled the distribution of variables.

The second test was a landscape analysis to pinpoint where
the expected structure is in order to reveal if the search algo-
rithm could actually find the expected structure. Lastly, if
DAGs were better than those expected for the same number
of edges, the quantization found using the CLBQ, the score

Fig. 11 Example of how the

found by using it and that found using the same quantization
as that in the expected structure were analyzed.

3.5 Real-data landscape analysis

The same tests were performed once more by using the
Weather dataset to confirm whether the results obtained from
the functionality and simulated continuous data tests still held
in real data. To discover an expected structure, the PC algo-
rithm was used [28], given that it is a constraint-based BN
structure learning algorithm [19]. In addition, the quantiza-
tion found for the best structures in the landscape analysis
were also compared considering MSE. DD was once more
compared to CLBQ considering its quantization and MSE,
and its histogram was plotted against the variables’ distribu-
tion for analysis.

4 Results

The results of tests and analyses follow the same structure as
that presented in the Material and Methods section.

4.1 Functionality test

A step-by-step analysis of CLBQ for dataset D4 can be seen
in Fig. 12. It shows the evaluations made by plotting the
score and MSE for each evaluation, the Pareto set chosen
during each step, and the Pareto front found. In the Pareto
front, angle 6 for the chosen quantization and the previous
and next values on the Pareto set can be seen. This analysis
allowed clarifying the functioning of CLBQ.

Table 2 shows the ideal quantization, the one found by
CLBQ and that found by DD. It also shows the MSE of each
quantization for each variable. Figure 13a shows the actual
distributions of variables in a dashed line and a histogram of
the quantization found by CLBQ. Figure 14a shows the actual
distributions of variables in a dashed line and a histogram of
the quantization found by DD.

Results of the landscape analysis considering different
quantities of samples for dataset D4 can be seen in Fig. 15a.

numbering of DAGs was

performed for landscape plots, 0

i.e. by converting BN structures

into numbers to be placed on the 4 — — N 4

x-axis. A system with 3 1 1.17 133 1.50 1.67 1.83 2

variables was considered for

such example, since it only has SN e N oS N e N e W IN L L N
25 possible DAGs, to ease y y y y y y y y ; y y t .
visualization 2 2.08 217 225 233 242 250 258 267 275 283 292 3
ZN VN N PN PAY FAY
3 3.17 3.33 3.50 3.67 3.83 a

@ Springer



Conditional probability table limit-based quantization... 4679

Fig. 12 Step-by-step analysis of BN Structure

CLBQ for the D4 dataset and its > . — BIC
used structure. On the —— MSE
BICXMSE plot, the Pareto front . . ---- Pareto
found by CLBQ is plotted, and ---- Chosen
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Table 2 Quantization and their respective MSE for the functionality
test using dataset D4

qaA 4B qc qD MSEA MSEB MSEC MSED
Ideal 10 10 19 19 0.120 0.126 0.100  0.097
CLBQ 13 13 11 12 0.069 0.074 0.298  0.245
DD 9 13 11 4 5.763 0.988 1.334 2208

The ideal quantization values, the quantization values found by CLBQ
and quantization values obtained from DD are shown. Values with ¢
are quantization values (the number of values able to be assumed by the
variable) and MSE values are the mean squared error of original and
quantized data. The bold values are the best values for each of those
measures

The mean and STD time of execution of CLBQ when making
the landscape analysis can be seen in Table 3.

Finally, in Fig. 16a, the expected structure location found
on the landscape analysis is shown. Thenceforth, it can be
observed that the expected structure achieved the best score
for BNs with 3 edges. In Fig. 17a, the BNs whose score equals
or is higher than that found for the expected structure with
the same number of edges can be observed.

