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Abstract
With the proliferation of IoT devices and the increasing popularity of location-oriented services in cyber-physical-social
systems, the cognitive engines of these systems have taken on a multitude of parameters across various dimensions, making it
impractical and time-consuming to search for the exact optimal solution. To address this challenge, the use of nature-inspired or
evolutionary algorithms to find satisfactory solutions in a timely manner has gained significant attention, with reference point-
based algorithms being one of the prominent approaches. However, when dealing with nonuniform, degenerate, and discrete
Pareto fronts in the target space, using a considerable number of reference points may become ineffective, leading to a loss of
diversity in exploration and exploitation during the problem-solving process. Consequently, the distribution of the solutions
is adversely affected. To overcome this challenge, this paper presents a strategy to estimate the eigenvalues of the Pareto front
in a timely manner. When encountering nonuniform, degenerate, and discrete Pareto fronts, a combination of radial space
partitioning and angle selection mechanisms is employed to address these issues. Subsequently, an adaptive selection-based
many-objective evolutionary algorithm (ASMaOEA) is proposed. Extensive comparisons with several competing methods on
31 representative benchmark problems demonstrate that ASMaOEA can provide a flexible configuration for decision engines
in three typical scenarios involving cyber-physical-social systems. Furthermore, the analysis confirms that ASMaOEA can
reduce the bit error rate and improve the system’s throughput, thereby offering substantial benefits to the overall performance
of the system.

Keywords Cognitive engine · Resource scheduling · Adaptive selection · Multiobjective optimization

1 Introduction

With rapid advances in wireless client and sensor-oriented
applications, especially with the arrival of the 5G era,
the available spectrum of resources faces pressure towards
increased distribution, as the IPv4 address protocol of the
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Internet did 20 years ago. However, measurements of the
radio spectrum indicate that the rate of utilization of currently
allocated frequency bands is very low [1]. It is useful to anal-
yse the reasons for this phenomenon. Suppose a spectrum
resource has two frequencies, namely, a licenced band and
anunlicensed band. If they are allocated to users in static form
[2], this helps resolve the disorder in utilization to a certain
extent, but it also leads to the selfish use of an exclusivemode.
That is, authorized users do not allow unauthorized users to
see any information, even during idle periods, and this does
not suit the demand for dynamic access without intervention.
In this context, the concept of the cognitive radio was devel-
oped. The basic purpose of the cognitive engine (CE) is to
adjust its operating parameters according to the conditions
of the available channels and user requirements and provide
a flexible configuration, and this has been a subject of inter-
est for researchers. CR technology is a spectrum allocation
technology capable of self-analysis and decision-making. Its
most prominent feature is that it can automatically analyse
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the radio spectrum environment within the system to deter-
mine the idle spectrum. If the primary user does not disturb
the transmission of information, the secondary user can reuse
it, which can improve the spectrum efficiency.

Cognitive radio scheduling is an NP-hard problem. The
spectrum allocation strategy and optimization algorithm
strongly affect the performance of cognitive radio systems.
Spectrumutilization, energy consumption and cost efficiency
are three key performance indicators that should be studied
together when developing sustainable 5G systems [3]. Con-
sidering that spectrum allocation often needs to account for
multiple conflicting objectives at the same time, the spec-
trum allocation scheme for a single objective cannot meet
the actual needs, so the optimization of spectrum allocation
can be regarded as a multiobjective optimization problem
based on spectrum efficiency, energy consumption and cost
efficiency.

The reference point-based approach enables decision-
makers to define a set of reference points based on their
priorities and preferences. By providing a range of solu-
tions that are close to these reference points, this approach
offers a greater variety of choices and enhanced decision
support. This empowers decision makers to select the best
solution from the nondominated solution set, which better
aligns with their objectives. However, the diversity of solu-
tions in reference point-based multiobjective optimization
algorithms heavily relies on the selection mechanism of ref-
erence points. In optimization problems with nonuniform,
degenerate, or discontinuous Pareto fronts, using numerous
reference points can become ineffective, resulting in a lack
of solutions. Conversely, using a small number of reference
points may yield many solutions, significantly impacting the
diversity of the Pareto solution set.

To address the limitations of the algorithm in handling
degenerate, discontinuous, and nonuniform optimization
problems, our proposed method is a flexible adaptive selec-
tion mechanism based on the many-objective evolutionary
algorithm (ASMaOEA) that incorporates radial space parti-
tioning, adaptive Pareto front detection, and angle selection
mechanisms to further enhance performance. By utilizing
radial space partitioning, the solution space is divided into
regions based on the reference points. This approach ensures
a more balanced distribution of the solutions and helps
mitigate the issue of clusters near a few reference points.
Additionally, the adaptive Pareto front detection technique
dynamically identifies the regions of interest in the solution
space. This adaptability allows for efficient exploration and
exploitation of the Pareto front, even in scenarios where the
front is degenerate or discontinuous.

This paper is based on a reference point-basedmultiobjec-
tive evolutionary algorithm θ -DEA [4], which defines a set of
reference points that are evenly distributed in the target space
with clustering and adopts the novel θ -dominant mechanism.

We propose a new algorithm, ASMaOEA, by improving the
selection mechanism and environment strategy of θ -DEA’s
predecessor. In the experiments, ASMaOEA achieved good
convergence and diversity in the test problems and cognitive
radio applications.

The remainder of this article is structured as follows.
Section 2 provides a brief description of related work that
is commonly considered the state of the art. In Section 3,
the features of the system model and problem formulation
are analysed in detail. Section 4 presents a flexible adaptive
selection mechanism based on the many-objective evolu-
tionary algorithm (ASMaOEA) according to the real-time
requirements of the cognitive radio resource schedule. In
Sections 5 and 6, we focus on the experimental analysis and
comparison, respectively, based on benchmark functions and
the first type of problem of cognitive radio (CRF1). Section 7
provides the conclusions of this paper, with a discussion of
our ongoing and future work.

2 Related work

Some typical related research, including case-based reason-
ing (CBR), has been used to design CEs in IEEE 802.22
networks [5]. A CR engine platform for developing available
frequency channels in tactical wireless sensor networks uses
case-based reasoning to locate available channels to achieve
high-fidelity dynamic spectrum access (DSA) [6]. The rea-
soning engine and knowledge base are the keys to realizing
CBR. A comprehensive knowledge base can often achieve
better matching and decision-making. In contrast, when the
scenarios encountered cannot be matched in the knowledge
base, the method will become inefficient.

In recent years, artificial neural networks have shown
strong adaptability. A learning engine framework based on
the support vectormachine (SVM)has been used to configure
radio parameters, and its bit error rate (BER) and signal-
to-noise ratio (SNR) have been estimated [7]. Eisen et al.
proposed a variant of a graph neural network, the random
edge graph neural network (REGNN), which takes the chan-
nel and node states as inputs and combines them through
a nonlinear graph convolution filter to obtain the resource
allocation function [8]. In [9], the optimization objective was
defined as the loss function, and to minimize this objective,
themodel aimed to find themost favourable output.However,
since the neural network involvesmany parameters, when the
network is large, it may take a long time to prepare, and the
accuracy of the model is strongly dependent on the training
data.

