
Online SARIMA applied for short-term electricity
load forecasting
Quang Dat Nguyen 

Hanoi University of Science and Technology
Nhat Anh Nguyen 

Hanoi University of Science and Technology
Ngoc Thang Tran 

Hanoi University of Science and Technology
Vijender Kumar Solanki 

CMR Institute of Technology
Rubén González Crespo 

Universidad Internacional de La Rioja
Thi Ngoc Anh Nguyen  (  anh.nguyenthingoc@hust.edu.vn )

Hanoi University of Science and Technology https://orcid.org/0000-0002-6555-9740

Research Article

Keywords: Time series, online SARIMA, Short Term Forecast, electricity load forecasting, Online
processing

Posted Date: April 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-439120/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-439120/v1
mailto:anh.nguyenthingoc@hust.edu.vn
https://orcid.org/0000-0002-6555-9740
https://doi.org/10.21203/rs.3.rs-439120/v1
https://creativecommons.org/licenses/by/4.0/


Noname manuscript No.
(will be inserted by the editor)

Online SARIMA applied for short-term electricity load
forecasting

Nguyen Quang Dat · Nguyen Nhat Anh · Tran Ngoc Thang · Vijender

Kumar Solanki · Rubn Gonzlez Crespo · Nguyen Thi Ngoc Anh∗

Received: date / Accepted: date

Abstract Short-term Load Forecasting (STLF) plays
a crucial role in balancing supply and demand of load

dispatching operation, ensures stability for the power
system. With the advancement of real-time smart sen-
sors in power systems, it is of great significance to de-

velop techniques to handle data streams on-the-fly to

improve operational efficiency. In this paper, we pro-

pose an online variant of Seasonal Autoregressive Inte-

grated Moving Average (SARIMA) to forecast electric-

ity load sequentially. The proposed model is utilized to
forecast hourly electricity load of northern Vietnam and
achieves a mean absolute percentage error (MAPE) of

4.57%.

Keywords Time series · online SARIMA · Short

Term Forecast · electricity load forecasting · Online
processing

1 Introduction

Electrical load prediction is an important task and fun-

damental to operate the power system of a nation [43].

Three common electrical load prediction categories are

considered: short-term, medium term, and long-term

[29,13]. However, short-term is the most important be-
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cause of role in operation and planning of power systems

in day-to-day scheduling [33,34].

Table 1 Review of several related works for ARIMA and
variants. *Note: G.P. Zhang used scaled data.

Model Metrics Result Ref.
SARIMA-Wavelets MAPE 4.00% [9]
SARIMA-SVM MAPE 2.74% [5]
SARIMA-ANN MAPE 5.74% [7]
SARIMA Accuracy 95.0% [28]
ARIMA Accuracy 91.4% [12]
ARIMA Accuracy 95.0% [21]
ARIMA-ANN RMSE 4.36 · 10−5* [46]
ARIMA MAPE 6.38% [10]
ARIMA, SARIMA
and VARMA

RMSE 68.82 [16]

Thus many authors shown that SARIMA has its

strength in real world applications for seasonal time se-

ries. Currently, we need to consider and process large

data (big time series), spanning many years, with sea-

sonal factors in the data. So SARIMA is a model that

meets those requirements.
In the article [9], Choi et al. used several models to

predict the sales in the past several decades. The au-

thors compared the performance of single model SARIMA

(pure model) with hybrid model Season ARIMA -Wavelets

Transform and a prediction values on linear extrapola-

tion with seasonal adjustment and Evolutionary Neural

Networks. With the seasonal time series, the value of

improvement on MAPE brought by SARIMA-Wavelets

is 4% (which is equal to 9.1% of the percentage er-

ror reduction). In [5], Bouzerdoum et al. used the hy-

brid model SARIMA-SVM, and get result that MAPE

is 2.7381%, better than SARIMA (5.1951%) and SVM

(5.0706%). The authors shown that the SARIMAmodel

is so good to analyze the linear components of the time
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series and estimate them. In [7], Bozkurt O.O. et al.

get the result MAPE 5.74% for the data of the Turk-

ish Electricity Market (from Jan 01, 2013 to Dec 31,

2014) by using the SARIMA and artificial neural net-

work model. This data is a very seasonal data. In [10],

the authors applied the ARIMA model in expert system

courses to predict the behavior of the servers’ perfor-

mance when the user traffic is high and achieved the
mean errors around 5%.

Table 2 Review of related works in electricity loadelectricity loadelectricity load.

Model MAPE(%) RMSE Ref.
DBN-ANN 2.3% [11]
SWEMD-ENN [2.14%; 3.95%] [1.43; 3.11] [25]

For the electricity load, in [25] (2017), Liu et al. pro-

posed a hybrid model to forecast electricity load. They

got MAPE in interval [2.14%;3.95%] and got RMSE

in interval [1.43;3.11]. In other article, Dedinec et al.

