
https://doi.org/10.1007/s10489-024-05313-4

Wasserstein GAN‑based architecture to generate collaborative
filtering synthetic datasets

Jesús Bobadilla1,2 · Abraham Gutiérrez1,2

Accepted: 1 February 2024
© The Author(s) 2024

Abstract
Currently, generative applications are reshaping different fields, such as art, computer vision, speech processing, and natural
language. The computer science personalization area is increasingly relevant since large companies such as Spotify, Netflix,
TripAdvisor, Amazon, and Google use recommender systems. Then, it is rational to expect that generative learning will
increasingly be used to improve current recommender systems. In this paper, a method is proposed to generate synthetic
recommender system datasets that can be used to test the recommendation performance and accuracy of a company on dif-
ferent simulated scenarios, such as large increases in their dataset sizes, number of users, or number of items. Specifically,
an improvement in the state-of-the-art method is proposed by applying the Wasserstein concept to the generative adversarial
network for recommender systems (GANRS) seminal method to generate synthetic datasets. The results show that our pro-
posed method reduces the mode collapse, increases the sizes of the synthetic datasets, improves their ratings distributions,
and maintains the potential to choose the desired number of users, number of items, and starting size of the dataset. Both
the baseline GANRS and the proposed Wasserstein-based WGANRS deep learning architectures generate fake profiles from
dense, short, and continuous embeddings in the latent space instead of the sparse, large, and discrete raw samples that previ-
ous GAN models used as a source. To enable reproducibility, the Python and Keras codes are provided in open repositories
along with the synthetic datasets generated to test the proposed architecture (https:// github. com/ jesus bobad illa/ ganrs. git).

Keywords WGANRS · Generative Adversarial Networks · Recommender Systems · Wasserstein distance · Synthetic
datasets · Collaborative Filtering

1 Introduction

Recommender systems (RSs) are used to provide personali-
zation facilities to users of internet services. Large compa-
nies that use RSs are Spotify, TripAdvisor, Netflix, Google
Music, etc. RSs are becoming increasingly important due
to its capacity to provide both accurate recommendations
and recommendations designed to retain people using the
service. Recommendations are provided by suggesting the

products or services that have a higher probability of being
liked by the user.

Consequently, it is necessary to filter the available
items (products or services) in the RS. For this reason,
RSs are usually classified according to their filtering
approach. Social [1, 2], content-based [3], demographic
[4, 5], context-aware [6], collaborative filtering (CF) [7]
and their ensembles [8] are the most commonly used
strategies. Social filtering recommends to the active users
items that their followed, group of friends, contacts, etc.,
like. Content-based recommendations include items with
similar content to those the active user liked. It is usual to
compare descriptions or even item images. Demographic
filtering selects users having demographic features such
as those of the active user (similar age, same sex, same
zip code or near zip code, etc.) and then extracts those
item preferences. Context-aware filtering usually relies
on geographic information, such as GPS coordinates.
The most accurate and relevant filtering strategy is the

 * Jesús Bobadilla
 jesus.bobadilla@upm.es

 Abraham Gutiérrez
 abraham.gutierrez@upm.es

1 Universidad Politécnica de Madrid, ETSISI, Ctra. de
Valencia Km. 7, Madrid, Spain

2 Technical University of Madrid, ETSISI, Ctra. de Valencia
Km. 7, Madrid, Spain

/ Published online: 17 February 2024

Applied Intelligence (2024) 54:2472–2490

http://orcid.org/0000-0003-0619-1322
http://orcid.org/0000-0001-6974-7514
https://github.com/jesusbobadilla/ganrs.git
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-024-05313-4&domain=pdf

collaborative strategy. In this strategy, recommendations
are based on the preferences of the most similar users. The
machine learning method that best fits the CF concept is
the K-nearest neighbours algorithm (KNN) [9]. It is simple
and directly implements the CF concept, where the neigh-
bours are the most similar users to the active users. The
main drawbacks of the KNN are that it is a memory-based
method, it runs slowly, and it is not sufficiently accurate.
The model-based matrix factorization (MF) [10] solves
the KNN limitations. Moreover, it contains two vectors of
hidden factors. The first vector is used to code (compress)
the relevant information of users, whereas the second vec-
tor is used to code the relevant information of items. Both
vectors belong to the same latent space, and they are com-
bined using a dot product. Additionally, the hidden factors
are optimized by minimizing the prediction errors. Non-
negative matrix factorization (NMF) [11] ensures that the
hidden factors are non-negative to enable some semantic
interpretations of predictions.

Deep learning [12] can currently be implemented to
obtain improved MF results. The simplest deep learn-
ing architecture is similar to that of MF. In this method,
the hidden factors of the user are replaced by neural user
embedding, and analogously, the hidden factors of items
are replaced by neural item embedding. This model is
called deep matrix factorization (DeepMF) [13], and it is
better than MF due to the ability of its neural networks to
remove complex non-linear patterns in raw data. DeepMF
combines the embeddings using a dot layer. An improved
DeepMF model is the variational deep matrix factorization
(VDeepMF) [14], where an intermediate layer codes the
parameters of a chosen distribution (usually Gaussian),
and from it, a stochastic-based sampling process spreads
samples in the latent space. The DeepMF (or VDeepMF)
dot layer can be improved by replacing it with a multilayer
perceptron (MLP) that combines the hidden factors of
users and item embeddings and generates a manifold. This
approach is called neural collaborative filtering (NCF)
[15]. Our proposed architecture combines a DeepMF
model and a Wasserstein generative adversarial network
(GAN). GAN [16] networks can generate fake samples fol-
lowing the distribution of a source set of real data samples.
The most common use of GAN networks is to generate
realistic fake faces from a dataset of real human faces.
Similarly, our objective is to generate synthetic (fake) CF
samples from an existing dataset of CF samples, such as
MovieLens [17]. Then, by collecting many fake samples,
a synthetic CF dataset can be created.

Generating synthetic CF datasets makes it possible to
simulate the stress situation in the RS, as it can be gener-
ated ‘families’ of datasets where gradually some of the
parameters can be selected. For example, we can gener-
ate a family of CF datasets where the number of users

grows from several thousands to millions, and then test
in advance the performance of our system in different
scenarios where the number of users gradually, or sud-
denly, grows (e.g. due to a marketing campaign or an influ-
encer action). This simulation can avoid system failures
in extreme situations. Similarly, a family of datasets can
be generated with a growing number of items. It leads
to more sparse scenarios where the RS accuracy could
decrease. This type of simulation gives us the conveni-
ence of incorporating many products or services in a short
period of time. Additionally, the generation of synthetic
datasets makes possible that researchers test their machine
learning models in bounded scenarios, difficult to find in
real datasets, such as increasingly sparse data matrices,
different cold start situations, or extreme pattern variations
in the user profiles.

The state-of-the-art methods in CF generation include
statistical methods that are not able to adequately determine
the patterns of complex datasets. Therefore, adversarial
approaches [18], and GAN-based approaches have been
proposed. Preventing shilling attacks is a relevant objective
in the RS field, and some GAN-based approaches act as a
defence against them [19]. Data augmentation is an obvi-
ous field where GANs can be applied. Purchase profiles are
used in the collaborative filtering generative adversarial net-
work model (CFGAN) [20] model to increase the number of
training samples in a dataset of commercial products. The
identity-preservation generative adversarial network model
(IPGAN) [21] incorporates negative sampling information to
improve accuracy results. It allows two separate generative
models to be incorporated, with one method managing posi-
tive data and the other method processing negative samples.
Session information is used in the deep collaborative filter-
ing generative adversarial network (DCFGAN) model [22]
instead of matrices of votes combining GAN and reinforce-
ment learning. To run recommendation training, the neural
collaborative generative adversarial network (NCGAN) [23]
incorporates a regular GAN that processes the intermediate
CF results provided by a neural network stage. The recurrent
generative adversarial network (RecGAN) [24] combines
a recurrent neural network (RNN) and a GAN to process
temporal patterns. Unbalanced datasets are managed using
a Wasserstein GAN acting as a generator and the packing
generative adversarial network (PacGAN) as a discriminator
[25]. Finally, a conditional generative adversarial network
(CGAN) performs a conditional generation of ratings [26].