Several researchers have applied the genetic algorithm
(GA), a simple random heuristic query strategy, to the design
of cognitive engines. Rondeau et al. applied the GA to deter-
mine the parameters of a software-defined radio (SDR) to
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meet the user’s QoS requirements [10]. An adaptive GA-
based cognitive engine was proposed in [11] to tune radio
parameters. Furthermore, many hybrid cognitive engines
have been introduced. They aim to combine learning and
optimization algorithms to perform more efficient system
adaptation. Heuristic techniques are widely employed for
decision making in CEs. Researchers have exploited the
advantages of the quantum GA to design a hybrid engine
with CBR [12]. Ashwin et al. proposed a hybrid engine based
on CBR and the GA that has the capability to adapt to new
environments using the GA [13]. GAs handle multiobjective
enhancement issues, consume less memory and are faster
when examining vast regions. However, the design of a GA
depends on the specific problems to be solved, and determin-
ing the chromosome representation of parameters, domains
and ranges is challenging. In addition, the slow convergence
speed and poor local search ability of theGAare problematic.

Other intelligent optimization algorithms, for example,
ant colony optimization (ACO), have been proposed for CE
design [14–16]. Another hybrid approach was investigated
in [17], where CBR and particle swarm optimization (PSO)
were used as the core of CE. To reduce the complexity of
the formula for accurate outage probability, PSO was used
in [18] to determine the best secondary user (SU) transmis-
sion power. Yadav et al. proposed their own federated cloud
computing framework based on matching and multiround
allocation (MMA) [19], which included hybrid chaotic parti-
cle search (HCPS), a modified artificial bee colony (MABC),
and modified cuckoo search (MCS) [20].

Among the many intelligent optimization algorithms,
multiobjective evolutionary algorithms perform well. Liu
et al. proposed a resource allocation paradigm for spec-
trum allocation in cognitive radio based on graph theory.
Based on the proposed objective problem and model, the
ant colony optimization algorithm was improved by intro-
ducing the differential evolution (DE) process and designing
variable-neighbourhood-search DE. Through the simulation
data verification, the improved technical performance was
shown to be better [21]. In 2020, the evolutionary compu-
tation method was thoroughly examined in research on the
energy harvesting (EH) method in the multi-input single-
output CRN (MISO CRN) [22]. Abbasi et al. presented
an optimized cascade chaotic fuzzy system (OCCFS) [23].
OCCFS incorporates fuzzy reasoning, neural network self-
adaptation, chaotic signal generation, and cascade system
generalizability in a unique structure optimized using the
DE algorithm, and it outperformed other methods in terms
of accuracy and efficiency.

Further improvement research on reference point-based
optimization algorithms, represented by NSGA-III [24],
has also gained significant attention from researchers. The
NSGA-III emphasizes diversity when dealing with high-

dimensional multiobjective optimization problems but still
lacks convergence pressure. Yuan et al. introduced a novel
dominancemechanism, θ -DEA, to simultaneously ensure the
convergence and diversity of the algorithm [4].

It is helpful to calculate individual density in the case
of nondomination, and better individuals increase their den-
sity with other individuals, excluding poor individuals from
diversity strategies [25]. In a two-stage strategy, in the first
stage, the target number is not only considered for the con-
straint, and the second phase optimizes the objective function
and the constraint at the same time [26]. A reference vector
guides the EA for multiobjective optimization, decomposes
the original multiobjective optimization problem into multi-
ple single-object subproblems, and selects a preferred subset
of the entire Pareto boundary according to user preference
[27]. A custom-made evolutionary algorithm was proposed
based on decision variable clustering [28]. A reference direc-
tion with a density estimator provided some new fitness
allocations for schemes and environment selection strate-
gies, which was helpful for improving the performance of
the evolutionary algorithm [29].

With the increase in the number of optimization targets,
selection pressure based on the Pareto dominance multiob-
jective optimization algorithm leads to slow convergence and
poor optimization effects. Li et al. proposed AdaW based on
MOEA/D,which regularly updates theweights by comparing
the current evolutionary population with a well-maintained
archive set to optimize the solution set [30].

3 Systemmodel

The CE involves many parameters that need to be adjusted
to improve the system’s performance. Generally, the over-
all requirements of objectives such as the bit error rate,
transmission power, and throughput should be considered
when allocating related spectrum resources. Assume that the
parameter vector is X = {x1, x2, x3, . . . , xn} and that the
objective function is F = { f1, f2, f3, . . . , fmt }, where n
is the number of decision variables and mt is the number
of target functions. These variables include the transmission
power, modulation scheme, modulation order, coding rate,
time division duplex, and sampling rate, and the related tar-
gets include the minimization of the BER and power and the
maximization of the throughput.

The ideal optimal values of the above multiple objective
functions are difficult to satisfy at the same moment. For
example, reducing the bit error rate usually means that the
transmit power must increase.We hope to obtain some trade-
off solutions for each objective functionwithout knowing any
preferences; that is, we aim to obtain the Pareto front of the
related problem. To understand the system model, we start
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from the first type of problem of cognitive radio (abbreviated
CRF1), where two decision variables are included (signal
power P and modulation order M), and this model meets the
conditions of the modulation index m = log2M .

3.1 Problem formulation of CRF1

3.1.1 Minimize the bit error rate function fbe

The bit error rate Pei is an important performance indicator
in all communication systems. The channel type, modulation
method, and signal-to-noise ratio all affect its value. Notably,
different modulation methods have different calculation for-
mulae for Pei . The details are as follows.

In the AWGN channel environment, for an MPSK modu-
lation, the bit error rate Pei can be expressed as in (1):

Pei = 2

log2M
Q

(√
2log2M · γ · sin π

M

)
(1)

For MQAM modulation, the bit error rate Pei is expressed
by (2).

Pei = 4

log2M

(
1 − 1√

M

)
Q

(√
3log2M

M − 1
· γ

)
(2)

In (1) and (2), M is the modulation order, Q(.) is a Gaus-
sian function, and its expression is shown in (3).

Q (z) = 1√
2π

∞∫
z
exp

(
− x2

2

)
dx (3)

where γ is the bit-to-noise ratio (BNR) of the receiver signal,
which is the ratio of the power to the noise of each bit signal
Eb/N0. Eb is related to the received signal power S, the
symbol rate Rs and the modulation system M . The related
functions can be written as (4) and (5).

Eb = S

Rs log2M
(4)

S = Pw − Pl (5)

In (5), Pw is the transmission power, and Pl is the path loss.
Since the total signal noise energy N equals the product of
N0 and the bandwidth B, γ can be expressed by (6).

γ = Eb

N0
= 10log10

(
S

Rs · N0 · log2M
)

= 10log10

(
B

Rs · log2M
) (6)

Assuming that the maximum allowable bit error rate is
0.5, the objective function for minimizing the normalized bit
error rate can be represented by (7). Here, Sn denotes the
number of subcarriers, and Pei represents the bit error rate
of the i-th subcarrier.

fbe = log100.5
1
Sn

· ∑Sn
i=1 log10Pei

(7)

3.1.2 Minimizing the energy consumption function fp

There are numerous factors that influence the energy effi-
ciency of a system, including the transmit power, channel
bandwidth, modulation scheme, symbol rate, and other
parameters that are involved in the complexity of system
design. Considering the parameters of the channel band-
width, modulation scheme, and symbol rate as the main
factors, the transmission power of the signal can be expressed
by (8).

f p = ρ1 ×

sn∑
i=1

Pwi

Sn × Pmax
+ ρ2 ×

sn∑
i=1

Psi

Sn × Pmax
s

+ρ3 ×

sn∑
i=1

log2Mi

Sn × log2Mmax
(8)

where ρ1, ρ2 and ρ3 represent the weight factors of the trans-
mit power, modulation index and symbol rate, respectively.
Pmax, Pmax

s , and Mmax denote the maximum values of trans-
mit power, symbol rate, and modulation order allowed by the
system, respectively. Pwi , Psi , and Mi represent the transmit
power, symbol rate, and modulation order of the i-th subcar-
rier, respectively.