(2016) [11] shown a new hybrid method, combine from

deep belief networks and neural network. Their MAPE

is 8.00% for DBM model and is 2.3% for complex model

DBM-ANN.

Currently, machine learning models need to have
large time series data to be able to estimate and fix

parameters of models. For some time series that are

not large (or small data), it is difficult to good esti-

mate parameters for the model. This reduces the accu-

racy of the proposed machine learning model. At that

time, online machine learning model was used to over-

come this weakness. Online models are learning models
where we continuously update the training data points
in sequential order. Online machine learning model is

often used when calculations cannot be performed over

entire data sets or practical applied models cannot wait

until that has a large amount of data is collected. This

machine learning method is in contrast to classical ma-

chine learning method, where all the training time series
is available from the beginning for training.

Machine learning online with future data in time

series in sequential order online machine learning is
still performing the machine learning task with time
series like traditional models. The goal of online ma-
chine learning is to update the data to the latest time,

the latest data value, and to put that value into the
training time series.

The online setting for time series prediction was first

introduced by Anava et al. [3]. It is based on the on-
line convex optimization framework where the goal is
trying to minimize the regret over T iterations instead

of directly minimizing the loss function. The authors
applied the Online Gradient Descent (OGD) algorithm

[48] and the Online Newton Step (ONS) algorithm [19]

to find the best autoregressive coefficients for the on-

line ARMA model. In 2016, Liu et al. [24] extended

this model to handle non-stationary time series, called

online ARIMA. Based on the two previous works, the

online VARMA model was introduced to deal with mul-

tivariate time series [45]. However, electricity load data

often exhibit seasonal patterns such as daily pattern,

weekly pattern, quarterly pattern, and annual pattern.
The aforementioned researches didnt tackle the season-
ality problem in time series. Therefore, it is important

to develop an online technique to forecast time series

with seasonality.

In this article, we use online data, constantly up-

dated data to continuously conjecture the parameters

of the model SARIMA. Since then, the proposed model

is always consistent with the actual data, solving the

problem and get the best results.

The article develops as follows. Section 2 presents
the methodology of SARIMA model for time series and

online machine learning methodology. From there we

propose a new method to solve our problem: the On-

line SARIMA model. In section 3.1, we compare the

results of the proposed model with the results of tra-

ditional models (we calculated on different models),

thereby showing the advantages of the proposed model.
export. In Section 3.2, we raise the problem we need to
solve, the details of the forecasting method and present

the forecast results based on the proposed model. In this

section we discusses the comparison between methods.

Comments and conclusions are contained in Section 4.

2 Methodology

2.1 ARIMA

Auto-Regressive Integrated Moving Average is a widely

used model in information technology. An ARIMAmodel

was represented in an important example from the re-

search of Box and Jenkins [6] that was approached to

the time series modeling. In 1991, Brockwell and Davis
[31] have fully described this method. The ARIMAmodel
was the most popular in the models building process

and in forecasting in a time series.

The pure Auto-Regressive method and the pure Mov-
ing Average method can be used for prediction, but

combining method (AR + MA) is better than pure

method [46]. Salas et al. (in [36]) developed an esti-

mation model with periodic coefficients of the ARIMA

model.
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A model ARIMA(p, d, q) for the time series yt is

expressed as:

yt =θ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p

+ εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q

(1)

where yt are the actual values in data; εt is the random
error at the moment t, {φi} are the AutoRegressive

(AR) coefficients, {θj} are the Moving Average (MA)

coefficients; the natural number p and q are orders that

are often referred to as Auto-Regressive and moving

average polynomials...

or follow function:
(

1−

p
∑

i=1

φiL
i

)

(1−Li)dyt = θ0+

(

1−

p
∑

i=1

φiL
i

)

at (2)

where {φi} are the AutoRegressive coefficients; {θi} are

the Moving Average coefficients; at is a white Gaussian

process with zero mean and variance σ2
a; the parameter

θ0 referres to as the deterministic trend term when d >

0.

ARIMA models can predict the future values in sta-

tionarity time series data with good accuracy. Monta-

nari et al. in [28] predicted the flow of the Nile river

with 95% confidence by the a seasonal ARIMA model.

And in the other work [21], Najeeb Iqbal et al. shown

the result, the ARIMA (1,1,1) model and the ARIMA

(2,1,2) model can forecasts for wheat area and produc-
tion with 95% confidence interval values, that used the
data from Pakistan’s government. In the article [12], the

researchers predicted the gas and fuel in Turkey with

accuracy 8.6%.

But, ARIMA models can only predict well for sta-

tionarity series [46,15]. With the non-stationarity, ARIMA

procedures run, got the results that the not-high accu-

racy [47].

