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Abstract

Anomaly detection is represented as an unsupervised learning to iden-
tify deviated images from normal images. In general, there are two main
challenges of anomaly detection tasks, i.e., the class imbalance and the
unexpectedness of anomalies. In this paper, we propose a multireso-
lution feature guidance method based on Transformer named GTrans

for unsupervised anomaly detection and localization. In GTrans, an
Anomaly Guided Network (AGN) pre-trained on ImageNet is devel-
oped to provide surrogate labels for features and tokens. Under the
tacit knowledge guidance of the AGN, the anomaly detection network
named Trans utilizes Transformer to effectively establish a relation-
ship between features with multiresolution, enhancing the ability of
the Trans in fitting the normal data manifold. Due to the strong
generalization ability of AGN, GTrans locates anomalies by compar-
ing the differences in spatial distance and direction of multi-scale
features extracted from the AGN and the Trans. Our experiments
demonstrate that the proposed GTrans achieves state-of-the-art perfor-
mance in both detection and localization on the MVTec AD dataset.
GTrans achieves image-level and pixel-level anomaly detection AUROC
scores of 99.0% and 97.9% on the MVTec AD dataset, respectively.

Keywords: Anomaly Detection, Transformer, Deep Learning, Knowledge
Distillation
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Fig. 1 Visual results from the MVTec AD datasets. Superimposed on the images are the
anomaly localization map from GTrans. Red areas correspond to the located anomalies,
whereas the blue areas indicate the normality regions.

1 Introduction

Anomaly detection aims to identify samples that do not match the expected
pattern or dataset. Anomaly detection techniques have been extensively stud-
ied in a variety of research and application domains, including industrial
inspection[1–3] and medical applications[4]. With the continuous development
of the industrial field, customers need to place various sensors for continuous
monitoring of equipment condition and detect anomalies. The traditional man-
ual visual detection method has recently become unsatisfactory because it is
susceptible to the influence of manual experience and subjective factors. There-
fore, anomaly detection has gradually become valuable in computer vision,
attracting high attention in different fields [5–7]. In general, class imbalance
problem[8] and the unexpectedness of anomalies are the two most common
challenges of anomaly detection tasks. Anomalies are extremely rare in the
industrial scene, which implies the number of aberrant samples obtained is
quite low, resulting in a serious class imbalance problem. In addition, anoma-
lies are always unexpected. It is hard to predict their location and size or even
determine if anomalies occur at all. As a result, modeling all anomalies or even
predicting all abnormalities that never occur is impractical on a few samples.

The existing anomaly detection tasks[9, 10] focused on the classification
of single or multiple categories at image-level. The current category to be
detected is normal, and non-category are abnormal. However, in contrast to
classification tasks, it is hard to train a model with full supervision for anomaly
detection due to the lack of a large number of abnormal samples. [11, 12]
trained models in normal category, and samples were judged as anomalous
when they show a large difference from the trained normal samples in the test
stage.
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Fig. 2 The overall architecture of the GTrans. The solid purple arrow represents the pro-
cessing of the AGN, and the solid orange arrow represents the processing of the Trans

network. Given an input image yk, we extract groups of multiresolution features FG (yk)
and FT (yk) from B-AGN and B-Trans, where B-AGN and B-Trans represent the backbone
of AGN and Trans, respectively. FG (yk) and FT (yk) are input into Tokenizer to obtain
groups of tokens TG and TT . AGN guide the decoder module of TFM to enhance the fit-
ting ability of Trans in normal data manifold. The mapper module maps the token output
by TFM into original critical layers. GTrans locates anomalies by comparing the differences
in spatial distance and direction of multi-scale features extracted from the AGN and the
Trans. Dotted green arrows represent the process of generating an anomaly map.

Recently, the anomaly detection tasks had confronted new challenges. To
better monitor and process the anomalies, it is required not only to pick out
the anomalous images but also to locate the anomalous regions. Bergmann et
al.[13] proposed the MVTec AD dataset to provide benchmarks for anomaly
detection and localization. The pixel-level methods[9, 14–17] exploited deep
convolutional autoencoder and generative model such as Generative Adver-
sarial Network (GAN) and Variational Autoencoder (VAE), respectively.
[10, 18, 19] attempted to learn the feature representation of the normal sam-
ples from scratch and the model trained under the normal data manifold is
hard to reconstruct the abnormal image. It may result in a large per-pixel
reconstruction error and then a higher anomaly score. However, these meth-
ods showed a tremendous potential for misdetection due to low resolution of
the reconstructed images and the strong generalization ability of the model.

Fortunately, it was found that using a pre-trained network could be a poten-
tial mode to learn feature representation for small sample datasets. Cohen
et al.[20] utilized a group of features extracted from a deep pre-trained net-
work on anomaly-free images to train their model. [20] improved performance
gain, but their model relied on many sub-images of training data, resulting
in expensive computations. To evade these limitations, Bergmann et al.[21]



Springer Nature 2021 LATEX template

4 Multiresolution Feature Guidance Based Transformer for Anomaly Detection

proposed a student-teacher network to implicitly model the distribution of fea-
tures extracted from normal images. The idea of the student-teacher network
was that the student network had poor generalization ability to abnormal data
manifolds and then made wrong judgments. For knowledge transfer, [21] only
imitated the last layer in the teacher network for knowledge distillation with-
out making full use of the information of intermediate layers. To fully exploit
the intermediate features of the teacher network, [22] proposed a novel knowl-
edge distillation method that distilled the comprehensive knowledge of the
pre-trained network at several critical layers to the trained network. It can
provide the significance of multi-scale information in computer vision algo-
rithms. Although features were extracted in several critical layers in [22], the
information interaction between multi-scale features is fragile.