4.2 Simulated continuous data test

The result of CLBQ for dataset XYZ was gx = 9, gy = 10
and gz = 10. The result of CLBQ for dataset XYZ3 was
gx = 35,qy = 11, and gz = 12 (Table 4). A comparison
between its quantization histogram and the actual distribution
found for both cases can be seen in Fig. 13. Figure 15 shows
the landscapes for different sample sizes of XYZ and XYZ3
datasets. The mean and STD time of execution of CLBQ
when making the landscape analysis can be seen in Table 3.
The landscape analysis for datasets XYZ and XYZ3 can be
seen in Fig. 16. Both show that, although the expected struc-
ture is among the best scores, it is not intrinsically the best.
To understand the reason for such, an analysis of structures
whose scores were higher than or equal to the expected struc-
ture was performed. Structures achieving a better score, their
quantization, score using its quantization and the score using
the expected structure quantization can be seen in Fig. 18.

4.3 Real-data landscape analysis

Results of the landscape analysis can be seen in Fig. 15b. The
mean and STD time of execution of CLBQ when making
the landscape analysis can be seen in Table 3. Figure 19
shows the structure obtained using the PC algorithm. The
landscape analysis and the structure location on it can be
seen in Fig. 16b. The best BNs with 3 and 4 edges can be
seen in Fig. 17b.

As it can be seen, CLBQ selected the same quantizations
for all the best structures that have the same number of edges.
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Fig. 13 Comparison between the distribution of variables and a his-
togram of the variables of the datasets with the quantization found by
CLBQ considering the expected structure for the datasets D4, XYZ and
XYZ3. The distributions of the variables are shown in lighter-coloured
dashed lines

Table 5 shows quantizations and their MSE for the best BNs
found and the best BN found by PC for comparison purposes.
It also shows the quantization selected by DD and its MSE.
These quantizations can also be seen in Figs. 20 and 21,
where their histograms are compared to the distributions of
variables.
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Fig. 14 Comparison between the distribution of variables and a his-
togram of variables showing the quantization found by DD for datasets
D4, XYZ and XYZ3. Distributions of variables are depicted in lighter-
coloured dashed lines

5 Discussion

Regarding quantization and histogram results, Table 2 reveals
that although CLBQ has not selected an ideal quantization, it
achieved a quantization with a good MSE. Moreover, Fig. 13
shows that despite not being an ideal quantization, the quan-
tization found by CLBQ for D4 also has good representation
of the distributions of the variables. As for the histograms for
datasets XYZ and XYZ3, it can be seen that the selected val-
ues result in a good modelling of distributions for both cases.
The result achieved for variable X on dataset XYZ3 is rather
interesting, as it presents three separated peaks CLBQ chose

to model using one bin for each, and having one bin between
each peak. In Table 5 and Fig. 20, it is evidenced that all
three different quantizations selected by CLBQ for the two
best structures and the structure obtained for the PC presented
good modelling of the distributions of the variables. Finally,
given a comparison with DD, CLBQ performed better if con-
sidering MSE for all test cases. Moreover, histograms reveal
that the modelling made by DD was insufficient if compared
to CLBQ.

Considering the landscapes for different volumes of sam-
ples shown in Fig. 15, its results indicate that CLBQ can
be applied in the search and score of BN structure learning,
as the best structures are the same for different volumes of
samples. Thus, despite a change in the score range and slight
changes in the search space, the best BNs are still the same
and the search space presents the same behaviour. Such con-
sistency of best structures and behaviour is observed for all
datasets and test cases.

Considering the execution time of CLBQ shown in
Table 3, it can be seen that the execution time varies a lot
between dataset sizes and between datasets. This is probably
caused by the evaluation of the score and the variables’ dis-
tributions. The BIC score used counts the number of points
that each element of each CPT has, thus its evaluation time is
dependent on the dataset size. Moreover, the variables’ distri-
butions could generate the difference between datasets, as the
number of quantization values needed to be evaluated until a
trade-off is found varies according to the variables’ distribu-
tion that affects the structural score and the MSE values used
on CLBQ. When looking at the time CLBQ needs to select
quantizations, although it may not be as small as you may
want it, for a one-structure evaluation it is very quick and for
use in search and score BN structural learning, it may add
a considerable running time, however, since the structural
learning process is already very time intensive, adding this
time in exchange for having the quantization done for each
structure is something that could be of value.