For the better accuracy, several methods was pro-

posed. Some authors have improved the ARIMAmethod

and have actually achieved better results.

In article [27], the author Helmut L. shown the model
VAR and the method VARMA. By mathematical meth-

ods, the author has proved that these two methods in

some cases give better results than model ARMA and

model ARIMA. In the article [17], the author Hallin M.

and Davy P. also demonstrated the same thing with the

VARMA method.

Sheida et al. in [41] (2018) used the fuzzy ARIMA

to forecast Irans steel consumption. The authors com-

pared the predictive power of the fuzzy and non-fuzzy,

the linear and non-linear forecasting models in cases es-

timate point and interval. In the case estimate interval

forecasting, the Sheida’s model is 59,77% better than
ARIMA model. In the case estimate point, the authors’

model is 39,42% better than ARIMA (in the criteria

RMSE) and 29,71% better in criteria MAE.

Other authors have come up with hybrid models,

aimed at some models working well under one condi-

tion, others running well under other conditions. When
using the hybrid model, the authors split the data of
the problem into many small parts, each of which is

solved by an appropriate method, thereby providing

better combined results when using a single method.

First time, in 2003, Zhang P. [46] used the hybrid
model, combine from ARIMA and ANN. He got very

good result: the Zhang’s model is 18.87% better (in
MSE) or 7.97% (in MAD) than ARIMA only. In arti-
cle [30], the authors combine two methods ARIMA and

Support Vector Machine for stock price forecasting. The

biggest MAPE value that they got, is 1.7988 for their

hybrid model, but smaller than result of the ARIMA

model. Aladag et al. in [2] got the result is 0.009 (in

scaled data, MSE criteria). Khashei et al. in 2011 [22]

used hybrid model for 3 public data series, and have re-

ceived at lease 10.43% better (MAE) or 21.96% (MSE)

than ARIMA. In 2014, Bubu et al. [4] used the hybrid

ARIMA model and ANN model in moving-average fil-

ter to predict electricity price data in New South Wales

from the Australian National Electricity Market and
data of the prices of the Larsen and Turbo (L&T) com-
pany stock. They got the result that was 26% better
than ARIMA in MAE criteria, was 58% better than

ARIMA in MSE.

2.2 SARIMA

In particular, SARIMA is a linear models, is one of

the most widely used for time series analysis and fore-

casting. A time series has N values that is denoted by

{Xt|t = 1, 2, ..., N} is generated by a SARIMA (p, d, q)×

(P,D,Q)s process by following equation:

φ(L)(1− L)dΦ(Ls)(1− Ls)Dyt = c+ θ(L)Θ(L)εt (3)

where

φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p

Φ(L) = 1− Φ1L
s − Φ2L

2s − · · · − ΦPL
P

θ(L) = 1− θ1L− θ2L
2 − · · · − θqL

q

Θ(L) = 1−Θ1L
s −Θ2L

2s − · · · −ΘQL
Q

(4)

where p, d, q are hyper parameter of ARIMA; P ,
D Q are hyper parameters of seasonal and all hyper

parameters are integers; the lag operator is denoted L;
and s is the length of seasonal period.

SARIMA = ARIMA (p, d, q)
︸ ︷︷ ︸

Non-seasonal part

× (P,D,Q)s
︸ ︷︷ ︸

Seasonal part

(5)
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In this:

– s is the seasonal period.

– φ(L) is the Auto-Regressive operator (AR) of order
p.

– Φ(L) is operator of Seasonal Auto-Regressive (S-

AR) with order P .

– θ(L) is operator of the Moving Average (MA) with

order q.
– Θ(L) is operator of the Seasonal Moving Average

(S-MA) with order Q.

– d is regular differences number. In [39], d is shown

that is less than 2.

– D is seasonal differences number. If D = 0 then the

time series has no seasonality effect; if D ≥ 1 then
the time series has seasonality effect.

– εt is considered residual or white noise signal at

the moment t. {εt}t≥0 are identically independently

Gaussian(0,σ2
ε) distributed.

Algorithm 1 Seasonal ARIMA algorithm

Input: Data {xt}
1: Find s (the seasonal period of the data)
2: aic = inf

3: for (p, d, q, P,D,Q) do

4: model ← fit(arima(p,d,q)(P,D,Q)s
5: aiccurrent ← calculate(AIC(model))
6:
7: if aiccurrent < aic then

8: modeloptimal ← model
9: aic ← aiccurrent

10: end if

11: end for

12: Return modeloptimal

In summary, we can build the SARIMAmodel through

four steps:

– 1st step:1st step:1st step: identify the SARIMA model. This step an-

alyze the variables in order of the time series and

verify its that is stationarity or not. If the time
series is not stationarity, we need use the integral
for them (fix the parameter d). In this step, a de-

served combined model from Auto-Regression (AR)
and Moving Average (MA) is determined;

– 2nd step:2nd step:2nd step: estimate the unknown parameters of the

SARIMAmodel. In this step we determine a SARIMA
model with fixed parameters p and q. After this step,
a model SARIMA has been created;

– 3rd step:3rd step:3rd step: the validation phase of SARIMA model.