Lately, Transformer[23] had achieved great success in image classification
and recognition, which proved the feasibility of Transformer in the information
interaction of features with multiresolution. Inspired by this, we propose a mul-
tiresolution feature guidance method based on Transformer named GTrans for
unsupervised anomaly detection and localization. In our method, the Anomaly
Detected Network based on Transformer named Trans utilizes Transformer to
effectively establish relationship between features with multiresolution. Under
the tacit knowledge transfer of the Anomaly Guided Network (AGN), Trans
enhances the fitting ability on the normal data manifold. Our intuition is that
when abnormal images are input into the Trans, Trans cannot judge such acci-
dents, resulting in large abnormalities in the whole image. Due to the strong
ability of Trans in obtaining interaction information of features, the abnormal
regions will receive great attention, conducive to the realization of pixel-level
localization of the anomalies. Furthermore, we define a novel function to com-
pute the anomaly score according to the difference of features extracted by
AGN and Trans in the spatial distance and direction. The function can effec-
tively capture the information of the combination of multi-scale features to
obtain an accurate heat map of anomalous regions. We evaluate our method
on MVTec AD dataset and then achieve superior performance in both local-
ization and detection. Figure 1 shows visualized results of our method on the
MVTec AD dataset. Our main contributions are summarized as follows:

1. We propose a multiresolution feature guided method based on Transformer,
referred as GTrans for unsupervised1 anomaly detection and localization.
GTrans can improve the ability in information interaction between features
with multiresolution.

2. We develop an anomaly guided network (AGN) to provide surrogate labels
of features with multiresolution. Our model can be trained on normal images
entirely without additional data augmentation.

3. We define a novel function to generate an anomaly map by exploiting the
anomaly maps with multiresolution in spatial distance and direction.

1Since training set in GTrans only contains normal images without any labels, such data setup
can be generally considered as unsupervised [24].
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4. Experimental results show that our proposed GTrans achieves state-of-the-
art performance on MVTec AD dataset, which demonstrates the significance
of information interaction for anomaly detection and localization.

2 Related Work

Anomaly detection has attracted a lot of attention in the last decades. We pro-
vide an extensive overview of anomaly detection techniques next. The research
related to our work can categorize into two classes. First, we present an
overview of anomaly detection and segmentation methods, which can be cat-
egorized into reconstruction-based methods and embedding similarity-based
methods. Second, we briefly explain Transformer architectures and show the
application of Transformer in anomaly detection.

2.1 Anomaly Detection and Segmentation

2.1.1 Reconstruction-based methods

Reconstruction-based methods like autoencoders (AEs)[10, 18, 19, 25], vari-
ational autoencoders (VAEs)[11, 26–28] or generative adversarial networks
(GANs)[9, 14–17, 29] attempted to model the sample without abnormality and
defect from scratch.

The idea of AE-based methods was that if the model were trained on
a dataset containing only normal samples, the reconstructed image would
approach the normal sample regardless of whether the input images are nor-
mal samples or abnormal samples. By comparing the pixel error of the original
image and the reconstructed image, the model could judge whether the input
image is abnormal or not and even locate the abnormal regions. To learn poten-
tial features better, SSIM-AE[25] used SSIM as loss function and anomaly
measure to compare input and reconstructed images. ARNet[18] learned the
semantic feature embeddings related to the erased attributes by forcing the
network to restore the original image. MemAE[10] proposed an autoencoder
with a memory module to explicitly suppress the generalization capability of
the autoencoder.

VAE-based methods were also found to be used in anomaly detection and
localization. In VAE-based methods, the probabilistic encoder and decoder
both parameterized an isotropic normal distribution in the latent variable
space and the original input variable space, respectively. The model endeav-
ored to find the probability distribution conforming to the normal sample and
used the reconstructed probability as the anomaly scores to generate an atten-
tion map in the potential space to detect the anomalies. However, VAE-based
methods were not automatically superior to traditional autoencoder methods
in general.

GAN-based approaches utilized the discriminator to detect the slight dis-
turbance in the reconstruction of abnormal images, prompting the generator
to extract sample information from the potential space to reconstruct the
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image. AnoGAN[15] proposed a novel anomaly scoring scheme based on the
mapping from image space to a latent space. OCGAN[9] utilized a dual latent
space learning process to constrain the latent space of generators and dis-
criminators to represent the specific categories exclusively. GANomaly[16] and
f-AnoGan[17] added an additional encoder to the generator to reduce the
inference time of AnoGan[15].

Methods based on reconstruction were intuitive and explicative. However,
these methods either failed to detect anomalies due to the strong generalization
ability of deep models[10, 25] or failed in one-class settings[9, 15–17].

2.1.2 Embedding similarity-based methods

Embedding similarity-based methods mainly mapped the meaningful vector
of the sample extracted from the pre-trained network to the high-dimensional
feature space and judged the possibility of anomalies by computing the dis-
tance between the test sample and the normal sample in the feature space.
Feature space expressed a higher level and more abstract information than
image space. Embedding similarity-based methods could be categorized as
cluster-based, embedding patch-based and knowledge-based methods.

Cluster-based methods used K-Nearest Neighbor (KNN)[30], K-means[31]
or Principal Component Analysis (PCA)[32] to match the best approximate
features from a memory-bank of nominal features or similar feature sets
extracted from a pre-trained network to locate anomalies. However, the infer-
ence speed in the test phase of cluster-based methods was linearly related to
the size of feature sets, which was limited in practical application.

Embedding patch-based methods tried to repair abnormal images by patch
extracted from normal images. Patch SVDD[33] and CutPaste[34] applied
self-supervised learning to anomaly detection. Unlike Deep SVDD[12], Patch
SVDD[33] inspected the image at the patch level, and each patch corresponds
to a point in the feature space. CutPaste[34] proposed a data augmentation
strategy that cut an image patch and pasted it at a random location of an
image. PaDiM[35] described each patch location with a Gaussian distribution
and modeled the correlation between semantic layers. However, self-supervised
representation typically underperformed those learned from large supervised
datasets such as ImageNet.

Knowledge-based methods mainly utilized the difference in generalization
ability between teacher and student networks in a teacher-student framework
to locate anomalies. The teacher network had a good performance and strong
generalization ability, while the student network showed strong representation
ability only in a single class by imitating the behavior of the teacher network.
Bergmann et al.[21] were the first to introduce a teacher-student framework in
the field of unsupervised anomaly detection and localization. Anomaly scores
of [21] were derived from the predictive variance and regression error of an
ensemble of student networks. On this basis, [22] and [36] extended the multi-
scale critical layers of knowledge extraction on the VGG and ResNet networks
respectively, and achieved good performance. However, such methods either
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only extracted the single-layer information without making full use of the
information in intermediate layers[21] or treated critical layers with multires-
olutions equally while ignoring the importance of information interaction of
multi-scale critical layers[22][36].