The RS state-of-the-art method that generates synthetic
CF datasets is divided into statistical and machine learning
approaches. Solutions in the first group allow us to param-
eterize the results (to change the number of items, users,
etc.), but they do not adequately capture the complex non-
linear relations between users and items. Consequently, the
accuracy of this method is poor. The second group makes

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2473

use of deep learning generative adversarial networks to cre-
ate fake profiles or fake samples. The accuracy is improved,
but the GAN architectures in this group take discrete and
heavily sparse CF datasets as a source, leading to results that
are obtained slowly and the subject-to-mode collapse prob-
lem. In addition, the number of items cannot be changed.
Nevertheless, the existing generative adversarial network for
recommender systems (GANRS) method makes its GAN
generation start from dense and continuous latent space
embeddings, obtaining more accurate results and enabling
us to choose the number of users and the number of items
in the synthetic datasets. The method proposed in this paper
borrows the GANRS architecture, making the necessary
changes to introduce the Wasserstein concept. Wasserstein
generative adversarial networks (WGANs) are designed to
reduce the inherent ‘mode collapse’ of the GAN architecture.
In the model regularization Wasserstein generative adver-
sarial network (MRWGAN) [27], an RS is implemented.
Moreover, an autoencoder is used to implement the genera-
tive model, and a model-Wasserstein regularized distance
is used as the function loss. It achieves better accuracy with
missing data than the state-of-the-art methods. Analogously,
an L1 regularized Wasserstein loss function has been used
for autoencoder-based CF [28] to learn a low-rank repre-
sentation of variables in the latent space. The Wasserstein
distance has also been implemented to tackle the cold-start
issue in CF, minimizing it under user embedding constraints.

GAN approaches also have their own drawbacks, particu-
larly: a) a long training time, b) a long inference time when
the GAN model is very deep, c) difficulty to set relevant
CF parameters such as the number of items and the number
of users in the dataset, d) possibility of suffering from the
‘mode collapse’ behaviour, e) difficulty to adequately learn
from the sparse data sets of CF, and e) lack of fine tuning the
variation of the results in successive executions.

No standard machine learning quality measures are
defined to compare synthetic datasets created or gener-
ated using different statistical or generative models. This
is because these models are designed to catch the complex
nonlinear patterns of the source data, and there are no simple
comparations able to discriminate the quality of the gen-
erated results, such as in regression (MAE, MSD, etc.) or
classification (accuracy, precision, recall, etc.). To better
understand this drawback, we can analyse the face image
quality assessment strategies [29], which are based on the
character, fidelity, and utility features of facial biometrics. In
the RS field we do not have such type of information to make
a similar process, since what we are generating are user/
item vector profiles. In addition, face image quality makes
a distinction between approaches that require a reference,
a reduced reference, and no reference of faces, where only
the two first cases have some accurate quality measure; pre-
cisely those situations that RS cannot manage as they do

not have the equivalent ‘reference’ to the face image quality
field. Finally, the conceptual problem of the ‘quality para-
dox’ inherent in these quality measures is heavily present
in the RS scenario, where a generated dataset should not be
too similar to the source, otherwise it would not be useful,
and should not be too different from the source, otherwise
it would not be representative. Therefore, research papers
that generate synthetic datasets [23–25] test them by run-
ning several CF Machine Learning models and comparing
the results obtained on different instances of the generated
datasets from the same source data. This is the strategy that
our paper follows in its ‘Results’ section.

In the seminal GANRS paper [30], relevant innovations
are incorporated, and the previous RS GAN architectures are
compared to generate synthetic datasets. However, a signifi-
cant drawback occurs. The process to convert from the latent
space generated samples (dense, small, and continuous) to
the raw samples (sparse, large, and discrete) that form the
synthetic dataset generates duplicated samples that must be
removed. This is a common drawback in a discretization
task, but if the number of duplicated samples is high, a ‘col-
lapse’ in the GAN generation can occur. The innovation of
our proposed Wasserstein GAN approach (WGANRS) is the
introduction of the Wasserstein design (function loss, weight
constraints, etc.) to the existing GANRS method in the hope
that the mode collapse situations are reduced. The proposed
method borrows the stages defined in [30] and replaces the
regular GAN generation kernel by a Wasserstein approach
(WGAN). The WGAN provides four relevant improvements:
1) it incorporates a new loss function that is interpretable
and has clear stopping criteria, 2) it empirically returns
better results, 3) the GAN mode collapse is significantly
reduced, and 4) it provides a clear theoretical backing. The
WGAN loss function is based on the earth mover’s distance,
and it incorporates an fw function that acts as a discrimina-
tor model, called the ‘critic’. The critic estimates the earth
mover’s distance, processing the highest difference between
the generated distribution and the real distribution under sev-
eral parameterizations of the fw function. The critic makes
the generator work harder by looking at different projec-
tions. Our most relevant predictor that measures the mode
collapse mitigation will reduce the removed samples and
consequently increase the number of samples of the syn-
thetic files (their sizes). We will also test some other quality
measures such as the precision, recall, and the distribution
of the ratings, users, and items.

Figure 1 shows the innovation of the proposed method com-
pared to SOTA, particularly with the most currently published
baseline (GANRS) on which our method is based. As shown
in a) (top of Fig. 1), SOTA methods that generate CF datasets
take only raw profiles and generate synthetic RS datasets. This
is an analogous process to fake face creation, which can be
generated by GANs from datasets of real faces. It is known

J. Bobadilla, A. Gutiérrez2474

that a recurrent problem in these processes is mode collapse
[30], which leads to a lack of balanced generation of samples.
Some categories are overrepresented, whereas other categories
are underrepresented. As an example, we could obtain an enor-
mous quantity of fake samples of Number 7 by using the Modi-
fied National Institute of Standards and Technology (MNIST)
dataset. However, some other numbers are rarely generated.
Notably, in Fig. 1a (SOTA methods), the GAN module is fed
with RAW data, such as image pixels or in our case, user pro-
files. These RAW data are large, discrete, and sparse, leading
to the mode collapse problem.

The most current research in the area is the GANRS method
(our baseline). Its high-level architecture is shown in Fig. 1b,
where the GAN model is not fed with RAW data. Instead, it is
fed with deep learning embedded data. These embedded data are
short, continuous, and dense vectors. The embedded data contain
compressed information on the items and users in the RS. As a
result, both the performance and the accuracy of the GANRS are
improved compared to the previous SOTA models and methods.

In the GANRS baseline [30], the mode collapse problem
is reduced, and the RS datasets generated are less biased
than those created using SOTA methods. Regardless, the
mode collapse remains, and it produces a certain degree of
redundant samples. To reduce mode collapse even further,
our proposed WGANRS method introduces the Wasserstein
concept into the GAN kernel (Fig. 1c). The Wasserstein
approach has been shown to yield better results by reducing
mode collapse when applied to GANs [27]. This approach
requires the introduction of a new loss function and benefits
from a theoretical backing and a defined stopping criterion.

The hypothesis of the paper claims that incorporating
the Wasserstein concept into the generative kernel of the
GANRS method will lead to a decrease in the mode collapse
problem inherent to the GAN when applied to CF scenarios.
Consequently, the proposed WGANRS is expected to gener-
ate more accurate CF datasets.

The structure of the paper is as follows: In Section 2, the
proposed WGANRS method (from the existing GANRS infor-
mation) is explained and formalized. In Section 3, the design
of the experimental executions of code is introduced, and the
results are shown and analysed using the MovieLens and Net-
flix* datasets as a source. Moreover, the most relevant results
are provided. In Section 4, the most remarkable conclusions are
presented, and some future work is proposed. Additionally, the
references section includes current representative papers in the
main RS area and in the specific GAN generation of CF datasets.

2 Method

This section is divided into two subsections. In the first
subsection, the proposed method concepts, its architecture,
and the sequence of processes and stages to both train the

model and generate the synthetic datasets in a feedforward
prediction are explained. The second subsection contains the
necessary equations to formalize the method, grouped into
the main stages of the architecture. The Python and Keras
codes of the proposed method is available in (https:// github.
com/ jesus bobad illa/ ganrs. git).

2.1 Concepts and architecture

The proposed deep learning architecture is based on five
sequential stages in which a neural CF, a WGAN model, and
a clustering process are involved. Moreover, a CF dataset is
used as the source, and a synthetic dataset that has the same
format as the source dataset and similar data distributions
is generated. The key issue involving both the GANRS [30]
seminal baseline and the WGANRS proposed architecture is
that the GAN or WGAN stages are fed with dense, short, and
continuous embeddings in the latent space instead of sparse,
large, and discrete raw data. It makes the work of both the
generator and the discriminator models easier, faster, and
more accurate. The obvious drawback of the proposed
design is the theoretical loss of quality involved in the com-
pression stage (coder) and, particularly, in the subsequent
decompression (decoder). However, when converting from
embedded to raw samples, a significant benefit emerges:
we can choose the target number of users and items, mak-
ing the GANRS and WGANRS models more flexible and
useful than the state-of-the-art methods. Figure 2 shows an
overview of the proposed WGANRS architecture. From an
existing source dataset (most-left side in Fig. 2), such as
MovieLens, a synthetic dataset (most-right side in Fig. 2) is
generated with the same format (to be useful to researchers)
and similar patterns and distributions of the users, items,
and ratings. This dataset can be generated by choosing the
desired number of users, items, and starting number of sam-
ples to be useful for companies and researchers as a base
for simulations, anticipating diverse future scenarios, or as
ground data for new machine learning models.

