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Abstract
Currently, generative applications are reshaping different fields, such as art, computer vision, speech processing, and natural 
language. The computer science personalization area is increasingly relevant since large companies such as Spotify, Netflix, 
TripAdvisor, Amazon, and Google use recommender systems. Then, it is rational to expect that generative learning will 
increasingly be used to improve current recommender systems. In this paper, a method is proposed to generate synthetic 
recommender system datasets that can be used to test the recommendation performance and accuracy of a company on dif-
ferent simulated scenarios, such as large increases in their dataset sizes, number of users, or number of items. Specifically, 
an improvement in the state-of-the-art method is proposed by applying the Wasserstein concept to the generative adversarial 
network for recommender systems (GANRS) seminal method to generate synthetic datasets. The results show that our pro-
posed method reduces the mode collapse, increases the sizes of the synthetic datasets, improves their ratings distributions, 
and maintains the potential to choose the desired number of users, number of items, and starting size of the dataset. Both 
the baseline GANRS and the proposed Wasserstein-based WGANRS deep learning architectures generate fake profiles from 
dense, short, and continuous embeddings in the latent space instead of the sparse, large, and discrete raw samples that previ-
ous GAN models used as a source. To enable reproducibility, the Python and Keras codes are provided in open repositories 
along with the synthetic datasets generated to test the proposed architecture (https:// github. com/ jesus bobad illa/ ganrs. git).

Keywords WGANRS · Generative Adversarial Networks · Recommender Systems · Wasserstein distance · Synthetic 
datasets · Collaborative Filtering

1 Introduction

Recommender systems (RSs) are used to provide personali-
zation facilities to users of internet services. Large compa-
nies that use RSs are Spotify, TripAdvisor, Netflix, Google 
Music, etc. RSs are becoming increasingly important due 
to its capacity to provide both accurate recommendations 
and recommendations designed to retain people using the 
service. Recommendations are provided by suggesting the 

products or services that have a higher probability of being 
liked by the user.

Consequently, it is necessary to filter the available 
items (products or services) in the RS. For this reason, 
RSs are usually classified according to their filtering 
approach. Social [1, 2], content-based [3], demographic 
[4, 5], context-aware [6], collaborative filtering (CF) [7] 
and their ensembles [8] are the most commonly used 
strategies. Social filtering recommends to the active users 
items that their followed, group of friends, contacts, etc., 
like. Content-based recommendations include items with 
similar content to those the active user liked. It is usual to 
compare descriptions or even item images. Demographic 
filtering selects users having demographic features such 
as those of the active user (similar age, same sex, same 
zip code or near zip code, etc.) and then extracts those 
item preferences. Context-aware filtering usually relies 
on geographic information, such as GPS coordinates. 
The most accurate and relevant filtering strategy is the 
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collaborative strategy. In this strategy, recommendations 
are based on the preferences of the most similar users. The 
machine learning method that best fits the CF concept is 
the K-nearest neighbours algorithm (KNN) [9]. It is simple 
and directly implements the CF concept, where the neigh-
bours are the most similar users to the active users. The 
main drawbacks of the KNN are that it is a memory-based 
method, it runs slowly, and it is not sufficiently accurate. 
The model-based matrix factorization (MF) [10] solves 
the KNN limitations. Moreover, it contains two vectors of 
hidden factors. The first vector is used to code (compress) 
the relevant information of users, whereas the second vec-
tor is used to code the relevant information of items. Both 
vectors belong to the same latent space, and they are com-
bined using a dot product. Additionally, the hidden factors 
are optimized by minimizing the prediction errors. Non-
negative matrix factorization (NMF) [11] ensures that the 
hidden factors are non-negative to enable some semantic 
interpretations of predictions.

Deep learning [12] can currently be implemented to 
obtain improved MF results. The simplest deep learn-
ing architecture is similar to that of MF. In this method, 
the hidden factors of the user are replaced by neural user 
embedding, and analogously, the hidden factors of items 
are replaced by neural item embedding. This model is 
called deep matrix factorization (DeepMF) [13], and it is 
better than MF due to the ability of its neural networks to 
remove complex non-linear patterns in raw data. DeepMF 
combines the embeddings using a dot layer. An improved 
DeepMF model is the variational deep matrix factorization 
(VDeepMF) [14], where an intermediate layer codes the 
parameters of a chosen distribution (usually Gaussian), 
and from it, a stochastic-based sampling process spreads 
samples in the latent space. The DeepMF (or VDeepMF) 
dot layer can be improved by replacing it with a multilayer 
perceptron (MLP) that combines the hidden factors of 
users and item embeddings and generates a manifold. This 
approach is called neural collaborative filtering (NCF) 
[15]. Our proposed architecture combines a DeepMF 
model and a Wasserstein generative adversarial network 
(GAN). GAN [16] networks can generate fake samples fol-
lowing the distribution of a source set of real data samples. 
The most common use of GAN networks is to generate 
realistic fake faces from a dataset of real human faces. 
Similarly, our objective is to generate synthetic (fake) CF 
samples from an existing dataset of CF samples, such as 
MovieLens [17]. Then, by collecting many fake samples, 
a synthetic CF dataset can be created.

Generating synthetic CF datasets makes it possible to 
simulate the stress situation in the RS, as it can be gener-
ated ‘families’ of datasets where gradually some of the 
parameters can be selected. For example, we can gener-
ate a family of CF datasets where the number of users 

grows from several thousands to millions, and then test 
in advance the performance of our system in different 
scenarios where the number of users gradually, or sud-
denly, grows (e.g. due to a marketing campaign or an influ-
encer action). This simulation can avoid system failures 
in extreme situations. Similarly, a family of datasets can 
be generated with a growing number of items. It leads 
to more sparse scenarios where the RS accuracy could 
decrease. This type of simulation gives us the conveni-
ence of incorporating many products or services in a short 
period of time. Additionally, the generation of synthetic 
datasets makes possible that researchers test their machine 
learning models in bounded scenarios, difficult to find in 
real datasets, such as increasingly sparse data matrices, 
different cold start situations, or extreme pattern variations 
in the user profiles.

The state-of-the-art methods in CF generation include 
statistical methods that are not able to adequately determine 
the patterns of complex datasets. Therefore, adversarial 
approaches [18], and GAN-based approaches have been 
proposed. Preventing shilling attacks is a relevant objective 
in the RS field, and some GAN-based approaches act as a 
defence against them [19]. Data augmentation is an obvi-
ous field where GANs can be applied. Purchase profiles are 
used in the collaborative filtering generative adversarial net-
work model (CFGAN) [20] model to increase the number of 
training samples in a dataset of commercial products. The 
identity-preservation generative adversarial network model 
(IPGAN) [21] incorporates negative sampling information to 
improve accuracy results. It allows two separate generative 
models to be incorporated, with one method managing posi-
tive data and the other method processing negative samples. 
Session information is used in the deep collaborative filter-
ing generative adversarial network (DCFGAN) model [22] 
instead of matrices of votes combining GAN and reinforce-
ment learning. To run recommendation training, the neural 
collaborative generative adversarial network (NCGAN) [23] 
incorporates a regular GAN that processes the intermediate 
CF results provided by a neural network stage. The recurrent 
generative adversarial network (RecGAN) [24] combines 
a recurrent neural network (RNN) and a GAN to process 
temporal patterns. Unbalanced datasets are managed using 
a Wasserstein GAN acting as a generator and the packing 
generative adversarial network (PacGAN) as a discriminator 
[25]. Finally, a conditional generative adversarial network 
(CGAN) performs a conditional generation of ratings [26].