2.2 Transformer in Vision

Ref. [23] first proposed Transformer, a model relying entirely on an attention
mechanism to describe global dependencies between input and output, in the
field of Natural Language Processing (NLP). Transformer did not use Recur-
rent Neural Network (RNN) such as Long Short-Term Memory (LSTM)[37]
and instead utilized a stack of multi-headed attention blocks to accomplish
NLP tasks excellently. The specific structure of the Transformer can be found
in the original article[23].

Transformer had achieved the most advanced performance in many NLP
tasks and had become the preferred model for NLP tasks. Computer vision and
NLP are merging as more efficient structures emerge. Due to the computational
efficiency and scalability of Transformer, Transformer had been explored in
computer vision and had become a new research direction.

Recently, Transformer had achieved good performance in image
classification[38], object detection[39][40] and image segmentation[41]. In gen-
eral, there were two main model architectures for the adoption of Transformer
in computer vision. One is a pure Transformer structure, and the other is
a hybrid structure combining convolution neural network (CNN) and Trans-
former. Moreover, Vision Transformer[38] built a pure Transformer structure,
dividing the input image into square uniform patches with 16× 16 patch size.
For each patch, the linear transformation was performed for dimensionality
reduction and location information was embedded. Then, the projection infor-
mation and location information was input into the Transformer to achieve
image classification. [41] proposed TransUNet, which merited both Transform-
ers and U-Net[42], to achieve medical image segmentation. TransUNet[41]
utilized Transformer for encoding tokenized image patches from a feature map
extracted by CNN, and the decoder upsampled the encoded features combined
with the high-resolution CNN feature maps to enable precise localization.

For anomaly detection and localization, InTra[43] used a deep Trans-
former network consisting of a simple stack of multi-headed self-attention
blocks to detect anomalies. Experiments showed that pure Transformer archi-
tecture is more efficient and scalable than traditional CNN in both model
size and computational scale, while hybrid architecture performed better than
pure Transformer at the smaller model size. Therefore, our method employ
the hybrid structure combining CNN and Transformer to detect and locate
anomalies and achieved excellent results.
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3 Methodology

We propose a multiresolution feature guidance method based on Transformer
named GTrans for anomaly detection and localization. GTrans consists of four
components: 1) AGN: Anomaly guided network. 2) Trans : Anomaly detected
network based on Transformer. 3) Learning of the normality. 4) Computation
of the anomaly map. The overall architecture of GTrans is shown in Figure
2. Given a testing dataset Dtest= {y1, y2, ..., yM} consisting both anomaly and
normal images. Given an input image yk ∈ R

W×H×C , k ∈ [1,M ] of width
H, height W, and the number of channels C, we extract groups of features
with multiresolution FG (yk) =

{

F 1
G (yk) , F 2

G (yk) , ..., FL
G (yk)

}

and FT (yk) =
{

F 1
T (yk) , F 2

T (yk) , ..., FL
T (yk)

}

from AGN pre-trained on ImageNet and the
backbone of Trans, respectively, where L represents total number of critical
layers. FG (yk) and FT (yk) are input into Tokenizer to obtain groups of tokens
TG=

{

T 1
G, T

2
G, ..., T

L
G

}

and TT=
{

T 1
T , T

2
T , ..., T

L
T

}

, respectively. Trans utilizes
Transformer to establish a relationship between features with multiresolution.
AGN guides the decoder module of TFM to enhance the fitting ability of
Trans in a normal data manifold. The mapper module maps the token output
by TFM into original critical layers. In training, the parameters of AGN are
frozen and the critical layers extracted by AGN as regression targets of the
Trans. In testing, GTrans locates anomalies by comparing the differences in
spatial distance and direction of multi-scale features extracted from the AGN
and the Trans.

In the following, we describe the four components of GTrans in detail.

3.1 Anomaly Guided Network

We propose a novel network called Anomaly Guided Network (AGN) for unsu-
pervised anomaly detection and localization. AGN is a convolution network
pre-trained on ImageNet (e.g., a ResNet-50-2 pre-trained on ImageNet), it can
exhibit strong ability in feature representation when the sample quantity is
small as ever. The guiding of AGN comes from two aspects. First, the token
extracted from AGN as surrogate labels to be learned of Trans. Second, the
feature maps extracted by AGN as regression targets of the Trans during the
learning of the normality, enhancing the fitting ability of Trans in normal data
manifolds.

3.1.1 Feature Extraction

Given a training dataset Dtrain= {x1, x2, ..., xN} consisting only of normal
images. Given an input image xk ∈ R

W×H×C , k ∈ [1, N ] of width H, height
W, and the number of channels C. Our goal is to create an ensemble of
feature group FG (xk) =

{

F 1
G (xk) , F 2

G (xk) , ..., FL
G (xk)

}

to detect anoma-
lies of various sizes, the l -th critical layer of AGN extracts a feature map
F l
G(xk) ∈ R

wl×hl×cl for l ∈ [1, L] , where hl and wl represent the height and
width of the feature map, cl represents the number of channels.
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3.1.2 Token Extraction

Inspired by [44–46], we utilize a module designated Tokenizer, containing
point-wise convolutions and spatial attention, to extract visual tokens because
a few visual tokens are sufficient to represent the entire image.

We reshape the input feature map F l
G(xk) ∈ R

wl×hl×cl into a sequence of
flattened two-dimensional feature map F l

GK(xk) ∈ R
(wl·hl)×cl before entering

the Tokenizer. Tokenizer uses two point-wise convolutions Lg and Ld to process
each pixel of two-dimensional feature map F l

GK(xk) as follows:

Gl =
Lg

(

F l
GK(xk)

)

√
cl

∈ R
(wl·hl)×g (1)

and
Vl = Ld

(

F l
GK(xk)

)

∈ R
(wl·hl)×d. (2)

Here, Lg maps each pixel of feature map in l -th critical layer to g semantic
groups Gl, while Ld realizes the information interaction between channels of
the feature map by raising or reducing dimension. Vl represents the high-
dimensional feature representation of l -th critical layers. For each semantic
group, spatial attention is computed for the sequences Gl as a weighted average
over Vl as follow:

T l = softmax(Gl)
TVl ∈ Rd×g, (3)

where softmax(·) obtains the spatial attention weight of each semantic group.
In general, we input FG (xk) into the Tokenizer to obtain a group of visual

tokens TG=
{

T 1
G, T

2
G, ..., T

L
G

}

with different resolutions. For anomaly detection,
TG and FG (xk) provide guidance in decoder modules and the learning of the
normality, respectively.