The proposed WGANRS first converts (compresses) the
input sparse dataset to its embedding-based representation
and converts (decompresses) the generated (fake) embed-
ding-based dataset to its raw and sparse representation. A
DeepMF model (left side in Fig. 2) was chosen to perform
the compression stage due to its simplicity and performance,
and K-means clustering (right side in Fig. 2) was used to run
the necessary decompression. In this scenario, the K-means
algorithm has the advantage of setting the K* number of
users and K** number of items we want the generated dataset
to hold. Finally, our architecture kernel is based on a WGAN
model (centre of Fig. 2) to generate fake embedding samples
from real embedding samples.

The DeepMF model used for the compression task has a
previous learning stage (top-left draw in Fig. 3) where the

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2475

https://github.com/jesusbobadilla/ganrs.git
https://github.com/jesusbobadilla/ganrs.git

embedding weights are set by means of backpropagation
optimization. The DeepMF model contains two separate
embedding layers: one layer for users and the other layer for
items. These embeddings must have the same size, which
usually ranges from 5 to 15 neurons. It is expected that
similar users will be coded with similar embedding maps
(codes), and the same applies for items. Once the DeepMF
model has been trained, we can feedforward each existing
user ID to obtain its embedding representation (top-right
draw in Fig. 3). The same process is performed with all
existing item IDs. Thus, we obtain a matrix I x E containing
the embedding representations of the items, where I is the
number of items in the source dataset and E is the embed-
ding size. Analogously, we obtain a matrix U x E containing
the embedding representations of the users, where U is the
number of users in the source dataset.

By combining the source dataset (left side of Fig. 2), the
compressed item matrix, and the compressed user matrix
(top right draw in Fig. 3), we can obtain the embedding rep-
resentation of the source dataset, as shown in the “embed-
ding-based CF dataset” in the bottom left graph of Fig. 3
and in Fig. 2.

Starting from the embedding-based CF dataset as a
source, the proposed WGANRS architecture generates the
“fake embedding-based CF dataset” (centre of Fig. 2), and it
is performed by means of a Wasserstein GAN. The first stage
of this generative task is the WGAN training (bottom-left in
Fig. 3), where the generator model creates synthetic samples

from Gaussian stochastic vectors containing random noise.
Then, the Wasserstein critic (discriminator) performs the
necessary binary classification to label samples as ‘real’ or
‘fake’. Notably, the ‘fake’ samples come from the generator
model, whereas the ‘real’ samples are randomly taken from
the previously generated ‘real embedding-based CF data-
set’. Once the training process has finished, we can forget
the critic model and take the generator model to create as
many fake embedding samples as needed. The whole pro-
cess (training and feedforward generation) is expected to be
fast due to the compressed embedding representation and
accurate due to the Wasserstein restrictions to avoid mode
collapse.

In the last stage of the proposed architecture, it is neces-
sary to decompress the ‘fake embedding-based CF dataset’
(right side in Fig. 2 and bottom right draw in Fig. 3). In
this stage, we have generated a very large number of fake
samples, consisting of tuples < user_embedding,item_
embedding,rating > , where both the user and the item
embeddings produce vectors of real numbers. We have to
convert this set of tuples to a discretized version < user_
ID,item_ID,rating > , where user_IDs are integers in the
range [1..number of users], and analogously item_IDs are
integers in the range [1..number of items]. Once the neural
network has been trained, the user embedding assigns simi-
lar codes to similar users (same with the embedding layer).
This inherent property of the embedding layers makes it
possible to incorporate a clustering process to the proposed

Fig. 1 Innovation of the proposed method and its expected impact
in solving the GAN mode collapse. Figure 1a shows the traditional
GAN approach in the CF context, Fig. 1b shows the improvement

introduced in the baseline method to adequately process sparse data,
and Fig. 1c details the proposed introduction of the Wasserstein ker-
nel to reduce the mode collapse problem

J. Bobadilla, A. Gutiérrez2476

method, in charge of grouping similar users and items to the
desired number of users and items in each synthetic dataset.

This is a discretization process in which the WGANRS has
been designed to set the desired number of users and items in
the generated dataset. To implement it, K-Means clustering
[31] was performed, since it allows us to set the K* number of
users and the K** number of items. Figure 4 shows the follow-
ing concept: a K-means is used to cluster K* users, whereas
another K-Means process is used to cluster K** items. Since
similar users should have similar embeddings, it is expected
that they will be grouped in the same clusters, analogously
with items. Each user number in the generated dataset corre-
sponds to the cluster number in the K-Means where the fake
user embedding has been grouped. For example, the left-most
sample in the fake embedding-based CF dataset (left side of
Fig. 4) was grouped with its user (green colour) in the K*
group and its item (blue colour) in Group 3. Consequently,
the generated fake sample in the synthetic dataset is < K*, 3,
rating > . In this example, the ‘rating’ is the value of the first
sample of the source dataset (left side of Fig. 2).

Finally, due to the discretization process, duplicated sam-
ples can be found. This happens when two different generated
samples share the same user ID and the same item ID. When
the chosen number of users and items is high, it is more diffi-
cult to find duplicated samples since there is a wider variety of
clusters, and it is expected that the users and the items will be
assigned to the groups in a balanced way. Duplicated samples
can be managed by simply removing the spare samples. The
expected balance in the clustering groups could be ‘broken’ if

the mode collapse is happening in the GAN. Indeed, the Was-
serstein concept is used in this paper to avoid mode collapse,
and the number of removed samples will be used as a quality
measure in the results section. The lower the removed samples
are, the better the method is.

Since two of the hyperparameters in the proposed model
are the number of users and the number of items, the cluster-
ing method that better fits this information is K-Means, where
directly we can set K* as the number of users and K** as the
number of items. In fact, this is one of the unusual situations
where the K value is known before the clustering process.
Thus, other relevant clustering methods such as hierarchical,
distribution, density or fuzzy-based ones are not adequate in
this scenario.

In the following subsection, the WGANRS approach is for-
malized. Moreover, equations have been provided.

2.2 Formalization

2.2.1 CF definitions

First, we define the main sets in the RS: set of users U, items
I, range of ratings V, and existing samples S.

(1)
We let U be the set of users who make use of a CF RS

(2)
We let I be the set of items available to vote on in the CF RS

(3)
We let V be the range of allowed votes, where V = {1, 2, 3, 4, 5}

(4)We let S be the set of samples contained in the CF dataset, where N = |S| = the total number of cast votes

(5)S = {< u, i, v >1,< u, i, v >2,… ,< u, i, v >
N
}, where each u ∈ {1,… , |U|}each i ∈ {1,… , |I|}, and each v ∈ {1,… , |V|}

Fig. 2 Overview of the proposed WGANRS architecture

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2477

The formalization of the defined CF dataset consists of
a set of tuples <userID, itemID, rating (number of stars)>,
where the ‘rating’ is the vote assigned for the ‘userID’ to
the ‘itemID’.

2.2.2 DeepMF training

(6)

The Deep MF training (top − lef t graph in Figure 3)is conducted to create

a model that can embed each user ID and each item ID.These two

embeddings feed the WGANRS generative stage. Each embedding is a

compressed representation of the user or the item. The embeddings are

unidimensional vectors of size E + 1. We def ine f eu(u) as the function

that compresses the user �u� information and analogously f
ei(i) as the

function that compresses the item �i� information

(7)

We let E + 1 be the size of the two neural layer embeddings used to

vectorize each user and each item belonging to U and I, respectively.

We let f eu(u) = �⃗eu = [eu
0
, eu

1
,… , eu

E
], where f eu is the embedding

layer output of the users and u ∈ {1,… , |U|}

(8)

We let f ei(i) = �⃗ei = [ei
0
, ei

1
,… , ei

E
], where f ei is the embedding layer

output of the items and i ∈ {1,… , |I|}

Fig. 3 DeepMF and WGAN models involved in the WGANRS architecture

Below, the most relevant equations in the back propaga-
tion algorithm are defined, and we set the output error as the
mean squared differences metric. These equations are not
distinctive of the proposed method.

2.2.3 DeepMF feedforward

Once DeepMF has learned, we can collect the embedding
representation of each user and each item in the CF RS.
Therefore, all the existing itemID and userID in the RS

(9)

By combining the dense vectors of the user and item embeddings

(�⃗eu = [eu
0
, eu

1
,… , eu

E
] and �⃗ei = [ei

0
, ei

1
,… , ei

E
]), we can make rating

predictions in the DeepMF training stage. The dot product of the user

embedding and the item embedding in each< u, i, v >j ∈ S provides its rating prediction.