3.1.3 Maximizing the data rate function fthr.

Some real-time applications require the support of high-
speed data transmission, such as multimedia services and
video meetings. Throughput can be used as an effective indi-
cator of capacity, which indicates the amount of data that can
be transmitted in one second. The calculation of throughput
needs to consider many factors, such as the packet error rate,
coding correction, and retransmission. This paper mainly
aims at optimizing the parameters of the physical layer and
does not consider the retransmission mechanism of the link
layer. The bit rate of the transmitted data can be expressed as
in (9), where Rc is the coding rate.

Data_rate = Rs · log2M · Rc (9)
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In multicarrier systems, the normalized maximum data rate
(throughput) function is given by (10).

fthr . =1−
1
Sn

(
Sn∑
i=1

log2Mi ·Rsi ·Rci )−log2Mmin ·Rmin
s ·Rmin

c

log2Mmax ·Rmax
s ·Rmax

c −log2Mmin · Rmin
s · Rmin

c

(10)

where Rci is the coding rate assigned to the i-th subcarrier.
Rmax
c , Rmin

c , and Rmax
s are the maximum coding rate, mini-

mum coding rate, and minimum symbol rate allowed by the
system, respectively.

3.2 Dependencies among the three objective
functions

Table 1 summarizes the parameters corresponding to the
objective functions fbe, f p and fthr . There is a complex
dependence relationship between each objective function and
its main parameters.

In Fig. 1, if a line with a solid black arrow points from a
function node A to a parameter node B, A has a direct cor-
relation with B. For example, fbe points to the three nodes
Pw, Rs and M , which indicates that the value fbe will change
according to these three parameters. Some parameters have a
simultaneous influence on multiple objective functions, cre-
ating indirect constraint relationships between the objective
functions, as illustrated by the red dashed lines in Fig. 1.
This makes it impossible to achieve optimal values for all
the objectives simultaneously. Trading off among these mul-
tiple interacting objective functions to suit the requirements
of the user’s application and time-varying communication
environment is the key task of the CE.

3.3 Codingmechanism of the decision domain

During cognitive radio parameter optimization, the coding
mechanism of the decision domain describes an important
task. The modulation order is discrete, so the two decision
variables can encode a binary term.The transmit power varies
from 0 to 25.2 dBm. Normally, the interfrequency band
between them is 0.4 dBm, where a total of 64 values are
obtained using 6 binary codes c1, c2, . . . , c6. Moreover, the

Table 1 The objective functions and their parameters

Objective function Corresponding parameter

fbe Pw , Pl , M, B, Rs , Sn
f p Pw , Rs , M

fthr . Rs , M, Rc

Fig. 1 Correlations among multiple objectives and parameters

modulation includes four patterns, namely, BPSK, QPSK,
16QAM and 64QAM. For M = {2, 4, 16, 64}, with two
binary representations of c7 and c8, single-subcarrier encod-
ing requires one byte. For example, a subcarrier that has
a transmit power of 2.8 dBm and a modulation scheme of
16QAM is coded as 11100011. Assuming that the number
of subcarriers is L , the length of a single individual is ci ∗ L;
therefore, when there are 32 subcarriers, a single individual
adopts 256 bits of encoding [31, 32].

4 Improvement of the cognitive engine

In the reference point-based evolutionary algorithm, the
aggregation operation may attract individuals to a reference
point (or the neighbourhood of a reference point), such as in
NSGA-III [24] and θ -DEA[4].When adegenerate or discrete
Pareto front is encountered, some reference points may not
be able to obtain the final solution to the relevant problem in
the cognitive decision space. A suitable method for scientif-
ically measuring the occurrence of nonuniform, degenerate,
and discrete conditions in the current optimization problem
needs to be identified.

4.1 Adaptive detection of the pareto front

Assume that the given generation is t , and the given popula-
tion obtains the number of niches τ j (niche count), where
j = 1, . . . , N for each reference point after the cluster-
ing stage. By default, the number of reference points and
the number of groups are the same; when τ j > 0, the j-th
reference point is valid in the t-th generation. Let E j rep-
resent the effective number of times during the period from
the 0-th to t-th iterative calculation, and let the confidence
degree be denoted as pe ∈ (0, 1). If Et

j ≥ pe × t is sat-
isfied, the j-th reference point is valid, and the operation
statement Rt

e = Rt
e + 1 is carried out. Namely, the num-

ber of effective reference points in the current group can be
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calculated according to the following (11):

Rt
e =

N∑

j=1,Et
j≥pe∗t

1 (11)

With the set Re = {R1
e , R

2
e , . . . , R

i
e, . . . , R

T
e }, T is the max-

imum iteration of the population evolution. If the following
condition in (12) is satisfied, a Pareto front with a discrete
or degenerate nonuniform situation will occur with a high
probability.

√√√√
i+K−1∑
j=i

(R j
e − 1

K

i+K−1∑
t=i

Rt
e)

2 < ε, i = 1, . . . , N −K (12)

Here, ε is the fluctuation threshold for the number of refer-
ence points and is set to 3 according to the recommendation.
K is an interval constant, and generally, K ∈ [15,50]. We
select the typical test function DTLZ2 to analyse the best
value of k. For the 3-objective DTLZ2 function, the group
size N is 210, with k values of 15, 20, 25, 30, 35, 40, 45
and 50, and five independent experiments are carried out
according to different k parameters. Except for the parame-
ters being tested, the other parameters are set to their defaults.
We perform parameter sensitivity analysis using the inverted
generational distance (IGD) metric. For detailed information
about IGD, please refer to Section 5.1.1. Figure 2 shows the
IGD mean and average running time of DTLZ2 for different
k values. When K is 15, the average IGD index reaches the
optimal value, and the average running time is close to the
optimal value. After comprehensive consideration, we take
K as 15 for the remaining investigations. ε denotes the fluc-
tuation threshold of the reference point, and after a similar

15 20 25 30 35 40 45 50
K value
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4.8
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average runtime(s)

Fig. 2 The IGD mean and average running time of DTLZ2 with differ-
ent k values

verification process, we conclude that its default value should
be 3 for the CRF1 problem.

4.2 Adaptive selection flow and pseudocode

With the above decisive conditions of the Pareto front fea-
tures, we can adaptively select the appropriate operation for
a degraded and discrete frontier; this is called the adap-
tive selection-based many objective evolutionary algorithm
(ASMaOEA). The ASMaOEA algorithm consists of three
important steps: 1) determining the initial relevant parame-
ters, such as population size, crossover and mutation factors,
for generating the next individuals; 2) switching during
nondominated sorting between two adaptive strategies (θ
cluster or angle environment) according to the condition
of the Pareto front features; and 3) using the whole group
to construct the next generation. The algorithm loops these
operations until its termination conditions are met. The
detailed process is shown in Algorithm 1.

Algorithm 1 The pseudocode of ASMaOEA.
Require: N : size of the group; pc: crossover probability; ηc: distribu-

tion index; T : maximum number of iterations
Ensure: A set of effective solutions for the given problems
1: Set the current iteration t = 0.
2: Set the random solution P0 = {X0

1, X
0
2, . . . , X

0
N }, a reference point

set ∧, and the ideal points z∗ and znad , where z∗ and znad are m-
dimensional vectors formed by the minimum and maximum values
of the current population P0 in each objective function.