The RS state-of-the-art method that generates synthetic 
CF datasets is divided into statistical and machine learning 
approaches. Solutions in the first group allow us to param-
eterize the results (to change the number of items, users, 
etc.), but they do not adequately capture the complex non-
linear relations between users and items. Consequently, the 
accuracy of this method is poor. The second group makes 
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use of deep learning generative adversarial networks to cre-
ate fake profiles or fake samples. The accuracy is improved, 
but the GAN architectures in this group take discrete and 
heavily sparse CF datasets as a source, leading to results that 
are obtained slowly and the subject-to-mode collapse prob-
lem. In addition, the number of items cannot be changed. 
Nevertheless, the existing generative adversarial network for 
recommender systems (GANRS) method makes its GAN 
generation start from dense and continuous latent space 
embeddings, obtaining more accurate results and enabling 
us to choose the number of users and the number of items 
in the synthetic datasets. The method proposed in this paper 
borrows the GANRS architecture, making the necessary 
changes to introduce the Wasserstein concept. Wasserstein 
generative adversarial networks (WGANs) are designed to 
reduce the inherent ‘mode collapse’ of the GAN architecture. 
In the model regularization Wasserstein generative adver-
sarial network (MRWGAN) [27], an RS is implemented. 
Moreover, an autoencoder is used to implement the genera-
tive model, and a model-Wasserstein regularized distance 
is used as the function loss. It achieves better accuracy with 
missing data than the state-of-the-art methods. Analogously, 
an L1 regularized Wasserstein loss function has been used 
for autoencoder-based CF [28] to learn a low-rank repre-
sentation of variables in the latent space. The Wasserstein 
distance has also been implemented to tackle the cold-start 
issue in CF, minimizing it under user embedding constraints.

GAN approaches also have their own drawbacks, particu-
larly: a) a long training time, b) a long inference time when 
the GAN model is very deep, c) difficulty to set relevant 
CF parameters such as the number of items and the number 
of users in the dataset, d) possibility of suffering from the 
‘mode collapse’ behaviour, e) difficulty to adequately learn 
from the sparse data sets of CF, and e) lack of fine tuning the 
variation of the results in successive executions.

No standard machine learning quality measures are 
defined to compare synthetic datasets created or gener-
ated using different statistical or generative models. This 
is because these models are designed to catch the complex 
nonlinear patterns of the source data, and there are no simple 
comparations able to discriminate the quality of the gen-
erated results, such as in regression (MAE, MSD, etc.) or 
classification (accuracy, precision, recall, etc.). To better 
understand this drawback, we can analyse the face image 
quality assessment strategies [29], which are based on the 
character, fidelity, and utility features of facial biometrics. In 
the RS field we do not have such type of information to make 
a similar process, since what we are generating are user/
item vector profiles. In addition, face image quality makes 
a distinction between approaches that require a reference, 
a reduced reference, and no reference of faces, where only 
the two first cases have some accurate quality measure; pre-
cisely those situations that RS cannot manage as they do 

not have the equivalent ‘reference’ to the face image quality 
field. Finally, the conceptual problem of the ‘quality para-
dox’ inherent in these quality measures is heavily present 
in the RS scenario, where a generated dataset should not be 
too similar to the source, otherwise it would not be useful, 
and should not be too different from the source, otherwise 
it would not be representative. Therefore, research papers 
that generate synthetic datasets [23–25] test them by run-
ning several CF Machine Learning models and comparing 
the results obtained on different instances of the generated 
datasets from the same source data. This is the strategy that 
our paper follows in its ‘Results’ section.

In the seminal GANRS paper [30], relevant innovations 
are incorporated, and the previous RS GAN architectures are 
compared to generate synthetic datasets. However, a signifi-
cant drawback occurs. The process to convert from the latent 
space generated samples (dense, small, and continuous) to 
the raw samples (sparse, large, and discrete) that form the 
synthetic dataset generates duplicated samples that must be 
removed. This is a common drawback in a discretization 
task, but if the number of duplicated samples is high, a ‘col-
lapse’ in the GAN generation can occur. The innovation of 
our proposed Wasserstein GAN approach (WGANRS) is the 
introduction of the Wasserstein design (function loss, weight 
constraints, etc.) to the existing GANRS method in the hope 
that the mode collapse situations are reduced. The proposed 
method borrows the stages defined in [30] and replaces the 
regular GAN generation kernel by a Wasserstein approach 
(WGAN). The WGAN provides four relevant improvements: 
1) it incorporates a new loss function that is interpretable 
and has clear stopping criteria, 2) it empirically returns 
better results, 3) the GAN mode collapse is significantly 
reduced, and 4) it provides a clear theoretical backing. The 
WGAN loss function is based on the earth mover’s distance, 
and it incorporates an fw function that acts as a discrimina-
tor model, called the ‘critic’. The critic estimates the earth 
mover’s distance, processing the highest difference between 
the generated distribution and the real distribution under sev-
eral parameterizations of the fw function. The critic makes 
the generator work harder by looking at different projec-
tions. Our most relevant predictor that measures the mode 
collapse mitigation will reduce the removed samples and 
consequently increase the number of samples of the syn-
thetic files (their sizes). We will also test some other quality 
measures such as the precision, recall, and the distribution 
of the ratings, users, and items.

Figure 1 shows the innovation of the proposed method com-
pared to SOTA, particularly with the most currently published 
baseline (GANRS) on which our method is based. As shown 
in a) (top of Fig. 1), SOTA methods that generate CF datasets 
take only raw profiles and generate synthetic RS datasets. This 
is an analogous process to fake face creation, which can be 
generated by GANs from datasets of real faces. It is known 
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that a recurrent problem in these processes is mode collapse 
[30], which leads to a lack of balanced generation of samples. 
Some categories are overrepresented, whereas other categories 
are underrepresented. As an example, we could obtain an enor-
mous quantity of fake samples of Number 7 by using the Modi-
fied National Institute of Standards and Technology (MNIST) 
dataset. However, some other numbers are rarely generated. 
Notably, in Fig. 1a (SOTA methods), the GAN module is fed 
with RAW data, such as image pixels or in our case, user pro-
files. These RAW data are large, discrete, and sparse, leading 
to the mode collapse problem.

The most current research in the area is the GANRS method 
(our baseline). Its high-level architecture is shown in Fig. 1b, 
where the GAN model is not fed with RAW data. Instead, it is 
fed with deep learning embedded data. These embedded data are 
short, continuous, and dense vectors. The embedded data contain 
compressed information on the items and users in the RS. As a 
result, both the performance and the accuracy of the GANRS are 
improved compared to the previous SOTA models and methods.