3.2 Trans

We propose a anomaly detected network based on Transformer named Trans.
Trans improves the ability in information interaction between features with
multiresolution. In the following, we describe the steps of Trans in detail.

3.2.1 Extraction of feature and token

To effectively obtain the tacit knowledge of AGN, we rely on architecture that
the dimension of the features of Trans is aligned with that of AGN. Trans and
AGN have the same backbone, but Trans has not been pre-trained. In CNN,
top layers produce low-resolution, semantically strong features, while bottom
layers produce high-resolution, semantically weak ones. Given an input image
xk ∈ R

W×H×C of width H, height W, and the number of channels C. To
detect and locate anomalies with various sizes, we extract a group of features
FT (xk) =

{

F 1
T (xk) , F 2

T (xk) , ..., FL
T (xk)

}

at various layers. We input FT (xk)

into the Tokenizer to obtain a group of visual tokens TT=
{

T 1
T , T

2
T , ..., T

L
T

}

with multiresolutions.
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Fig. 3 Overview of the TFM architecture.

3.2.2 TFM

This module aims to establish information interaction of spatially distant con-
cepts for visual tokens of different semantic groups at different levels. We
employ the encoder-decoder structure of standard Transformer with the fol-
lowing changes: (1) Omitting position embedding. [47] provided convincing
evidence that CNNs do indeed rely on and learn information about spa-
tial positioning. Therefore, the convolution layer computes learnable weights
of query qe ∈ R

d×(g·l), key ke ∈ R
d×(g·l), and value ve ∈ R

d×(g·l) with-
out additional position embedding. (2) Using a non-linearity activation
function and two point-wise convolutions replace position-wise feed-forward
networks of the standard Transformer. (3) Extracting a group of visual tokens
TG=

{

T 1
G, , T

2
G, ..., T

L
G

}

from AGN as the input of the decoder in Transformer.
We name the module modified by standard Transformer as TFM. Figure

3 illustrates the architecture of the TFM. As can be seen, TFM is composed
of a stack of S encoders and decoders. Each encoder and decoder has three
sub-layers, respectively.

The first is a self-attention mechanism, the second is a combination of
a non-linearity activation function and two point-wise convolutions, and the
third is a layer normalization. We take an individual TFM block of S = 1 as
an example below. We concatenate the group of visual tokens TG and TT into
Ein ∈ Rd×(g·l) and Din ∈ R

d×(g·l), respectively. We take Ein and Din as the
input of the encoder and decoder in TFM.

In the encoder, we compute qe, ke, ve via

qe = WqEin, ke = WkEin, ve = WvEin ∈ R
d×(g·l) (4)
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with learnable weight matrices Wq,Wk,Wv ∈ R
d×d. Then, self-attention is

computed by a compatibility function of the qe with corresponding ke as a
weighted average of the ve as follows:

Ae = vesoftmax

(

kTe qe√
d

)

∈ R
d×(g·l), (5)

where Ae is the output of self-attention mechanism in encoder.
We employ a residual connection around the self-attention mechanism and

layer normalization to get the output of layer normalization Ea:

Ea = Ein + LayerNorm (Ae) ∈ R
d×(g·l), (6)

where LayerNorm (·) represents the layer normalization.
Then, we use a residual connection around the convolution layer, followed

by layer normalization to get the output of encoder Eout:

Eout = LayerNorm (Ea + L1σ (L2Ea)) ∈ R
d×(g·l), (7)

where L1, L2 ∈ Rd×d are point-wise convolutions, σ (·) is the ReLU function.
For the decoder, most methods[38, 41] previously applied to computer

vision tasks use only the encoder of the Transformer. However, if the self-
attention mechanism is only established in the visual token extracted from
Tokenizer in Trans, the final model will easily fall into the problem of local
optimal. Therefore, we employ an encoder-decoder structure of the Trans-
former and utilize visual tokens extracted from AGN as surrogate labels for
the guidance of Eout to enhance the stability of the Trans. We set

qd = WqDin, kd = WkEout, vd = WvEout ∈ R
d×(g·l), (8)

Ad = vdsoftmax

(

kTd qd√
d

)

∈ R
d×(g·l). (9)

Here, qd is the query computed from Din. kd, vd are the key and value com-
puted from the output of the encoder Eout. Ad is the output of self-attention
mechanism in decoder.

Similarly to the encoder, first, we employ a residual connection around
the self-attention mechanism and layer normalization to get the output of
layer normalization Da in the decoder. Second, we employ another residual
connection around the convolution layer, followed by layer normalization to
get the output of decoder Dout. The computational process is as follows:

Da = Din + LayerNorm (Ad) ∈ R
d×(g·l) (10)

and
Dout = LayerNorm (Da + L1σ (L2Da)) ∈ R

d×(g·l). (11)
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3.2.3 Mapping of feature and token

To achieve pixel-level alignment between the outputs of AGN and the Trans, we
divide Dout into g groups and map each group into the latent space of the same
dimension as the FG (xk) =

{

F 1
G (xk) , F 2

G (xk) , ..., FL
G (xk)

}

, respectively. For
the l -th critical layer, we set

F l
M (xk) = F l

T (xk) + T l
vsoftmax

(

(

X l
q

)T
T l
k√

cl

)T

, (12)

where F l
M (xk) is the final output of the l -th critical layer, X l

q is the query

computed from F l
G(xk). T l

k, T l
v are the key and value computed from the output

of the encoder in TFM Eout.
In general, the final output of Trans is a group of critical layers

FM (xk)=
{

F 1
M (xk), F 2

M (xk), ..., FL
M (xk)

}

.

