
https://doi.org/10.1007/s10489-023-05220-0

Learning evolving relations for multivariate time series forecasting

Binh Nguyen-Thai1,2 · Vuong Le3 · Ngoc-Dung T. Tieu4,5 · Truyen Tran6 · Svetha Venkatesh6 · Naeem Ramzan1

Accepted: 6 December 2023
© The Author(s) 2024

Abstract
Multivariate time series forecasting is essential in various fields, including healthcare and traffic management, but it is a
challenging task due to the strong dynamics in both intra-channel relations (temporal patterns within individual variables)
and inter-channel relations (the relationships between variables), which can evolve over time with abrupt changes. This paper
proposes ERAN (Evolving Relational AttentionNetwork), a framework formultivariate time series forecasting, that is capable
to capture such dynamics of these relations. On the one hand, ERAN represents inter-channel relations with a graph which
evolves over time, modeled using a recurrent neural network. On the other hand, ERAN represents the intra-channel relations
using a temporal attentional convolution, which captures the local temporal dependencies adaptively with the input data. The
elvoving graph structure and the temporal attentional convolution are intergrated in a unified model to capture both types of
relations. The model is experimented on a large number of real-life datasets including traffic flows, energy consumption, and
COVID-19 transmission data. The experimental results show a significant improvement over the state-of-the-art methods in
multivariate time series forecasting particularly for non-stationary data.

Keywords Time series forecasting · Multivariate time series forecasting · Dynamic graph neural networks ·
Attention mechanism

1 Introduction

In this paper, we study the problem of multivariate time
series forecasting, which is to predict the future data points
given previous data of time series. Forecasting time series is
critical for many real-life applications, including predicting
traffic flow, electricity consumption, and COVID transmis-
sion. Accurate forecasting is crucial for making informed
decisions and planning for the future.

Multivariate time series forecasting is challenging due
to the complexity in both intra- and inter-channel rela-
tions. Intra-channel relations involve the temporal patterns
within individual variables, determining the dependencies
of future values on prior ones. Intra-channel relations can
be highly dynamic, particular in non-stationary time series,
making it difficult to forecast. For example, in COVID-19

The source code is available at the following URL: https://zenodo.org/
records/10528296.

B Binh Nguyen-Thai
thaibinh.nguyen@uws.ac.uk; nguyenthaibinh@gmail.com

Extended author information available on the last page of the article

data, changes in government policies may impact COVID-19
transmission in a city, resulting in non-stationarity in tempo-
ral patterns and making it challenging to predict new cases.
Inter-channel relations, on the other hand, refer to the depen-
dencies between pairs of variables. Again, these relations
can evolve over time. For instance, the correlation between
the spread of COVID-19 among cities or countries may vary
over time due to adaptive government policies such as social
distancing or border closures. Therefore, accurately captur-
ing the dynamics of these types of relations is essential for
multivariate time series forecasting.

Time series forecasting have been extensively studied in
conventional models such as autoregressive model (AR),
moving averagemodel (MA), autoregressive integratedmov-
ing average (ARIMA) [15]. Recently, deep neural network-
based models, such as recurrent neural networks (RNNs)
[7, 14], and convolutional neural networks (CNNs) [3],
have shown promising results due to their ability to cap-
ture nonlinear temporal patterns. These models represent the
dependencies of future data points on previous data points
using a set of learnable parameters. However, since these
paramerters are fixed after training, they can only capture

/ Published online: 15 March 2024

Applied Intelligence (2024) 54:3918–3932

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-05220-0&domain=pdf
http://orcid.org/0000-0002-8243-4894
https://zenodo.org/records/10528296
https://zenodo.org/records/10528296

Learning evolving relations for multivariate time series forecasting

invariant temporal patterns, and therefore, are insufficient
to model time series with time-varying patterns, such as
non-stationary time series that are commonly observed in
reality.

To model the inter-channel relations, recent works have
been applying graph neural networks to multivariate time
series data. In this approach, a multivariate time series is
viewed as a graph, with each variable represented as a node
and the underlying correlations between variables repre-
sented as connections between nodes. The graph can be either
pre-defined or learned from data. By combining a graph neu-
ral network with a temporal model such as an RNN [2] or
a CNN [12, 34, 35], both types of relations can be modeled
simultaneously. The primary limitation of the this approach
is its static graph structure, where a single graph is used
throughout the entire lifespan of the time series. However, the
static graph structure is inadequate for capturing the evolving
relationships between variables over time, as the example of
COVID transmission above.

A highly plausible path to tackle these challenges is via
learning the evolution of the spatio-temporal relations in
time series. Unlike entities in static data, time series vari-
ables have unique evolving lives throughout space-time. As
a series progresses, it changes its internal states and interacts
with other series at arbitrary time. Guided by these prin-
ciples, we introduce ERAN (Evolving Relational Attention
Network), a novel method for modeling multivariate time
series. ERAN learns to extract the graph structure underly-
ing inter-channel relations at each time step. In ERAN, a
graph structure is represented by an adjacency matrix. The
evolution of the adjacencymatrices ismodelled by a recurrent
neural network, where the adjacency matrix at each time step
depends on that of the previous step and the current observed
data, allowing ERAN to accurately model the evolving inter-
channel relations in the data.

Once discovered, the dynamic graph structure guides a
reasoning process that jointly captures the intra- and inter-
channel relations of a time series. This process happens
within a multi-layer architectures that alternate between
inter-channel relations by graph convolution network and
intra-channel relations by a fused Temporal Attentional
Convolution (TAC). This process results in a concrete rep-
resentation of the observed time series which facilitates
convenient decoding into the future forecast.

TheERANmodel stands outwith its authentic and explicit
modeling of evolving relations in time series leading to the
effective and stable forecasting process. These advantages
are demonstrated through a comprehensive set of experi-
ments across multiple domains, including traffic flow, elec-
tricity consumption, and COVID-19 transmission. ERAN
consistently outperforms existing state-of-the-art models on
these tasks. Analysis of the model reveals its effectiveness in

exploring the underlying dynamic relations during the fore-
casting process.

In summary, we present the following innovations:

• A method to model the dynamics of inter-channel rela-
tions in multivariate time series, by learning a dynamic
graph underlying such relations, that evolves over time.

• Temporal attentional convolution, a self-attentionmecha-
nism operating on sliding windows, to model the dynam-
ics of intra-channel relations in multivariate time series.

• Development of a framework for multivariate time series
forecasting that concurrently captures the dynamics of
intra- and inter-channel relations between variables.

• Conducting extensive experiments on multiple real-
world datasets to demonstrate the effectiveness of explic-
itly considering the dynamics of both relations in mul-
tivariate time series forecasting, in particular, for non-
stationary time series.

2 Related work

2.1 Traditional time series forecasting

Time series forecasting has been studied for decades. Tra-
ditional time series techniques are mainly based on the
statistical approach. These methods include the well-known
autoregressive integrated moving average (ARIMA) [15],
support vector regression (SVR) [25], random forest (RF)
[10], vector autoregressive models (VARs) [15].

ARIMA is a generalisation of the autoregressive (AR)
and and autoregresivemoving average (ARMA)models [22].
SVR [15] is a type of support vector machine that can per-
form regression by finding a hyperplane that fits the data with
the maximum margin. SVR can handle non-linear and high-
dimensional data, and provide probabilistic forecasts. RF
[10] is an ensemble learning method that can perform regres-
sion by combining multiple decision trees that are trained on
different subsets of the data. RF can handle noisy and het-
erogeneous data, and reduce the variance and overfitting of
individual trees.