In the GANRS baseline [30], the mode collapse problem 
is reduced, and the RS datasets generated are less biased 
than those created using SOTA methods. Regardless, the 
mode collapse remains, and it produces a certain degree of 
redundant samples. To reduce mode collapse even further, 
our proposed WGANRS method introduces the Wasserstein 
concept into the GAN kernel (Fig. 1c). The Wasserstein 
approach has been shown to yield better results by reducing 
mode collapse when applied to GANs [27]. This approach 
requires the introduction of a new loss function and benefits 
from a theoretical backing and a defined stopping criterion.

The hypothesis of the paper claims that incorporating 
the Wasserstein concept into the generative kernel of the 
GANRS method will lead to a decrease in the mode collapse 
problem inherent to the GAN when applied to CF scenarios. 
Consequently, the proposed WGANRS is expected to gener-
ate more accurate CF datasets.

The structure of the paper is as follows: In Section 2, the 
proposed WGANRS method (from the existing GANRS infor-
mation) is explained and formalized. In Section 3, the design 
of the experimental executions of code is introduced, and the 
results are shown and analysed using the MovieLens and Net-
flix* datasets as a source. Moreover, the most relevant results 
are provided. In Section 4, the most remarkable conclusions are 
presented, and some future work is proposed. Additionally, the 
references section includes current representative papers in the 
main RS area and in the specific GAN generation of CF datasets.

2  Method

This section is divided into two subsections. In the first 
subsection, the proposed method concepts, its architecture, 
and the sequence of processes and stages to both train the 

model and generate the synthetic datasets in a feedforward 
prediction are explained. The second subsection contains the 
necessary equations to formalize the method, grouped into 
the main stages of the architecture. The Python and Keras 
codes of the proposed method is available in (https:// github. 
com/ jesus bobad illa/ ganrs. git).

2.1  Concepts and architecture

The proposed deep learning architecture is based on five 
sequential stages in which a neural CF, a WGAN model, and 
a clustering process are involved. Moreover, a CF dataset is 
used as the source, and a synthetic dataset that has the same 
format as the source dataset and similar data distributions 
is generated. The key issue involving both the GANRS [30] 
seminal baseline and the WGANRS proposed architecture is 
that the GAN or WGAN stages are fed with dense, short, and 
continuous embeddings in the latent space instead of sparse, 
large, and discrete raw data. It makes the work of both the 
generator and the discriminator models easier, faster, and 
more accurate. The obvious drawback of the proposed 
design is the theoretical loss of quality involved in the com-
pression stage (coder) and, particularly, in the subsequent 
decompression (decoder). However, when converting from 
embedded to raw samples, a significant benefit emerges: 
we can choose the target number of users and items, mak-
ing the GANRS and WGANRS models more flexible and 
useful than the state-of-the-art methods. Figure 2 shows an 
overview of the proposed WGANRS architecture. From an 
existing source dataset (most-left side in Fig. 2), such as 
MovieLens, a synthetic dataset (most-right side in Fig. 2) is 
generated with the same format (to be useful to researchers) 
and similar patterns and distributions of the users, items, 
and ratings. This dataset can be generated by choosing the 
desired number of users, items, and starting number of sam-
ples to be useful for companies and researchers as a base 
for simulations, anticipating diverse future scenarios, or as 
ground data for new machine learning models.

The proposed WGANRS first converts (compresses) the 
input sparse dataset to its embedding-based representation 
and converts (decompresses) the generated (fake) embed-
ding-based dataset to its raw and sparse representation. A 
DeepMF model (left side in Fig. 2) was chosen to perform 
the compression stage due to its simplicity and performance, 
and K-means clustering (right side in Fig. 2) was used to run 
the necessary decompression. In this scenario, the K-means 
algorithm has the advantage of setting the K* number of 
users and K** number of items we want the generated dataset 
to hold. Finally, our architecture kernel is based on a WGAN 
model (centre of Fig. 2) to generate fake embedding samples 
from real embedding samples.

The DeepMF model used for the compression task has a 
previous learning stage (top-left draw in Fig. 3) where the 

Wasserstein GAN-based architecture to generate collaborative filtering synthetic datasets 2475

https://github.com/jesusbobadilla/ganrs.git
https://github.com/jesusbobadilla/ganrs.git


embedding weights are set by means of backpropagation 
optimization. The DeepMF model contains two separate 
embedding layers: one layer for users and the other layer for 
items. These embeddings must have the same size, which 
usually ranges from 5 to 15 neurons. It is expected that 
similar users will be coded with similar embedding maps 
(codes), and the same applies for items. Once the DeepMF 
model has been trained, we can feedforward each existing 
user ID to obtain its embedding representation (top-right 
draw in Fig. 3). The same process is performed with all 
existing item IDs. Thus, we obtain a matrix I x E containing 
the embedding representations of the items, where I is the 
number of items in the source dataset and E is the embed-
ding size. Analogously, we obtain a matrix U x E containing 
the embedding representations of the users, where U is the 
number of users in the source dataset.

By combining the source dataset (left side of Fig. 2), the 
compressed item matrix, and the compressed user matrix 
(top right draw in Fig. 3), we can obtain the embedding rep-
resentation of the source dataset, as shown in the “embed-
ding-based CF dataset” in the bottom left graph of Fig. 3 
and in Fig. 2.

Starting from the embedding-based CF dataset as a 
source, the proposed WGANRS architecture generates the 
“fake embedding-based CF dataset” (centre of Fig. 2), and it 
is performed by means of a Wasserstein GAN. The first stage 
of this generative task is the WGAN training (bottom-left in 
Fig. 3), where the generator model creates synthetic samples 

from Gaussian stochastic vectors containing random noise. 
Then, the Wasserstein critic (discriminator) performs the 
necessary binary classification to label samples as ‘real’ or 
‘fake’. Notably, the ‘fake’ samples come from the generator 
model, whereas the ‘real’ samples are randomly taken from 
the previously generated ‘real embedding-based CF data-
set’. Once the training process has finished, we can forget 
the critic model and take the generator model to create as 
many fake embedding samples as needed. The whole pro-
cess (training and feedforward generation) is expected to be 
fast due to the compressed embedding representation and 
accurate due to the Wasserstein restrictions to avoid mode 
collapse.

In the last stage of the proposed architecture, it is neces-
sary to decompress the ‘fake embedding-based CF dataset’ 
(right side in Fig. 2 and bottom right draw in Fig. 3). In 
this stage, we have generated a very large number of fake 
samples, consisting of tuples < user_embedding,item_
embedding,rating > , where both the user and the item 
embeddings produce vectors of real numbers. We have to 
convert this set of tuples to a discretized version < user_
ID,item_ID,rating > , where user_IDs are integers in the 
range [1..number of users], and analogously item_IDs are 
integers in the range [1..number of items]. Once the neural 
network has been trained, the user embedding assigns simi-
lar codes to similar users (same with the embedding layer). 
This inherent property of the embedding layers makes it 
possible to incorporate a clustering process to the proposed 

Fig. 1  Innovation of the proposed method and its expected impact 
in solving the GAN mode collapse. Figure  1a shows the traditional 
GAN approach in the CF context, Fig.  1b shows the improvement 

introduced in the baseline method to adequately process sparse data, 
and Fig. 1c details the proposed introduction of the Wasserstein ker-
nel to reduce the mode collapse problem
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method, in charge of grouping similar users and items to the 
desired number of users and items in each synthetic dataset.