This step tests the precision of the chosen model.
Also in this step, the better enhancements are es-
tablished;

– 4th step:4th step:4th step: predict the time series by the fixed SARIMA

model. This step, the future values of the time se-

ries will be forecast based on the known data with

a confidence interval;

In the article [32], the researchers build and run
SARIMA model on the air passenger data, and got the

result MAPE 1.5142% and result RMSE 95.6635. In

the article [40], the authors got result MAPE 9.05% for

model SARIMA on data Beijing air passenger. In other

article [23], the authors predict the solar PV power data

of April 2017 to July 2017, and they got result RMSE

16.1320, MAPE 22.1810%. Luo et al. in 2013 [26] used

SARIMA model for forecasting the vegetable price (Cu-

cumber Price data). They have asserted that SARIMA

is good at forecasting when their average fitting error is

17%, or the prediction data of 12 months (in the year

2011) is in line with the actual trend, and their average

error reaches 25%.

In others articles, the researchers was combine the
SARIMA with other model (or other models) to in-

crease the accuracy of the result. In 2014, Ruiz et al.
combine the SARIMA with ANN, and got result bet-
ter than SARIMA only [35]. Other hybrid model, the

SARIMA - linear regression, proposed by t. Fang et al.

[14] got the result MAPE 9.85% and got result RMSE

22.85. In [42], Vagropoulos et al. predicted the data

of hourly PV power generation in one PV plant at

the Attica, outside Athens. In day-ahead forecasting,
the result of the optimized combined model between
SARIMA and SARIMAX was the best in all models in

the case of average yearly (NRMSE = 10.25%, smallest

in all results of all models).

In the article of Hazan, Agarwal, and Kale (2007)

[19], the researchers build and run some online models

(include ONS model), and proved that the time for run-

ning this model is O(n2). Of caught, this model can be

implemented in space O(n2), too. In 2008, Agarwal et

al. [1] used Kernel-based online machine learning. The

proposed model was small for lower memory limit when

compared to others models. In the article [8], the au-

thor Bubeck S. has achieved the same result with his

ascertainment.

In the article [3] (2013), the authors confirm that

can’t predict the noise in the data. A good model for

prediction will get an average error rate that is at least

the variance of the noise (0.09 in article’s setting). The

ARMA-ONS model will better than the other online

model. This model lower the regret in the authors’ set-

ting of the article, and quickly approaches the per-

formance of the perfect forecasting values. One time
again, ARMA-ONS is superior to the other models.
The authors can clearly shown the robustness of online
model(s) to correlated noise. They got a very good re-

sult on ARMA-ONS model: an average error rate, that
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converges approximately to the variance of the noise, is

0.0833 for this online model.

In 2014, Hoi et al. [20] built a model and programmed
a program that uses online machine learning to classify

a data sets, with an accuracy no less than 0.332±0.012.

In the articles [24], the researchers was combine the

Online model with other model (ARMA) to increase

the accuracy of the result. The proposed models got

the result better than single ARMA model only.

Schmidt et al. in 2018 [37] shown the model for de-

tection anomaly events. The authors calculate the per-

centage of detected anomaly value for evaluation: how

many false alarms in total per data point where given

by the individual setups. With several time run model
with difference parameters, in the worse case, accuracy
is 60%, in the best case, accuracy is 90%.

In article [45], the authors compered three models:

VARMA, VARMA-OGD and VRAMA-ONS. Criteria

is running time and resource cost for running. For best

case of VARMA, running time of VARMA model is

801.66% running time of VARMA-ONS, is 3206.66%

running time of VARMA-ODG.

2.3 Online machine learning

Currently, in computer science, Online machine learn-
ing is a method solve a growing time series data [48,
18]. New values of the time series, in a sequential or-

der, is used to update the model, thereby creating the

best model for prediction for future data at each step.

Online machine learning is opposed to offline learning

techniques, which that predict by learning on the all of

entire time series at once.

Online machine learning is used in the cases that is

essential for the model to automatically adapt to new

values in the time series, or when the data is upgraded.

Online machine learning can classify to some classes
[19]:

– Online gradient descent: This algorithm is simple to

implement. This method is the analogue of the Gra-
dient Descent optimization method for the online
setting [38]. In the online gradient descent model,

the running time (per iteration given the gradient)

is O(n).

– Online Newton step (ONS) is the online method

from the NewtonRaphson method.

In this research, the Online Newton steps algorithm

will be used for proposed model.