Considering the expected BN location on the landscape
analysis shown in Fig. 16, it is found that the expected
BN for dataset D4 was the best structure with three edges.
Meanwhile, the expected BN was not the most desirable for
datasets XYZ and XYZ3, but had a good score value. As for
the Weather dataset, the expected BN found using PC is not
the best structure found in the landscape analysis. This can
be explained by the fact that the BIC score has a function that
penalizes the addition of edges on the structure if it does not
lead to a good increase in the description of data [3]. This
means that, for the dataset being used, just 3 or 4 edges were
enough to balance model complexity and data description.
Thus, BNs with 5 and 6 edges had higher penalization as a
result of model complexity and achieved a worse score than
that found for the best BNs with 3 and 4 edges. An analysis
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Fig. 17 Analysis of BNs with
higher or equal scores than the
expected BN. X is the numeric
value on the x-axis assigned to

X value: 3.00
A:13,B:13,C: 11, D: 12
BIC CLBQ: -761,184.01
BIC Expected: -761,184.01

X value: 3.01
A:13,B:13,C: 11, D: 12
BIC CLBQ: -761,184.01
BIC Expected: -761,184.01

the structure for landscape
plotting. The quantization
selected is shown beside the
names of variables. BIC CLBQ
is the score found by using
CLBQ quantization. BIC

Expected is the score found by
using the quantization of
expected structure

X value: 3.000
Tins: 13, RHins: 13,
Rad: 11, Wspeed: 11

BIC CLBQ: -614,887.03

BIC Expected: -656,099.38

(a) D4

X value: 3.007
Tins: 13, RHins: 13,
Rad: 11, Wspeed: 11
BIC CLBQ: -614,887.03
BIC Expected: -656,099.38

X value: 3.013
Tins: 13, RHins: 13,
Rad: 11, Wspeed: 11
BIC CLBQ: -614,887.03
BIC Expected: -656,099.38

X value: 4.000
Tins: 12, RHins: 13,
Rad: 11, Wspeed: 11

BIC CLBQ: -612,271.58

BIC Expected: -665,435.87

X value: 4.005
Tins: 12, RHins: 13,
Rad: 11, Wspeed: 11
BIC CLBQ: -612,271.58
BIC Expected: -665,435.87

X value: 4.011
Tins: 12, RHins: 13,
Rad: 11, Wspeed: 11
BIC CLBQ: -612,271.58
BIC Expected: -665,435.87

of the best structures was performed in order to understand
which structures were better than the expected ones.
Considering the data shown in Fig. 18, it can be observed
that, for dataset D4, the only BN with the same score as that
of the expected structure is the one with a permutation of
one of the edges of the expected structure. This evidences
that using CLBQ in the search and score of BN structure
learning is appropriate, as the expected structure could be
selected if a good search algorithm was used. As for XYZ

(b) Weather

and XYZ3, itit found that, considering the same quantization,
these structures have either the same or very close scores than
those for the expected structure. Also, it is worth mentioning
that quantization values are very similar, which was expected
considering that structure limitations are minor and dataset
size is large. This indicates that these slight variations in the
quantization of variables affect the BIC score and mix the best
structures. In addition to that, many of the structures having
an equal to or higher score are permutations of edges of the
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X value: 2.00
X:9,V¥.9,7:9
BIC CLBQ: -2,547,347.34

X value: 2.08
X:9,V¥:.9,7:9
BIC CLBQ: -2,547,347.34

BIC Expected: -2,677,141.92 BIC Expected: -2,677,141.92

X value: 2.17
X:9,V¥:.9,72:9
BIC CLBQ: -2,584,115.60
BIC Expected: -2,709,926.71

Y
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% / \ > % / \ > .. \ 5
X value: 2.25 X value: 2.33 X value: 2.42
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BIC CLBQ: -2,584,115.60
BIC Expected: -2,709,926.71