This is a discretization process in which the WGANRS has 
been designed to set the desired number of users and items in 
the generated dataset. To implement it, K-Means clustering 
[31] was performed, since it allows us to set the K* number of 
users and the K** number of items. Figure 4 shows the follow-
ing concept: a K-means is used to cluster K* users, whereas 
another K-Means process is used to cluster K** items. Since 
similar users should have similar embeddings, it is expected 
that they will be grouped in the same clusters, analogously 
with items. Each user number in the generated dataset corre-
sponds to the cluster number in the K-Means where the fake 
user embedding has been grouped. For example, the left-most 
sample in the fake embedding-based CF dataset (left side of 
Fig. 4) was grouped with its user (green colour) in the K* 
group and its item (blue colour) in Group 3. Consequently, 
the generated fake sample in the synthetic dataset is < K*, 3, 
rating > . In this example, the ‘rating’ is the value of the first 
sample of the source dataset (left side of Fig. 2).

Finally, due to the discretization process, duplicated sam-
ples can be found. This happens when two different generated 
samples share the same user ID and the same item ID. When 
the chosen number of users and items is high, it is more diffi-
cult to find duplicated samples since there is a wider variety of 
clusters, and it is expected that the users and the items will be 
assigned to the groups in a balanced way. Duplicated samples 
can be managed by simply removing the spare samples. The 
expected balance in the clustering groups could be ‘broken’ if 

the mode collapse is happening in the GAN. Indeed, the Was-
serstein concept is used in this paper to avoid mode collapse, 
and the number of removed samples will be used as a quality 
measure in the results section. The lower the removed samples 
are, the better the method is.

Since two of the hyperparameters in the proposed model 
are the number of users and the number of items, the cluster-
ing method that better fits this information is K-Means, where 
directly we can set K* as the number of users and K** as the 
number of items. In fact, this is one of the unusual situations 
where the K value is known before the clustering process. 
Thus, other relevant clustering methods such as hierarchical, 
distribution, density or fuzzy-based ones are not adequate in 
this scenario.

In the following subsection, the WGANRS approach is for-
malized. Moreover, equations have been provided.

2.2  Formalization

2.2.1  CF definitions

First, we define the main sets in the RS: set of users U, items 
I, range of ratings V, and existing samples S.

(1)
We let U be the set of users who make use of a CF RS

(2)
We let I be the set of items available to vote on in the CF RS

(3)
We let V be the range of allowed votes, where V = {1, 2, 3, 4, 5}

(4)We let S be the set of samples contained in the CF dataset, where N = |S| = the total number of cast votes

(5)S = {< u, i, v >1,< u, i, v >2,… ,< u, i, v >
N
}, where each u ∈ {1,… , |U|}each i ∈ {1,… , |I|}, and each v ∈ {1,… , |V|}

Fig. 2  Overview of the proposed WGANRS architecture
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The formalization of the defined CF dataset consists of 
a set of tuples <userID, itemID, rating (number of stars)>, 
where the ‘rating’ is the vote assigned for the ‘userID’ to 
the ‘itemID’.

2.2.2  DeepMF training

(6)

The Deep MF training (top − lef t graph in Figure 3 )is conducted to create

a model that can embed each user ID and each item ID.These two

embeddings feed the WGANRS generative stage. Each embedding is a

compressed representation of the user or the item. The embeddings are

unidimensional vectors of size E + 1. We def ine f eu(u) as the function

that compresses the user �u� information and analogously f
ei(i) as the

function that compresses the item �i� information

(7)

We let E + 1 be the size of the two neural layer embeddings used to

vectorize each user and each item belonging to U and I, respectively.

We let f eu(u) = �⃗eu = [eu
0
, eu

1
,… , eu

E
], where f eu is the embedding

layer output of the users and u ∈ {1,… , |U|}

(8)

We let f ei(i) = �⃗ei = [ei
0
, ei

1
,… , ei

E
], where f ei is the embedding layer

output of the items and i ∈ {1,… , |I|}

Fig. 3  DeepMF and WGAN models involved in the WGANRS architecture

Below, the most relevant equations in the back propaga-
tion algorithm are defined, and we set the output error as the 
mean squared differences metric. These equations are not 
distinctive of the proposed method.

2.2.3  DeepMF feedforward

Once DeepMF has learned, we can collect the embedding 
representation of each user and each item in the CF RS. 
Therefore, all the existing itemID and userID in the RS 

(9)

By combining the dense vectors of the user and item embeddings

(�⃗eu = [eu
0
, eu

1
,… , eu

E
] and �⃗ei = [ei

0
, ei

1
,… , ei

E
]), we can make rating

predictions in the DeepMF training stage. The dot product of the user

embedding and the item embedding in each< u, i, v >j ∈ S provides its rating prediction.

�yj = f eu(u) ∙ f ei(i) = �⃗eiu ∙ �⃗ei = [eu
0
, eu

1
,… , eu

E
] ∙ [ei

0
, ei

1
,… , ei

E
]

(10)

1

2
(yj − ŷj)

2
is the output error used in the DeepMF neural network to start the

back propagation algorithm, where the neural weights are iteratively

improved from the �j values, Δwji = �yjf
�(Neti)

∑
k wik�k ,where k is

a hidden layer, and Δwji = �yjf
�(Neti)

1

2
(yk − ŷk)

2
if k is the output

layer.i, j, and k are successive sequential layers.
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dataset feed the trained DeepMF model, and their embed-
ded representations can then be obtained. It can be done 

by making the feedforward prediction operation (top-right 
graph in Figure 3) on the trained DeepMF model.

(11)We let E∗ = {< u, �⃗e
u =

[
e
u

0
, e

u

1
,… , e

u

E

]
>,∀u ∈ U} be the set of embeddings for all the RS users

(12)We let E∗(u) = �⃗eu =
[
eu
0
, eu

1
,… , eu

E

]

(13)Let E
∗∗ =

{
< i, �⃗e

u =
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e
u

0
, e

u

1
,… , e

u

E

]
, �⃗e

i =
[
e
i

0
, e

i

1
,… , e

i

E

]
>,∀i ∈ I

}
be the set of embeddings for all the RS items.

(14)We let E∗∗(i) = �⃗e
i
= [ei

0
, ei

1
,… , ei

E
]

2.2.4  Setting the dataset of the embeddings

Now, we collect the above embedding representations of all 
the itemID and userID in the RS to translate the set ‘S’ (5) to 
the set ‘R’ (15). The set ‘R’ is the embedding-based dataset 
version of the original RAW dataset.