Vector autoregresive models (VARs) extend AR and
ARMA to extract linear correlation between variables in
multivariate time series [15]. Nevertheless, traditional meth-
ods have several drawbacks. Firstly, they are linear models
and hence cannot capture non-linear dependencies present in
complex data. Secondly, thesemethods train time series indi-
vidually, and therefore, they are not scalable to large-scale
data sets containingmillions of time series. Furthermore, they
cannot leverage the common patterns shared between time
series in the data set, due to their individual training.

1 3

3919

B. Nguyen-Thai et al.

2.2 Deep learning-based time series forecasting

Deep learning-based methods have recently shown promis-
ing results in time series forecasting by capturing non-linear
dependencies in the data. Among these techniques, RNN and
its variants LSTM and GRU [6, 7, 14], has been used, such
as Deep AR [30], Deep State-Space Models (DSSM) [28],
TimeGrad [29] to name a few. CNN-based models such as
WaveNet [24], GluonTS [1] have also demonstrated their
effectiveness in modeling time series data.

Recently, transformers (e.g., [32]), renowned for their
adeptness in modeling long-range dependencies and interac-
tions within sequential data, have been increasingly utilised
in time series forecasting [17, 19, 21, 33, 38]. LogSparse
Transformer [19] proposes the LogSparse attention that to
reduce the computation complexity of the original Trans-
former. Reformer [17]. Informer [38] proposes the sparsity
of attention score throughKL divergence estimation and pro-
poses ProbSparse self-attention which achieves O(Llog L)
complexity. Crossformer [37]. Temporal Fusion Transformer
[21].

Thesemodels embed the observedmultivariate time series
into a sequence of vectors in a shared hidden space, and
use RNN, CNN, or self-attention mechanisms to model
the sequence in the temporal axis. Since the variables are
encoded in a shared hidden space, the inter-dependencies
between variables are not modeled explicitly.

2.3 Graph neural network for time series forecasting

Graph neural networks (GNN) have been showing great
successes in structured data like social network, protein net-
works, chemical networks, and human skeleton data. The
main goal of a GNN is to capture the dependencies of nodes
via a graph structure. GNN can learn the representation of a
node by leveraging not only that node’s feature but also its
neighbor nodes. Various techniques have been proposed for
this purpose such as graph convolution [4, 8, 16] andmessage
passing [11, 23, 27].

Inspired by the success of the GNN in other domains,
researchers have recently applied GNN to multivariate
time series such as Graph Wavenet (GWNet) [34], Spatio-
Temporal Graph Convolutional Networks (STGCN) [36]
Attention-based Spatial-temporal Graph Convolutional Net-
work (ASTGCN) [12]. Amultivariate time series can be seen
as a graph where variables correspond to nodes of the graph,
and the edges of the graph are the underlying dependencies
between the variables. By combining GNN and a tempo-
ral model, e.g., a RNN or a CNN, these works can learn
time series representations that capture both intra- and inter-
channel relations. However, these models need a pre-defined
graph, which is not always readily available.

To enable the GNN on data where a pre-defined graph is
unavailable, researchers have proposed to learn latent struc-
ture from data. In time series, a number of models have
been proposed to learn an underlying graph from data such
as MTGNN [35], Adaptive Graph Convolutional Recurrent
Network (AGCRN) [2], Spectral Temporal Graph Neural
Network (StemGNN) [5]. The main disadvantage is that they
use a static graph structure over the entire time span of a
time series, thus cannot capture the dynamic dependencies
between variables.

3 Proposedmethod

3.1 Problem formulation

A multivariate time series is represented by a matrix Y =
[X1, X2, . . . , XT] ∈ R

N×T , where T is the number of
time steps and N is the number of variables. In this nota-
tion, Xt ∈ R

N represents a slice of Y observed at time
step t . Given a historical window of L observed time steps,
Yo = [

XT−L+1, XT−L+2, . . . , XT
]
, and a forecast horizon

τ , the task is to predict the values of the next τ steps in the
future: Y f = [

XT+1, XT+2, . . . , XT+τ

]
. Often, historical

data may be associated with covariates such as date, time,
and location. Therefore, we assume that the input data for
forecasting Y f is S = [

ST−L+1, ST−L+2, . . . , ST
]
, where

St ∈ R
Din×N is obtained by concatenating Xt and its covari-

ates, Din is the dimensionality of the input features. Our goal
is to build a model F that predicts Y f from S.

Ŷ f = F(S,�) (1)

Here, Ŷ f ∈ R
N×τ is the predicted values in the forecasting

horizon, and � is the set of all model parameters.

3.2 Model overview

Wepropose a novel approach to address themultivariate time
series forecasting problem by leveraging a dynamic graph
Gt = (V,At) that captures the interactions between the vari-
ables at each time step of the series. The set of nodes V is
of size V = N , and At ∈ R

N×N is the adjacency matrix
whose entries reflect the strengths of the relations between
pairs of variables at the t-th time step. It is worth noting that
this graph is not pre-defined. Instead, our proposed model
will learn to extract the node features and generate the cor-
responding adjacency matrix At and its evolution over time
steps.

The proposed approach is implemented in ERAN, whose
overall architecture is illustrated in Fig. 1a. Firstly, the mul-
tivariate time series is input into a Evolving Graph Learning
layer (EGL) to generate a sequence of adjacency matrices,

1 3

3920

Learning evolving relations for multivariate time series forecasting

Fig. 1 (a) The high level
architecture of ERAN model.
The ERAN is composed of an
Evolving Graph Learning layer
(EGL) which learns to generate
the evolving adjacency matrices,
and multiple ERAN blocks
stacked together. Residual
connections and skips
connections are used to prevent
vanishing gradient. (b) An
ERAN block consists of two
main components: a Temporal
Attentional Convolution (TAC)
and a Temporal Graph
Convolution (TGC) which are
integrated to capture the intra-
and inter-channel relations

one for each time step. This sequence of matrices serves
as the input for the ERAN layer, which is composed of
multiple ERAN blocks stacked together. An ERAN block is
presented in Fig. 1b. Each ERAN block comprises two main
components: a Temporal Attentional Convolution (TAC) and
a Temporal Graph Convolution (TGC), which jointly cap-
ture both intra- and inter-channel relations. Furthermore,
each ERAN block includes a LayerNorm and Dropout layer
to prevent overfitting. To prevent vanishing gradients and
accelerate training, residual and skip connections are utilised
throughout all ERAN blocks.

Each ERAN block has two output branches: (i) the resid-
ual output R(i), which serves as part of the input for the
next ERAN block, and (ii) the skip output C(i), which is fed
directly to the output layer (described in the next paragraph)
to contribute to the forecast.

The output layer utilises the skip connection outputs of the
ERAN blocks to generate future values. The model is trained
to produce themost accurate prediction of these future values.
The Mean Absolute Error is chosen as the objective function
to train ERAN, which is computed as follows:

L(Ŷ f , Y f ,�) = 1

N .τ

T∑

t=1

|Ŷ f − Y f | (2)

where Y f is the ground truth of the forecasting horizon, Ŷ f

are the values predicted by the model, and � represents all
model parameters.

The detailed design of these components is described in
the subsequent sections.

3.3 EGL: Evolving Graph Learning layer

In a GNN-based method, the adjacency matrix plays a cen-
tral role in learning the relationships between individual
variables. In deterministic systems, this matrix can be pre-
defined based on human knowledge. For instance, in traffic
flow data, the adjacency matrix can be constructed from the
road network and the distances between the sensors. How-
ever, in many cases, such a graph is not readily available or
too complex to be defined manually. Early learning-based
works proposed generating such a structure from the data
without prior knowledge of the graph [2, 5, 35]. However,
these works generate a single adjacency matrix to cover the
relations between variables throughout the entire time series,
and thus they are not adaptive to the dynamics of the data.
In contrast, EGL learns a series of adjacency matrices, each
for a time step, enabling the model to capture the evolving
relationships of individual variables.

