An Ontology in OWL for Legal
Case-based Reasoning

Adam WYNER!
Department of Computer Science, University of Liverponetpool, UK.

Abstract.

In this paper, we present an ontology in OWL for Legal CassetiaReasoning.
We outline some of the main motivations for providing an dogy in OWL, then
discuss Legal Case-based Reasoning along the lines of CA@I@ieen a method
in which the factors of cases are compared and partitionecorology in OWL,
developed in the Protege ontology editor, is presented.oft@ogy is useful as a
formal conceptualisation of what one reasons with in Legaécbased Reasoning.
We claim that as legal cases are the input to Legal Case-esesbning, the form
in which cases are modelled ought to conditioned by the @& powhich they are
put.

Keywords.
OWL, Ontology, Legal reasoning, Legal cases, Case-basatnang

Introduction

In this paper, we present an ontology in OWL for legal cassedaeasoning (LCBR),
where one reasons from cases that are legal precedentstP@sgjue for a decision
for a plaintiff (P) or defendent (D) in a current case (CC).iWlntologies of the law
and for legal reasoning are under active development @),dnd there are references
to ontologies for LCBR (cf. [8] and [17]), there is little wiowhich explicitly presents
an ontology for LCBR. Moreover, we are not aware of LCBR oogi¢s which are de-
signed to be web-based and as such support legal decisi@ms/sver the internet. Our
ontology in theOntology Web Languad®WL) is tailored to LCBR and for deployment
over the web.

In the course of modelling LCBR, we necessarily model legakes. Arguably the
raison d’etreof modelling legal cases is to provide the instances on wtudtarry out
LCBR (see [14] for arelated point). While there may be mameass of cases which can
be modelled, it is questionable that they are relevant gritey are used by some system
of LCBR. A similar point can be made with respect to inforroatietrieval of cases [17].
Indeed, we would argue that to model an aspect of cases igly thmet there is such a
LCBR system, and it ought to be provided. While we do not adersihis issue in its full

1Correspond to: Department of Computer Science, Univermsityiverpool, L69 3BX, UK. Tel.: +44
(0)151 795 4294; Fax: +44 (0)151 795 4235; E-mail: azwynem@iool.ac.uk. During the writing of this
paper, the author was supported by the Estrella Project ELinepean project for Standardized Transparent
Representations in order to Extend Legal Accessibilitytrgtig, 1ST-2004-027655)).

complexity, our paper is a novel contribution to this digias, using a relatively simple
model of cases in a particular system of LCBR.

As an ontology in OWL for LCBR is novel, we review basic motieas for an on-
tology in general and an ontology in OWL in particular. Weelflyi refer to the key works
in LCBR as well as present the particular approach to LCBR fd6which this is the
ontology. We then present the ontology, followed by somerutvork and conclusions.
It should be emphasised that thisisontology for LCBR, and there may be other useful
ontologies relative to other analyses of LCBR, though sofrithe components of our
proposed ontology may be common to all.

1. Legal Ontologiesand Ontology Web L anguage (OWL)

In this section, we outline some of the main reasons for pliogian ontology in OWL
and using the ontology development téubtege([15] and [10]), with particular refer-
ence to issues related to ontologies in the legal domain [5].

An ontology is an explicit, formal, and general specificatad a conceptualisation
of the objects and structural relations between those bisjecgiven domain. It defines
a common vocabulary and organization of information whiagh be shared, tested, and
modified by researchers. An ontology makes an assumptigigigxseparates domain
knowledge (what are the objects?) from operational knogdgtiow do we use the ob-
jects?), has a clear structure which supports analysiso$e ¢o the expert’s intuitions
that underwrite the formal ontology, and identifies strugkwinits which can be reused
in other ontologies. In addition, the limitations of the ology are narrowly proscribed;
the model representsddice of a larger domain and limits the reasoning which can be
done with respect to it. As a slice of a larger domain, onet®logy can be used as a
module along with ontologies of other domains or as a subbogyoof a more generic
ontology.

In providing an ontology, one givedassesof objects along with their properties
such as the features, attributes, and restrictions thdy appghe class. One specifies
subclassesvhich inherit properties from the superclass while beinghfer defined in
their particular properties. An ontology describes theggalhclasses; given instances of
the classes, we havekaowledge baséOne then applies rules such@sduction rules
to elements of the knowledge base.