We let

(15)R =
[
< E∗(u),E∗∗(i), v >

]
,∀< u, i, v >j ∈ S be the embedding − based dataset of real samples

2.2.5  WGAN training

The core concept of the GAN methodology is to jointly 
train a generator model and a discriminator model. Once 
the architecture has been trained, the generator model 
creates new samples that follow the distribution of the 
training samples. The discriminator model attempts to 

differentiate between real samples and generated ones. 
This is a min-max optimization problem of the form:

MinGMaxD(�x∽pdata

[
logD(x)

]
+ �z∽platent

[
log(1 − D(G(z))

]
)  ,  w h e r e 

G ∶ Z → X   is the generator model, which maps from the 
latent space Z to the input space X  ; D ∶ X → ℝ is the dis-
criminator model, which maps from the input space X to a clas-
sification value (real/fake). ℝ → ℝ is a concave function. The 
above formula is the optimization function, the expression that 
both networks (generator and discriminator) try to optimize. G 
aims to minimize it, whereas D wants to maximize it.

The bottom-left graph in Fig. 3 shows the generative 
learning. The GAN architecture consists of a discriminator 
classifier (16) and a generator model (17). The generator 
creates fake samples (RS profiles, in our case), whereas 
the discriminator tries to detect fake samples. In generative 
adversarial training, the discriminator progressively learns 
to accurately differentiate fake profiles from real profiles. 
At the same time, the generator learns to make fake sam-
ples difficult to distinguish from real profiles. We call f D 
(16) the discriminator model and f G (17) the generator 

Fig. 4  Clustering stage in the 
WGANRS architecture
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model. Both f D and f G will iteratively learn and improve 
themselves by minimizing a loss function (18) f GD.

f GD = MinGMaxDf (D,G) = ER[fw(R)] + Ez[fw(G(z)] , where 
ER is the expected value for real samples, z is the random 
noise that feeds generator G, and Ez is the expected value for 
the generated fake profiles G(z). fw is the Wasserstein function 
based on the earth mover’s distance . This function satisfies 
the 1 – Lipschitz constraint: |||f

(
x1

)
− f

(
x2

)||| ≤
||x1 − x2

||,∀x1, x2. R refers 

(16)
We let f D be the discriminator D model belonging to a GAN model

(17)
We let f G be the generator G model belonging to a GAN model

(18)We let f GD be the cost function of the GAN model

to (15). Notably, the Wasserstein concept has been introduced 
in Eq. (18). Mainly, it is implemented in the loss function code 
of the generative model. The Wasserstein approach has been 
designed to reduce the mode collapse problem inherent to the 
GAN. We implement it to reduce the mode collapse in our 
WGANRS proposed method and to consequently reduce the 
number of excessively generated similar profiles in the RS.

2.2.6  WGAN generation

Once the GAN has been trained, we can generate as many 
samples as needed. We can introduce batches of random 
Gaussian noise vectors ‘z’ and implement the feedforward 
process (model.predict). The result are batches of fake 
embedded profiles (bottom-right graph in Figure 3).

(19)
We let F = f G be the generated dataset of fake samples from dif ferent random noise vectorsz

2.2.7  Clustering of items and users

Figure 4 shows the clustering process, where we set 
K* (20) as the number of users in the generated dataset 

and K** (21) as the number of items on it. The N gen-
erated fake profiles will contain both fake user embed-
dings and fake item embeddings (where N>>K* and 
N >> K**).

(20)We let K∗ be the number of clusters used to group the embeddings of the users

(21)We let K∗∗ be the number of clusters used to group the embeddings of the items

For each generated fake user (each user of N), we must 
select the nearest user from the K* existing users (22). The 
h∗(u) function makes this group. The same process is used 

for items. For each generated fake item (each one of the N), 
we must select the nearest item from the K** existing items 
(23). The h∗∗(i) function makes this group.

(22)
We let h∗(u) = c|c ∈ {1,… ,K∗} be the clustering operation that assigns a centroid to each user.

(23)We let h∗∗(i) = c|c ∈ {1,… ,K∗∗} be the clustering operation that assigns a centroid to each item

2.2.8  Setting the dataset of the item IDs and user IDs

To create the synthetic dataset, the generated set of embed-
dings F (19) is converted to its discretized version H (24).

We let H be the item ID and user ID discrete dataset 
obtained from the embedding-based dataset F of fake samples.

Sometimes, different generated samples in Set 
F will be discretized to the same user and item: 
< h∗(u), h∗∗(i), v >= < h∗

�(u)
, h∗∗�(i), v >.

(24)H =
[
< h∗(u), h∗∗(i), v >|∀< E∗(u),E∗∗(i), v >∈ F]

This particularly happens if the GAN suffers from mode 
collapse. In these cases, there are samples with identical 
information, and we create the set H where duplicated sam-
ples are removed (25).

We let S = {H} be the synthetic generated dataset version 
of H where duplicated samples are removed.

(25)

The last transformation removes samples when a fake user casts

dif ferent votes (v, v�) to the same item.

(26)We let G� =
{
< h

∗(u), h∗∗(i), v >∈ H|∄ < h
∗
(
u
�
)
, h∗∗

(
i
�
)
, v� >∈ H,where h∗(u) = h

∗
(
u
�
)
∧ h

∗(i) = h
∗∗(i) ∧ v ≠ v

�}
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3  Results

The proposed method has been tested using two open-source 
representative CF datasets: MovieLens 1 M (https:// group lens. 
org/ datas ets/ movie lens/ 1m/) and a subset of Netflix that we call 
Netflix* [32]. These two datasets were chosen because they are 
representative in the CF field. MovieLens is probably the most 
tested dataset family over the years in CF research. The results 
obtained in MovieLens are very informative for RS researchers. 
On the other hand, Netflix is not widely used due to its enor-
mous size and because it is no longer available. We utilized the 
open version of Netflix* that is randomly shortened [33]. Net-
flix* has been selected as the dataset for this research because 
its internal patterns are different from those of MovieLens. 
MovieLens has been created in a relatively short time in an 
academic environment, whereas Netflix is an enormous com-
mercial dataset that has been growing for a long period. Since 
this research involves catching the internal patterns of a source 
dataset and parameterizing and translating those patterns to a 
generated dataset, it is convenient to use such different sources.

Table 1 shows their main parameter values. The results of 
both datasets follow the same trends. Therefore, to ensure that 
the length of this paper is appropriate, we only explain the Mov-
ieLens results and group the Netflix* results (Figs. 10, 11, 12 
and 13) in Appendix A. To test the WGANRS method, two sets 
of synthetic datasets have been created. The first set has a varied 
number of users, whereas the second set has a varied number of 
items. Each row in Table 2 shows the values of each set. The first 
row indicates that five synthetic datasets have been generated. 
The first dataset contains 500 users and 1000 items, the second 
dataset holds 1000 users and 1000 items, and so on until the 
last dataset has 8000 users and 1000 items. All the generated 
datasets were created starting from 400 thousand samples. This 
set of data allows us to test the impact of changing the number 
of users. Analogously, the second row in Table 2 shows that 
four synthetic datasets have been created. All four datasets have 
4000 users. However, the number of items varies from 500 in 
the first dataset to 4000 in the last set. This allows us to measure 
the impact of changing the number of items.