�yj = f eu(u) ∙ f ei(i) = �⃗eiu ∙ �⃗ei = [eu
0
, eu

1
,… , eu

E
] ∙ [ei

0
, ei

1
,… , ei

E
]

(10)

1

2
(yj − ŷj)

2
is the output error used in the DeepMF neural network to start the

back propagation algorithm, where the neural weights are iteratively

improved from the �j values, Δwji = �yjf
�(Neti)

∑
k wik�k ,where k is

a hidden layer, and Δwji = �yjf
�(Neti)

1

2
(yk − ŷk)

2
if k is the output

layer.i, j, and k are successive sequential layers.

J. Bobadilla, A. Gutiérrez2478

dataset feed the trained DeepMF model, and their embed-
ded representations can then be obtained. It can be done

by making the feedforward prediction operation (top-right
graph in Figure 3) on the trained DeepMF model.

(11)We let E∗ = {< u, �⃗e
u =

[
e
u

0
, e

u

1
,… , e

u

E

]
>,∀u ∈ U} be the set of embeddings for all the RS users

(12)We let E∗(u) = �⃗eu =
[
eu
0
, eu

1
,… , eu

E

]

(13)Let E
∗∗ =

{
< i, �⃗e

u =
[
e
u

0
, e

u

1
,… , e

u

E

]
, �⃗e

i =
[
e
i

0
, e

i

1
,… , e

i

E

]
>,∀i ∈ I

}
be the set of embeddings for all the RS items.

(14)We let E∗∗(i) = �⃗e
i
= [ei

0
, ei

1
,… , ei

E
]

2.2.4 Setting the dataset of the embeddings

Now, we collect the above embedding representations of all
the itemID and userID in the RS to translate the set ‘S’ (5) to
the set ‘R’ (15). The set ‘R’ is the embedding-based dataset
version of the original RAW dataset.

We let

(15)R =
[
< E∗(u),E∗∗(i), v >

]
,∀< u, i, v >j ∈ S be the embedding − based dataset of real samples

2.2.5 WGAN training

The core concept of the GAN methodology is to jointly
train a generator model and a discriminator model. Once
the architecture has been trained, the generator model
creates new samples that follow the distribution of the
training samples. The discriminator model attempts to

differentiate between real samples and generated ones.
This is a min-max optimization problem of the form:

MinGMaxD(�x∽pdata

[
logD(x)

]
+ �z∽platent

[
log(1 − D(G(z))

]
) , w h e r e

G ∶ Z → X is the generator model, which maps from the
latent space Z to the input space X ; D ∶ X → ℝ is the dis-
criminator model, which maps from the input space X to a clas-
sification value (real/fake). ℝ → ℝ is a concave function. The
above formula is the optimization function, the expression that
both networks (generator and discriminator) try to optimize. G
aims to minimize it, whereas D wants to maximize it.

The bottom-left graph in Fig. 3 shows the generative
learning. The GAN architecture consists of a discriminator
classifier (16) and a generator model (17). The generator
creates fake samples (RS profiles, in our case), whereas
the discriminator tries to detect fake samples. In generative
adversarial training, the discriminator progressively learns
to accurately differentiate fake profiles from real profiles.
At the same time, the generator learns to make fake sam-
ples difficult to distinguish from real profiles. We call f D
(16) the discriminator model and f G (17) the generator

Fig. 4 Clustering stage in the
WGANRS architecture

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2479

model. Both f D and f G will iteratively learn and improve
themselves by minimizing a loss function (18) f GD.

f GD = MinGMaxDf (D,G) = ER[fw(R)] + Ez[fw(G(z)] , where
ER is the expected value for real samples, z is the random
noise that feeds generator G, and Ez is the expected value for
the generated fake profiles G(z). fw is the Wasserstein function
based on the earth mover’s distance . This function satisfies
the 1 – Lipschitz constraint: |||f

(
x1

)
− f

(
x2

)||| ≤
||x1 − x2

||,∀x1, x2. R refers

(16)
We let f D be the discriminator D model belonging to a GAN model

(17)
We let f G be the generator G model belonging to a GAN model

(18)We let f GD be the cost function of the GAN model

to (15). Notably, the Wasserstein concept has been introduced
in Eq. (18). Mainly, it is implemented in the loss function code
of the generative model. The Wasserstein approach has been
designed to reduce the mode collapse problem inherent to the
GAN. We implement it to reduce the mode collapse in our
WGANRS proposed method and to consequently reduce the
number of excessively generated similar profiles in the RS.

2.2.6 WGAN generation

Once the GAN has been trained, we can generate as many
samples as needed. We can introduce batches of random
Gaussian noise vectors ‘z’ and implement the feedforward
process (model.predict). The result are batches of fake
embedded profiles (bottom-right graph in Figure 3).

(19)
We let F = f G be the generated dataset of fake samples from dif ferent random noise vectorsz

2.2.7 Clustering of items and users

Figure 4 shows the clustering process, where we set
K* (20) as the number of users in the generated dataset

and K** (21) as the number of items on it. The N gen-
erated fake profiles will contain both fake user embed-
dings and fake item embeddings (where N>>K* and
N >> K**).

(20)We let K∗ be the number of clusters used to group the embeddings of the users

(21)We let K∗∗ be the number of clusters used to group the embeddings of the items

For each generated fake user (each user of N), we must
select the nearest user from the K* existing users (22). The
h∗(u) function makes this group. The same process is used

for items. For each generated fake item (each one of the N),
we must select the nearest item from the K** existing items
(23). The h∗∗(i) function makes this group.

(22)
We let h∗(u) = c|c ∈ {1,… ,K∗} be the clustering operation that assigns a centroid to each user.

(23)We let h∗∗(i) = c|c ∈ {1,… ,K∗∗} be the clustering operation that assigns a centroid to each item

2.2.8 Setting the dataset of the item IDs and user IDs

To create the synthetic dataset, the generated set of embed-
dings F (19) is converted to its discretized version H (24).

We let H be the item ID and user ID discrete dataset
obtained from the embedding-based dataset F of fake samples.

Sometimes, different generated samples in Set
F will be discretized to the same user and item:
< h∗(u), h∗∗(i), v >= < h∗

�(u)
, h∗∗�(i), v >.

(24)H =
[
< h∗(u), h∗∗(i), v >|∀< E∗(u),E∗∗(i), v >∈ F]

This particularly happens if the GAN suffers from mode
collapse. In these cases, there are samples with identical
information, and we create the set H where duplicated sam-
ples are removed (25).

We let S = {H} be the synthetic generated dataset version
of H where duplicated samples are removed.

(25)

The last transformation removes samples when a fake user casts

dif ferent votes (v, v�) to the same item.

(26)We let G� =
{
< h

∗(u), h∗∗(i), v >∈ H|∄ < h
∗
(
u
�
)
, h∗∗

(
i
�
)
, v� >∈ H,where h∗(u) = h

∗
(
u
�
)
∧ h

∗(i) = h
∗∗(i) ∧ v ≠ v

�}

J. Bobadilla, A. Gutiérrez2480

3 Results

The proposed method has been tested using two open-source
representative CF datasets: MovieLens 1 M (https:// group lens.
org/ datas ets/ movie lens/ 1m/) and a subset of Netflix that we call
Netflix* [32]. These two datasets were chosen because they are
representative in the CF field. MovieLens is probably the most
tested dataset family over the years in CF research. The results
obtained in MovieLens are very informative for RS researchers.
On the other hand, Netflix is not widely used due to its enor-
mous size and because it is no longer available. We utilized the
open version of Netflix* that is randomly shortened [33]. Net-
flix* has been selected as the dataset for this research because
its internal patterns are different from those of MovieLens.
MovieLens has been created in a relatively short time in an
academic environment, whereas Netflix is an enormous com-
mercial dataset that has been growing for a long period. Since
this research involves catching the internal patterns of a source
dataset and parameterizing and translating those patterns to a
generated dataset, it is convenient to use such different sources.

Table 1 shows their main parameter values. The results of
both datasets follow the same trends. Therefore, to ensure that
the length of this paper is appropriate, we only explain the Mov-
ieLens results and group the Netflix* results (Figs. 10, 11, 12
and 13) in Appendix A. To test the WGANRS method, two sets
of synthetic datasets have been created. The first set has a varied
number of users, whereas the second set has a varied number of
items. Each row in Table 2 shows the values of each set. The first
row indicates that five synthetic datasets have been generated.
The first dataset contains 500 users and 1000 items, the second
dataset holds 1000 users and 1000 items, and so on until the
last dataset has 8000 users and 1000 items. All the generated
datasets were created starting from 400 thousand samples. This
set of data allows us to test the impact of changing the number
of users. Analogously, the second row in Table 2 shows that
four synthetic datasets have been created. All four datasets have
4000 users. However, the number of items varies from 500 in
the first dataset to 4000 in the last set. This allows us to measure
the impact of changing the number of items.