3: while t ≤ T do
4: St = ∅, Pt+1 = ∅, i = 1, Qt = ∅
5: H=RGDMatingSelection(Pt ,z∗,znad ) // Generate the mating

pool H based on the spatial partition
6: Qt=SBXCrossover+NonUniformMutation(Pt ,H)
7: (F1,F2,. . . )=Nondominated-sort(Qt ∪ Pt )
8: while |St | < N do
9: St = St ∪ Fi
10: i = i + 1
11: end while
12: UpdateIdealAndNadirPoint(F1,z∗,znad )
13: if t > T ∗ α and is ParetoNonUni f orm then
14: Pt+1,N0=θ-dominated-selection(St , z∗, znad ,∧, N0) //

Select N0 individuals from St using nondominated sorting-based
environmental selection

15: Pt+1,N1=angle-based-selection(St/Pt+1,N0 , N1,U )

16: Pt+1 = Pt+1,N0 ∪ Pt+1,N1 // Select N1 others from St using
angle-based environmental selection

17: t = t + 1
18: else
19: Pt+1=θ-dominated-selection(St , z∗, znad , N ) // Select

N individuals from St using nondominated sorting-based environ-
mental selection

20: Rt
e=usableReferenceCount(Pt+1, z∗, znad ) // Calculate the

number of effective reference points in the current population
21: Re = Re ∪ Rt

e
22: t = t + 1
23: end if
24: end while
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For better understanding, there are a few important points
about the above Algorithm 1.

1) Let the reference set be denoted as∧={λ1, λ2, . . . , λN},
where λj=(λj,1, λj,2, . . . , λj,mt )

T and j ∈ {1, 2, . . . , N },mt

is the number of objective functions.
2) The mating pool H in line 5 is based on space divi-

sion, and it is used to select individuals in Pt as parents for
crossing and mutation. After obtaining N offspring individ-
uals Qt and carrying out nondominated sorting of Qt ∪ Ft ,
we obtain F1, F2, …, St = ∪Fi (i = 1, 2, . . . , L), where L
is the minimum value for |St |.

3) Line 12 uses F1 to update the ideal points Z∗ and Znad.
We judge the current iteration t > T ∗ α, where α ∈ [0, 1]
in line 13. If this holds true, we need to further determine
whether the Pareto front is nonuniform according to (12)
in Section 4.1. When both conditions are satisfied at the
same time, we need to select N0 individuals (effective ref-
erence points) from St based on the nondominated sorting

environment and select N1 others from St based on the angle
method while keeping N = N0 + N1 true.

4.3 Sensitivity analysis of parameters

This subsection describes a sensitivity analysis of the main
parameters of ASMaOEA, such as the threshold probability
α for starting adaptive Pareto detection and the confidence
pe of the effective reference point. The following experiment
uses fixed value patterns, and its test functions include the 5-,
8-, 10- and 15-objectiveMaF1,MaF2,MaF4 andMaF6 from
CEC2017, where different values are set for the parameters
analysed and the others use their default values.

4.3.1 Detection threshold probability˛

The value of α determines the start time of the Pareto front
detection operation. When the current iteration is t > T ∗ α,

Fig. 3 Curve of the effective reference point Re on MaF1, 2, 4, and 6
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the algorithm starts to judge whether the Pareto front is
degenerate or discrete. If the judgement is too early, the
algorithm has not yet found all the valid reference points,
so it will not fully utilize their leading function. On the other
hand, because angle-based environment selection has high
computational complexity, starting as late as possible helps
save time overall. However, a late start can cause the opti-
mization to fail to converge, hence degrading the overall
performance.

This dilemma makes sensitivity experiments particularly
important, as shown in Fig. 3a-d. Let us look at the spe-
cific results. The values on the Y-axis in Fig. 3 show that
the effective reference points Re change with the number of
evolutions T on the X-axis for MaF1, 2, 4 and 6 with 5-, 8-,
10- and 15-objective problems, respectively. After t > 400
on the 5- and 10-objective problems, all significant reference
points for MaF1, 2, 4 and 6 are found. On the 8-objective
problem, the maximum effective reference point is obtained
at t > 500 in Fig. 3b, and the best value is obtained after

t > 800 on the 15-objective problem in Fig. 3d. According to
the above experiment on the 5-, 8-, 10-, and 15-objective test
functions, αmin = 400/700 ≈ 0.57, and it is recommended
to take α = 0.6 in the following simulation in Section 5.

4.3.2 Confidence of valid reference points pe

Figure 4a-d show that the number of effective reference
points Re on the Y-axis changes with the iterative T value
on the X-axis for the 8-objective problems for MaF1, 2, 4,
and 6, respectively. When pe= 0.8, the number of effective
reference points is less than that of pe ∈ [0.3, 0.7]. Typically,
with a reasonable initial value in this scope, the algorithmwill
converge to the same or similar values of its valid reference
points.

For example, on the 8-objective MaF1 and MaF6 prob-
lems, pe ∈ [0.3, 0.5] converges to the same value of 20 in
Fig. 4a and d, while pe ∈ [0.6, 0.7] converges to 18. On
the 8-objective MaF2, pe ∈ [0.3, 0.7] converges to a similar

Fig. 4 Curve of Re with T on MaF1, 2, 4, and 6
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Table 2 Reference points and group sizes for problemswith 5-15 objec-
tives

M− Reference points Group size (N )

5 210 210

8 156 156

10 275 275

15 135 135

value of 40, as shown in Fig. 4b. On the 8-objective MaF4,
pe ∈ [0.3, 0.6] converges to a similar value of 26, as shown
in Fig. 4c. It is suggested that the range of pe should be [0.4,
0.6], and 0.6 is its default value.

The confidence interval pe affects the detection of an
effective reference point for solving these complex problems.
If the confidence level is set to a large value, the evaluation
result will be smaller than the actual effective reference point;
if the confidence level is too low, the effective reference point
will be larger than the actual reference point. An accurate
evaluation of pe is beneficial for maintaining better diversity
in ASMaOEA.

4.4 Time complexity of ASMaOEA

The time complexity of the ASMaOEA algorithm is mainly
determined by adaptive partitioning pool selection, non-
dominated sorting, the θ -dominated selection environment

Table 3 Mean and SD of HVs
on MaF1-7 for ASMaOEA
compared with MaOEA-CS,
ANSGAIII, MOEA-D, RVEA*
and RSEA