Now we present how EGL works. Our aim is to design
a recurrent process that generates At , the adjacency matrix

1 3

3921

B. Nguyen-Thai et al.

at time step t , conditioned on the previous step’s adjacency
matrix At−1 and current input value Xt . However, directly
modeling the values of the adjacency matrices would require
O (

N 4
)
computational complexity and memory consump-

tion1, which is remarkably expensive for a large network.
To reduce the computational complexity, we factorise the
matrix into two low-rank matrices Ht , H ′t ∈ R

de×N , where
de � N , holding the states of N variables at time step t .
Instead of generating At , EGL learns to generate Ht and H ′

t
and approximate At by At = g

(
Ht , H ′

t

)
. In our implemen-

tation, we choose the function At = relu
(
tanh

(
H�
t H ′

t

))
.

By using the relu and tanh function, we aim to make the
matrix At sparse, forcing the model to retain only important
relations. The benefits of this factorisation are not limited to
reducing computational complexity but also to maintaining
the low-rank properties of At .

We use a GRU (Gated Recurrent Unit), a type of recur-
rent neural network, to model the evolution of Ht , where
Ht is the hidden state of the GRU, and the layer input is
the GRU’s input. Similarly, we use another GRU to model
the evolution of H ′

t . Specifically, first, we embed Xt into
embedding vectors Et and E ′

t using linear transformations
Et = WE Xt ∈ R

de×N and E ′
t = W ′

E Xt ∈ R
de×N , where

Et , E ′
t ∈ R

de×N are learnable parameters. Then, Et and E ′
t

are fed into the GRU to compute hidden states Ht and H ′
t as

follows:

Ht = GRU (Et , Ht−1) , (3)

H ′
t = GRU

(
E ′t, H ′

t−1

)
, (4)

Since a GRU originally operates on vectors, the GRU’s
design need to be updated to operate on matrices Xt , Ht , and
H ′
t . For this purpose, we use the same approach presented

in [26]. In detail, the GRU’s computation is presented in
Algorithm 1. Here, WZ ,WR,UZ ,UR,WH ,UH , BZ , BR,

BH ∈ R
de×de are learnable parameters.

Algorithm 1 Matrix GRU.
1: function: Ht = GRU (Xt , Ht−1)

2: input: Et ∈ R
de×N , Ht−1 ∈ R

de×N

3: output: Ht ∈ R
de×N

4: begin:
5: Zt = sigmoid (WZ Et +UZ Ht−1 + BZ)

6: Rt = sigmoid (WREt +URHt−1 + BR)

7: Ẽt = tanh (WH Et +UH (Rt◦Ht−1) + BH)

8: Ht = (1 − Zt)◦Ht−1 + Zt◦H̃t
9: return Ht

The dynamic adjacency matrices built from this process
contain the evolving relational structure between variables

1 Flattening the matrix results in a vector of length N 2, and mapping
between two consecutive matrices requires N 4 operations.

and will be used to extract the intra- and inter-channel rela-
tions, which will be described in Section 3.4.

3.4 ERAN block

The ERAN layer layer consists of multiple ERAN blocks
which are stacked together to form a multi-layer network
with skip connection. Each ERAN block is designed to cap-
ture the intra- and inter-channel relations by employing a
Temporal Attentional Convolution (TAC) and a Temporal
Graph Convolution (TGC). In this section, we will introduce
the motivation behind an ERAN block and its architecture.

3.4.1 TAC: Temporal Attentional Convolution Module

For local temporal pattern modeling, convolutional neural
networks (CNNs) are a common choice to find local motifs.
CNNs learn a kernel to operate on a sliding window and
compute the output from input within a context. In CNN,
one unique kernel is applied for the whole lifetime of a time
series. However, a unique kernel is insufficient to capture the
temporal dynamics where different parts of the same time
series may have changing temporal patterns. Furthermore,
once learned, the kernel is fixed, thus it is poor at capturing
the temporal patterns when the test set and training set have
different patterns.

In order tomodel such temporal dynamics, here we design
temporal attentional convolution (TAC). Unlike CNN, which
aggregates input within a local context to compute the output
using a fixed kernel, TAC employs a self-attention mecha-
nism to learn to focus on important input when computing
the output, enabling it to capture changes in temporal patterns
over time. Attention mechanisms with the ability to learn to
focus on important parts within a context have shown their
effectiveness in natural language processing and computer
vision. We extend that concept to multivariate time series
where we need to deal with N sequences corresponding to
N variables.

For each sequence, the data point at each time step
will attend to its neighbors of the same sequence, within
a given window with of size w (w = 3, 5, 7, . . .) where
each time step attends w time steps each size and itself.
Specifically, at time step t , the attention region is Nw (t) ={
t ′, t − w−1

2 ≤ t ′ ≤ t + w−1
2

}
. This approach is in contrast

to global attention, where each data point attends to all data
points across all time steps. By limiting attention to a local
region, the proposed mechanism reduces the computational
complexity and memory consumption required for process-
ing the sequence data. An example of TAC operating in a
window of size w = 5 is illustrated in Fig. 2.

Given the input xi,t of the i-th series at time step t , a
single-headed attention for the output feature zi,t ∈ R

dout is

1 3

3922

Learning evolving relations for multivariate time series forecasting

Fig. 2 An example of the TAC module over a window of size w = 5

computed as:

zi,t =
∑

t ′∈Nw(t)

(
q�
i,tki,t ′ + q�

i,tαt ′−t

)
vi,t ′ (5)

where the queries qi,t , keys ki,t ′ , and values vi,t ′ are lin-
ear transformations of xi,t and its neighbourhoods, and are
computed as follows.

qi,t = WQxi,t ,ki,t ′ = WK xi,t ′ , vi,t ′ = WV xi,t ′ (6)

Here, WQ,WK ,WV ∈ R
dout×din are learnable parameters,

and αt ′−t ∈ R
dout represents the relational position embed-

ding associated with the neighborhood t ′ of t . The relational
position embedding is introduced here to capture the tempo-
ral information of the input. It was introduced in [31], where
its effectiveness over absolute position embeddings was sug-
gested.

The way in which we compute zi,t (see (5)) is similar to
that of a convolutional operator across the temporal dimen-
sion. However, instead of using a fixed kernel, the kernel
weights are computed from the content of the variables and
their underlying dependencies, making the model adaptive
to the dynamism of the temporal patterns of the data.

Multi-headed TAC In practice, multiple attention heads
can be used to calculate different representation sets from
the input. To achieve this, each single-headed attention uses
linear transforms W (h)

Q ,W (h)
K ,W (h)

V ∈ R
din×dout/H to gen-

erate the output z(h)
i,t ∈ R

dout/H , where H is the number
of attention heads. These outputs are then concatenated to
obtain the final output zi,t of the multi-headed attention:

zi,t =
[
z(1)
i,t ; z(2)

i,t ; . . . ; z(H)
i,t

]
∈ R

dout .

Dilated TACWhenm ERAN blocks are stacked together,
the receptive field will be m (w − 1). To further increase the
receptive field, we use a “dilated” window, where neighbor

data points can be skipped regularly. This concept is similar
to the dilated convolution presented in [24]. We use a dila-
tion factor p to control the dilation of each layer, where the
dilation of the i-th ERAN block is pi−1. For example, if the
dilation factor is 2, then the dilation of the first layer is 1, the
second layer is 2, the third layer is 4, and so on. In summary,
in a network of m ERAN blocks, the receptive field is:

RF =
{
m(w − 1) if p = 1
[
1 + (w − 1)(pl − 1)

]
/(p − 1) if p > 1

(7)

assuming the window size w is fixed for all layers.