Since we will use the GANRS method [29] as the baseline,
all datasets have also been created using GANRS. Thirty-six
datasets were generated, 5 + 4 using MovieLens as a source
and 5 + 4 using Netflix*, both for GANRS and for WGANRS.
To test these datasets, four different exections were conducted:

• Number of generated samples: The number of samples
returned by GANRS and WGANRS was compared.
The WGANRS method is expected to perform better,
as it focuses particularly on avoiding the typical ‘mode
collapse’ in GANs. The better managed the mode col-
lapse is, the more varied the embedding samples that the
WGANRS generates, the better the performance of the

clustering process to create the raw samples, and finally,
the lesser the number of sample collisions, increasing the
sizes of the synthetic datasets.

• Rating distributions: It is important that the rating distri-
bution of the generated datasets be as similar as possible
to that of the source, particularly on the relevant ratings
(usually 4 and 5 stars). This is an indication that the pat-
terns of the fake profiles are correct, and they contain an
adequate proportion of relevant and nonrelevant votes.

• User and item distributions: It is interesting to test the user
and item distributions as the number of users and items var-
ies, comparing them to the source dataset. It is expected
that the Gaussian random noise used to create the stochastic
vector that feeds the WGANRS generator will force the dif-
ferent Gaussian distributions of users and items.

• Precision and recall: Regarding the ground distributions,
balanced votes, and high number of samples, the gen-
erated datasets are used to adequately analyse them on
the CF task, and their recommendation quality measures
return suitable values and trends.

The above executions cover the potential comparatives avail-
able on the generative creation of synthetic datasets in the CF
area. Figure 5 shows the concept. Figure 5a (top graph) shows
the traditional CF analysis. Different state-of-the-art methods or
models are applied to one or several existing CF datasets, and
the recommendation results can be measured using traditional
quality prediction and recommendation quality metrics, such
as the precision, recall, F1, and mean absolute error (MAE).
However, the field of synthetic CF dataset generation is com-
pletely different. From a source dataset (Fig. 5b), we create one
or several synthetic datasets. We can set different numbers of
users, items, samples, etc., and each generated dataset will hold.
To compare the proposed generative method with the selected
state-of-the-art baseline, we must create a synthetic dataset or
group of synthetic datasets using the proposed method (orange
datasets in Fig. 5b) and a different dataset or group of datasets
using the SOTA baseline (blue datasets in Fig. 5b). Now, we
need to determine which of these datasets (or groups) are bet-
ter. Comparing generated datasets (Fig. 5b) is a very different
task than comparing methods or models applied to an existing
dataset (Fig. 5a). Figure 5b shows three types of code execution
that we can perform to decide whether the generated datasets
using the proposed method (orange datasets) are better than the
generated datasets using the baseline method (blue datasets):

Table 1 Main parameter values of the tested datasets

Dataset #users #items #ratings scores sparsity

Movielens 1 M 6,040 3,706 911,031 1 to 5 95,94
Netflix* 23,012 1,750 535,421 1 to 5 98.68

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2481

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/1m/

1) The mode collapse impact can be measured in the CF
field by removing very similar user profiles. The GAN
can collapse to a reduced number of source profiles. The
higher the number of deleted profiles is, the higher the
mode collapse impact. The higher the deleted profiles
are, the lower the number of samples in the generated
dataset. Figure 5b1 shows a comparison where the y-axis
represents the number of samples. The proposed method
(orange colour) improves the SOTA baseline.

2) The generated datasets should have probability distribu-
tions that are similar to that of the source dataset. The
user, item, and rating distributions of the synthetic data-
sets can be compared. Figure 5b2 shows the distribu-
tion of the ratings from the source dataset (green colour)
compared to the ‘baseline’ dataset (orange colour, in this
graph) and the ‘proposed method’ dataset (blue colour).
Notably, the synthetic datasets are not expected to have
the same distributions as the source dataset. The genera-
tive process should create similar datasets, not identical
datasets. Identical datasets have no value, just as rep-
licating real faces is not valuable in field of computer
vision. Therefore, there is no absolute metric to measure
this type of quality. Extreme distribution similarities and
large distribution differences must be avoided.

3) The quality of the generated datasets can be indirectly meas-
ured by running state-of-the-art CF methods and models on
them. We expect similar behaviours to those obtained when
we apply these methods to the source dataset. Very different
trends or absolute values in the generated dataset graphs,
compared to those in the source dataset, will tell us that the
generated dataset does not contain the main patterns of the
source dataset. Figure 5b3 shows the precision and recall
results on the source dataset (left graph) and the generated
dataset (right graph) when measured with several SOTA CF
deep learning models. Both trends and values are similar. As
explained above, we do not expect identical behaviours and
values since synthetic datasets should mimic the source pat-
terns and not copy them. For this reason, there is no standard
quality measure to compare the graphs in Fig. 5b3.

Taking into account the above considerations, several
experiments have been performed on the three explained
approaches, as shown in b1, b2, and b3 of Fig. 5. Individual
executions and their explained results have been structured in
SubSects. 3.1 to 3.4, followed by the Discussion Subsection.

3.1 Number of generated samples

As explained in the previous section, the proposed method
uses a WGAN to generate synthetic embedding samples. These
dense and continuous samples are then converted to their
sparse and discrete versions by means of the clustering process
and their translation to the raw tuples in the synthetic dataset.
This discretization stage causes a proportion of ‘collisions’
where identical or similar generated samples must be removed.
The smaller the number of samples removed, the more accu-
rate the generative model, and the richer the synthetic dataset.
The Wasserstein GAN is expected to improve the results, as
it is designed to prevent mode collapse inherent to the GAN
models. Please note that the hypothesis is that by reducing
the mode collapse, the variability of the generated embedded
samples will increase, and then the clustering process will be
able to spread users and item IDs in a more homogeneous
way. Consequently, the number of discretized samples that are
repeated (and deleted) will decrease. Overall, the total size of
the generated datasets will increase as the GAN mode collapse
is reduced using the Wasserstein approach.

The final number of samples generated is a relevant qual-
ity measure since it is directly related to the impact of mode
collapse in the generative process. The baseline GANRS
method suffers from the mode collapse problem, leading to
the generation of repeated fake profiles. The method han-
dles this situation by removing spare profiles, but it does not
provide the necessary diversity of samples. The proposed
WGANRS is expected to improve the results due to the
Wasserstein ability to reduce the mode collapse and then
to improve diversity and increase the synthetic dataset size.

Figure 6 shows the comparison of GANRS (gan) versus
WGANRS (wgan) both for synthetic datasets where the
number of users varies (left graph) and for synthetic datasets
where the number of items varies (right graph). Overall, the
proposed approach (wgan) significantly improves the base-
line (gan). Specifically, it duplicates the number of gener-
ated samples. A 213% improvement in the left graph and a
191% improvement in the right graph are achieved. This is a
relevant predictor of the superiority of the proposed method.
Additionally, as expected, the higher the number of users
or items there are, the higher the number of generated sam-
ples. This is because the clustering process can better spread
the samples in the latent space as the number of centroids
increases. Then, the number of duplicated samples decreases.

The results show a relevant improvement when the pro-
posed method is applied compared to the baseline. This con-
firms that the paper hypothesis is fulfilled. Moreover, incor-
porating the Wasserstein concept into the generative kernel
of the GANRS method will lead to a decrease in the mode
collapse problem inherent to the GAN when applied to CF
scenarios. Generated datasets have less redundant profiles.
Accordingly, they are more diverse, and they contain more

Table 2 Parameter values

initial #samples #users #items

400,000 {500, 1000, 2000, 4000, 8000} 1,000
400,000 4,000 {500, 1000,

2000,
4000}

J. Bobadilla, A. Gutiérrez2482

samples. Overall, the proposed WGANRS method generates
richer, unbiased, and longer synthetic datasets.

3.2 Rating distributions

The distribution of the ratings (one star, two stars, …, five
stars) is an important quality measure in the CF synthetic
dataset generation process. Recommendation models are
very sensitive to the relevant versus non-relevant thresh-
old, which is usually set to four or five stars in CF datasets
containing five possible ratings. It is not enough that the
Gaussian distribution of ratings in the generated dataset has
a similar mean to the Gaussian distribution in the source
dataset. It is also necessary that their standard deviation
be analogous. Figure 7 shows that the proposed WGANRS
generates a Gaussian distribution more similar to the Mov-
ieLens distribution than the baseline GANRS. Specifically,
it achieves a 271.21% improvement. The improvement aver-
age obtained using the synthetic datasets in the first row of
Table 2 (the number of users varies) is 304% (541% in Net-
flix*), whereas the second row (the number of items varies)
returns a 357% improvement on average (399% in Netflix*).
It is expected that these positive results will contribute to

providing adequate recommendation quality results in the
next subsection.