We have developed our ontology in the Ontology Web Langu@ygL() using the
Protegeontology editor. OWL provides a machine readable ontolodpmctv can then
be processed by applications; it is designed to underpieldpment of theSemantic
Web OWL provides a range dfavours which are distinct in terms of the richness of
the semantic information; each subsort is associated wittgeee of logical expressive-
ness and associated computational properties. Howevenfgurposes, OWL Lite has
been sufficient. Th&rotegeontology editing tool supports systematic development of
an ontology. More importantlprotegeprovides links to reasoners such that one can test
one’s proposed ontology faonsistencys well as generateferred classesconsistency
means that there is a model in which the classes can all entietied and there are no
instances with inconsistent properties; ihkerred classeare those which are consistent
with the ontology but which one has not explicitly stated #mat may be desireable or
undesireable classes. We have tested our ontology witlPe¢Het-1.3reasoner, which

found the ontology to be consistent. Finalrptegeprovides plugins to graphical tools
which represent the ontology, which facilitates underditagnand communication of the
model.

As our domain of application is LCBR, we want an ontology whiepresents those
elements of LCBR such dsatures casesandcase comparision€ur ontology is the
conceptualisation of the objects used in the argument sebdon LCBR in [16]. The
schemes are used to reason with case comparisons in ordevideexplanations which
justify why a current undecided case ought to be decidedvouiaof one party or the
other based on comparable precedents. As the ontology ibasdd and provided in the
context of an open-source European Project (ESTRELLA)pbject is to allow public
use and development of the ontology. In the legal domainintip@rtance of ontology
development is relatively recent, as it has became cleathiibapplication of legal rules
is often contingent on the satisfaction of a particular defin and as a range of problems
with rule-based systems emerged [5, p.5, 10-11]. Our paenovel contribution to this
growing body of work.

2. Background on LCBR

There are a variety of approaches to implementations of LG®#ginning with HYPO
[2], and subsequently developing into CATO [1], IBP [7], CABET [12], and BankXX
[13]. More theoretical work on LCBR appears in [11], [3], dddl For the purposes of
our ontology, we have focussed on the CATO system [1] to whiethave applied the
case comparison method of [3]. The key object of the ontoledlge case comparison.
While there are several components that go into the congiruaf the case comparison,
the method itself which generates case comparisons igleutst scope of the ontology,
though the requirements of the method inform the constroaif the ontology. Thus, to
understand the design of the ontology, we outline the elésrafithe method in this sec-
tion, focussing primarily on the partitioning of the casettas and the association with
the parties of a case. We also provide some examples. ThHaeasgmn we have adopted
this method is for clarity and familiarity; as ontologies@WL for other approaches
LCBR are developed, presumably they woulddligned related and common elements
abstractednto antiberontology in OWL for LCBR.

CATO [1] represents LCBR using factors, cases, and padieages (i.e. P and D).
We focus on the factors and how we use them in comparing dasefg other aspects
for further discussion in the ontology. The factors are éhi@atures of a case which are
used in making a decision in favour of one of the parties toctdme. In addition to a
name (which gives an idea of what the factor is about) and gdEacilitate reference),
the factors are associated with that party of the case whiehdctor favours, either a
D or a P. As in CATO, the factors are organized inttaetor hierarchyso that one can
reason about cases usingabstract factor however, motivation for and use of the factor
hierarchy is not relevant to the presentation of the ontp[@§].

To illustrate, we use some of the factors, cases, and caspaz@ons discussed in
[16]. Our objective is to give a sense of the method to helpeustdnd the ontology rather
than to discuss the outcome of the method in every instancEable 1, we list factors,
the side the factor favours, and the factor parent. The Ftgives a handy label to the
factor, while the Factor Name gives a brief idea what theofaistabout. To say that the

factor favours a D or P is to claim that the factor, if presara icase, favours a decision
being made for that side. For example, if a case has F1, tlaataistor in favour of the
case being decided for D. However, whether and how strongrécular factor favours
the decision for a party in a current case depends on thefattters of the case and how
the current case factors counterbalance with the factcagpoécedent case.