3.4.2 TGC: Temporal graph convolution module

Graph convolutional networks (GCN) generalise convolu-
tional neural networks (CNNs) to work on graph-structured
data, such as social networks or protein structures [4, 8, 16].
GCNs generate output node features that capture the spa-
tial dependencies of nodes, given their node features and a
graph structure.While there are existingworks that use graph
convolutions for time series forecasting, most of them use a
pre-defined graph or a static graph learned from data for the
entire time series. In contrast, we use an evolving graph for
the time series,where each time step has a different adjacency
matrix computed in the EGL layer. At each step, graph con-
volutions are performed with the corresponding adjacency
matrix.

There are many ways to perform graph convolutions,
such as spectral graph convolution [4], graph convolutional
networks [16], and approximation of convolutions using
Chebyshev polynomials [8]. Here, we use diffusion graph
convolution, which was proposed in [20] for its effectiveness
in capturing inter-series relations. This formulation captures
the relations of node features in K graph convolution iter-
ations. Given node features X ∈ R

din×N and the learned
adjacency matrix A, the output node features Z ∈ R

dout×N

are calculated as follows:

Z� =
K∑

k=0

Ak X�W (k) (8)

where Ak ∈ R
N×N is the k-th power of the adjacency matrix

A, and W (k) ∈ R
din×dout are learnable parameters at the k-th

convolution iteration.
The formula for the graph diffusion convolution in (8) is

applied to each step of the i-th ERAN block, given the list
of adjacency matrices A1, A2, . . . , AL . In detail, at the i-th
ERAN block, the graph diffusion convolution is applied at

1 3

3923

B. Nguyen-Thai et al.

each time step as follows.

Z�
t =

K∑

k=0

Ak
t X

�
t W

(k) (9)

where Zt ∈ R
dout×N is the output node features, and Xt ∈

R
din×N is the input node features at time step t , respectively.

It is important to note that at the i-th ERAN block, the length
of the temporal model’s output is Li , which is smaller than
L . Therefore, only the last Li adjacency matrices are used.

3.4.3 Residual and skip connections

The classical residual network (ResNet) architecture intro-
duced a skip connection that adds the input tensor to the
output tensor of a stack of layers, which is then passed to the
next stack [13]. This helps alleviate the problem of vanish-
ing gradients and improves the performance of deep neural
networks. In this work, we adopt a similar approach in our
proposed model, to enhance the trainability of the model.
However, due to the downsampling effect of the TAC mod-
ule, the length of the residual tensor may be shorter than
that of the input tensor. To ensure that the input tensor and
the residual tensor have the same dimensions for addition,
we truncate the input tensor to match the dimensions of the
residual tensor. The addition operation is defined as follows:

X (i+1) = X (i)[:, :, :, L − Li : L] + R(i) (10)

with Li is the length of X̂ (i), the residual output of the i-th
ERAN block. Note that, Li is also the length of the input for
the (i + 1)-th ERAN block.

The skip connection at each consists of a 2D convolution
with a kernel size of (1, Li). The purpose of a skip connection
module is to combine all steps of C(i), the skip output of the
i-th TAC, into C (i) ∈ R

Dc×N , which has a single step:

C (i) = Conv2D
(
C(i)

)
(11)

3.5 Multi-step forecasting

The outputs of the skip connections are summed up and fed to
the output layer which generates the prediction of the future
Ŷ f . The sum of outputs of the skip connections is as follows.

C =
m∑

i=1

C (i) ∈ R
Dc×N (12)

The output layer consists of two 2D convolutions with a ker-
nel size of (1, 1), which are used to translate the dimension
of the input (Dc) to the forecasting horizontal dimension. In

other words, the dimensionality of the output layer’s input is
Dc, while its the dimentionality of its output is τ .

4 Experiments

4.1 Experimental settings

To measure the time-series forecasting performance of
ERAN, we use the following public datasets, ranging from
traffic flow, electricity consumption, to COVID-192. A sum-
mary of these datasets is presented in Table 1.

• PEMS-03: contains traffic flow information collected by
358 sensors in the San Francisco Bay Area from Sep 1,
2018, to Nov 30, 2018.

• PEMS-04: contains traffic flow information collected by
307 sensors in the San Francisco Bay Area from Jan 1,
2018, to Feb 28, 2018.

• PEMS-08: contains traffic flow information collected by
170 sensors in the San Bernardino area from Jul 1, 2016,
to Aug 31, 2016.

• Solar-Energy: the solar power production records in the
year of 2006, sampled every 10 minutes from 137 PV
plants in Alabama State.

• Electricity: the hourly electricity consumption of 321
clients recorded from 2012 to 2014.

• COVID-19 Global: the country-wise daily new cases and
daily death tolls of COVID-19 in 25 countries, collected
by John Hopkins University.

• COVID-19 US: the state-level daily new cases and death
tolls of COVID-19 in the US, collected by John Hopkins
University.

For PEMS-03, PEMS-04, and PEMS-08, we use a one-hour
historical window (12 steps) to predict the values in a 15-
minute forecasting horizon (3 steps), following [5]. For Solar,
we use a 4-hour historical window (24 steps) to predict the
values in the next 0.5 hour forecasting horizon (3 steps). For
Electricity, we use a 24-hour historical window (24 steps)
to predict the values in the next 3-hour forecasting horizon
(3 steps). For COVID-19 Global data, we use a 7-day his-
torical window to predict the daily values in the next 7-day
forecasting horizon. For COVID-19 US, we use a historical
window of 14 days to predict the values in the next 7-day
forecasting horizon. We evaluate the methods by comparing
the predicted values with the ground truth usingMAE (Mean
AbsoluteError),RMSE(RootMeanSquareError), andMean

2 The datasets used in this paper is available at the following URL:
https://drive.google.com/drive/folders/1vsF7dzpiCAKOWpUJw6u1ne
1TjMa5m-ZD

1 3

3924

https://drive.google.com/drive/folders/1vsF7dzpiCAKOWpUJw6u1ne1TjMa5m-ZD
https://drive.google.com/drive/folders/1vsF7dzpiCAKOWpUJw6u1ne1TjMa5m-ZD

Learning evolving relations for multivariate time series forecasting

Table 1 Summary of the datasets

Dataset # Nodes # Time steps Sampling
rate

Predefined
graph

PEMS-03 358 26,209 5 min Available

PEMS-04 307 34,272 5 min Available

PEMS-08 170 17,856 5 min Available

Solar 137 52,560 10 min Not
available

Electricity 321 26,304 1 hour Not
available

COVID-19
Global

25 160 1 day Not
available

COVID-19
US

54 320 1 day Not
available

Average Percentage Error (MAPE), which are widely used
evaluation metrics in forecasting tasks.

4.2 Baselinemethods

To verify the effectiveness of the proposed model, we
compare it with state-of-the-art methods for time-series fore-
casting from the following groups: (i) traditional methods,
(ii) deep learning-based methods, (iii) methods that use a
pre-defined graph, and (iv) methods that automatically gen-
erate a graph from the data. The details of the baselines are
as follows.

• VAR (Vector Auto-Regression) [15]: An auto-regression
model for multivariate time series.

• LSTM [14]: A type of recurrent neural network (RNN)
architecture designed to capture and remember long-
range dependencies in sequential data.

• GRU [6]: A recurrent neural network for sequence data
that efficiently learns dependencies and avoids gradient
issues.

• TCN [3]: Amodel for sequential data using convolutional
neural network.