Beyond the numeric improvement values shown before, we
can compare the shapes of the probability distribution in Fig. 7.
The probability distribution of the source MovieLens dataset
(green-colour bars) is the target. The proposed WGANRS
method (blue-colour bars) is much closer to the target than
the baseline GANRS method (orange-colour bars). This is the
reason for the relevant numerical improvements shown in the
above paragraph. Additionally, the baseline method generates a
Gaussian distribution excessively centred in the average rating
(three stars), whereas the proposed method adequately fits its
Gaussian distribution to the correct four-star mean. Regard-
ing the Gaussian standard deviation, the baseline method does
not adequately catch the source dataset shape. Its deviation is
smaller, and consequently, it does not generate enough profiles
in the distribution edges (one star and five stars). In contrast,
the proposed method performs nearly perfectly on both edges
of the source distribution. Thus, the samples generated using
the proposed WGANRS method are more diverse and unbiased
than those obtained running the SOTA baseline. Additionally,
the obtained result better follows the Gaussian distribution that
describes the source shape of ratings. This result reinforces and

Fig. 5 Traditional CF validation of the methods and models versus the validation of the synthetic datasets generated by the GAN

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2483

complements that obtained in Sect. 3.1. Overall, the proposed
method a) reduces repeated samples, b) generates more sam-
ples, c) increases diversity, d) decreases the bias, and e) better
mimics the probability distributions of the ratings.

3.3 Precision and recall

In this subsection, we show the recommendation quality
results obtained on synthetic datasets obtained using Mov-
ieLens as a source. The WGANRS method was used for this
experiment to generate the synthetic datasets. The state-of-
the-art NCF (neural collaborative filtering) deep learning
model has been used to make predictions and recommenda-
tions. The relevancy � threshold was set to five. The top graphs
in Fig. 8 show the results when the number of users varies,
whereas the bottom graphs show the results when the number
of items varies. Both the values and the trends obtained from
the synthetic datasets (coloured curves) are similar and com-
patible with the source datasets (black curves), which indi-
cates that the proposed method generates suitable synthetic
datasets to be used in the RS field. Additionally, as expected,
the higher the number of users, the higher the recall is, since
each user profile will contain fewer relevant ratings (recall
denominator). Conversely, the higher the number of users,
the lower the precision is, since the denominator is the con-
stant N (number of recommendations), whereas the numerator
contains the true positives of relevant ratings, where a high
number of users involves less relevant ratings per user.

Additionally, from the set of synthetic datasets where the
number of users varies, the dataset that holds 1000 users pro-
vides more precision and recall results like the MovieLens
source. Since MovieLens 1 M contains 6000 users, it tells us
that the GAN-based method generates data patterns where
recommendations are easier than using the source dataset.

This result is consistent with the one reported in [30]. Most
importantly, the evolution of all the recommendation curves
in the generated datasets (coloured curves) follow the same
trends as those exhibited by the source MovieLens (black
curve), indicating that the internal patterns of the source data-
set have been adequately captured by the proposed WGANRS
method. Regarding the results when the number of items var-
ies, similar conclusions can be drawn, underlying that rec-
ommendation qualities worsen in absolute values compared
to the source dataset. This probably occurs because the dis-
tribution of the item ratings is highly variable compared to
the distribution of the user ratings, leading to more difficult
pattern extraction. There is a number of items holding a very
low number of ratings.

3.4 User and item distributions

Once the rating distributions have been tested, it is also
convenient to compare the user and the item distributions
obtained by using both the proposed and the baseline methods.
The user and item distributions of the synthetic datasets are
very dependent on the Gaussian parameter values with which
the noise vectors that feed the generative model have been
created. In the original paper [28] that serves as a baseline,
the standard deviation has been customized for each tested
dataset. In contrast, by using the proposed method, we fixed it
to one and then removed this hyperparameter, making it easier
to fine tune the proposed approach compared to the baseline
method. The top graph in Figure 9 shows the results when
the number of users varies, while its bottom graph shows the
result by varying the number of items. Dashed lines repre-
sent the baseline results, and solid lines show the proposed
approaches. In all cases, as expected, the higher the number
of users there are, the lower the number of ratings assigned to

Fig. 6 Number of samples generated using the baseline GANRS
method (gan) versus the proposed WGANRS method (wgan). Source
dataset: MovieLens 1 M. Number of samples needed: 40,000. Left
graph: generated datasets with 1000 items and a range of 500, 1000,

2000, 4000 and 8000 users. Right graph: generated datasets with
4000 users and a range of 500, 1000, 2000 and 4000 items. The
higher the number of generated samples, the better the model is

J. Bobadilla, A. Gutiérrez2484

each user, since the number of ratings in each dataset is fixed.
It can also be observed that the proposed method generates
Gaussian distributions with higher standard deviations than
the baseline approach, which has been heuristically tailored to
the dataset. Both the proposed and baseline methods generate
suitable user and item distributions for the CF area.

3.5 Discussion

The experimental results show the superiority of the proposed
WGANRS method compared to the GANRS baseline. Par-
ticularly relevant is the high improvement (approximately
200%) in the number of generated samples. This indicates
that the proposed Wasserstein approach effectively reduces
the amount of mode collapse of the GAN, The WGANRS
method also effectively mimics the rating distribution of the
source dataset, obtaining high improvements compared to the
baseline and making it possible that their quality precision and
recall values and trends are compatible with those from the
source dataset. Furthermore, even no standard quality meas-
ures exist to test RS generated data, the user and item distribu-
tions obtained using the proposed approach are comparable
to those of the baseline method. Additionally, the proposed
method has the advantage that it is not necessary to assign
heuristic values to the standard deviation of the Gaussian dis-
tribution used to create the noisy random vectors that feed
the generator model of the WGAN. Finally, the results using
the Netflix* dataset reinforce the results obtained by testing
MovieLens. Appendix A shows the Netflix* results.

Overall, the proposed method improves both the sta-
tistical baselines and state-of-the-art generative methods.
Statistical baselines are reported to reach poor accuracy. In
contrast, they support adequate parameterization. Generative
baselines operate quite differently. They do not support full
parameterization and exceed the accuracy of statistical meth-
ods [24]. Our proposed method is proven to provide both full

Fig. 7 Comparative rating distributions among the MovieLens 1 M
(ML) source dataset, the baseline GANRS method (gan), and the pro-
posed WGANRS method (wgan). The 8000-user and 1000-item syn-
thetic dataset has been chosen as a representative case from the set
of generated data in the paper. The closer the distribution is to the
source ML distribution, the better the model is

Fig. 8 Quality of the recom-
mendation: precision and recall
obtained by varying the number
N of recommendations from 2
to 10. The relevancy threshold �
was set to 5. The upper graphs
show the results on the synthetic
datasets containing 500 to 8000
users. The lower graphs show
the results on the synthetic
datasets containing 500 to 4000
items. Precision can be seen in
the left graphs, whereas recall is
shown in the right graphs. The
MovieLens dataset was used.
The higher the values are, the
better the results

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2485

parameterization and high accuracy, in addition to a strong
reduction of the mode collapse problem inherent to the GAN
architectures. On the other hand, our method inherits the
most positive and the most negative features of its baseline
[30]. However, its accuracy and performance are very high
due to the short, dense, and continuous vectors that its GAN
model takes as input. Its main drawback comes from the
clustering stage of the method (Fig. 4), which requires addi-
tional execution time and involves a discretization process
that increases the probability of generating duplicated sam-
ples. For this reason, the Wasserstein concept has been pro-
posed to alleviate the explained drawback. The results show
that the proposed method adequately reduces the mode col-
lapse problem, maintains the baseline advantages, reduces
its disadvantages, and confirms the hypothesis of this paper.

4 Conclusions

The most relevant conclusion in this paper is that the Wasser-
stein approach reduces the mode collapse in the GAN genera-
tion of the CF fake samples compared to the state-of-the-art

methods. This positive effect is reflected in a relevant reduction
in duplicated samples and consequently in the generation of
larger synthetic datasets. Furthermore, the proposed approach
returns very improved distributions of ratings, which facilitates
obtaining correct values and trends in recommendation qual-
ity measures. Finally, the distributions of the users and items
are comparable to those of the state-of-the-art methods; these
distributions act as quality measures due to the lack of stand-
ard quality measures for RS generated data. Moreover, exist-
ing hyperparameters are avoided in the proposed method. The
standard deviation of the Gaussian distribution is used to create
the noisy vectors that feed the generator model in the GAN.
Overall, the results of the experiment show that by applying
the Wasserstein distance and weight clipping to CF data, the
generative process is improved compared to the state-of-the-art
methods that use Wasserstein-based GANs. Proposed future
work includes a) testing the proposed method on different RS
datasets, with several sparsity ratios and different numbers of
users or items, b) comparing the existing biases in the source
datasets with the generated biases in the synthetic datasets, and
c) checking the ability of the generated samples to serve as data
augmentation when they are added to the source datasets.