3.3 Learning of the normality

In the following, we train the Trans so that its output is as similar
as possible to the AGN, and the parameters of AGN are frozen dur-
ing the entire training phase. Given an input image xk ∈ Dtrain, we
obtain a group of feature maps FG(xk)=

{

F 1
G(xk), F 2

G(xk), ..., FL
G (xk)

}

and

FM (xk)=
{

F 1
M (xk), F 2

M (xk), ..., FL
M (xk)

}

extracted from AGN and Trans,
respectively. As indicated in [48], Trans can learn the distilled knowledge from
AGN that is trained at a different task and guided by intermediate-level hints
from AGN. Trans can learn the intermediate-level hints from different semantic
layers of AGN. It then takes the intermediate-level hints as targets of opti-
mization procedure to intensify the complete knowledge transfer from AGN to
Trans. We define pixel-wise L2 loss function pl(i,j) at position (i, j) for l ∈ [1, L],

i ∈ [1, wl], j ∈ [1, hl] as follow:

pl(i,j) (xk) =
1

2

∥

∥

∥
F l
G(xk)(i,j) − F l

M (xk)(i,j)

∥

∥

∥

2

2
. (13)

Here, F l
G (xk) and F l

M (xk) represent the feature map extracted from l -th
critical layers of AGN and Trans. We get the total loss L (xk) of input image
xk by the weighted average of all pixels in each feature map of critical layers
in sets F l

G (xk) and F l
M (xk) as follow:

L (xk) =

L
∑

l=1

1

wl · hl

wl
∑

i=1

hl
∑

j=1

pl(i,j) (xk), (14)

where L represents total number of critical layers.
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3.4 Computation of the anomaly map

In training phase, Trans has stronger fitting ability in anomaly-free images
than the AGN under the guidance of AGN. However, AGN is knowledgeable
on anomaly images because of the strong generalization2, while Trans is unfa-
miliar with such images. Therefore, the abnormal regions of anomaly images
show a large deviation from the training data manifold of Trans when the
anomaly images are input into AGN and Trans, respectively. Given a testing
dataset Dtest= {y1, y2, ..., yM} consisting both anomaly and normal images,
we assign an anomaly map M (yk) ∈ R

H×W to a test image yk ∈ Dtest for
k ∈ [1,M ], where H and W are the height and width of the test image. The
anomaly score of pixel at position (i, j) of i ∈ [1, H], j ∈ [1,W ] indicates the
deviation degree of pixel at position (i, j) from the data manifold of anomaly-
free images. We utilize the anomaly map M (yk) to realize anomaly detection
and localization. Next, we show the specific computation of anomaly map.

We input a test image yk into our model to obtain the
group of feature maps FG(yk)=

{

F 1
G(yk), F 2

G(yk), ..., FL
G (yk)

}

and

FM (yk)=
{

F 1
M (yk), F 2

M (yk), ..., FL
M (yk)

}

extracted from different critical
layers of AGN and Trans, respectively.

We get a group of loss P=
{

P 1, P 2, ..., PL
}

by computing pixel-wise L2

loss between the feature map from the same layers at FG(yk) and FM (yk) as
follows:

P l =
1

wl · hl

cl
∑

i=1

1

2

∥

∥F l
G (yk) − F l

M (yk)
∥

∥

2

2
∈ R

wl×hl , (15)

where P l ∈ P denotes the pixel-wise loss of l -th critical layer between AGN
and Trans. We assign a weight to different critical layers because the different
critical layers correspond to anomalies at various sizes, respectively. Here, we
utilize MSE loss and cosine similarity metric of feature map in l -th critical
layer to define two coefficients αl

mse and αl
cos as follows:

αl
mse =

1

wl · hl

wl
∑

i=1

hl
∑

j=1

(

F l
G(yk)(i,j) − F l

M (yk)(i,j)

)

2

(16)

and

αl
cos = 1 − vec

(

F l
G (yk)

)T · vec
(

F l
M (yk)

)

∥

∥vec
(

F l
G (yk)

)∥

∥

∥

∥vec
(

F l
M (yk)

)∥

∥

. (17)

Here, vec (·) is a vectorization function transforming a matrix with
arbitrary dimensions into a 1-D vector.

αl
mse and αl

cos denote the similarity in spatial distance and direction of l -
th feature maps from AGN and Trans. The larger the values of αl

mse and αl
cos

2However, AGN is knowledgeable on anomaly images because of the strong generalization, while
Trans is unfamiliar with such images. This due to that AGN is pre-trained on ImageNet, which
can generalize well across datasets [49], while Trans is trained from scratch.
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are, the less similarity the l -th feature maps are in spatial distance and direc-
tion, and the greater the possibility of anomalies. We effectively combine the
similarity of feature maps in spatial distance and direction, and use harmonic
mean of αl

mse and αl
cos as the weight of l -th feature maps. αl is formulated as

αl =
λ · αl

cos · αl
mse

αl
mse + λ · αl

cos

, (18)

where λ is set to make the scale of αl
mse and αl

cos the same. Our goal is to assign
high weight to feature maps with low similarity, so as to get high anomaly score
with anomalous regions eventually. Therefore, the anomaly map is achieved by

M (yk) = Gσ

(

L
∑

l=1

αlR
(

P l
)

)

∈ R
H×W . (19)

Here, R (·) resizes the elements of P=
{

P 1, P 2, ..., PL
}

to the spatial size
of (H ×W ). Gσ (·) represents a Gaussian filter with standard deviation of σ.
Finally, we define the region with high anomaly score in M (yk) as anomalous
regions and the maximum value of M (yk) as the final anomaly score of the
test image yk for anomaly detection.

4 Experiments

In this section, we first elaborate on the details of GTrans structure and its
parameters. Second, to demonstrate the effectiveness of our approach, we com-
pare our method to state-of-the-art results on the MVTec AD benchmark,
considering in image-level and pixel-level, respectively.

4.1 Datesets and metrics

4.1.1 Datesets

We evaluate GTrans on the MVTec AD dataset3 which contains over 5000
high-resolution images divided into fifteen different object and texture cate-
gories. Each category of the MVTec AD dataset comprises a set of anomaly-free
training images and a test set of images with various kinds of anomalies as
well as images without anomaly.

4.1.2 Metrics

We use the Area Under the Receiver Operating Characteristic curve (AUROC)
and Area Under the Per-Region-Overlap Curve (AUPRO) to evaluate the per-
formence of GTrans. AUROC is computed on different levels of threshold in
favor of large anomalous regions. AUPRO computes a threshold-independent

3The datasets analysed during the current study are available at
https://www.mvtec.com/company/research/datasets/mvtec-ad.
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evaluation metric based on the Per-Region-Overlap (PRO) to better account
for large and small anomalies in localization. Only the standard AUROC
provides image-level anomaly detection.