• LSTNet [18]: A deep neural network that combines
convolutional neural networks and recurrent neural net-
works.

• Reformer [17]: A memory efficient transformer-based
model for multivariate time series forecasting.

• Informer [38]: A transformer-based model for multivari-
ate time series forecasting.

• Crossformer [37]: A transformer-based model for mul-
tivariate time series forecasting using cross dimension
dependency.

• DCRNN [20]: A convolutional recurrent neural network
that combines graph convolutions with recurrent neural
networks.

• ST-GCN [36]: A spatial-temporal graph convolutional
network that combines a graph convolution with 1D con-
volutions.

• GWNet (Graph Wavenet) [34]: A spatial-temporal graph
convolutional network that combines graph convolutions
with 1D dilated convolutions.

• MT-GNN [35]: A method that learns to generate a static
graph from the data and then combines graph convolu-
tions with 1D convolutions.

• StemGNN [5]: A method that learns to generate a static
graph from the data and uses graph neural networks and
1D convolutions in the spectral domain.

• AGCRN [2]: A method that learns to generate a static
graph from the data and combines graph convolutions
with recurrent neural networks.

4.3 Implementation details

In our proposed model, ERAN, we utilized a three-layer
architecture with input and output dimensionalities of 128.
The selection of window size and dilation factor was con-
tingent upon the length of the historical window. In the case
of a long historical window, our goal is to have an expansive
receptivefield that covers the entire sequence.Toachieve this,
we utilize a long window size and a large dilation factor. In
contrast, for a shorter historical window, a smaller window
size and dilation factor are sufficient. In detail, for data with
length smaller than or equal to 12 steps, we used a window
size of 3 and dilation of 1, while for data with length greater
than 12 steps, we used a window size of 5 and dilation factor
of 2. We employed the Adam optimiser with a learning rate
of 0.001 and weight decay of 0.0001.

All deep learning-based models were implemented using
PyTorch and trained on a machine equipped with a single
NVIDIA GPU. We halted training after 100 epochs and
reported results on the test set for the epochs that produced
the lowest loss on the validation set.

4.4 Results

4.4.1 Overall comparison

Tables 2, 3 and 4a provide a comprehensive comparison of
the methods across the datasets. The results show that ERAN
outperforms all competing methods on all datasets. In addi-
tion, we make the following observations:

1. In general, deep learning-based methods perform better
than traditional methods, except for VAR, which per-
forms comparably to some deep learning-based methods
on certain traffic flow datasets.

1 3

3925

B. Nguyen-Thai et al.

Table 2 Results on traffic flow
forecasting (historical window:
12 steps, forecast horizon: 3
steps)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
PEMS-03 PEMS-04 PEMS-08

VAR 23.65 38.26 0.245 24.54 38.61 0.172 19.19 29.81 0.131

LSTM 21.33 35.11 0.233 27.14 41.59 0.182 22.20 34.06 0.142

GRU 21.18 34.84 0.183 27.41 40.34 0.179 22.43 34.31 0.145

TCN 18.23 25.04 0.194 26.31 36.11 0.156 15.93 25.69 0.165

LSTNet 19.07 29.67 0.177 24.04 37.38 0.170 20.26 31.96 0.113

Reformer 17.35 30.72 0.174 21.09 33.95 0.151 19.17 29.18 0.126

Informer 18.47 32.41 0.182 22.17 36.00 0.173 20.41 31.95 0.125

Crossformer 15.69 24.76 0.164 20.84 32.12 0.150 16.26 24.78 0.125

DCRNN 18.18 30.31 0.181 19.54 31.22 0.171 17.86 27.83 0.114

ST-GCN 17.49 30.12 0.171 20.03 33.21 0.145 18.02 27.83 0.114

GWNet 19.85 32.94 0.193 26.85 39.70 0.172 19.13 28.16 0.126

StemGNN 14.32 21.64 0.162 20.24 32.15 0.101 15.83 24.93 0.093

MTGNN 14.27 21.13 0.155 20.12 30.47 0.122 15.04 22.45 0.111

AGCRN 14.46 21.97 0.156 19.12 30.98 0.131 15.95 25.22 0.112

ERAN (ours) 13.89 20.94 0.148 18.76 29.48 0.104 14.46 22.26 0.091

2. Among deep learning-based methods, graph-based mod-
els outperform non-graph-based models (such as LSTM,
TCN, and LSTNet), highlighting the significance of
explicitly modeling inter-series dependencies.

3. Our proposedmodel, ERAN, outperformsothermethods,
that model the inter-channel relations, by a significant
margin. The key difference is that while these methods
only capture static inter-channel relations, ERANmodels
the evolution of such relations via an evolving graphs and

Table 3 Results on the energy consumption forecasting (historical win-
dow: 24 steps, forecast horizon: 3 steps)

MAE RMSE MAPE MAE RMSE MAPE
Solar-Energy Electricity

VAR 2.27 3.25 0.925 268.4 1811.3 0.194

LSTM 2.18 3.17 0.846 230.3 1725.4 0.246

GRU 1.98 3.05 0.878 230.3 1725.4 0.225

TCN 2.05 3.09 0.735 221.1 1698.5 0.182

LSTNet 2.15 3.06 0.684 248.9 1625.3 0.178

Reformer 1.43 2.41 0.751 208.7 1183.4 0.197

Informer 1.57 2.58 0.786 215.5 1296.8 0.199

Crossformer 1.52 2.65 0.676 336.7 2408.9 0.205

StemGNN 1.19 2.26 0.651 336.7 2408.9 0.244

GWNet 2.75 4.05 0.977 336.7 2408.9 0.407

MTGNN 1.19 2.23 0.452 204.2 1645.4 0.133

AGCRN 1.15 2.21 0.519 201.5 1308.7 0.224

ERAN (ours) 1.08 2.05 0.446 170.9 1107.4 0.119

Due to the unavailability of pre-defined graphs, models that are depen-
dent on pre-defined graphs are excluded

thus captures dynamic dependencies between variables
more effectively.

To evaluate the long-term forecasting ability, we report
the mean absolute error (MAE) of the predictions at dif-
ferent forecasting horizons for the PEMS-04 and Electricity
datasets in Fig. 3. Our results demonstrate that ERANoutper-
forms all competing methods across all forecasting horizons,
showing its effectiveness in predicting long-term trends. Par-
ticularly, for the longest horizon (60 minutes), the difference
between ERAN and the other methods is significant, empha-
sizing ERAN’s superior long-term forecasting ability.

4.4.2 Significance testing

To assess the statistical significance of our results, we con-
ducted pairwise hypothesis tests comparing the absolute
errors generated by the ERAN against those produced by
the second-best model. The hypotheses were formulated as
follows: H0 (null hypothesis) posits that there is no differ-
ence between the mean absolute errors (MAE) of the two
algorithms, while Ha (alternative hypothesis) asserts that the
mean absolute errors of the two algorithms are statistically
different.

The significance level, denoted by a threshold of 0.05 (cor-
responding to a confidence level of 95%), was used to assess
the p-values. If the p-value is smaller than this threshold, the
null hypothesis is rejected.

The t-test results are outlined in Table 5. Notably, all pair-
wise tests exhibit p-values significantly below 0.05. This lack
of evidence supports the rejection of the null hypothesis,

1 3

3926

Learning evolving relations for multivariate time series forecasting

Table 4 Results on COVID-19 new cases and death tolls forecasting (historical window: 7 steps, forecast horizon: 7 steps)

MAE RMSE MAPE MAE RMSE MAPE
Global new cases Global death toll

(a) Results on global new cases and death tolls forecasting (historical
window: 7 steps, forecast horizon: 7 steps).