Since we will use the GANRS method [29] as the baseline, 
all datasets have also been created using GANRS. Thirty-six 
datasets were generated, 5 + 4 using MovieLens as a source 
and 5 + 4 using Netflix*, both for GANRS and for WGANRS. 
To test these datasets, four different exections were conducted:

• Number of generated samples: The number of samples 
returned by GANRS and WGANRS was compared. 
The WGANRS method is expected to perform better, 
as it focuses particularly on avoiding the typical ‘mode 
collapse’ in GANs. The better managed the mode col-
lapse is, the more varied the embedding samples that the 
WGANRS generates, the better the performance of the 

clustering process to create the raw samples, and finally, 
the lesser the number of sample collisions, increasing the 
sizes of the synthetic datasets.

• Rating distributions: It is important that the rating distri-
bution of the generated datasets be as similar as possible 
to that of the source, particularly on the relevant ratings 
(usually 4 and 5 stars). This is an indication that the pat-
terns of the fake profiles are correct, and they contain an 
adequate proportion of relevant and nonrelevant votes.

• User and item distributions: It is interesting to test the user 
and item distributions as the number of users and items var-
ies, comparing them to the source dataset. It is expected 
that the Gaussian random noise used to create the stochastic 
vector that feeds the WGANRS generator will force the dif-
ferent Gaussian distributions of users and items.

• Precision and recall: Regarding the ground distributions, 
balanced votes, and high number of samples, the gen-
erated datasets are used to adequately analyse them on 
the CF task, and their recommendation quality measures 
return suitable values and trends.

The above executions cover the potential comparatives avail-
able on the generative creation of synthetic datasets in the CF 
area. Figure 5 shows the concept. Figure 5a (top graph) shows 
the traditional CF analysis. Different state-of-the-art methods or 
models are applied to one or several existing CF datasets, and 
the recommendation results can be measured using traditional 
quality prediction and recommendation quality metrics, such 
as the precision, recall, F1, and mean absolute error (MAE). 
However, the field of synthetic CF dataset generation is com-
pletely different. From a source dataset (Fig. 5b), we create one 
or several synthetic datasets. We can set different numbers of 
users, items, samples, etc., and each generated dataset will hold. 
To compare the proposed generative method with the selected 
state-of-the-art baseline, we must create a synthetic dataset or 
group of synthetic datasets using the proposed method (orange 
datasets in Fig. 5b) and a different dataset or group of datasets 
using the SOTA baseline (blue datasets in Fig. 5b). Now, we 
need to determine which of these datasets (or groups) are bet-
ter. Comparing generated datasets (Fig. 5b) is a very different 
task than comparing methods or models applied to an existing 
dataset (Fig. 5a). Figure 5b shows three types of code execution 
that we can perform to decide whether the generated datasets 
using the proposed method (orange datasets) are better than the 
generated datasets using the baseline method (blue datasets):

Table 1  Main parameter values of the tested datasets

Dataset #users #items #ratings scores sparsity

Movielens 1 M 6,040 3,706 911,031 1 to 5 95,94
Netflix* 23,012 1,750 535,421 1 to 5 98.68
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1) The mode collapse impact can be measured in the CF 
field by removing very similar user profiles. The GAN 
can collapse to a reduced number of source profiles. The 
higher the number of deleted profiles is, the higher the 
mode collapse impact. The higher the deleted profiles 
are, the lower the number of samples in the generated 
dataset. Figure 5b1 shows a comparison where the y-axis 
represents the number of samples. The proposed method 
(orange colour) improves the SOTA baseline.

2) The generated datasets should have probability distribu-
tions that are similar to that of the source dataset. The 
user, item, and rating distributions of the synthetic data-
sets can be compared. Figure 5b2 shows the distribu-
tion of the ratings from the source dataset (green colour) 
compared to the ‘baseline’ dataset (orange colour, in this 
graph) and the ‘proposed method’ dataset (blue colour). 
Notably, the synthetic datasets are not expected to have 
the same distributions as the source dataset. The genera-
tive process should create similar datasets, not identical 
datasets. Identical datasets have no value, just as rep-
licating real faces is not valuable in field of computer 
vision. Therefore, there is no absolute metric to measure 
this type of quality. Extreme distribution similarities and 
large distribution differences must be avoided.

3) The quality of the generated datasets can be indirectly meas-
ured by running state-of-the-art CF methods and models on 
them. We expect similar behaviours to those obtained when 
we apply these methods to the source dataset. Very different 
trends or absolute values in the generated dataset graphs, 
compared to those in the source dataset, will tell us that the 
generated dataset does not contain the main patterns of the 
source dataset. Figure 5b3 shows the precision and recall 
results on the source dataset (left graph) and the generated 
dataset (right graph) when measured with several SOTA CF 
deep learning models. Both trends and values are similar. As 
explained above, we do not expect identical behaviours and 
values since synthetic datasets should mimic the source pat-
terns and not copy them. For this reason, there is no standard 
quality measure to compare the graphs in Fig. 5b3.

Taking into account the above considerations, several 
experiments have been performed on the three explained 
approaches, as shown in b1, b2, and b3 of Fig. 5. Individual 
executions and their explained results have been structured in 
SubSects. 3.1 to 3.4, followed by the Discussion Subsection.

3.1  Number of generated samples

As explained in the previous section, the proposed method 
uses a WGAN to generate synthetic embedding samples. These 
dense and continuous samples are then converted to their 
sparse and discrete versions by means of the clustering process 
and their translation to the raw tuples in the synthetic dataset. 
This discretization stage causes a proportion of ‘collisions’ 
where identical or similar generated samples must be removed. 
The smaller the number of samples removed, the more accu-
rate the generative model, and the richer the synthetic dataset. 
The Wasserstein GAN is expected to improve the results, as 
it is designed to prevent mode collapse inherent to the GAN 
models. Please note that the hypothesis is that by reducing 
the mode collapse, the variability of the generated embedded 
samples will increase, and then the clustering process will be 
able to spread users and item IDs in a more homogeneous 
way. Consequently, the number of discretized samples that are 
repeated (and deleted) will decrease. Overall, the total size of 
the generated datasets will increase as the GAN mode collapse 
is reduced using the Wasserstein approach.

The final number of samples generated is a relevant qual-
ity measure since it is directly related to the impact of mode 
collapse in the generative process. The baseline GANRS 
method suffers from the mode collapse problem, leading to 
the generation of repeated fake profiles. The method han-
dles this situation by removing spare profiles, but it does not 
provide the necessary diversity of samples. The proposed 
WGANRS is expected to improve the results due to the 
Wasserstein ability to reduce the mode collapse and then 
to improve diversity and increase the synthetic dataset size.