Fig. 9 Top graph: distribu-
tion of the ratings when the
number of users varies from
500 to 8000; comparative
of the proposed WGANRS
(wgan) method and the baseline
GANRS (gan) method. Bottom
graph: distribution of ratings
when the number of items var-
ies from 500 to 4000; compari-
son of the proposed WGANRS
(wgan) method and the baseline
GANRS (gan) method. The
source MovieLens (ML) dataset
is used in both graphs

J. Bobadilla, A. Gutiérrez2486

Appendix

In this section, the same figures used for MovieLens are
shown. However, in this case, the Netflix* dataset has been
used as a source.

Fig. 10 Number of samples generated using the baseline GANRS
method (gan) versus the proposed WGANRS method (wgan). Source
dataset: Netflix*. Number of needed samples: 40,000. Left graph:
generated datasets with 1000 items and a range of 500, 1000, 2000,

4000 and 8000 users; right graph: generated datasets with 4000 users
and a range of 500, 1000, 2000 and 4000 items. The higher the num-
ber of generated samples, the better the model is

Fig. 11 Comparative rating distributions among the Netflix* source dataset,
the baseline GANRS method (gan) and the proposed WGANRS method
(wgan). The 8000-users and 1000-items synthetic dataset has been chosen as
a representative case from the set of generated data in the paper. The closer
the distribution is to the source ML distribution, the better the model is

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2487

Fig. 12 Quality of recommen-
dation: precision and recall
obtained by varying the number
N of recommendations from 2
to 10. The relevancy threshold �
was set to 5. The upper graphs
show the results on the synthetic
datasets containing 500 to 8000
users. The lower graphs show
the results on the synthetic
datasets containing 500 to 4000
items. Precision can be seen in
the left graphs, whereas recall is
shown in the right graphs. The
Netflix* dataset was used. The
higher the values are, the better
the results

Fig. 13 Top graph: distribu-
tion of the ratings when the
number of users varies from
500 to 8000. Comparison
of the proposed WGANRS
(wgan) method and the baseline
GANRS (gan) method. Bottom
graph: distribution of ratings
when the number of ratings var-
ies from 500 to 4000. Compari-
son of the proposed WGANRS
(wgan) method and the baseline
GANRS (gan) method. The
source Netflix* dataset is used
in both graph

J. Bobadilla, A. Gutiérrez2488

Author contributions Abraham Gutiérrez ran most of the executions
and prepared the figures and the paper format.

Jesús Bobadilla provided the paper concept, the model design, the
experimental design, and wrote the paper.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work was partially supported
by the Ministerio de Ciencia e Innovación of Spain under the pro-
ject PID2019-106493RB-I00 (DL-CEMG) and the Comunidad de
Madrid under Convenio Plurianual with the Universidad Politécnica
de Madrid in the actuation line of Programa de Excelencia para el
Profesorado Universitario.

Data availability The datasets generated during and/or analysed during
the current study are available in the GitHub repository, https:// github.
com/ jesus bobad illa/ ganrs. git

Declarations

Ethics for obtaining the data In this paper, all the conditions specified
for the use of the open datasets taken as a source for the generative
process are satisfied, including the reference to the paper stated in the
README file.

Conflicts of interest The authors have no competing interests to de-
clare that are relevant to the content of this article and agree to the
publishing of its content.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Shokeen J, Rana C (2020) A study on features of social recom-
mender systems. Artif Intell Rev 53(2):965–988. https:// doi. org/
10. 1007/ s10462- 019- 09684-w

 2. Bobadilla J, Gutiérrez A, Alonso S, González-Prieto A (2022)
Neural Collaborative Filtering Classification Model to Obtain
Prediction Reliabilities. International Journal of Interactive Mul-
timedia and Artificial Intelligence 7(4):18–26. https:// doi. org/ 10.
9781/ ijimai. 2021. 08. 010

 3. Deldjoo Y, Schedl M, Cremonesi P, Pasi G (2020) Recommender
systems leveraging multimedia content. ACM Computing Surveys
(CSUR) 53(5):1–38. https:// doi. org/ 10. 1145/ 34071 90

 4. Bobadilla J, González-Prieto A, Ortega F, Lara-Cabrera R (2021)
Deep learning feature selection to unhide demographic recom-
mender systems factors. Neural Comput Appl 33(12):7291–7308.
https:// doi. org/ 10. 1007/ s00521- 020- 05494-2

 5. Bobadilla J, Lara-Cabrera R, González-Prieto Á, Ortega F (2021)
DeepFair: Deep Learning for Improving Fairness in Recom-
mender Systems. International Journal of Interactive Multimedia

and Artificial Intelligence 6(6):86–94. https:// doi. org/ 10. 9781/
ijimai. 2020. 11. 001

 6. Kulkarni S, Rodd SF (2020) Context aware recommendation
systems: A review of the state of the art techniques. Computer
Science Review 37:100255. https:// doi. org/ 10. 1016/j. cosrev. 2020.
100255

 7. Wang Z (2023) Intelligent recommendation model of tourist
places based on collaborative filtering and user preferences. Appl
Artif Intell 37(1):2203574. https:// doi. org/ 10. 1080/ 08839 514.
2023. 22035 74

 8. Ray B, Garain A, Sarkar R (2021) An ensemble-based hotel rec-
ommender system using sentiment analysis and aspect categoriza-
tion of hotel reviews. Applied Soft Computing 98:106935. https://
doi. org/ 10. 1016/j. asoc. 2020. 106935

 9. Kabul MS, Setiawan EB (2022) Recommender System with User-Based
and Item-Based Collaborative Filtering on Twitter using K-Nearest
Neighbors Classification. Journal of Computer System and Informat-
ics 3:478–484. https:// doi. org/ 10. 47065/ josyc. v3i4. 2204

 10. Eslami G, Ghaderi F (2023) Incremental trust-aware matrix factor-
ization for recommender systems: towards Green AI. Appl Intell
53:12599–12612. https:// doi. org/ 10. 1007/ s10489- 022- 04150-7

 11. Mehdi HA (2022) A novel constrained non-negative matrix fac-
torization method based on users and items pairwise relationship
for recommender systems. Expert Syst Appl 195:116593. https://
doi. org/ 10. 1016/j. eswa. 2022. 116593

 12. Gheorghe P, Pérez-Jiménez M, Grzegorz R (2023) Infinite Spike
Trains in Spiking Neural P Systems. Romanian Journal of Infor-
mation Science and Technology 2023:251–275. https:// doi. org/
10. 59277/ ROMJI ST. 2023.3- 4. 01

 13. Liu H, Zheng C, Li D, Shen X, Lin K, Wang J, Zhang Z, Zhang
Z, Xiong N (2021) EDMF: Efficient Deep Matrix Factorization
With Review Feature Learning for Industrial Recommender
System. IEEE Trans Industr Inf 18(7):4361–4371. https:// doi.
org/ 10. 1109/ TII. 2021. 31282 40

 14. Bobadilla J, Ortega F, Gutiérrez A, González-Prieto Á (2022)
Deep variational models for collaborative filtering-based recom-
mender systems. Neural Comput Appl 35:7817–7831. https://
doi. org/ 10. 1007/ s00521- 022- 08088-2

 15. Hai C, Fulan Q, Jie C, Shu Z, Yanping Z (2021) Attribute-based
Neural Collaborative Filtering. Expert Syst Appl 185:115539.
https:// doi. org/ 10. 1016/j. eswa. 2021. 115539

 16. Min G, Junwei Z, Junliang Y, Jundong L, Junhao W, Qingyu X
(2021) Recommender systems based on generative adversarial
networks: A problem-driven perspective. Inf Sci 546:1166–
1185. https:// doi. org/ 10. 1016/j. ins. 2020. 09. 013

 17. Forouzandeh S, Berahmand K, Rostami M (2021) Presentation of
a recommender system with ensemble learning and graph embed-
ding: a case on MovieLens. Multimedia tools and applications
80(5):7805–7832. https:// doi. org/ 10. 1007/ s11042- 020- 09949-5

 18. Kumar A, Aggarwal RK (2022) An exploration of semi-
supervised and language-adversarial transfer learning using
hybrid acoustic model for hindi speech recognition. J Reli-
able Intell Environ 8:117–132. https:// doi. org/ 10. 1007/
s40860- 021- 00140-7

 19. Deldjoo Y, Noia DT, Merra FA (2021) Survey on Adversarial
Recommender Systems: From Attack/Defense Strategies to Gen-
erative Adversarial Networks. ACM Comput Surv 54(2):1–38.
https:// doi. org/ 10. 1145/ 34397 29

 20. Chae DK, Kang JS, Kim SW, Lee JT (2018) CFGAN: a generic
collaborative filtering framework based on generative adversarial
networks. In: Proceedings of the 27th, ACM International Con-
ference on Information and Knowledge Management, CIKM
2018. Association for Computing Machinery, New York, NY, pp
137–146. https:// doi. org/ 10. 1145/ 32692 06. 32717 43