4.2 Implementation Details

We resize all images in the MVTec AD dataset to 256 × 256 and center crop
them to 224 × 224. We take the preprocessed images of MVTec as the input
of GTrans. We divided eighty percent of the MVTec AD dataset into the
training set and twenty percent into the validation set without additional data
enhancement. In the training phase, GTrans is trained only on the normal
images with a batch size of 32 for 300 epochs. We utilize Adam optimizer with
initial learning rate 10−3 and weight decay 10−4 for optimization. To enhance
the stability of the GTrans, we define a large initial learning rate to improve
the convergence speed of GTrans, and then the learning rate decreases with
the increase of the number of iterations gradually. We utilize exponential decay
equation to realize the decay of learning rate as

lr = lrinit × rate
step

totalstep , (20)

where lrinit and lr represent the initial and current learning rate respectively,
rate is decay factor with a value of 0.9, step and totalstep denote the current
and total iteration number respectively. We implement our method in PyTorch
and conduct all experiments on a machine equipped with an Intel i9-9900X
and an NVIDIA GeForce RTX 2080 Ti GPU.

4.3 Architecture Details

As shown in Figure 2, GTrans consists of AGN and Trans. We illustrate the
parameter selection of GTrans below.

4.3.1 AGN

We extract features with a ResNet-34 (R34) and a Wide ResNet-50-2 (WR50).
All backbones of AGN pre-trained on ImageNet, and the parameters of AGN
are frozen during the training phase. As to the position of the selected guide
feature, we choose features extracted by three intermediate layer groups, that
is l = 3.

4.3.2 Trans

Trans is composed of a backbone network, a Tokenizer, a TFM and a mapper.
We keep the backbone of Trans consistent with AGN. For Tokenizer, inspired
by [50], we use a few visual tokens to generalise semantic concepts. Hence, we
set the number of semantic groups g = 8 and dimension d = 256. For TFM, we
utilize as few as two decoders and encoders to achieve superior performance.
After mapper, the Trans and AGN output three feature maps with the size
56 × 56, 28 × 28 and 14 × 14, respectively.
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Table 1 The AUROC results for anomaly detection on the MVTec AD dataset using
AUROC%.

Category AnoGAN[15] AE-SSIM[25] GANomaly[16] SPADE[20] Patch-SVDD[33] CutPaste[34] PaDiM[35] InTra[43] GTrans-R34 GTrans-WR50

carpet 49 67 69.9 - 92.9 93.1 - 98.8 99.9 100.0

grid 51 69 70.8 - 94.6 99.9 - 100.0 99.4 99.0
leather 52 46 84.2 - 90.9 100.0 - 100.0 100.0 100.0

tiletable2 51 52 79.4 - 97.8 93.4 - 98.2 98.9 98.9

wood 68 83 83.4 - 96.5 98.6 - 98.0 99.9 99.5
avg.textures 54.2 63.4 77.5 - 94.5 97.0 99.0 99.0 99.6 99.5
bottle 69 88 89.2 - 98.6 98.3 - 100.0 100.0 100.0

cable 53 61 75.7 - 90.3 80.6 - 84.2 99.9 99.7
capsule 58 61 73.2 - 76.7 96.2 - 86.5 97.0 95.1
hazelnut 50 54 78.5 - 92.0 97.3 - 95.7 100.0 100.0

metal nut 50 54 70.0 - 94.0 99.3 - 96.9 99.5 100.0

pill 62 60 74.3 - 86.1 92.4 - 90.2 93.9 92.7
screw 35 51 74.6 - 81.3 86.3 - 95.7 98.3 93.6
toothbrush 57 74 65.3 - 100.0 98.3 - 99.7 100.0 100.0

transistor 67 52 79.2 - 91.5 95.5 - 95.8 99.7 99.3
zipper 59 80 74.5 - 97.9 99.4 - 99.4 98.9 99.9

avg.objects 56.0 63.5 75.5 - 90.8 94.4 97.2 94.4 98.7 98.0
avg.all categories 55.4 63.5 76.1 85.5 92.1 95.2 97.9 95.9 99.0 98.5

Table 2 Comparison of our models with the state-of-the-art for the anomaly localization
on the MVTec AD dataset. Results are displayed as tuples(AUROC%, PRO-SCORE%).

Category AnoGAN[15] AE-SSIM[25] Patch-SVDD[33] Student[21] CutPaste[34] SPADE[20] InTra[43] GTrans-R34 GTrans-WR50

carpet (54, 20.4) (87, 64.7) (92.6, -) (-, 69.5) (98.3, -) (97.5, 94.7) (98.8, 95.8) (99.2, 97.3) (99.2, 96.7)
grid (58, 22.6) (94, 84.9) (96.2, -) (-, 81.9) (97.5, -) (93.7, 86.7) (99.0, 96.6) (98.8, 93.3) (99.0, 96.2)
leather (64, 37.8) (78, 56.1) (97.4, -) (-, 81.9) (99.5, -) (97.6, 97.2) (99.3, 98.0) (99.4, 97.8) (99.5, 98.4)
tile (50, 17.7) (59, 17.5) (91.4, -) (-, 91.2) (90.5, -) (87.4, 75.9) (97.4, 92.1) (95.0, 79.2) (97.0, 84.5)
wood (62, 38.6) (73, 60.5) (90.8, -) (-, 72.5) (95.5, -) (88.5, 87.4) (97.2, 93.6) (97.1, 92.2) (97.8, 95.7)
avg.textures (57.6, 27.4) (78, 56.7) (93.7, -) (-, 79.4) (96.3, -) (92.9, 88.4) (98.3, 95.2) (97,9, 92.0) (98.5, 94.3)
bottle (86, 62.0) (93, 83.4) (98.1, -) (-, 91.8) (97.6, -) (98.4, 95.5) (98.8, 95.1) (97.9, 92.6) (98.5, 94.9)
cable (78, 38.3) (82, 47.8) (96.8, -) (-, 86.5) (90.0, -) (97.2, 90.9) (95.5, 87.7) (97.3, 91.4) (97.6, 92.3)
capsule (84, 30.6) (94, 86.0) (95.8, -) (-, 91.6) (97.4, -) (99.0, 93.7) (98.3, 92.2) (98.1, 77.0) (98.0, 86.9)
hazelnut (87, 69.8) (97, 91.6) (97.5, -) (-, 93.7) (97.3, -) (99.1, 95.4) (98.5, 94.3) (98.8, 98.1) (98.8, 98.7)
metal nut (76, 32.0) (89, 60.3) (98.0, -) (-, 89.5) (93.1, -) (98.1, 94.4) (97.6, 94.5) (97.7, 93.0) (98.1, 94.3)
pill (87, 77.6) (91, 83.0) (95.1, -) (-, 93.5) (95.7, -) (96.5, 94.6) (97.8, 96.5) (98.6, 94.2) (98.9, 95.1)
screw (80, 46.6) (96, 88.7) (95.7, -) (-, 92.8) (96.7, -) (98.9, 96.0) (98.3, 93.0) (99.2, 93.2) (99.2, 95.5)
toothbrush (93, 74.9) (92, 78.4) (98.1, -) (-, 86.3) (98.1, -) (97.9, 93.5) (98.9, 92.2) (98.3, 87.6) (98.6, 89.7)
transistor (86, 54.9) (90, 72.5) (97.0, -) (-, 70.1) (93.0, -) (94.1, 87.4) (82.5, 69.5) (95.8, 82.3) (94.1, 79.9)
zipper (78, 46.7) (88, 66.5) (95.1, -) (-, 93.3) (99.3, -) (96.5, 92.6) (98.5, 95.2) (98.0, 94.0) (98.8, 95.6)