VAR 2,211 3,847 3.621 178.51 235.42 6.428

LSTM 1,783 3,421 3.586 172.13 211.61 6.132

GRU 1,761 3,215 3.421 173.21 214.35 6.241

TCN 1,787 3,414 3.472 175.32 223.73 6.311

LSTNet 1,761 3,312 3.045 167.45 198.56 5.729

Reformer 3,305 6,728 2.501 228.91 361.25 6.386

Informer 3,608 7,562 3.162 171.45 281.94 7.109

Crossformer 2,050 5,573 3.515 116.50 312.50 3.717

StemGNN 2,828 7,186 1.854 72.32 161.45 5.345

GWNet 1,340 3,796 1.306 96.54 152.76 4.921

MTGNN 1,365 3,294 1.528 73.05 151.92 4.955

AGCRN 1,396 3,417 1.222 116.40 296.29 7.354

ERAN (ours) 1,282 3,027 0.873 69.93 143.21 4.811

US new cases US death toll

(b) Results on US new cases and death tolls forecasting (historical
window: 14 steps, forecast horizon: 7 steps).

VAR 1,938 4,821 1.632 41.13 78.61 1.428

LSTM 1,808 4,905 1.268 39.43 76.82 1.032

GRU 1,791 4,862 1.127 39.28 75.93 1.004

TCN 1,754 4,899 1.213 38.45 72.58 1.341

LSTNet 1,821 3,726 1.028 40.21 78.32 1.213

Reformer 3,149 6,338 1.067 45.58 87.39 1.025

Informer 2,661 5,559 2.231 39.13 76.64 1.001

Crossformer 1,650 4,547 1.338 29.59 61.58 1.282

StemGNN 2,419 5,375 1.361 35.53 64.85 1.042

GWNet 1,446 4,165 1.052 28.73 50.28 1.015

MTGNN 1,458 3,981 1.015 28.32 48.87 1.016

AGCRN 1,581 4,929 1.005 37.03 70.13 1.311

ERAN (ours) 1,060 2,348 0.781 24.15 45.64 0.979

Due to the unavailability of pre-defined graphs, models that are dependent on pre-defined graphs are excluded

signifying a statistically significant difference between the
ERAN MAE and that of the next best model.

4.4.3 Impact on non-stationary time series

To evaluate the efficacy of ERAN on non-stationary time
series, specifically, we investigate the stationarity of time
series and compare how ERAN outperforms existing models
in both stationary and non-stationary contexts.

We begin by examining the stationarity of time series
using the Augmented Dickey-Fuller test (ADF) [9]. The
ADF test is a widely employed statistical method for deter-
mining whether a given time series is stationary. The test

formulates a null hypothesis assuming the presence of a unit
root, indicating non-stationarity, and an alternative hypothe-
sis suggesting stationarity. The test statistic is then compared
to critical values, and the resulting p-value is pivotal in estab-
lishing the stationarity of the time series. A p-value below a
chosen significance level (commonly 0.05) leads to the rejec-
tion of the null hypothesis, providing evidence in favor of
stationarity. In contrast, a p-value exceeding the significance
level leads to the acceptance of the null hypothesis, implying
the presence of non-stationarity in the time series. Therefore,
the ADF test utilizes the p-value to make informed decisions
about the stationarity of the analysed time series. The results
of the ADF test regarding the stationarity of time series are
presented in Table 6.

1 3

3927

B. Nguyen-Thai et al.

Fig. 3 MAE at different forecasting horizons

Next, we assess the enhancement in Mean Absolute Error
(MAE) of ERAN compared to the second-best model for
each dataset. From the outcomes presented in Table 7, we

Table 5 Significance testing results between ERAN and the Next best
model for each dataset

Dataset Next best model p-value Diff?

PEMS-03 MTGNN 7.15e-06 Yes

PEMS-04 AGCRN 3.42e-06 Yes

PEMS-08 MTGNN 2.51e-05 Yes

Solar AGCRN 2.45e-05 Yes

Electricity AGCRN 1.66e-05 Yes

COVID-19 Global
new cases

GWNet 5.76e-05 Yes

COVID-19 Global
death toll

StemGNN 1.23e-05 Yes

COVID-19 US new
cases

GWNet 1.47e-05 Yes

COVID-19 US death
toll

MTGNN 2.63e-05 Yes

Table 6 The results of ADF test

Dataset p-value Stationary

PEMS-03 0.0 Yes

PEMS-04 1.11e-25 Yes

PEMS-08 2.32e-26 Yes

Solar 0.0 Yes

Electricity 0.0011 Yes

COVID-19 Global new cases 0.6939 No

COVID-19 Global death toll 0.9989 No

COVID-19 US new cases 1.0 No

COVID-19 US death toll 0.9983 No

A p-value greater than 0.05 indicates that the time series is non-
stationary

can see that the enhancements on non-stationary time series
are more substantial than those on stationary ones. Across
five stationary time series, the average percentage decrease of
MAE is 5.93%, whereas over four non-stationary time series,
the average percentage decrease of MAE is 12.25%. These
results confirm the effectiveness of ERAN in enhancing fore-
cast accuracy, particularly in the context of non-stationary
time series.

4.5 Ablation study

To gain more insight into the proposed model, we conducted
an ablation study to evaluate the impact of (i) learning the
dynamics of the inter-channel relations, and (ii) learning the
dynamics of the intra-channel relations; (iii) the number of
the layers; (iv) the dilation factor, on themodel’s performance
as follows.

Table 7 MAE Improvement of ERAN relative to the second best model
across datasets

Dataset Stationary Second best
model

% MAE
decrease

PEMS-03 Yes MTGNN 2.66%

PEMS-04 Yes AGCRN 1.88%

PEMS-08 Yes MTGNN 3.85%

Solar Yes AGCRN 6.08%

Electricity Yes AGCRN 15.18%

COVID-19 Global
new cases

No GWNet 4.32%

COVID-19 Global
death toll

No StemGNN 3.30%

COVID-19 US new
cases

No GWNet 26.69%

COVID-19 US death
toll

No MTGNN 14.72%

The findings indicate a more pronounced enhancement in MAE for
non-stationary time series compared to stationary counterparts

1 3

3928

Learning evolving relations for multivariate time series forecasting

Table 8 Ablation study on the impact of the graphs

MAE RMSE MAE RMSE
Global death toll US death toll

Evolving graph 69.93 143.21 24.15 45.64

Static graph 71.28 146.35 26.18 47.21

No graph 72.25 148.98 26.51 47.54

4.5.1 Impact of learning the dynamics of inter-channel
relations

To evaluate the effectiveness of learning the dynamics
of inter-channel relations, we examined three variants of
ERAN: (1)Evolving graph: where the inter-channel relations
is modelled by an an elvoving graph generated by the EGL
layer, (2) Static graph: where the inter-channel relations is
modelled by a static graph generated from the data, which
is unchanged thoughout the time series lifetime, and (3) No
graph: where inter-channel relations are ignored.

Table 8 reports the results on the COVID-19 dataset.
We observe that the Evolving graph variant, which uses
the evolving graph, performs better than the other variants,
demonstrating the importance of capturing the evolution of
inter-channel relations over time. Additionally, we see that
the Static graph variant, which can only capture a static rela-
tion between the variables, improves the forecasting accu-
racy. Finally, theNo graph variant performs the worst among
the three variants, emphasizing the effectiveness of capturing
the relations between the variables using graph convolution.

4.5.2 Impact of learning the dynamics of the intra-channel
relations

As the learning the dynamics of intra-channel relations is
accomplished through the TAC module, we investigated the
impact of this learning approach by comparing TAC with
LSTM and TCN, which capture invariant temporal patterns
only. It’s important to note that TAC is achieved by removing
the graph from ERAN, making it equivalent to ERAN’s “no
graph” variant presented in Section 4.5.1.