 21. Guo G, Zhou H, Chen B et al (2022) IPGAN: Generating informa-
tive item pairs by adversarial sampling. IEEE Transactions on

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2489

https://github.com/jesusbobadilla/ganrs.git
https://github.com/jesusbobadilla/ganrs.git
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10462-019-09684-w
https://doi.org/10.1007/s10462-019-09684-w
https://doi.org/10.9781/ijimai.2021.08.010
https://doi.org/10.9781/ijimai.2021.08.010
https://doi.org/10.1145/3407190
https://doi.org/10.1007/s00521-020-05494-2
https://doi.org/10.9781/ijimai.2020.11.001
https://doi.org/10.9781/ijimai.2020.11.001
https://doi.org/10.1016/j.cosrev.2020.100255
https://doi.org/10.1016/j.cosrev.2020.100255
https://doi.org/10.1080/08839514.2023.2203574
https://doi.org/10.1080/08839514.2023.2203574
https://doi.org/10.1016/j.asoc.2020.106935
https://doi.org/10.1016/j.asoc.2020.106935
https://doi.org/10.47065/josyc.v3i4.2204
https://doi.org/10.1007/s10489-022-04150-7
https://doi.org/10.1016/j.eswa.2022.116593
https://doi.org/10.1016/j.eswa.2022.116593
https://doi.org/10.59277/ROMJIST.2023.3-4.01
https://doi.org/10.59277/ROMJIST.2023.3-4.01
https://doi.org/10.1109/TII.2021.3128240
https://doi.org/10.1109/TII.2021.3128240
https://doi.org/10.1007/s00521-022-08088-2
https://doi.org/10.1007/s00521-022-08088-2
https://doi.org/10.1016/j.eswa.2021.115539
https://doi.org/10.1016/j.ins.2020.09.013
https://doi.org/10.1007/s11042-020-09949-5
https://doi.org/10.1007/s40860-021-00140-7
https://doi.org/10.1007/s40860-021-00140-7
https://doi.org/10.1145/3439729
https://doi.org/10.1145/3269206.3271743

Neural Networks and Learning Systems 33(2):694–706. https://
doi. org/ 10. 1109/ TNNLS. 2020. 30285 72

 22. Zhao J, Li H, Qu L, Zhang Q, Sun Q, Huo H, Gong M (2022) DCF-
GAN: An adversarial deep reinforcement learning framework with
improved negative sampling for session-based recommender systems.
Inf Sci 596:222–235. https:// doi. org/ 10. 1016/j. ins. 2022. 02. 045

 23. Sun J, Liu B, Ren H, Huang W (2022) WNCGAN: A neural adver-
sarial collaborative filtering for recommender system. Journal of
intelligent & fuzzy systems 42(4):2915–2923. https:// doi. org/ 10.
3233/ jifs- 210123

 24. Bharadhwaj H, Park H, Lim BY (2018) RecGAN: recurrent gen-
erative adversarial networks for recommendation systems. In: Pro-
ceedings of the 12th ACM Conference on Recommender Systems,
RecSys september 2019. Association for Computing Machinery,
New York, NY, pp 372–376. https:// doi. org/ 10. 1145/ 32403 23.
32403 83

 25. Shafqat W, Byun YC (2022) A Hybrid GAN-Based Approach to
Solve Imbalanced Data Problem in Recommendation Systems.
IEEE access 10:11036–11047. https:// doi. org/ 10. 1109/ ACCESS.
2022. 31417 76

 26. Wen J, Zhu XR, Wang CD, Tian Z (2022) A framework for per-
sonalized recommendation with conditional generative adversarial
networks. Knowl Inf Syst 64(10):2637–2660. https:// doi. org/ 10.
1007/ s10115- 022- 01719-z

 27. Wang Q, Huang Q, Ma K, Zhang X (2021) A Recommender
System Based on Model Regularization Wasserstein Generative
Adversarial Network. Inf Sci 546:1166–1185. https:// doi. org/ 10.
1016/j. ins. 2020. 09. 013

 28. Zhang X, Zhong J, Liu K (2021) Wasserstein autoencoders for
collaborative filtering. Neural Comput Appl 33(7):2793–2802.
https:// doi. org/ 10. 1007/ s00521- 020- 05117-w

 29. Schlett T, Rathgeb C, Henniger O, Galbally J, Fierrez J, Busch C
(2022) Face Image Quality Assessment: A Literature Survey. ACM
Comput Surv 54(10):1–49. https:// doi. org/ 10. 1145/ 35079 01

 30. Bobadilla J, Gutiérrez A, Yera R, Martínez L (2023) Creating Syn-
thetic Datasets for Collaborative Filtering Recommender Systems
using Generative Adversarial Networks. Knowledge Based Systems
280(1):111016. https:// doi. org/ 10. 1016/j. knosys. 2023. 111016

 31. Ioan-Daniel B, Radu-Emil P, Alexandra-Bianca B (2022)
Improvement of K-means Cluster Quality by Post Processing
Resulted Clusters. Procedia Computer Science 199:63–70. https://
doi. org/ 10. 1016/j. procs. 2022. 01. 009

 32. Ortega F, Mayor J, López-Fernández D, Lara-Cabrera R (2021)
CF4J 2.0: adapting collaborative filtering for java to new chal-
lenges of collaborative filtering based recommender sys-
tems. Knowledge-Based Syst 215(4):106629. https:// doi. org/ 10.
1016/j. knosys. 2020. 106629

 33. Gong Y (2023) Distribution constraining for combating mode
collapse in generative adversarial networks. J Electron Imaging
32(4):43029–43030. https:// doi. org/ 10. 1117/1. JEI. 32.4. 043029

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jesús Bobadilla received the
B.S. and the Ph.D. degrees in
computer science from the Uni-
versidad Politécnica de Madrid
and the Universidad Carlos III.
Currently, he is a full professor
with the Department of Informa-
tion Systems, Universidad Poli-
técnica de Madrid. He is a habit-
ual author of programming
languages books working with
McGraw- Hill, Ra-Ma and Alfa
Omega publishers. His research
interests include information
retrieval, recommender systems
and speech processing. He over-

sees the FilmAffinity.com research team working on the collaborative
filtering kernel of the web site. He has been a researcher into the Inter-
national Computer Science Institute at Berkeley University and into
the Sheffield University.

Abraham Gutiérrez received
the B.S. and the Ph.D. degrees in
computer science from the Uni-
versidad Politécnica de Madrid.
Currently, he is currently an
associate professor with the
Department of Information Sys-
tems, Universidad Politécnica de
Madrid. He is the author of
research papers in most prestig-
ious international journals. He is
a habitual author of program-
ming languages books working
with McGraw-Hill, Ra-Ma and
Alfa Omega publishers. His
research interests include P-Sys-

tems, machine learning, data analysis and artificial intelligence. He is
in charge of this group innovation issues, including the commercial
projects.

J. Bobadilla, A. Gutiérrez2490

https://doi.org/10.1109/TNNLS.2020.3028572
https://doi.org/10.1109/TNNLS.2020.3028572
https://doi.org/10.1016/j.ins.2022.02.045
https://doi.org/10.3233/jifs-210123
https://doi.org/10.3233/jifs-210123
https://doi.org/10.1145/3240323.3240383
https://doi.org/10.1145/3240323.3240383
https://doi.org/10.1109/ACCESS.2022.3141776
https://doi.org/10.1109/ACCESS.2022.3141776
https://doi.org/10.1007/s10115-022-01719-z
https://doi.org/10.1007/s10115-022-01719-z
https://doi.org/10.1016/j.ins.2020.09.013
https://doi.org/10.1016/j.ins.2020.09.013
https://doi.org/10.1007/s00521-020-05117-w
https://doi.org/10.1145/3507901
https://doi.org/10.1016/j.knosys.2023.111016
https://doi.org/10.1016/j.procs.2022.01.009
https://doi.org/10.1016/j.procs.2022.01.009
https://doi.org/10.1016/j.knosys.2020.106629
https://doi.org/10.1016/j.knosys.2020.106629
https://doi.org/10.1117/1.JEI.32.4.043029

	Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets
	Abstract
	1 Introduction
	2 Method
	2.1 Concepts and architecture
	2.2 Formalization
	2.2.1 CF definitions
	2.2.2 DeepMF training
	2.2.3 DeepMF feedforward
	2.2.4 Setting the dataset of the embeddings
	2.2.5 WGAN training
	2.2.6 WGAN generation
	2.2.7 Clustering of items and users
	2.2.8 Setting the dataset of the item IDs and user IDs

	3 Results
	3.1 Number of generated samples
	3.2 Rating distributions
	3.3 Precision and recall
	3.4 User and item distributions
	3.5 Discussion

	4 Conclusions
	Appendix
	References