2.4 Online SARIMA

In this section, we assume the time series {Xt, t =

1, . . . , T} is a sequence of observations with seasonal pe-

riod s. In online learning setting, this time series is not

available all at once but comes one-by-one as a stream

of data. Specifically, at each time t, only the history
X1, X2, . . . , Xt−1 is available to us. After we predict

the time series at time t as X̃t, the real value Xt is then
observed and revealed to us.

The seasonal ARIMA(p, d, q)× (P,D,Q)s model as-

sumes the time series is generated by:

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)ǫt, {ǫt} ∼WN(0, σ2), (6)

where the notation {ǫt} ∼ WN(0, σ2) indicates that

{ǫt} is a white noise sequence with zero mean and vari-

ance σ2,

Yt = (1−B)d(1−Bs)DXt is the differenced time series,

φ(B) = 1− φ(B),

Φ(Bs) = 1− Φ(Bs),

φ(B) = φ1B + φ2B
2 + . . .+ φpB

p,

Φ(Bs) = Φ1B
s + Φ2B

2s + . . .+ ΦPB
Ps,

θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q,

Θ(Bs) = 1 +Θ1B
s +Θ2B

2s + . . .+ΘQB
Qs.

(7)

In online learning context, at each iteration t, after

we predict X̃t and Xt is observed, the loss function

ℓt is revealed. For time series prediction problem, ℓt is

usually the squared loss ℓt(Xt, X̃t) = (Xt − X̃t)
2. Our

objective is to try to keep the regret over T iterations,

defined as:

RT =

T∑

t=1

ℓt(Xt, X̃t)− min
φ,Φ,θ,Θ

T∑

t=1

ℓt(Xt, X̃t(φ, Φ, θ,Θ)),

(8)

where minφ,Φ,θ,Θ

∑T

t=1 ℓt(Xt, X̃t(φ, Φ, θ,Θ)) is the to-

tal loss of the best fixed SARIMA model, as small as

possible. To be specific, the growth of the difference be-

tween the cumulative loss of our predictions and that of

the best fixed SARIMA model should be insignificant

relative to T as T increases.

As mentioned in [3], predictions based on SARIMA

model depend on the noise term {ǫt}, which is unknown

to us. Therefore, it is difficult to make predictions us-

ing SARIMA. Following [3,24], we modify the original

model by omitting the moving average part θ,Θ. The
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modified model (p, d, 0)× (P,D, 0)s is given by the fol-

lowing formula

φ(B)Φ(Bs)Yt = ǫt, (9)

where

Yt = (1−B)d(1−Bs)DXt, and {ǫt} ∼WN(0, σ2).

(10)

From (9), the prediction Ỹt for the differenced time
series at time t is generated via the formula

Ỹt = φ(B)Yt + Φ(Bs)Yt − φ(B)Φ(Bs)Yt. (11)

The squared loss function is defined as follows

ft(φ, Φ) = ℓt(Xt, X̃t(φ, Φ))

= (Xt − X̃t(φ, Φ))
2

= (Yt − Ỹt(φ, Φ))
2

= [(1− φ(B)− Φ(Bs) + φ(B)Φ(Bs))Yt]
2

= [(1− φ(B)(1− Φ(Bs)Yt]
2

= [φ(B)Φ(Bs)Yt]
2.

(12)

For gradient-based methods, the gradient informa-

tion is used to update the parameters at each iteration.

The partial derivatives of the loss function with respect

to φi and Φj are calculated as

∂ft

∂φi

= −2(Yt − Ỹt)B
iΦ(Bs)Yt, i = 1, p, (13)

∂ft

∂Φj

= −2(Yt − Ỹt)B
jsφ(B)Yt, j = 1, P , (14)

∇t = ∇ft(φ, Φ) = (
∂ft

∂φ1

, . . . ,
∂ft

∂φp

,
∂ft

∂Φ1

, . . . ,
∂ft

∂ΦP

)T .

(15)

For the online gradient descent method, the param-

eters are updated by iteratively moving in the direction

of the (negative) gradient −∇t. It uses only first order
derivative information. In contrast, the online Newton

step method requires second order derivative informa-

tion. It tries to approximate the Hessian. In particular,

at each iteration, the algorithm chooses the direction

of −A−1
t ∇t instead of −∇t, where At is related to the

Hessian [19]. This matrix is also iteratively updated by
setting At ← At−1 +∇t∇

T
t .

Our proposed algorithm is as follows. The parame-

ters φ = (φ1, . . . , φp)
T and Φ = (Φ1, . . . , ΦP )

T of SARIMA

model are updated using the online Newton step method.

Fig. 1 The diagram of the online machine learning model.

Algorithm 2 Seasonal ARIMA ONS
Input: Regular order p; seasonal order P ; seasonal period s;

learning rate η; an initial (p+ P )× (p+ P ) matrix A0.
1: Choose (φ, Φ)1 ∈ K = {ω ∈ R

p+P , |ωj | ≤ 1, j =
1, . . . , p+ P} arbitrarily.