Prob. M ASMaOEA MaOEA-CS ANSGAIII MOEA-D RVEA* RSEA

MaF1 5 1.30E-02 1.31E-02 7.20E-03 1.12E-02 7.90E-03 1.11E-02

5.47E-04 4.71E-04 1.82E-03 8.50E-05 4.97E-04 4.48E-04

8 2.86E-05 2.74E-05 1.66E-05 4.26E-06 1.04E-05 2.20E-05

1.72E-05 1.22E-05 8.23E-06 1.84E-07 5.50E-06 9.57E-06

10 6.65E-07 5.00E-07 4.43E-07 2.02E-08 1.10E-07 4.72E-07

5.65E-07 1.58E-06 1.13E-07 1.74E-08 1.01E-07 1.94E-07

15 3.29E-01 0.00E+00 3.36E-12 9.11E-14 3.32E-13 2.85E-12

2.88E-02 0.00E+00 1.30E-12 5.75E-16 5.25E-13 1.88E-12

MaF2 5 1.98E-01 1.96E-01 1.85E-01 1.87E-01 1.90E-01 1.94E-01

1.24E-02 5.99E-03 6.75E-03 1.83E-03 3.61E-03 5.28E-03

8 2.17E-01 2.16E-01 2.13E-01 2.07E-01 1.91E-01 2.26E-01

2.02E-02 1.55E-02 4.40E-03 1.24E-03 2.88E-03 8.17E-03

10 2.24E-01 2.12E-01 2.26E-01 2.10E-01 1.86E-01 2.36E-01

1.68E-02 2.29E-02 1.47E-02 1.11E-03 9.85E-03 7.38E-03

15 2.10E-01 2.09E-01 1.70E-01 1.78E-01 1.12E-01 4.89E-02

1.95E-02 1.21E-02 3.76E-02 1.78E-03 2.06E-02 1.09E-02

MaF3 5 9.94E-01 9.99E-01 9.99E-01 9.89E-01 9.99E-01 8.97E-01

7.57E-03 1.52E-04 2.49E-03 4.73E-03 2.26E-04 4.75E-01

8 9.88E-01 1.00E+00 9.59E-01 9.71E-01 1.00E+00 6.94E-01

5.20E-03 7.19E-06 1.95E-01 5.69E-03 3.71E-05 8.58E-01

10 5.46E-01 1.00E+00 3.59E-01 9.67E-01 1.00E+00 3.37E-01

1.79E+00 5.59E-06 1.42E+00 5.86E-03 0.00E+00 9.79E-01

15 9.35E-01 1.00E+00 9.79E-01 9.61E-01 1.00E+00 0.00E+00

4.61E-01 2.54E-07 5.02E-02 1.96E-03 9.07E-05 0.00E+00

MaF4 5 1.21E-01 1.23E-01 7.33E-02 1.03E-02 1.18E-01 1.13E-01

7.94E-03 3.91E-03 3.50E-02 6.16E-03 1.08E-02 3.75E-03

8 2.53E-03 1.71E-03 2.30E-03 3.94E-06 4.46E-04 4.18E-03

2.18E-03 5.59E-04 6.67E-04 3.57E-06 3.46E-04 4.86E-04

10 2.85E-04 7.55E-05 2.51E-04 2.67E-08 5.84E-06 4.01E-04

2.24E-04 3.74E-05 7.03E-05 1.49E-08 5.33E-06 3.89E-05

15 3.32E-08 0.00E+00 2.33E-07 2.62E-13 2.84E-11 3.05E-07

1.27E-07 0.00E+00 5.75E-08 5.23E-14 2.83E-11 9.02E-08
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Table 3 continued Prob. M ASMaOEA MaOEA-CS ANSGAIII MOEA-D RVEA* RSEA

MaF5 5 8.13E-01 8.01E-01 8.12E-01 5.14E-01 7.78E-01 7.82E-01

1.75E-03 7.42E-03 1.37E-03 2.40E-01 1.22E-02 2.36E-02

8 9.24E-01 9.15E-01 8.98E-01 3.83E-01 8.26E-01 8.78E-01

1.11E-03 9.15E-03 2.13E-01 2.65E-01 6.86E-02 4.57E-02

10 9.70E-01 9.56E-01 9.69E-01 3.90E-01 9.65E-01 9.24E-01

8.27E-04 6.77E-03 1.72E-03 2.13E-01 6.83E-03 2.69E-02

15 9.91E-01 9.67E-01 9.86E-01 3.16E-01 9.63E-01 9.40E-01

4.62E-04 4.92E-03 3.43E-02 1.93E-01 2.07E-02 4.20E-02

MaF6 5 1.30E-01 1.30E-01 1.24E-01 1.13E-01 1.25E-01 1.24E-01

1.30E-03 1.08E-03 7.47E-03 8.45E-02 3.66E-03 1.97E-02

8 1.06E-01 1.06E-01 9.63E-02 1.02E-01 1.03E-01 9.96E-02

1.06E-02 6.69E-04 2.94E-02 1.25E-02 5.36E-04 9.60E-03

10 6.21E-02 1.01E-01 4.61E-02 9.99E-02 9.70E-02 9.29E-02

1.47E-01 4.87E-04 8.18E-02 1.90E-03 5.40E-03 2.65E-02

15 9.54E-02 9.53E-02 8.99E-02 9.42E-02 9.30E-02 9.17E-02

1.18E-03 6.63E-04 2.39E-03 2.51E-03 1.99E-03 3.51E-03

MaF7 5 2.62E-01 2.57E-01 2.52E-01 1.44E-01 2.74E-01 2.67E-01

9.54E-03 1.10E-02 1.50E-02 1.52E-03 4.18E-03 1.65E-02

8 2.03E-01 1.92E-01 2.00E-01 4.73E-05 1.93E-01 1.87E-01

1.84E-02 8.73E-03 1.90E-02 1.14E-05 2.34E-02 3.34E-02

10 1.97E-01 1.73E-01 1.75E-01 3.73E-04 1.58E-01 1.83E-01

2.33E-02 1.79E-02 2.28E-02 3.48E-03 1.53E-02 2.97E-02

15 1.63E-01 1.14E-01 1.30E-01 7.90E-06 8.38E-02 1.36E-01

3.32E-02 1.10E-02 3.30E-02 3.37E-05 3.48E-02 1.26E-02

operation, and the angle-based selection strategy. For adap-
tive normalized partitioned pooling, the time complexity
of the radial coordinate calculation is O(MN ), that of
nondominated sequencing is O[N (logN )M−2], and that of
nondominated environment selection is O(MN 2). The time
complexity of angle selection is O(N 2). In general, the time
complexity of ASMaOEA is O(MN 2).

5 Algorithm verification

In this section, we use several benchmarks, which are com-
monly used in sets of multiobjective problems, as well as the
two most effective performance evaluation indices, inverted
generational distance (IGD) and hypervolume (HV).

All experiments on ASMaOEA were conducted using
MATLAB R2016b on the chosen problems. The operating
systemusedwasWindows10,with 8GBofRAM.The exper-
imental results fully demonstrate that our algorithm performs
very well.

5.1 Benchmark functions

This validation consists of 31 representative test functions,
i.e., DTLZ1-7 [33], WFG1-9 [34], andMaF1-15 [35], where
the latter were specified by the CEC 2017 international evo-
lutionary algorithm open competition.

Two performance evaluation indices, IGD and HV [36],
were used to reflect the convergence and diversity of the
Pareto solutions. Better performance is indicated by a low
IGD value or a high HV value [24].

Table 4 The versatility of various methods on MaF1-7

Method Scope of Problems Generalization ability

ASMaOEA MaF1,2,5,6,7 5/7 = 71.429%

MaOEA-CS MaF1,3,4,6 4/7 = 57.143%

ANSGAIII MaF2 1/7 = 14.286%

MOEA-D MaF1,2,4,7 0/7 = 0.000%

RVEA* MaF3,7 2/7 = 28.571%

RSEA MaF2,4 2/7 = 28.571%
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Table 5 Mean and SD of HVs
on MaF8-15 for ASMaOEA
with MaOEA-CS, ANSGAIII,
MOEA-D, RVEA* and RSEA