BIC CLBQ: -2,584,115.60
BIC Expected: -2,709,926.71

BIC CLBQ: -2,677,141.92
BIC Expected: -2,677,141.92

X < Z X > Z X Z
(a) XYZ
X value: 2.00 X value: 2.08 X value: 2.17

X:5,Y:12,27: 12
BIC CLBQ: -2,474,842.05

X:5,Y:12,7Z: 12
BIC CLBQ: -2,476,474.76

BIC Expected: -2,494,221.33 BIC Expected: -2,495,388.46

X:5,Y:12,27Z: 12
BIC CLBQ: -2,476,474.76
BIC Expected: -2,495,388.46
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X z

X value: 2.25
X:5,Y¥:12,7Z: 12
BIC CLBQ: -2,476,474.76

X value: 2.33
X:5,Y¥: 11, Z: 12
BIC CLBQ: -2,494,221.33

BIC Expected: -2,495,388.46 BIC Expected: -2,494,221.33

X value: 2.42
X:5,Y.11,7Z: 12
BIC CLBQ: -2,494,221.33
BIC Expected: -2,494,221.33

Y

T,

X

Y
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(b) XYZ3

Fig. 18 Analysis of BNs with higher or equal scores than the expected
BN. X is the numeric value on the x-axis assigned to the structure for

landscape plotting. The quantization selected is shown beside the names structure
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of variables. BIC CLBQ is the score found by using the CLBQ quanti-
zation. BIC Expected is the score using the quantization of the expected



Conditional probability table limit-based quantization...

4685

Table3 Mean and STD execution time of CLBQ for each structure on
the landscape analysis

Dataset Size = 103 Size = 10* Size = 10°

D4 1.55 (0.66) 6.69 (1.87) 55.88 (9.98)
Weather 1.32 (0.66) 2.93 (0.86) 10.56 (1.92)
XYZ 1.29 (0.53) 4.02 (0.45) 29.73 (2.38)
XYZ3 1.17 (0.36) 3.70 (0.35) 28.48 (2.30)

The times are separated by dataset and dataset size. All times are shown
in seconds. The results are shown as mean (std)

expected structure. This bodes well, as the direction of the
edge on BN does not necessarily follow the causal relation
[15]. Thus, although it may not be the best result, as that
found for dataset D4, it still reveals that it is appropriate to
use CLBQ for the search and score of BN structure learning.
Finally, for the Weather dataset, all the best structures have
edges marking dependencies included in the PC structure,
but with varying orientations of edges. This indicates that
these connections are the most important dependencies for
describing data according to BIC scores. Considering the
characteristic of BIC score and the best BNs found, these
results are promising and indicate a promising possibility of
using CLBQ for BN structure learning.

6 Conclusion

There are four most relevant results achieved herein: quanti-
zation and histogram, landscapes with different sample sizes,
location of the expected structure, and the best structure anal-
ysis. As for quantization and histogram, itis found that CLBQ
has not exactly selected the ideal quantization, however, it
chose values that had good MSE and balanced MSE and
BIC score. These results reveal the capacity of the CLBQ
method to balance model quality, data fidelity and structure
score. Results also indicate that, considering the tests per-
formed and metrics used, CLBQ performed better than DD
in all tests.

Regarding the landscapes with different sample sizes, it
is observed that although there were small differences in

Tins ‘ Wspeed

P Rad

Fig. 19 Expected BN structure found for the Weather dataset using
the PC algorithm, i.e. a constraint-based algorithm for BN structure
learning

Table 4 Quantization and their respective MSE for the simulated con-
tinuous data test using datasets XYZ and XYZ3 showing the values for
CLBQ and DD

XYZ qx qy qz MSEy MSEy MSE,
CLBQ 9 10 10 0.095 0.788 3.140
DD 4 4 4 0.502 5.118 20.403
XYZ3 qx qy qz MSEx MSEy MSEy,
CLBQ 5 11 12 0.010 0.254 0.912
DD 4 4 4 0.470 2.323 10.997

q are quantization values (the number of values the variable can assume)
and MSE values are the mean squared error of the original and quantized
data. The bold values are the best values for each of those measures

behaviour, landscapes maintained the same general behaviour
considering different dataset sizes, and the best structures
followed the same trend. This evidences that a variation
in dataset size, which affects CLBQ, has not significantly
altered the search space of BN structures. Thus, indicating
that CLBQ could be used in the search and score of BN of
structure learning.