2: for t = 1 to T − 1 do

3: Predict Ỹt = φ(B)Yt + Φ(Bs)Yt − φ(B)Φ(Bs)Yt

4: Observe Yt and compute loss ft((φ, Φ)t)
5: Let ∇t = ∇ft((φ, Φ)t), update At ← At−1 +∇t∇T

t

6: Set (φ, Φ)t+1 ← Π
At

K ((φ, Φ)t − ηA−1
t ∇t)

7: end for

ΠAt

K is the projection onto K with the norm in-

duced by At. Note that at each iteration, after we pre-
dict Ỹt, the prediction X̃t of the original time series is

obtained by expanding and rearranging equation Yt =
(1−B)d(1−Bs)DXt.

2.5 Hyperparameters selection

We devise a procedure to select the best orders p and P

for the model. Suppose we have historical dataX1, . . . , XT1
.

This time series is available all at once beforehand. The

future time series XT1+1, . . . , XT2
is available one-by-

one as in the online learning setting. We will choose the
orders based on the historical data. First, the history is
split into training and validation set in chronological or-

der. Then we sweep the hyperparameters through a pre-

defined range of values. Specifically, a grid search is per-

formed over {0, 1, . . . , pmax} for p and {0, 1, . . . , Pmax}

for P , where pmax and Pmax are predefined constant

values. For each pair of orders (p, P ), we train the model
on the training set in online manner (observations come

sequentially although the whole training set is avail-
able). The model is then evaluated on validation set
and we choose the model with the best result. In this
study, we use RMSE (Root Mean Square Error) as the

evaluation metric and therefore the model with lowest

MSE (Mean Squared Error) is chosen.
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Fig. 2 The Online SARIMA model.

For differencing orders, we choose seasonal differenc-

ing order D = 0. Non-seasonal differencing order d is

chosen based on augmented Dickey-Fuller test. If the p-

value is greater than significance level α = 0.05, we will
choose d = 1. Otherwise, no differencing is required.

3 Experiment

In this section, we introduce the data set for experi-

menting.

3.1 Data set

Although we want to compare the forecast results for

electricity load data with other models of the other au-

thors. However, the electricity load data set with sea-

son characteristic is not available. In order to compare

our proposed model Online-SARIMA with the other

methods, the air passenger data set being used for fore-

casting seasonal models. Our experimental results show

that our proposed model performance is better than the

others with the same data set. The reason for better

results is online learning model updating the adaptive

model as additional new data.

3.1.1 China Air Passenger

The data set Monthly air transfer in ChinaMonthly air transfer in ChinaMonthly air transfer in China (got public

from website http://www.stats.gov.cn/ ) is tested our

proposed model. This is the data that shows the air

passenger numbers transferred from January 2005 to

Aug 2018 in China (all airports in China) on a monthly

basis. This data set have 164 time series records. Qin

use 158 values in data for training set, and 6 value in

data series for test set [32]. This data set is already

of a time series class therefore no further class or date

manipulation is required.

This data set, we used for compare the proposed

model with model of Qin et al., the model was combin-
ing seasonal and trend component procedures based on
loess with echo state network [32].

In the article [44], the authors used the same values
of this data, but start at Feb 2005, finish at Feb 2018.

We can consider that this is the same data set. The
result of the Xu’s model will be used for comparison.

3.1.2 Northern Vietnam Electricity Load

This data set contains electricity load measurements

on working days (Monday to Friday) dated from 1 Jan-

uary 2015 to 30 August 2019. The data were collected

at 1-hour intervals and consisted of 29208 instances.

The data set is represented as a table. Each entry is

corresponding to a date and the columns indicate the
specific hour. We treat these 24 columns as 24 separate
time series and the results are evaluated individually.

4 Results

In this section, we demonstrate the results of the pro-
posed model.

4.1 China Air Passenger

This subsection will show the forecasting results in fol-

lowing tables. The following findings are shown on the
table. Therefore, in this research, we will use the criteria
MAPE, RMSE and some case on the criteria MAE.

In this comparison, we used data set in China and
compare result of the proposed model with the models
that were proposed by Qin et al. [32] and the model

was proposed by Xu et al [44].