Table 1. Factors

Factor ID Factor Name Side | Parent

F1 Disclosure in Negotiations D Efforts to Maintain Secrecy
F2 Bribed Employee P Questionable Means

F10 Secrets Disclosed to Outsiders D Info Known and Available
F12 Outsider DisclosureRestriced P Info Known and Available
F15 Unique Product P Valuable Product

F25 Information Reverse Engineered D Questionable Means

F26 Used Deception P Questionable Means

Table 2 provides hypothetical cases which are variationglason v. Jack Daniels
in which Jack Daniels, a major whiskey manufacturer, is D in a case whdeason a
private bar owner, is P; P is sueing D for damages, claimingol2 $is secret cocktail
recipe and used it in a promotion. Each case contains faatoich favour either P (P
Factors) or D (D Factors). For example, the cdagilla has the factotUnique Product
which favours P since P claims his product was unique, andattter Disclosure in
Negotiationswhich favours D since D claims the recipe was disclosed gotiations.
The other example cases can be understood in a similar manner

Turning to the case comparisons, we take as CC a case in wiéabutcome is
undecidedand compare it to a PC in which tlmitcome is decided~or the moment,
we discuss only those PCs decided for P since those whichdeeided for D can be
determined in a similar fashion. Reasoning to a decisioheaC proceeds on the basis
of analogy with the PC: as the factors in the PC led to a datisidavour of P and the
CC is analogous to the PC, so the CC should also be decideddnrfaf P. However,
the analogy depends on a counterbalancing interplay batiesfactors, the side each
factor favours, and the side favoured in the decision in e clarify this, we next
consider the partition of the factors.

Suppose that we compare the factors of a CC and a previousigedkprecedent
case (PCi). The question is whether on the basis of the casgpare should decide CC
for the same party (P or D) as PCi was decided. Given the faofogach case, we form
partitions of the factors relative to the cases and the side which theraéavour. For
instance, in P3, we find those factors in CC which are not inddiwhich favour P. P1

Table2. Summary of Cases in Example

Case Name| P Factors| D Factors

Vanilla F15 F1
Bribe F2, F15 F1
Deceit F15,F26 | F1
Restrict F12, F15 | F1, F10

Reverse F15 F1, F25

Table 3. Partitions of Factors in CC and PCi

Partition | Biases Decision For | Factors Support

P1 P P factors in both CC and PCi.
P2 P D factors in both CC and PCi.
P3 P P factors in CC not in PCi.

P4 P D factors in PCi not in CC.

P5 D D factors in CC not in PCi.

P6 P P factors in PCi not in CC.

P7 U Factors not in either CC or PCi.

and P2 represent what is similar in the cases. We assumeRIGitzan be a precedent for
a CC only so long as these patrtitions are not empty. In Table3)ave seven partitions
since we compare the intersection of the sets of factorwel® which side is favoured

in CC or PCi. In the Table, we represent how the factors suppparty and how that

partition biases the decision in CC. We discuss each part.

In the ontology, we say that each partition of facteupportone side or the other of
the case; in Table 3, we see that under the column labE#letbrs SupportP1 supports
P, P2 supports D, and so on. However, we must clearly disshgoetween this and
how the partition is used in making a decision in the CC for gaiast a sidewhich
we term thepartition bias in CCand which is presented in the column labelRidses
Decision For Factors Supporidentifies thesideused for the set, whilBiases Decision
For is based orthe decision in the precedent cag®ecall that we are examining for the
moment only PCs which were decided for P; case comparisoithwise PCs decided
for D follow very similar reasoning, but give rise to differtepatterns. Suppose a case
comparison where we have a non-empty P3, which is the set attert in CC that
are not in PCi. Here the factors support P. We say thap#rgtion biases the decision
in favour of Pbecause CC contains more factors for P than PCi, which wasletbc
for P. In contrast, though a non-empty P4 partition Rastors Supporfor D, it biases
the decision in favour of P since this partition specified tha CC has stricthfewer
D factors; since PC was decided in favour of P witbre D factors than CC, then CC
should be decided in favour of P. In P5, where therenameeD factors in CC than PCi,
the decision is biases in CC towards D. In contrast, P6 biagedecision in CC towards
P since while there are more P factors in PCi for P than in C&selP factors which the
cases do share may still be sufficient to decide in favour of C. The partitions in
Table 3 represent these biases in the second column. Pacaltéderations apply where
we use PCs that have been decided in favour of D. Howeverrésepce of the partition
only biases the decision and does not decide it since theideadepends on the content
of the other partitions and how we reason with them, whichuiside the scope of this
paper (see [16]).

Using these factors, cases, and case comparsion methodnagravide selected
case comparisons as in Table 4. We see in the case compReéstrict/Vanilla where
Restrictis the current case anénillais the PC, thaVanillacan be used as a PC (P1 and
P2 are not empty), while P3 are P factors in favour of decitliregcurrent case for P in
Restrict but P5 are D factors in favour of deciding the current cas®folrhe ontology
does not consider how these partitions are weighed in cotoiaglecision on the CC.