avg.objects (83.5, 53.3) (91, 75.8) (96.7, -) (-, 88.9) (95.8, -) (97.6, 93.4) (96.5, 91.0) (98.0, 90.3) (98.1, 92.3)
avg.all categories (74.9, 44.7) (87, 69.4) (95.7, -) (-, 85.7) (96.0, -) (96.5, 91.7) (97.0, 92.1) (97.9, 90.9) (98.2, 93.0)

4.4 Results

In this section, we show the result of our method. To demonstrate the fea-
sibility and effectivity of our experiment, we conduct anomaly detection and
localization using the MVTec AD dataset with anomalies. We present the
AUROC and AUPRO score for each category to give an intuition of the effect
of GTrans on different categories. We compare our method to state-of-the-art
results on the MVTec AD benchmark.

4.4.1 Detection

Table 1 presents the AUROC results for anomaly detection on the MVTec
AD dataset. We take the maximum value of anomaly map issued by GTrans

(see Section 3.4) for the anomaly detection and report standard AUROC as a
detection metric. Since the other baselines have different backbones, we try a
R34 and a WR50 as the backbone of our model respectively. As shown in Table
1, GTrans-R34 outperforms the other methods by 1.1% to 43.6% in AUROC
score on average for all the categories.
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Table 3 Study of the anomaly detection and localization performance with a R34
backbone using different feature layers. results are displayed as tuples(detection AUROC%,
location AUROC%) on MVTec AD dataset.

Layer used avg.textures avg.objects avg.all categories
Layer 1+2+3+4 (98.4, 91.5) (97.3, 93.2) (97.6, 92.8)
Layer 1+2+3 (99.6, 96.0) (97.9, 96.7) (98.3, 96.5)
Layer 2+3+4 (98.9, 92.2) (97.1, 94.2) (97.6, 93.7)
Layer 2+3 (99.6, 95.6) (97.9, 96.5) (98.3, 96.2)

4.4.2 Localization

Table 2 shows the AUROC and the PRO-score results for anomaly localization
on the MVTec AD dataset. As shown in Table 2, GTrans-WR50 outperforms
all the other methods in both the AUROC and the PRO-score on average
for all the categories. Compared with the method based on Transformer, the
performance of our method is 1.2% higher than InTra[43]. For PRO-score,
InTra[43] and SPADE[20] achieve the best performance in the texture and
object categories respectively. However, our method performs well in both tex-
ture and object categories, outperforming InTra[43] by 0.9% and SPADE[20]
1.3% in PRO-score on average for all the categories. When we further analyze
the performance of GTrans-WR50, we find that GTrans-WR50 outperforms
Student[21] by 7.3% in PRO-score, indicating the effectiveness of our method
in multi-scale feature fusion and information interaction.

5 Ablation Studies

5.1 Intermediate Knowledge

In this part, we evaluate the impact of the position of selected guide features
in GTrans. In Table 3, we show the performance of anomaly detection and
localization on the MVTec AD dataset of GTrans with a R34 backbone when
using different combination critical layers (Layer 1+2+3+4, Layer 1+2+3,
Layer 2+3+4, Layer 3+4). The final anomalous maps of all experiments in
this part simply add the anomalous maps of different layers. It is known that
feature layers of CNN can express various levels of abstract information. Bot-
tom layers tend to extract low-level information such as textures, while top
layers pay attention to low-resolution features that contain semantic informa-
tion. It can be observed from Table 3 that Layer 1+2+3 can achieve the best
performance in both texture and object categories. From the comparison of
Layer 1+2+3+4 and Layer 1+2+3, it can be seen that the performance of
anomaly detection and localization declines when the anomalous map gener-
ated by the fourth critical layer is added. The reason is that the features of
the top layers are low-resolution, leading to the rough segmentation in detail
texture. According to the experimental results of Layer 2+3, the information
of the intermediate layers can express and extract anomalies to a large extent.
When the information of the shallow layer is added on this basis, the model
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Table 4 Performance with a R34 backbone with/without TFM architecture. Results are
displayed as tuples(detection AUROC%, location AUROC%) on MVTec AD dataset.

Structure avg.textures avg.objects avg.all categories
without TFM (99.4, 96.8) (93.2, 97.3) (95.2, 97.1)
with TFM (99.6, 97.9) (98.7, 98.0) (97.9, 99.0)

Table 5 Study of performance with a R34 backbone using different structure of TFM.
results are displayed as tuples(detection AUROC%, location AUROC%) on MVTec AD
dataset.

Structure block avg.textures avg.objects avg.all categories

pure encoder
S=1 (99.4, 97.9) (98.1, 97.6) (98.5, 97.7)
S=2 (99.3, 97.9) (98.2, 97.7) (98.6, 97.7)
S=3 (99.3, 97.9) (98.2, 97.6) (98.6, 97.7)

added decoder
S=1 (99.4, 97.9) (98.3, 97.9) (98.7, 97.9)
S=2 (99.6, 97.9) (98.7, 98.0) (99.0, 97.9)
S=3 (99.4, 98.0) (98.7, 97.9) (98.9, 97.9)

can extract the anomalies and pay attention to the processing of edge texture,
improving the performance of the model.