Figure 6 shows the comparison of GANRS (gan) versus 
WGANRS (wgan) both for synthetic datasets where the 
number of users varies (left graph) and for synthetic datasets 
where the number of items varies (right graph). Overall, the 
proposed approach (wgan) significantly improves the base-
line (gan). Specifically, it duplicates the number of gener-
ated samples. A 213% improvement in the left graph and a 
191% improvement in the right graph are achieved. This is a 
relevant predictor of the superiority of the proposed method. 
Additionally, as expected, the higher the number of users 
or items there are, the higher the number of generated sam-
ples. This is because the clustering process can better spread 
the samples in the latent space as the number of centroids 
increases. Then, the number of duplicated samples decreases.

The results show a relevant improvement when the pro-
posed method is applied compared to the baseline. This con-
firms that the paper hypothesis is fulfilled. Moreover, incor-
porating the Wasserstein concept into the generative kernel 
of the GANRS method will lead to a decrease in the mode 
collapse problem inherent to the GAN when applied to CF 
scenarios. Generated datasets have less redundant profiles. 
Accordingly, they are more diverse, and they contain more 

Table 2  Parameter values

initial #samples #users #items

400,000 {500, 1000, 2000, 4000, 8000} 1,000
400,000 4,000 {500, 1000, 

2000, 
4000}

J. Bobadilla, A. Gutiérrez2482



samples. Overall, the proposed WGANRS method generates 
richer, unbiased, and longer synthetic datasets.

3.2  Rating distributions

The distribution of the ratings (one star, two stars, …, five 
stars) is an important quality measure in the CF synthetic 
dataset generation process. Recommendation models are 
very sensitive to the relevant versus non-relevant thresh-
old, which is usually set to four or five stars in CF datasets 
containing five possible ratings. It is not enough that the 
Gaussian distribution of ratings in the generated dataset has 
a similar mean to the Gaussian distribution in the source 
dataset. It is also necessary that their standard deviation 
be analogous. Figure 7 shows that the proposed WGANRS 
generates a Gaussian distribution more similar to the Mov-
ieLens distribution than the baseline GANRS. Specifically, 
it achieves a 271.21% improvement. The improvement aver-
age obtained using the synthetic datasets in the first row of 
Table 2 (the number of users varies) is 304% (541% in Net-
flix*), whereas the second row (the number of items varies) 
returns a 357% improvement on average (399% in Netflix*). 
It is expected that these positive results will contribute to 

providing adequate recommendation quality results in the 
next subsection.

Beyond the numeric improvement values shown before, we 
can compare the shapes of the probability distribution in Fig. 7. 
The probability distribution of the source MovieLens dataset 
(green-colour bars) is the target. The proposed WGANRS 
method (blue-colour bars) is much closer to the target than 
the baseline GANRS method (orange-colour bars). This is the 
reason for the relevant numerical improvements shown in the 
above paragraph. Additionally, the baseline method generates a 
Gaussian distribution excessively centred in the average rating 
(three stars), whereas the proposed method adequately fits its 
Gaussian distribution to the correct four-star mean. Regard-
ing the Gaussian standard deviation, the baseline method does 
not adequately catch the source dataset shape. Its deviation is 
smaller, and consequently, it does not generate enough profiles 
in the distribution edges (one star and five stars). In contrast, 
the proposed method performs nearly perfectly on both edges 
of the source distribution. Thus, the samples generated using 
the proposed WGANRS method are more diverse and unbiased 
than those obtained running the SOTA baseline. Additionally, 
the obtained result better follows the Gaussian distribution that 
describes the source shape of ratings. This result reinforces and 

Fig. 5  Traditional CF validation of the methods and models versus the validation of the synthetic datasets generated by the GAN
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complements that obtained in Sect. 3.1. Overall, the proposed 
method a) reduces repeated samples, b) generates more sam-
ples, c) increases diversity, d) decreases the bias, and e) better 
mimics the probability distributions of the ratings.

3.3  Precision and recall

In this subsection, we show the recommendation quality 
results obtained on synthetic datasets obtained using Mov-
ieLens as a source. The WGANRS method was used for this 
experiment to generate the synthetic datasets. The state-of-
the-art NCF (neural collaborative filtering) deep learning 
model has been used to make predictions and recommenda-
tions. The relevancy � threshold was set to five. The top graphs 
in Fig. 8 show the results when the number of users varies, 
whereas the bottom graphs show the results when the number 
of items varies. Both the values and the trends obtained from 
the synthetic datasets (coloured curves) are similar and com-
patible with the source datasets (black curves), which indi-
cates that the proposed method generates suitable synthetic 
datasets to be used in the RS field. Additionally, as expected, 
the higher the number of users, the higher the recall is, since 
each user profile will contain fewer relevant ratings (recall 
denominator). Conversely, the higher the number of users, 
the lower the precision is, since the denominator is the con-
stant N (number of recommendations), whereas the numerator 
contains the true positives of relevant ratings, where a high 
number of users involves less relevant ratings per user.

Additionally, from the set of synthetic datasets where the 
number of users varies, the dataset that holds 1000 users pro-
vides more precision and recall results like the MovieLens 
source. Since MovieLens 1 M contains 6000 users, it tells us 
that the GAN-based method generates data patterns where 
recommendations are easier than using the source dataset. 

This result is consistent with the one reported in [30]. Most 
importantly, the evolution of all the recommendation curves 
in the generated datasets (coloured curves) follow the same 
trends as those exhibited by the source MovieLens (black 
curve), indicating that the internal patterns of the source data-
set have been adequately captured by the proposed WGANRS 
method. Regarding the results when the number of items var-
ies, similar conclusions can be drawn, underlying that rec-
ommendation qualities worsen in absolute values compared 
to the source dataset. This probably occurs because the dis-
tribution of the item ratings is highly variable compared to 
the distribution of the user ratings, leading to more difficult 
pattern extraction. There is a number of items holding a very 
low number of ratings.

3.4  User and item distributions

Once the rating distributions have been tested, it is also 
convenient to compare the user and the item distributions 
obtained by using both the proposed and the baseline methods. 
The user and item distributions of the synthetic datasets are 
very dependent on the Gaussian parameter values with which 
the noise vectors that feed the generative model have been 
created. In the original paper [28] that serves as a baseline, 
the standard deviation has been customized for each tested 
dataset. In contrast, by using the proposed method, we fixed it 
to one and then removed this hyperparameter, making it easier 
to fine tune the proposed approach compared to the baseline 
method. The top graph in Figure 9 shows the results when 
the number of users varies, while its bottom graph shows the 
result by varying the number of items. Dashed lines repre-
sent the baseline results, and solid lines show the proposed 
approaches. In all cases, as expected, the higher the number 
of users there are, the lower the number of ratings assigned to 

Fig. 6  Number of samples generated using the baseline GANRS 
method (gan) versus the proposed WGANRS method (wgan).  Source 
dataset: MovieLens 1  M. Number of samples needed: 40,000. Left 
graph: generated datasets with 1000 items and a range of 500, 1000, 

2000, 4000 and 8000 users. Right graph: generated datasets with 
4000 users and a range of 500, 1000, 2000 and 4000 items. The 
higher the number of generated samples, the better the model is
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each user, since the number of ratings in each dataset is fixed. 
It can also be observed that the proposed method generates 
Gaussian distributions with higher standard deviations than 
the baseline approach, which has been heuristically tailored to 
the dataset. Both the proposed and baseline methods generate 
suitable user and item distributions for the CF area.