Prob. M ASMaOEA MaOEA-CS ANSGAIII MOEA-D RVEA* RSEA

MaF8 5 1.26E-01 1.23E-01 1.09E-01 1.15E-01 9.32E-02 1.21E-01

1.07E-03 1.06E-03 1.08E-02 4.78E-03 1.04E-02 9.43E-03

8 3.07E-02 3.01E-02 2.39E-02 2.24E-02 7.51E-03 3.03E-02

9.76E-04 6.55E-04 3.48E-03 1.21E-03 3.73E-03 9.57E-04

10 1.11E-02 1.02E-02 8.92E-03 6.63E-03 3.95E-03 1.11E-02

3.67E-04 2.63E-04 1.33E-03 3.81E-04 2.53E-03 1.98E-04

15 5.66E-04 5.75E-04 3.55E-04 1.87E-04 1.08E-04 5.82E-04

9.89E-05 4.88E-05 1.44E-04 7.78E-05 1.22E-04 7.01E-05

MaF9 5 3.10E-01 2.93E-01 2.36E-01 3.12E-01 2.60E-01 2.24E-01

1.27E-02 2.92E-02 1.61E-01 7.93E-03 9.31E-03 2.02E-01

8 5.06E-02 4.97E-02 2.14E-02 4.14E-02 2.12E-02 4.61E-02

9.05E-04 9.30E-04 3.26E-02 1.27E-03 4.44E-03 1.25E-02

10 1.88E-02 1.70E-02 8.29E-03 1.44E-02 5.88E-03 1.71E-02

7.70E-04 5.63E-04 2.76E-03 1.13E-03 8.35E-04 2.43E-03

15 1.17E-03 1.18E-03 4.48E-04 2.85E-04 1.80E-04 6.23E-04

1.42E-04 1.19E-04 8.02E-04 6.10E-04 1.09E-04 8.76E-04

MaF10 5 9.93E-01 8.56E-01 9.42E-01 9.51E-01 8.44E-01 9.96E-01

5.48E-03 2.89E-01 9.74E-02 4.83E-02 9.95E-02 1.03E-03

8 9.99E-01 8.53E-01 9.99E-01 7.98E-01 9.14E-01 1.00E+00

2.03E-03 8.75E-02 1.70E-03 2.08E-01 1.23E-01 4.14E-04

10 9.97E-01 6.07E-01 9.99E-01 7.17E-01 8.79E-01 9.99E-01

7.18E-03 1.85E-01 2.48E-03 3.00E-01 2.40E-01 5.31E-04

15 1.00E+00 1.00E+00 1.00E+00 5.01E-01 9.98E-01 1.00E+00

1.56E-04 2.92E-04 6.85E-04 4.79E-01 1.63E-04 1.29E-04

MaF11 5 9.97E-01 9.93E-01 9.93E-01 9.64E-01 9.89E-01 9.95E-01

1.70E-03 3.86E-03 2.24E-03 1.32E-02 1.89E-03 2.45E-03

8 9.91E-01 9.97E-01 9.94E-01 9.40E-01 9.89E-01 9.98E-01

7.71E-03 2.07E-03 8.83E-03 1.21E-02 4.72E-03 2.55E-03

10 9.93E-01 9.98E-01 9.98E-01 9.37E-01 9.88E-01 9.98E-01

5.73E-03 1.31E-03 4.23E-03 9.92E-03 5.97E-03 2.21E-03

15 9.92E-01 9.98E-01 9.93E-01 9.34E-01 9.92E-01 9.40E-01

3.17E-02 1.90E-03 1.02E-02 1.38E-02 4.40E-03 2.65E-01

MaF12 5 7.73E-01 6.40E-01 7.40E-01 6.28E-01 7.25E-01 7.48E-01

1.29E-02 2.14E-01 2.72E-02 1.65E-01 1.11E-02 8.32E-03

8 8.38E-01 7.38E-01 7.41E-01 4.33E-01 8.02E-01 8.28E-01

2.96E-01 1.87E-01 2.07E-01 2.34E-01 1.24E-02 1.65E-02

10 9.05E-01 7.75E-01 8.59E-01 3.45E-01 8.30E-01 8.82E-01

3.26E-02 1.83E-01 2.01E-02 3.37E-01 2.30E-02 2.39E-02

15 9.14E-01 7.66E-01 8.75E-01 1.95E-01 8.29E-01 8.76E-01

1.60E-01 2.29E-01 1.67E-01 4.28E-01 7.45E-02 8.87E-02

MaF13 5 2.15E-01 2.60E-01 8.75E-01 2.65E-01 8.26E-02 2.14E-01

9.70E-02 5.09E-02 1.67E-01 2.11E-02 1.32E-01 3.71E-02

8 5.82E-02 1.38E-01 1.22E-01 9.29E-02 7.62E-02 9.82E-02

9.58E-02 2.10E-02 5.86E-02 1.09E-01 7.55E-02 1.21E-01

10 3.08E-02 1.17E-01 1.11E-01 7.81E-02 8.11E-02 7.53E-02
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Table 5 continued Prob. M ASMaOEA MaOEA-CS ANSGAIII MOEA-D RVEA* RSEA

1.53E-01 1.63E-02 4.36E-02 1.04E-01 1.57E-02 9.50E-02

15 2.17E-02 7.24E-02 2.31E-02 3.16E-02 6.13E-02 9.92E-03

9.75E-02 7.96E-02 8.96E-02 7.21E-02 1.59E-02 6.98E-02

MaF14 5 4.76E-01 6.02E-01 3.77E-01 1.93E-01 4.31E-01 2.73E-01

2.60E-01 6.24E-01 3.52E-01 4.47E-01 2.22E-01 4.12E-01

8 9.98E-02 3.46E-01 2.71E-02 8.53E-01 6.94E-01 8.41E-02

3.02E-01 4.77E-01 1.21E-01 1.10E-01 2.95E-01 1.61E-01

10 1.51E-02 6.00E-01 5.15E-02 8.39E-01 7.13E-01 3.22E-03

6.75E-02 4.75E-01 1.39E-01 4.46E-01 1.48E-01 1.44E-02

15 3.31E-01 7.02E-01 1.62E-02 1.43E-01 4.41E-01 1.85E-01

5.76E-01 3.59E-01 7.24E-02 2.32E-01 2.65E-01 2.25E-01

MaF15 5 9.02E-03 3.57E-02 9.56E-01 3.56E-02 2.16E-02 1.10E-04

1.30E-02 2.82E-02 1.68E-01 3.62E-03 1.06E-02 2.44E-04

8 2.14E-04 1.41E-04 0.00E+00 1.83E-04 8.22E-05 5.96E-11

5.86E-04 2.21E-04 0.00E+00 1.23E-04 4.87E-05 2.67E-10

10 1.04E-05 5.62E-06 0.00E+00 5.31E-06 7.94E-07 0.00E+00

2.03E-05 6.26E-06 0.00E+00 7.54E-06 1.46E-06 0.00E+00

15 9.38E-18 4.39E-11 1.15E-17 6.93E-11 3.48E-13 0.00E+00

3.12E-17 1.16E-10 5.16E-17 1.03E-10 6.42E-13 0.00E+00

5.1.1 Inverted generational distance

The IGD is a comprehensive performance index. It can
simultaneously evaluate the convergence, distribution, and
uniformity of a solution set. It is defined as follows:

IGD(A, Zef f ) = 1

|Zef f |
|Zef f |∑
i=1

|A|
min
j=1

||(zi − a j )||2 (13)

In (13), Zef f is a set of evenly distributed target points on
the real Pareto front. A is the final nondominated solution
set obtained by the evaluated algorithm. The disadvantage
of IGD is that we must know the real Pareto front of the
optimization problem in advance.

5.1.2 Hypervolume indicator

Let S be a nondominated solution set, S ∈ �; the refer-
ence point is denoted as Ref = (r1, r2, . . . , rm), where m
is the dimension of its target space. The hypervolume index
of the solution S is defined as the hypercube volume sur-
rounded by the target space in which all the point sets in S
and the reference point are located, expressed as HV (S) in
(14).

HV (S) = Leb(UX∈S[ f1(X), r1]× · · ·×[ fm(X), rm]) (14)

where Leb(S) represents the Lebesgue measure of the solu-
tion set S.