We run the model 10 times, and get the average

value.
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Table 3 Results of our proposed model and other methods on the Monthly air transfer in ChinaMonthly air transfer in ChinaMonthly air transfer in China data

Model MAPE(%) RMSE MAE Public
0 SARIMA 1.5142% 95.6635 (2019) [32]
1 SARIMA-ANN 237.6600 207.1100 (2014) [35]
1* SARIMA-ANN 4.5500% (2019) [32]

(Qin et al. rebuild)
2 SARIMA-SVR 2.3100% 131.1400 102.8000 (2019) [44]
3 ESN 2.6360% 159.2997 (2019) [32]

PSO-ESN 2.3785% 135.3856
GWO-ESN 2.2646% 143.3343
WOA-ESN 1.7304% 108.8308
GOA-ESN 1.8496% 116.5840
EMD-ESN 2.2852% 148.3139
SEAM-ESN 4.7069% 66.8646
STL-ESN 1.4827% 83.1109

4 Proposed model 0.77800.77800.7780% 49.411849.411849.4118 35.202835.202835.2028

Fig. 3 The results of the SARIMA-ONSSARIMA-ONSSARIMA-ONS model.

We can see that the new method has yielded much

better results than many methods that have been in-

troduced in recent years. In the table 4table 4table 4, in the MAPE,

the result of the our model is 0.7780%, smallest in
all of other pure models, which shown the good result

of the proposed model in forecasting for time series.
This result of the proposed model is 83% better than
Ruiz’s model (4.5500%), is 66% better than Xu’s model
(2.3100%), is 48% better than best model of Qin (in the

criteria MAPE, the best model in all of the Qin’s model

is the hybrid model STL-ESN with MAPE is 1.4827%).

By the criteria RMSE, the result of the proposed

model is 49.4118, is 80% better than Ruiz’s model (237.66),

is 63% better than Xu’s model (131.14), and is 27% bet-

ter than best model of Qin (in the criteria RMSE, the

best model in all of the Qin’s model is the hybrid model

SEAM-ESN with RMSE is 66.8646).

By the MAE criteria, the result of our proposed

method is 35.2028, is 66% better than Xu’s model (102.80),

and 83% better Ruiz’s model (207.11).
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Fig. 4 The results of the SARIMA-ONSSARIMA-ONSSARIMA-ONS model.

4.2 Northern Vietnam Electricity Load

For the Northern Vietnam Electricity Load dataset, it is

apparent that there is a seasonal pattern within a year.
Since there are approximately 250 working days in a
year, we chose s = 250. For each time series, 80% were

used as training/historical data and 20% were used for
testing. Each time series was split in chronological or-
der. For hyper-parameters selection, we performed grid
search with pmax = 5 and Pmax = 3 and the selected

model was compared with a (1, 1, 0)×(1, 0, 0)250 model.
The models were trained on Google Colab and the av-
erage running time was 1.95 seconds per time series.

We summarized the results in table 4.

The electricity load depend on the hour of a day.
By experimental results, the MAPE using the historical

data at the same hours of a day give the better perfor-
mance, so each day, 24 models for each hour are build
for prediction.24 models are divided by three categories

by consuming electricity load that are low, medium and

high. Three hours 5am, 13h, 21h are be-haft on low,

high and medium respectively.

The figures 4.2 shows the optimization hyper pa-

rameters of SARIMA online for electricity load predic-

tions at 05 o’clock AM being on behalf on low elec-

tricity load consumption. Concretely, the figures 4.2di-

mensions shows minimizing MAPE of SARIMA online

model base on historical data with two hyper param-

eter p for Auto-regression and hyper parameter and

P seasonal Auto-regression.The best hyper-parameters

(p, P ) = (1, 2). Similarly, The figures 4.2 presents the

optimization hyper-parameters of SARIMA online for

electricity load predictions at 13 o’clock PM being on

behalf on high electricity load consumption. The best
hyper-parameters (p, P ) = (0, 5). Furthermore, The fig-

ures 4.2 show the optimization hyper-parameters of Auto-
regression and seasonal auto-regression for SARIMA

online model at 21 o’clock PM being on behalf on medium

electricity load consumption (p, P ) = (2, 0).

5 Conclusion

This paper proposes SARIMA-ONS model - an online

version of SARIMA model to deal with streaming time-

series data and apply to forecasting electricity load. Ex-

periments show that SARIMA-ONS provides the com-

petitive predictive performance when we compare it to

the other methods with the same data sets.

Following the online learning approach, SARIMA-
ONS model continuously updates the parameters to ob-

tain the smallest forecast error. The second advantage

is fast speed because there is no need to learn other of-

fline models. However, the weakness of SARIMA-ONS
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Fig. 5 Optimization hyper parameters Auto-regression and seasonal auto-regression for SARIMA online model at 05 o’clock
AM being on behalf on low electricity load consumption.The best hyper-parameters (p, P ) = (1, 2).

Fig. 6 Optimization hyper parameters Auto-regression and seasonal auto-regression for SARIMA online model at 13 o’clock
PM being on behalf on high electricity load consumption. The best hyper-parameters (p, P ) = (0, 5).

algorithm is using ONS is more complexity and difficult

to understand than other optimisation algorithm such

as OGD.

The article has contributed and the main results as
follows:

– Building successfully an online learning model for a

seasonal auto-regssion moving average for time se-

ries.