5.2 The structure of TFM

This part evaluates the impact of an added decoder and the number of TFM
blocks on experimental results.

In Table 4, we show the anomaly detection and localization performance
on the MVTec AD dataset of GTrans with an R34 backbone. It can be seen
that the detection AUROC of the model with TFM is 2.7% higher than that
without TFM, while for localization AUROC, it can achieve 1.9% higher than
the latter model.

In Table 5, we show the performance in anomaly detection and localization
on the MVTec AD dataset of GTrans with a R34 backbone when using the
different structure of TFM in Trans, where S represents the number of TFM
blocks. For structure which added decoder, we decode the output of the encoder
through the features extracted from the AGN.

From Table 5, we can notice that for the same number of TFM blocks, the
structure which added decoder outperforms the structure of pure encoder on
MVTec AD dataset by 0.2% to 0.4% in the detection AUROC and 0.2% in
localization AUROC. On this basis, we conduct experiments with the differ-
ent number of TFM blocks for the two structures. The experimental results
indicate that the number of TFM blocks has little effect on the structure
of the pure encoder. For a structure that added decoder, the performance
in detection of the structure with S=2 is 0.3% higher than the structure
with S=1, while the performance in localization is basically in a stable state.
When S>2, the performance in detection and localization remain stable or
slightly decrease, indicating that the structure with S=2 is enough to fit the
distribution manifold of normal data and detect anomalies.
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Table 6 Study of performance with a R34 backbone using different function of anomaly
maps. results are displayed as tuples(detection AUROC%, location AUROC%) on MVTec
AD dataset.

Coefficient avg.textures avg.objects avg.all categories
0.5 (98.7, 98.0) (97.6, 97.8) (98.0, 97.8)

αmse (99.5, 97.7) (98.7, 98.0) (98.9, 97.9)
αcos (99.6, 97.8) (98.6, 97.9) (98.9, 97.9)
α (99.6, 97.9) (98.7, 98.0) (99.0, 97.9)

5.3 Computation of anomaly map

This part evaluates the influence of different function of anomaly score and
fusion mode of anomaly map on experimental results. Table 6 shows the per-
formance in detection and localization with a R34 backbone using different
function of anomaly map, where α represents the weight of the anomaly map
of our model, αmse and αcos denote the difference value in spatial distance
and direction of anomaly map (see section 3.4). As can be seen from Table
6, the weight coefficient obtained according to the importance of the anomaly
map outperforms the fixed coefficient by 0.9% in detection AUROC and 0.1%
in localization AUROC. αmse pays more attention to distance differences and
performs better in detecting subtle anomalies, while αcos focuses on direction
differences and performs better in detecting diversity anomalies. Therefore, we
use the harmonic mean values of αmse and αcos as the coefficient of the final
anomaly score to detect anomalies with various sizes better.

As can be seen from the Figure 4, anomaly maps extracted from differ-
ent semantic layers express different abstract information. The anomaly map
extracted from the shallow layer (Layer 1) pays more attention to texture
and edge extraction but has weak semantic information. The anomaly map
extracted from the middle layer (Layer 2) is more carefully segmented than
shallow layer but easily affected by background noise. While the anomaly map
extracted from deep layer (Layer 3) focuses on semantic information but has
low resolution, resulting in poor segmentation. We attempt to combine the
anomaly maps extracted from different semantic layers to obtain accurate
pixel-level localization of anomalies.

Table 7 shows the performance in detection and localization with a R34
backbone using the different combinations of anomaly maps, where P1 to P5
represent different combination modes, the Arabic numerals represent anoma-
lous maps generated by different critical layers. It can be observed that the
performance of anomaly map fusion is 0.4% to 1.1% and 0.8% to 2.3% higher
than that of single-layer anomaly map in detection and localization AUROC
respectively, indicating that the effective fusion of anomaly map with different
levels is conducive to detecting and locating anomalies with different sizes.

As can be noticed from Table 7 that the performance in detection of P3
is 0.3% higher than that of P2, and the performance in localization is 0.4%
lower than that of P2. Qualitatively, different levels of anomaly maps detect
anomalies with different sizes. P2 mode performs well with anomalies of texture
categories because providing more edge information, while P3 mode works
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Table 7 Study of performance with a R34 backbone using different combination of
anomaly maps. results are displayed as tuples(detection AUROC%, location AUROC%) on
MVTec AD dataset.

Combination Mode avg.textures avg.objects avg.all categories
P1: 3 (99.3, 95.2) (97.2, 96.0) (97.9, 95.7)
P2: 1*3 (99.5, 98.2) (98.0, 97.9) (98.5, 98.0)
P3: 2*3 (99.5, 97.3) (98.4, 97.8) (98.8, 97.6)
P4: 1+2+3 (99.5, 95.6) (97.8, 96.9) (98.3,96.5)
P5: 1*2*3 (99.5, 98.2) (98.4, 97.8) (98.8, 97.9)
P6: 1*3+2*3 (99.6, 97.9) (98.7, 98.0) (99.0, 97.9)

Fig. 4 Visualization of anomaly samples from bottle, hazelnut and screw of MVTec AD
dataset. Columns from left to right correspond to anomaly sample, ground truth, anomaly
maps generated by three layers (Layer 1, Layer 2, Layer 3), and the final anomaly maps
respectively.

well with object categories because providing more semantic information. To
balance the characteristics of different anomalies, we effectively combined P2
and P3 into P6, resulting in optimal performance.

6 Conclusions

We propose a multiresolution feature guidance method based on Transformer
named GTrans for unsupervised anomaly detection and localization. First,
GTrans utilizes the difference in generalization ability between AGN and Trans

to locate anomalous regions. Second, we utilize the TFM module modified
by Transformer to enhance the information interaction ability of multi-scale
features. Also, for anomaly maps, we propose a new generation function that
jointly considers spatial and directional distances. Finally, we conduct a series
of ablation studies to demonstrate the effectiveness of GTrans. Experimental
results on MVTec AD dataset show that GTrans can achieve the state-of-the-
art performance in both detection and localization.
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