Regarding the CLBQ execution time, it was observed that
it varies with the dataset size and between datasets. Its exe-
cution time is generally considerably small and can easily be
applied to one structure. When considering the application
of structural learning, the trade-off between the added exe-
cution time and the benefit of having the quantization done
has to be considered to decide if using it would be beneficial.

Concerning the expected structure location, it is observed
that the expected structure was not always the best, although
the best structure analysis revealed that, when the exact
expected structure was not the best, the best structure had
dependencies in different directions, which is not a issue
since BN does not ensure a proper direction of dependen-
cies. Moreover, as for the real case data in which the expected
structure was obtained using the PC algorithm, the best struc-
tures found when using CLBQ were subsets of dependencies
of the expected structure that the BIC score considered as
sufficient to represent data, which is beneficial as a smaller
structure is generally easier to understand.

Considering all tests and analyses, CLBQ is an excellent
method to quantize variables while using BN. In addition,
it was observed that it can be used on the search and score
of BN structure learning. The CLBQ limitations detected in
the tests by analysing the CLBQ method are that it does not
ensure an ideal quantization in addition to the fact that it is a
method dependent on data volume for achieving good perfor-
mance. When there is little data, CLBQ limits quantization to
guarantee good model quality, although it can result in poor
data fidelity.

@ Springer
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I-I‘-: Sl:)l:ciivgltl/? ;EZfE(l)t;(iE ea?ed altfl; ;a qTins 4RHins 4qRad qWspeed MSErins MSERHins MSERad MSEWspeed
test using the Weather dataset Opc 14 14 14 13 0.241 3.261 26,498219  0.075

03 13 13 1 1 0.281 3.557 43433.104  0.105

04 12 13 1 1 0.327 3.557 43433.104  0.105

DD 4 6 1 8 4759 32.588 73,400.493  0.118

Values obtained from the CLBQ for the best BNs, the BN found by PC and for DD are shown. ¢ are quantization
values (the number of values the variable can assume) and MSE values are the mean squared error of the
original data and the quantized data. The bold values are the best values for each of those measures

7 Future Works

Additional studies should focus on using different types of
quantization than the equal width one on the CLBQ. Also,
using CLBQ with different scores ought to be analyzed,
especially considering an BN structure score unaffected (or
at least less affected) by the quantization of variables, as
it could be a solution to guarantee that the expected struc-
ture is the best in its group. Another possibility would be to
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Fig. 20 Comparison between the distribution of variables and a his-
togram of variables of datasets with the quantization found by CLBQ
considering the best structures found with 3 and 4 edges for the Weather
dataset. The distributions of variables are shown in lighter-coloured
dashed lines
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Fig. 21 Comparison between the distribution of variables and a his-
togram of variables of datasets with the quantization found by CLBQ
and DD considering the structure found by the PC algorithm for the
Weather dataset. The distributions of variables are shown in lighter-
coloured dashed lines

explore mechanisms to make CLBQ return the same quan-
tization for the same dependencies, despite the variation in
score. Furthermore, the burden of execution time of CLBQ
when used for the search and score of BN structure learning
should be futher analysed, since structure learning is already
a time-demanding process and adding CLBQ to the process
would increase its execution time. There are mechanisms
commonly used to reduce computational time of algorithms
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that also demand analysis, as their use would be beneficial
for reducing CLBQ running time, such as parallelization and
code optimization. Other options such as using CLBQ to
quantize the data based on one structure and then using that
quantization for the structural learning process and redoing
the CLBQ quantization for the final structure should also be
considered.
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