The results in Table 9 show that TAC significantly outper-
formsLSTMandTCNonCOVID transmission data, a highly

Table 9 Study on the impact of TAC

MAE RMSE MAE RMSE
Global death toll US death toll

TAC 72.25 148.98 26.51 47.54

LSTM 172.13 211.61 39.43 76.82

TCN 175.32 223.73 38.45 72.58

Fig. 4 MAE on COVID-19 US daily death toll with different number
of layers

non-stationary time series. This indicates the effectiveness
of using TAC in capturing the dynamics of the temporal pat-
terns.

4.5.3 Impact of the number of layers

One important parameter of the ERAN is the number of lay-
ers. To demonstrate the impact of the number of layers, we
present a plot of the MAE on COVID-19 US death tolls in
Fig. 4. The optimal forecasting accuracy is achieved when
the number of layers is 3. With a small number of layers, the
model’s capacity is too limited to learn the data. On the other
hand, if we increase the number of layers, the model capacity
will increase and is prone to over-fitting.

4.5.4 Impact of the dilation factor

We use a dilation factor p to control the dilation at each
layer. The dilation of the next layer is p times the dilation
of the previous one. Thus, the dilation of layer l is pl−1.
Table 10 shows the forecasting accuracy of COVID-19 in the
US using dilation factors 1 and 2. We can see that dilation
factor 2 achieves slightly better forecasting accuracy than
dilation factor 1. This confirms the effectiveness of using a
dilation factor larger than 1 to extend the receptive field.

4.6 Qualitative analysis

To gain more insight into the behavior of the methods, we
plot in Fig. 5 two examples of the daily new cases forecasting

Table 10 Ablation study on the impact of the dilation factor

MAE RMSE MAE RMSE
US new cases US death toll

p=2 1,060 2,348 24.15 45.64

p=1 1,097 2,389 26.11 47.53

1 3

3929

B. Nguyen-Thai et al.

Fig. 5 Visualisation of
COVID-19 forecasting

for COVID-19 in the US, 7 days in advance. The blue line
represents the ground truth data for each state, while the
other colors represent the forecasting results of the models.
Overall, in both examples, ERANperformedbetter thanother
methods in predicting the ground truth data. ERAN was also
better in capturing the trend when the ground truth went up
and down. However, in both cases, there were some short but
sharp spikes that no method could capture well.

5 Conclusion

WeproposeERAN, amodel that captures the dynamics of the
intra- and inter-channel relations for multivairate time series
forecasting. To model the intra-channel relations, ERAN
utilises Temporal Attentional Convolution (TAC), which
applies self-attention mechanism within a temporal win-
dow. On the other hand, to model the inter-channel relations,
ERAN uses dynamic graph convolutional network, wherein
the graph structure evolves over time. Our experimental
architecture has established new state-of-the-art results on
multiple types of time series data, from classical traffic flows
and electricity consumption forecasting to newly emerg-
ing problems like COVID- 19 projections. Furthermore,
ERAN exhibits significant improvement over existing meth-
ods, particularly evident in non-stationary time series. The
representation power and generality of the model promise
strong and wide applications in time series modeling. How-
ever, a notable limitation of the proposedmodel is the current
exclusion of time-dependent covariates such as weather and
price indices as inputs for forecasting. Recognizing this, we

identify the incorporation of these covariates as a potential
avenue for improvement, which we leave for future work.

Acknowledgements This work is partially funded by the UK Research
and Innovation (UKRI) as a Knowledge Transfer Partnership (KTP)
under project number 12493.

Author Contributions Binh Nguyen-Thai proposed the research idea,
designed and implemented the model, conducted experiments, and
served as the primarywriter. Vuong Le, Ngoc-Dung T. Tieu, and Truyen
Tran contributed to the model design, result analysis, and manuscript
revisions. Svetha Venkatesh, and Naeem Ramzan supervised and par-
ticipated in revising the paper.

Data Availability The datasets used in this paper is available at
the following URL: https://drive.google.com/drive/folders/1vsF7dzpi
CAKOWpUJw6u1ne1TjMa5m-ZD

Declarations

Ethical standard All datasets used in this paper are publicly available
and no consent was required for their use.

Competing Interests The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

1 3

3930

https://drive.google.com/drive/folders/1vsF7dzpiCAKOWpUJw6u1ne1TjMa5m-ZD
https://drive.google.com/drive/folders/1vsF7dzpiCAKOWpUJw6u1ne1TjMa5m-ZD

Learning evolving relations for multivariate time series forecasting

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alexandrov A, Benidis K, Bohlke-Schneider M et al (2020) Glu-
onts: probabilistic and neural time series modeling in python. J
Mach Learn Res 21(116):1–6. http://jmlr.org/papers/v21/19-820.
html

2. Bai L, Yao L, Li C et al (2020) Adaptive graph convolutional recur-
rent network for traffic forecasting. In: Larochelle H, Ranzato M,
Hadsell R et al (eds) Advances in neural information processing
systems, vol 33. Curran Associates, Inc., pp 17,804–17,815

3. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of
generic convolutional and recurrent networks for sequence model-
ing. arXiv:1803.01271

4. Bruna J, Zaremba W, Szlam A et al (2014) Spectral networks and
locally connected networks on graphs. International conference on
learning representations (ICLR 2014)

5. Cao D,Wang Y, Duan J et al (2020) Spectral temporal graph neural
network for multivariate time-series forecasting. Adv Neural Inf
Process Syst 33

6. Cho K, van Merriënboer B, Gulcehre C et al (2014) Learning
phrase representations using RNN encoder–decoder for statisti-
cal machine translation. In: Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp
1724–1734

7. Conti M, Turchetti C (1994) Approximation of dynamical sys-
tems by continuous-time recurrent approximate identity neural
networks. Neural Parallel Sci Comput 2(3):299–320

8. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional
neural networks on graphs with fast localized spectral filtering. In:
Proceedings of the 30th international conference on neural infor-
mation processing systems, NIPS’16, pp 3844–3852

9. Dickey DA, Fuller WA (1979) Distribution of the estimators for
autoregressive time series with a unit root. J Am Stat Assoc
74(366):427–431

10. Dudek G (2015) Short-term load forecasting using random forests.
In: Filev D, Jabłkowski J, Kacprzyk J et al (eds) Intelligent sys-
tems’2014. Springer International Publishing, Cham, pp 821–828

11. Gilmer J, Schoenholz SS, Riley PF et al (2017) Neural message
passing for quantum chemistry. In: Proceedings of the 34th inter-
national conference on machine learning, ICML’17, vol 70. pp
1263–1272

12. Guo S, Lin Y, Feng N et al (2019) Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: Pro-
ceedings of the AAAI conference on artificial intelligence, pp
922–929

13. He K, Zhang X, Ren S et al (2016) Deep residual learning for
image recognition. In: 2016 IEEE conference on computer vision
and pattern recognition (CVPR), pp 770–778. https://doi.org/10.
1109/CVPR.2016.90

14. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

15. Hyndman R, Athanasopoulos G (2021) Forecasting: principles and
practice, 3rd edn. OTexts, Australia

16. Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: Proceedings of the 5th interna-
tional conference on learning representations, ICLR ’17

17. Kitaev N, Kaiser L, Levskaya A (2020) Reformer: the efficient
transformer. In: International conference on learning representa-
tions. https://openreview.net/forum?id=rkgNKkHtvB