5.1.3 Choice of reference points

This section uses additional reference points. For any M-
objective test function, 10000 reference points are uniformly
sampled on the PF, and the final solution set is normalized
to 1.1 times the nadir point of the PF; the HV is calculated
by selecting the reference point Ref = (r1, r2, . . . , rm) =
(1, 1, . . . , 1).

For the 5-, 8-, 10-, and 15-target problems, the group
size is set as shown in Table 2, and the algorithm termina-
tion condition is the maximum evaluation function FEmax =
max{100000, 10000 ∗ D}, where D defines the number of
domain dimensions.

Table 6 Versatility of various methods on MaF8-15

Methods Scope of Problems Generalization Ability

ASMaOEA MaF8,9,11,12,15 5/8 = 62.5%

MaOEA-CS MaF9,11,13,14 4/8 = 50.0%

ANSGAIII MaF13,15 2/8 = 25.0%

MOEA-D MaF9,14,15 3/8 = 37.5%

RVEA* MaF14 1/8 = 12.5%

RSEA MaF8,10,11 3/8 = 37.5%
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Table 7 Significance tests of six
variants

ASMaOEA MaOEA-CS ANSGAIII MOEA-D RVEA* RSEA

ASMaOEA B − 28 36 44 40 36

vs. E − 17 17 9 9 11

W − 15 7 7 11 13

5.2 Comparative experiment and analysis

The performance of ASMaOEA is compared with that of 5
well-known algorithms (MaOEA-CS [37], ANSGAIII [24],
MOEA-D [38], RVEA* [27] and RSEA [39]) on 7 test
problems involving MaF1-7, and the average HV values are
recorded in Table 3.

Due to the versatility of these various methods, we care-
fully analysed the data in Table 3. The 14 bold numbers
in the third column of Table 3 are distributed among the
five problems MaF1, 2, 5, 6, and 7, which means that
ASMaOEA is sensitive to the validity of these problems.
Therefore, its generalization ability is approximately equal to
5/7 = 71.429%. By comparison with the other algorithms,
as shown in Table 4, we see that ASMaOEA outperforms
them in terms of versatility.

Encouragingly, the greater the number of objectives is,
the more reliable the performance of ASMaOEA. This may
render it suitable for solving problems involving the high-
dimensional uncertainty optimization of wireless cognitive
networks. However, the stability and generalizability of
ASMaOEA need to be further investigated experimentally
on MaF3-4.

To fully understand the performance and characteristics of
each algorithm, Table 5 lists the average HVs and standard
deviations (SDs) of the MaF8-15 test functions on problems
with 5-15 objectives for six relevant variants (ASMaOEA,
MaOEA-CS, ANSGAIII, MOEA-D, RVEA* and RSEA).

The 11 bold numbers in the third column of Table 5
are distributed among five problems, which shows that
ASMaOEAis valid in thesefivebenchmark functions (MaF8,

9, 11, 12, and 15); that is, it is generalizable and robust
in approximately 5/8 = 62.5% of the cases. Table 6 lists
the details about the versatility of the various algorithms on
MaF8-15.

In Table 6, the MaOEA-CS and RSEA methods each
achieve good performance on five benchmark functions
(MaF8, 9, 11, 13, and 14 and MaF8, 10, 11, 14, and 15,
respectively). As with MOEA-D on MaF9, MaF13 and
MaF14, RVEA* has better effectiveness in solving MaF14;
additionally, ANSGAIII performs well on MaF12 with 10
objectives, MaF13 with 5 objectives and MaF15 with 15
objectives.

Summarizing the performance of ASMaOEA on the
MaF1-15 benchmark functions, combined with the charac-
teristics of each benchmark function, we find that it has
excellent performance in solving discrete, degraded and
nonuniform problems (MaF5, MaF6, MaF8, MaF9, MaF11,
MaF12, and MaF15) , which verifies that the application of
thePareto frontier adaptive detectionmodule of the algorithm
is reliable. However, the performance of ASMaOEA in deal-
ing with multipeak problems (MaF3, MaF4, and MaF14)
is relatively weak, which is a direction that we can opti-
mize in the future. Furthermore, although ASMaOEA does
not exhibit the best stability on several benchmark func-
tions, the standard deviation of HV significantly decreases
as the dimensionality of the problem increases. For instance,
on MaF15, as the objective dimensionality increases from
5 to 15, the SD decreases from 1.30E-02 to 3.12E-17,
reaching the optimal value. These findings demonstrate the
potential of our algorithm for addressing high-dimensional
problems.

Fig. 5 The average inverted
generational distance (IGD) for
different objectives with
different algorithms
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Fig. 6 The average inverted
generational distance (IGD)
values on MaF1-15 for different
algorithms

5.3 Statistical Significance Tests

This subsection describes the statistical significance of
the data of the 15 multiobjective optimization functions
MaF1-15 for each of the 4 categories (5-, 8-, 10- and
15-objective) in a total of 60 independent comparison exper-
iments. A Wilcoxon rank sum test with significance value
0.05 was performed for each pair of algorithms.

Table 7 shows the results of the significance test of
ASMaOEA compared with other variants. “B” (“W”) indicates
that Algorithm 1 is significantly superior (inferior) to Algo-
rithm 2, and “E” indicates that there is no statistically
significant difference between Algorithm 1 andAlgorithm 2.

In Table 7, taking the fourth column of MaOEA-CS as
an example, in 60 experiments comparing it with MaOEA-
CS, ASMaOEA won 28 rounds, tied in 17 rounds, lost 15
rounds, and achieved 13 wins in terms of performance. The
fifth column shows that ASMaOEA won 36 rounds, tied 17
rounds, and lost seven rounds against ANSGAIII.

5.4 Average Score of IGD

To show the overall performance of each algorithm, the aver-
age value of the IGD was used to rank them.

Figure 5 shows the average inverted generational dis-
tance in the 5-, 8-, 10- and 15-objective problems for
the ASMaOEA, MaOEA-CS, ANSGAIII, NUM-θ -DEA,
MOEA-D, RVEA* and RSEA algorithms. The average IGD
of ASMaOEA on the problems with 5-15 objectives is the
smallest, indicating that it is robust against these problems.

Table 8 The three kinds of preference scenarios

Weights of scenarios
Object Emergency High-speed Low-power

fbe 0.8 0.1 0.1

f p 0.1 0.1 0.8

fthr . 0.1 0.8 0.1

Its IGD had a prominent value of less than 0.5 for 15 objec-
tives, and it maintained a value no greater than one in all
cases, except for 10-objective problems. Figure 6 shows the
average values of the seven algorithms in terms of the IGD of
the test function (MaF1-15) and underscores the impressive
performance of ASMaOEA in most cases.

According to the HV and IGD values, no single method
was absolutely superior. Comparison is a detailed task and
involves many factors. However, according to the signifi-
cance test and performance score, the above experimental
results show that the proposed ASMaOEA has a significant
advantage over the other methods tested in that it avoids the
degradation of reference points and solves high-dimensional
problems.

6 Simulation and application

This section explores the effects ofASMaOEAand its param-
eters proposed in the previous section and compares its

Fig. 7 The mean HV varying during the evaluations
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Fig. 8 Distribution of ASMaOEA solutions on CRF1

performance with those of MaOEA-CS, ANSGAIII, NUM-
θ -DEA, MOEA-D, RVEA* and RSEA in problem CRF1 for
the Pareto front distribution without any preference.