Table 4. Selected Case Comparisons

CC/PCi P1L | P2 | P3| P4 | P5 | P6
Bribe/Vanilla F15| F1 | F2 | - - -
Vanilla/Reverse F15| F1 | - F25| - -
Deceit/Bribe F15| F1 | F26]| - - F2
Restrict/Vanilla Fi15| F1 | F12| - F10| -

3. LCBR Ontology in OWL

The LCBR ontology has six main classes, which may have their subclasses. The
main classes and their subclasses are mutually disjointligéeiss each of these classes
and their properties and relations. Each class may be ceatpdf subclasses and have
asserted conditions, which relate instances of one clagsstances of another class.
Subclasses inherit the conditions which hold of every marabthe superclass, but may
otherwise be distinguished according to other conditigves start with the less complex
classes, then work up to the more complex classes which esgérnipler classes. All the
classes and subclasses are mutually disjoint.

3.1. Names

We have a class oNanes which has four subclassdzact or | D, Fact or Nane,
CaseConpari sonl D, andCasel D. Fact or | D refers to a particular factor, while
Fact or Name gives more informative content. As an instance, if we havaat or Nane
such asPublic Disclosure meaning that this is a factor in some case, we would give it
aFact or | Dsuch ag=12 in order to abbreviate a reference to it. Ev€lgse has a
Casel D, which is just some way to refer to the particular cases. I8ngj when we
come to makingase comparisonsetween a CC and a PC, then each comparison has a
CaseConpari sonl Dto label it. At the bottom level, classes are said to hiagtances

of that class. We read Figure 1 from the bottom up as, for eartie class of instances
which areFact or | Ds is a subclass of the classanes. The subclasses are mutually
disjoint, meaning there can be no instances whiclbateaFact or | Dand aCasel D.

Figure 1. Name Class

Names

FactorID FactorName CaseComparisonl CaselD

3.2. Parties

In Figure 2, we have the class®ér t y with three subclassé¥ ai nti f f , Def endant ,
andUnknown. The first two are cleatUnknown is needed for CCs, which are cases
that have not yet been decided in for P or D.

Figure 2. Party Class

Party
/is’a sa\‘sﬁ
Plaintiff Defendant Unknown

3.3. Factors

In Figure 3, we have thEact or class, asserted conditions which hold for some fac-
tors, and three subclasses. We read from the factor clasgifth row) to the prop-
erty and then an instance of some other class (in some othgr o this figure, we
include all the conditions that are found feomeor all subclasses as we specify be-
low as given in the ontology in OWL. For example, every ins&arof a Fact or
must have a@actor| D, a Fact or Nanme as well as aFact or Si de which is an
instance of soméarty. The three subclassd®ot Fact or, M dFact or s, and
Leaf Fact or s are indicated with thé sa relation. Subclasses inherit the conditions
which hold of the superclass, though additional conditionsestrictions on inherited
conditions may apply. We represent tlaetor hierarchywith the Fact or Chi | dr en
andFact or Par ent properties. ThdRoot Fact or has an unknowrract or Si de
and some factors asact or Chi | dr en. The Leaf Fact or s have some factors as
Fact or Par ent and no factors aSact or Chi | dr en. TheM dFact or s have some
factors af~act or Par ent and some factors @act or Chi dl ren.

Figure 3. Factor Class

Factors

hasFactorChiIdrer‘ Instance* | Factors

hasFactorSidel Instance | Party

hasFactorIDl Instance | FactorlD

hasFactorParentl Instancel Factors

hasFactorNam4 Instancel FactorName

isa sa isa

RootFactor MidFactors LeafFactors

3.4. Cases

In Figure 4, we have a clas€ase and two subclasse®r ecedent Case and
Cur r ent Case. Every case has all the properties, so every case@GasaDef endant
which is aDef endant party, aCasePl ai nti ff which is aPl ai ntiff party,
a CaseDeci si onFor some element oParty, a set ofCaseFactors, and a
Casel D. The subclas€ur r ent Case has aCaseDeci si onFor the Unknown
party, while the subclasBr ecedent Case has aCaseDeci si onFor either the
Def endant orthePl ai nti ff party, but not thddnknown party.