18. Lai G, Chang WC, Yang Y et al (2018) Modeling long- and short-
term temporal patterns with deep neural networks. In: The 41st
internationalACMSIGIR conference on research and development
in information retrieval, SIGIR’18. New York, pp 95–104

19. Li S, JinX,XuanYet al (2019) Enhancing the locality and breaking
the memory bottleneck of transformer on time series forecasting.
In: Advances in neural information processing systems, pp 5243–
5253

20. LiY,YuR, ShahabiC et al (2018)Diffusion convolutional recurrent
neural network: data-driven traffic forecasting. In: International
conference on learning representations (ICLR ’18)

21. LimB, Arık SÖ, Loeff N et al (2021) Temporal fusion transformers
for interpretable multi-horizon time series forecasting. Int J Fore-
casting 37(4):1748–1764

22. Mills TC (1990) Time series techniques for economists. Cambridge
University Press

23. Nguyen D, Nguyen B, Nguyen P et al (2021) High-order represen-
tation learning for multivariate time series forecasting. In: Time
series workshop@ICML 2021

24. Oord Avd, Dieleman S, Zen H et al (2016) Wavenet: a generative
model for raw audio. arXiv:1609.03499

25. Pai PF, Lin KP, Lin CS et al (2010) Time series forecast-
ing by a seasonal support vector regression model. Expert
Syst Appl 37(6):4261–4265. https://doi.org/10.1016/j.eswa.
2009.11.076, https://www.sciencedirect.com/science/article/pii/
S0957417409010185

26. ParejaA,Domeniconi G, Chen J et al (2020) EvolveGCN: evolving
graph convolutional networks for dynamic graphs. In: Proceedings
of the thirty-fourth AAAI conference on artificial intelligence

27. Pham T, Tran T, Phung D et al (2017) Column networks for collec-
tive classification. In: Proceedings ofAAAI conference on artificial
intelligence

28. Rangapuram SS, Seeger MW, Gasthaus J et al (2018) Deep
state space models for time series forecasting. In: Bengio S,
Wallach H, Larochelle H et al (eds) Advances in neural infor-
mation processing systems, vol 31. Curran Associates, Inc.,
https://proceedings.neurips.cc/paper_files/paper/2018file/5cf6896
9fb67aa6082363a6d4e6468e2-Paper.pdf

29. Rasul K, Seward C, Schuster I et al (2021) Autoregressive denois-
ing diffusion models for multivariate probabilistic time series
forecasting. In: International conference on machine learning.
https://api.semanticscholar.org/CorpusID:231719657

30. Salinas D, Flunkert V, Gasthaus J et al (2020) Deepar: probabilistic
forecasting with autoregressive recurrent networks. Int J Fore-
casting 36(3):1181–1191. https://www.sciencedirect.com/science/
article/pii/S0169207019301888

31. Shaw P, Uszkoreit J, Vaswani A (2018) Self-attention with relative
position representations. In: Proceedings of the 2018 conference of
the North American chapter of the association for computational
linguistics: human language technologies, vol 2 (Short Papers).
Association for Computational Linguistics, New Orleans, pp 464–
468. https://doi.org/10.18653/v1/N18-2074, https://aclanthology.
org/N18-2074

32. Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you
need. In: Proceedings of the 31st international conference on neural
information processing systems, NIPS’17, pp 6000–6010

33. Wu N, Green B, Ben X et al (2020a) Deep transformer mod-
els for time series forecasting: the influenza prevalence case.
arXiv:2001.08317

34. Wu Z, Pan S, Long G et al (2019) GraphWaveNet for deep spatial-
temporal graph modeling. In: Proceedings of the twenty-eighth
international joint conference on artificial intelligence, IJCAI-19.

1 3

3931

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-820.html
http://jmlr.org/papers/v21/19-820.html
http://arxiv.org/abs/1803.01271
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=rkgNKkHtvB
http://arxiv.org/abs/1609.03499
https://doi.org/10.1016/j.eswa.2009.11.076
https://doi.org/10.1016/j.eswa.2009.11.076
https://www.sciencedirect.com/science/article/pii/S0957417409010185
https://www.sciencedirect.com/science/article/pii/S0957417409010185
https://proceedings.neurips.cc/paper_files/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://api.semanticscholar.org/CorpusID:231719657
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://doi.org/10.18653/v1/N18-2074
https://aclanthology.org/N18-2074
https://aclanthology.org/N18-2074
http://arxiv.org/abs/2001.08317

B. Nguyen-Thai et al.

International Joint Conferences on Artificial Intelligence Organi-
zation, pp 1907–1913

35. WuZ,PanS,LongGet al (2020b)Connecting the dots:multivariate
time series forecastingwith graph neural networks. In: Proceedings
of the 26th ACM SIGKDD international conference on knowledge
discovery and data mining. Association for ComputingMachinery,
New York, pp 753–763

36. Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional
networks: a deep learning framework for traffic forecasting. In:
Proceedings of the 27th international joint conference on artificial
intelligence (IJCAI)

37. Zhang Y, Yan J (2023) Crossformer: transformer utilizing cross-
dimension dependency for multivariate time series forecasting. In:
International conference on learning representations

38. Zhou H, Zhang S, Peng J et al (2021) Informer: beyond effi-
cient transformer for long sequence time-series forecasting. In: The
thirty-fifth AAAI conference on artificial intelligence, AAAI 2021.
AAAI Press, p online

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Authors and Affiliations

Binh Nguyen-Thai1,2 · Vuong Le3 · Ngoc-Dung T. Tieu4,5 · Truyen Tran6 ·
Svetha Venkatesh6 · Naeem Ramzan1

Vuong Le
levuong@amazon.com

Ngoc-Dung T. Tieu
tieungocdung@gmail.com

Truyen Tran
truyen.tran@deakin.edu.au

Svetha Venkatesh
svetha.venkatesh@deakin.edu.au

Naeem Ramzan
naeem.ramzan@uws.ac.uk

1 School of Computing, Engineering and Physical Sciences,
University of the West of Scotland, High St, Paisley PA1 2BE,
UK

2 Raven Controls Limited, 227 West George Street, Glasgow
G2 2ND, UK

3 Amazon, 555 Collins street, Melbourne, Victoria 3000,
Australia

4 Faculty of Information Technology, University of Transport
and Communications, 3 Cau Giay, Dong Da, Hanoi, Vietnam

5 University of Birmingham, Edgbaston, Birmingham B15
2TT, UK

6 Applied AI Institute, Deakin University, 75 Pigdons Road,
Waurn Ponds, VIC 3126, Australia

1 3

3932

http://orcid.org/0000-0002-8243-4894

	Learning evolving relations for multivariate time series forecasting
	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional time series forecasting
	2.2 Deep learning-based time series forecasting
	2.3 Graph neural network for time series forecasting

	3 Proposed method
	3.1 Problem formulation
	3.2 Model overview
	3.3 EGL: Evolving Graph Learning layer
	3.4 ERAN block
	3.4.1 TAC: Temporal Attentional Convolution Module
	3.4.2 TGC: Temporal graph convolution module
	3.4.3 Residual and skip connections

	3.5 Multi-step forecasting

	4 Experiments
	4.1 Experimental settings
	4.2 Baseline methods
	4.3 Implementation details
	4.4 Results
	4.4.1 Overall comparison
	4.4.2 Significance testing
	4.4.3 Impact on non-stationary time series

	4.5 Ablation study
	4.5.1 Impact of learning the dynamics of inter-channel relations
	4.5.2 Impact of learning the dynamics of the intra-channel relations
	4.5.3 Impact of the number of layers
	4.5.4 Impact of the dilation factor

	4.6 Qualitative analysis

	5 Conclusion
	Acknowledgements
	References