There are three typical preference scenarios for cogni-
tive radio decision engine simulations that require real-time
parameter optimization: 1) an emergency scenario requiring
high reliability, 2) a low-power scenario with an energy-
saving mode, and 3) a high-throughput scenario requiring
a high-efficiency mode. In this section, we first apply
ASMaOEA to the CRF1 problem and then choose the solu-
tions from the Pareto fronts based on the scenarios.

Table 8 shows the weights corresponding to the three pre-
ferred scenarios in a running stage andgives the configuration
of the relevant parameters.

6.1 Initialization

Figure 7 shows that the HV of ASMaOEA changes with
the number of evaluations. When k = 5, the HV tends to
converge and reach a maximum; therefore, the condition k =
5 is reasonable, and the reference point of HV r = [1 1 1].

In the Gaussian white noise channel, the transmit power
ranges from 0 to 25.2 dBm, and its interval is set to 0.4 dBm.
The modulation scheme can use any of four types (BPSK,
QPSK, 16QAM or 64QAM) and maintain the symbol rate
Rs = 1 Mbps. The optimization of formula CRF1 is a 3-
objective problem, so the population size N is set to 91. The
termination condition is the maximum evaluation FEmax =
10000 ∗ k ∗ cl , where cl is the code length of the subcarrier,
K ∈ {1, 2, 3, 4, 5}.

Because the decision-making domain is a binary code, the
bitwise mutation may determine whether one or two points
are used as the crossover operator; Fig. 8a and b show the
distributions of the Pareto front solutions and their HVs,
respectively.We can see that the two-point crossover operator
is more suitable than the one-point crossover operator. When
the mutation probability is pm = 1/D, D = 256 represents
the individual encoding length.

6.2 Cognitive Decision Engine Optimization

The Pareto solution set of the CRF1 problem was solved by
ASMaOEA and compared with the results of MaOEA-CS,

Fig. 9 Variation in HV with
respect to CRF1 for each
algorithm
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Table 9 Comparison of the mean HV and standard deviation on CRM1
obtained by the seven algorithms

Algorithm HV Mean HV Standard Deviation

MaOEA-CS 9.193E-01 1.536E-02

ASMaOEA 9.530E-01 1.977E-03

ANSGAIII 9.176E-01 2.861E-02

NUM-θ -DEA 9.121E-01 9.590E-03

MOEA-D 9.314E-01 3.895E-03

RVEA* 9.058E-01 8.390E-03

RSEA 9.317E-01 1.067E-02

The bold numbers are the optimal values for their respective columns

ANSGAIII, NUM-θ -DEA, MOEA-D, RVEA* and RSEA.
Since the Pareto front of the problem to be optimized is
unknown, only HV values can be used to evaluate the con-
vergence and diversity of the Pareto solutions, as shown in
Fig. 9.

Figure 9 shows the change in the HV of ASMaOEA and
the other algorithms with the number of evaluations, where
the ASMaOEA HV converges most rapidly at the beginning
and remains basically unchanged at the later stage. TheHVof
the MaOEA-CS algorithm varies with the number of evalua-
tions. After 15,000 iterations, ASMaOEA always maintains
its leading edge. Notably, its HV remains above 0.95. The
other 5 variants also achieved good scores, above 0.90, after
15,000 iterations.

Table 9 shows the HV mean and standard deviation on
CRM1 obtained by ASMaOEA and the other six algorithms.
In terms of the mean HV (9.530E-01) and standard deviation
(1.977E-03), ASMaOEA achieved the best performance on
the CRF1 problem, while the performance of MaOEA-CS
was in the middle.

Figures 8b and 10a-f show the distribution of the Pareto
fronts of ASMaOEA, MaOEA-CS, ANSGAIII, NUM-θ -
DEA, MOEA-D, RSEA and RVEA* on CRF1 and their
HV values, respectively. The Pareto fronts obtained by
ASMaOEA and RSEA on CRF1 are very strong in search-
ing the target area, and they can reach approximately 0.8 for
fthroughput , which is a promising value. MOEA-D is char-
acterized by a very even distribution of solutions, while the
diversity and convergence of the NUM-θ -DEA and ANS-
GAIII solutions are at the same level.

6.3 Comparisons of several algorithms on CRF1

As shown in Table 10, for the high-speed scenarios, both
ASMaOEA and MOEA-D yielded a minimum power of 0.4
dBm, and the average power of MaOEA-CS was 0.52 dBm
while guaranteeing a maximum throughput of 6 Mbps; all
the algorithms chose 64QAM as the encoding method.

Table 10 shows the distribution of the data rate (Mbps/s),
transmission power, and BER in each channel obtained via
ASMaOEA in three CRF1 scenarios. The overall BER of the

Fig. 10 Pareto fronts of MaOEA-CS, ANSGAIII, NUM-θ-DEA, MOEA-D, RSEA and RVEA* on CRF1 and their HVs
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Table 10 The mean of fbe,
f ∗
p (dBm), and fthr .(Mbps) for

MaOEA-CS, ASMaOEA,
ANSGAIII, NUMθ -DEA,
MOEA-D, RVEA* and RSEA
in three typical CRF1 scenarios

Algorithm Obj./Scenario Emergency High-speed Low-power

fbe 7.96E-06 4.59E-02 4.59E-02

MaOEA-CS f p 11 0.52 0.52

fthr . 5.59 6.00 6.00

fbe 1.10E-14 4.68E-02 4.68E-02

ASMaOEA f p 15.79 0.4 0.4

fthr . 5.98 6.00 6.00

fbe 3.95E-06 1.54E-02 2.58E-02

ANSGAIII f p 10.04 3.94 1.26

fthr . 5.53 6.00 5.06

fbe 1.70E-04 4.58E-02 4.58E-02

NUM-θ-DEA f p 6.70 0.51 0.51

fthr . 5.19 6.00 6.00

fbe 2.07E-05 4.68E-02 4.68E-02

MOEA-D f p 8.53 0.4 0.4

fthr . 5.82 6.00 6.00

fbe 1.00E-03 3.97E-02 3.54E-02

RVEA* f p 6.37 0.99 0.46

fthr . 5.69 6.00 5.69

fbe 1.95E-09 4.31E-02 4.31E-02

RSEA f p 17.57 0.79 0.793

fthr . 5.81 6.00 6.00

The bold numbers are the optimal values for their respective columns

channel was 0.01. In general, ASMaOEA had the best strate-
gies for the three scenarios, and its average BER remained
under 0.0001. Faced with complex requirements, its opti-
mization results can ensure a lower error rate and promising
system throughput.

7 Conclusion

The cognitive engine has a very large decision-making space.
The goals of theminimumbit error rate,minimumpower, and
maximum system throughput conflict, yielding amultiobjec-
tive optimization problem. This study explored a strategy
to estimate the eigenvalues of the Pareto front efficiently
so that θ -DEA can be applied to uniform, degenerate, and
discrete Pareto fronts simultaneously. After studying the
parental selection and environment selection mechanisms
in prevalent multiobjective algorithms, we propose an algo-
rithm called ASMaOEA. ASMaOEA is effective according
to the results of a significance test and other performance
evaluations. However, ASMaOEA exhibits suboptimal per-
formance in terms of stability, particularly when the number
of objectives is low. We will focus on enhancing its stabil-
ity in future work. Moreover, in the application of cognitive
radio resource allocation, we consider only three dimensions
of the objectives. More variables will be used in our future

work, such as the coding rate, packet length, time-division
duplexing, bandwidth, and other factors of decision making.
In the target domain, we plan to further minimize interfer-
ence and maximize spectral efficiency to render the model
suitable for higher-dimensionality problems.
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