3.5  Discussion

The experimental results show the superiority of the proposed 
WGANRS method compared to the GANRS baseline. Par-
ticularly relevant is the high improvement (approximately 
200%) in the number of generated samples. This indicates 
that the proposed Wasserstein approach effectively reduces 
the amount of mode collapse of the GAN, The WGANRS 
method also effectively mimics the rating distribution of the 
source dataset, obtaining high improvements compared to the 
baseline and making it possible that their quality precision and 
recall values and trends are compatible with those from the 
source dataset. Furthermore, even no standard quality meas-
ures exist to test RS generated data, the user and item distribu-
tions obtained using the proposed approach are comparable 
to those of the baseline method. Additionally, the proposed 
method has the advantage that it is not necessary to assign 
heuristic values to the standard deviation of the Gaussian dis-
tribution used to create the noisy random vectors that feed 
the generator model of the WGAN. Finally, the results using 
the Netflix* dataset reinforce the results obtained by testing 
MovieLens. Appendix A shows the Netflix* results.

Overall, the proposed method improves both the sta-
tistical baselines and state-of-the-art generative methods. 
Statistical baselines are reported to reach poor accuracy. In 
contrast, they support adequate parameterization. Generative 
baselines operate quite differently. They do not support full 
parameterization and exceed the accuracy of statistical meth-
ods [24]. Our proposed method is proven to provide both full 

Fig. 7  Comparative rating distributions among the MovieLens 1  M 
(ML) source dataset, the baseline GANRS method (gan), and the pro-
posed WGANRS method (wgan). The 8000-user and 1000-item syn-
thetic dataset has been chosen as a representative case from the set 
of generated data in the paper. The closer the distribution is to the 
source ML distribution, the better the model is

Fig. 8  Quality of the recom-
mendation: precision and recall 
obtained by varying the number 
N of recommendations from 2 
to 10. The relevancy threshold � 
was set to 5. The upper graphs 
show the results on the synthetic 
datasets containing 500 to 8000 
users. The lower graphs show 
the results on the synthetic 
datasets containing 500 to 4000 
items. Precision can be seen in 
the left graphs, whereas recall is 
shown in the right graphs. The 
MovieLens dataset was used. 
The higher the values are, the 
better the results
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parameterization and high accuracy, in addition to a strong 
reduction of the mode collapse problem inherent to the GAN 
architectures. On the other hand, our method inherits the 
most positive and the most negative features of its baseline 
[30]. However, its accuracy and performance are very high 
due to the short, dense, and continuous vectors that its GAN 
model takes as input. Its main drawback comes from the 
clustering stage of the method (Fig. 4), which requires addi-
tional execution time and involves a discretization process 
that increases the probability of generating duplicated sam-
ples. For this reason, the Wasserstein concept has been pro-
posed to alleviate the explained drawback. The results show 
that the proposed method adequately reduces the mode col-
lapse problem, maintains the baseline advantages, reduces 
its disadvantages, and confirms the hypothesis of this paper.

4  Conclusions

The most relevant conclusion in this paper is that the Wasser-
stein approach reduces the mode collapse in the GAN genera-
tion of the CF fake samples compared to the state-of-the-art 

methods. This positive effect is reflected in a relevant reduction 
in duplicated samples and consequently in the generation of 
larger synthetic datasets. Furthermore, the proposed approach 
returns very improved distributions of ratings, which facilitates 
obtaining correct values and trends in recommendation qual-
ity measures. Finally, the distributions of the users and items 
are comparable to those of the state-of-the-art methods; these 
distributions act as quality measures due to the lack of stand-
ard quality measures for RS generated data. Moreover, exist-
ing hyperparameters are avoided in the proposed method. The 
standard deviation of the Gaussian distribution is used to create 
the noisy vectors that feed the generator model in the GAN. 
Overall, the results of the experiment show that by applying 
the Wasserstein distance and weight clipping to CF data, the 
generative process is improved compared to the state-of-the-art 
methods that use Wasserstein-based GANs. Proposed future 
work includes a) testing the proposed method on different RS 
datasets, with several sparsity ratios and different numbers of 
users or items, b) comparing the existing biases in the source 
datasets with the generated biases in the synthetic datasets, and 
c) checking the ability of the generated samples to serve as data 
augmentation when they are added to the source datasets.

Fig. 9  Top graph: distribu-
tion of the ratings when the 
number of users varies from 
500 to 8000; comparative 
of the proposed WGANRS 
(wgan) method and the baseline 
GANRS (gan) method. Bottom 
graph: distribution of ratings 
when the number of items var-
ies from 500 to 4000; compari-
son of the proposed WGANRS 
(wgan) method and the baseline 
GANRS (gan) method. The 
source MovieLens (ML) dataset 
is used in both graphs
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Appendix

In this section, the same figures used for MovieLens are 
shown. However, in this case, the Netflix* dataset has been 
used as a source.

Fig. 10  Number of samples generated using the baseline GANRS 
method (gan) versus the proposed WGANRS method (wgan).  Source 
dataset: Netflix*. Number of needed samples: 40,000. Left graph: 
generated datasets with 1000 items and a range of 500, 1000, 2000, 

4000 and 8000 users; right graph: generated datasets with 4000 users 
and a range of 500, 1000, 2000 and 4000 items. The higher the num-
ber of generated samples, the better the model is

Fig. 11  Comparative rating distributions among the Netflix* source dataset, 
the baseline GANRS method (gan) and the proposed WGANRS method 
(wgan). The 8000-users and 1000-items synthetic dataset has been chosen as 
a representative case from the set of generated data in the paper. The closer 
the distribution is to the source ML distribution, the better the model is
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Fig. 12  Quality of recommen-
dation: precision and recall 
obtained by varying the number 
N of recommendations from 2 
to 10. The relevancy threshold � 
was set to 5. The upper graphs 
show the results on the synthetic 
datasets containing 500 to 8000 
users. The lower graphs show 
the results on the synthetic 
datasets containing 500 to 4000 
items. Precision can be seen in 
the left graphs, whereas recall is 
shown in the right graphs. The 
Netflix* dataset was used. The 
higher the values are, the better 
the results

Fig. 13  Top graph: distribu-
tion of the ratings when the 
number of users varies from 
500 to 8000. Comparison 
of the proposed WGANRS 
(wgan) method and the baseline 
GANRS (gan) method. Bottom 
graph: distribution of ratings 
when the number of ratings var-
ies from 500 to 4000. Compari-
son of the proposed WGANRS 
(wgan) method and the baseline 
GANRS (gan) method. The 
source Netflix* dataset is used 
in both graph
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