– Succeeding in optimisation of hyper parameter based

on performance evaluation of loss function.

– Forecasting successfully SARIMA-ONS for electric-

ity load data that require online learning method.
– Obtaining the electricity load forecasting the MAPE

is less than 5 percent.
– SARIMA- ONS making better than other methods

by experimental results.

– SARIMA- ONS learns an average of 1.7 seconds, so

the results are faster than SARIMA methods three

times.
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Fig. 7 Optimization hyper parameters Auto-regression and seasonal auto-regression for SARIMA online model at 21 o’clock
PM being on behalf on medium electricity load consumption.The best hyper-parameters (p, P ) = (2, 0).

Hour (1, 1, 0)× (1, 0, 0)250 model MAPE(%) Proposed model Proposed model MAPE(%)
1 6.01 (4, 1, 0)× (2, 0, 0)250 5.71

2 5.82 (0, 1, 0)× (2, 0, 0)250 5.49

3 5.60 (0, 1, 0)× (2, 0, 0)250 5.27

4 5.21 (5, 1, 0)× (0, 0, 0)250 5.44
5 4.92 (1, 1, 0)× (2, 0, 0)250 4.68

6 3.96 (2, 1, 0)× (2, 0, 0)250 3.94

7 3.47 (2, 1, 0)× (1, 0, 0)250 3.51
8 3.62 (2, 1, 0)× (1, 0, 0)250 3.64
9 3.98 (2, 1, 0)× (0, 0, 0)250 4.03
10 4.26 (2, 1, 0)× (0, 0, 0)250 4.35
11 4.68 (2, 1, 0)× (0, 0, 0)250 4.71
12 5.33 (2, 1, 0)× (0, 0, 0)250 5.28

13 5.65 (5, 1, 0)× (0, 0, 0)250 5.62

14 5.46 (2, 1, 0)× (0, 0, 0)250 5.45

15 4.84 (2, 1, 0)× (0, 0, 0)250 4.87
16 4.00 (1, 1, 0)× (0, 0, 0)250 3.99

17 3.26 (2, 1, 0)× (1, 0, 0)250 3.32
18 2.83 (2, 1, 0)× (0, 0, 0)250 2.84
19 3.34 (3, 1, 0)× (0, 0, 0)250 3.39
20 3.62 (3, 1, 0)× (0, 0, 0)250 3.73
21 4.26 (2, 1, 0)× (0, 0, 0)250 4.40
22 5.07 (3, 1, 0)× (1, 0, 0)250 5.14
23 5.42 (2, 1, 0)× (0, 0, 0)250 5.40

24 5.30 (5, 1, 0)× (0, 0, 0)250 5.41
Average 4.58 - 4.57

Table 4 Results of our proposed model on the Northern Vietnam Electricity Load dataset

For future work, SARIMA-ONS has many potential

applications for forecasting problems in many different

fields. In the near future, to increase the accuracy of

the forecasting model, we will research some hybrid on-

line models combining SARIMA-ONS with other online

machine learning models such as ANN, RNN, LSTM,

Spiking neural networks. The proposed hybrid model

keep the advantage of single model and reduce the dis-

advantage of each to get better performance.
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Fig. 8 The results forecast at 05 o’clock AM of the SARIMA-ONSSARIMA-ONSSARIMA-ONS model for Electricity load data.

Fig. 9 The results forecast at 13 o’clock PM of the SARIMA-ONSSARIMA-ONSSARIMA-ONS model for Electricity load data.

Fig. 10 The results forecast at 21 o’clock PM of the SARIMA-ONSSARIMA-ONSSARIMA-ONS model for Electricity load data.
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Figures

Figure 1

The diagram of the online machine learning model.



Figure 2

The Online SARIMA model.



Figure 3

The results of the SARIMA-ONS model.



Figure 4

The results of the SARIMA-ONS model.



Figure 5

Optimization hyper parameters Auto-regression and seasonal auto-regression for SARIMA online model
at 05 o'clock AM being on behalf on low electricity load consumption.The best hyper-parameters (p; P) =
(1; 2).



Figure 6

Optimization hyper parameters Auto-regression and seasonal auto-regression for SARIMA online model
at 13 o'clock PM being on behalf on high electricity load consumption. The best hyper-parameters (p; P) =
(0; 5).



Figure 7

Optimization hyper parameters Auto-regression and seasonal auto-regression for SARIMA online model
at 21 o'clock PM being on behalf on medium electricity load consumption.The best hyper-parameters (p;
P) = (2; 0).



Figure 8

The results forecast at 05 o'clock AM of the SARIMA-ONS model for Electricity load data.

Figure 9

The results forecast at 13 o'clock PM of the SARIMA-ONS model for Electricity load data.

Figure 10

The results forecast at 21 o'clock PM of the SARIMA-ONS model for Electricity load data.
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