Figure4. Case Class

Case

hasCaseDefendar{t Instancel Defendant

hasCaseDecisionFo‘ Instancel Party

hasCasePlaintiff| Instance | Plaintiff

hasCaseFactors| Instance | Factors

hasCaselD | Instance | CaselD

isa {sa

CurrentCase PrecedentCas

3.5. Partitions

In Figure 5, we have thdPartition class which has two subclass€se-
ConparisonPl aintiffPartitionsandCaseConpari sonDef endant Part -

i tions. These latter two subclasses each have subclasses, whidiseuss further
below. Every instance dPartiti on has aPartiti onFactors which is some
Factors,aPartitionBi asl nCCwhichis someParty,and aPartiti onOf -
Fact or sSupport whichis somdPar t y. Each of these properties is related to the dis-
cussion in Section 2 and further specified when we discussithelassefarti ti on-
Fact or s is just that set of factors created by that particular casepasison of factors.
The other two properties give sides as stipulated below.

Figure5. Partition Class

Partitions

hasPartitionFactors‘ Instance‘ Factors

hasPartitionBiasInCC‘ Instance‘ Party

hasPartitionOfFactorsSuppohlnstance‘ Party

isa isa

CaseComparisionPlaintiffPartitions | CaseComparisonDefendantPartitigns

Each ofCaseConpari sonPl aintiffPartiti onsandCaseConpari son-
Def endant Parti ti ons have seven disjoint subclasses, each of which vary from
the others in terms of the instantiations of the propeifi@st i t i onBi asl nCC and
PartitionOf Fact or sSupport . We present this as a Table 5.

3.6. Case Comparisons

Our final class appears in Figure 6. It has no subclasses ang dn all the other classes.
There is aCaseConpari sonDeci si onFor someParty (which presumably can
beUnknown if no decision is made), @aseConpari sonl D, aCurr ent Case and

Pr ecedent Case, which are the cases that are used in making the case coopaaisl
finally CaseConpari sonPartiti ons, which are the partitions of factors generated
by comparing the current case and PC.

Table 5. Partitions which Bias a Decision and Support a Side

PartitionBiasInCC PartitionOfFactorsSuppor
Plaintiff Partitions
1 Plaintiff Plaintiff
2 Plaintiff Defendant
3 Plaintiff Plaintiff
4 Plaintiff Defendant
5 Defendant Defendant
6 Plaintiff Plaintiff
7 Unknown Unknown
Defendant Partitions
1 Defendant Plaintiff
2 Defendant Defendant
3 Plaintiff Plaintiff
4 Plaintiff Defendant
5 Defendant Defendant
6 Defendant Plaintiff
7 Unknown Unknown

Figure 6. Case Comparison Class

CaseComparison

hasCaseComparisonDecisionF4r Instance | Party

hasCaseComparisonPartitior{s Instance | Partitions

hasCurrentCase | Instance | Case

hasPrecedentCase| Instance | Case

hasCaseComparisonl[i) Instance| CaseComparisonl[

4. FutureWork

For future work, we intend to examine the issue raised attisetabout the relationship
between modelling cases and LCBR. We would continue to usalagy develop to
clarify the problems, comparing and contrasting altexeathodels, as well as making
generic ontologies for cases and LCBR. Furthermore, we teardnsider how to extend
the method of case comparison beyond the legal domain to Bthiges in case-based
reasoning.

5. Conclusion

We have provided a ontology in OWL for LCBR. It contributesitmderstanding the rela-
tionship between modelling LCBR and modelling cases. We Inaade progress towards
several of the objectives outlined in [5]. Domain knowledge. the ontology) is distin-
guished from the rules which apply to them found in [16]. @an explicit, formal, and
general conceptualisation of the LCBR domain, we have aelemderstanding of the

elements and properties. The faults of the conceptualisatiould be easier to identify;
one can easily compare and contrast this ontology withredtares expressed in the same
language. The model is easy to maintain, develop, and réusealso very accessible
to the legal expert who is not familiar with formal modelliag familiar structures and
relationships are apparent. Furthermore, one can askiguestout the model that are
intuitive. We have also narrowly constrained our model tosthobjects most directly
relevant to LCBR. In addition to these longstanding objesdj the ontology is provided
in OWL, so can be publically available and used as the basis of aupékguage. Using
Protegeto develop the language, we can use the reasoning facil@iekeck that our
model is consistent and to generate inferred classes.

References

[1] Vincent Aleven. Teaching case-based argumentation through a model andmgganiPhD thesis, Uni-
versity of Pittsburgh, 1997.

[2] Kevin Ashley. Modeling Legal Argument: Reasoning with Cases and Hypiotilet Bradford
Books/MIT Press, Cambridge, MA, 1990.

[3] Trevor Bench-Capon. Arguing with cases. In A. Oskamplgtealitors,JURIX 1997 pages 85-100,
Nijmegen, 1997. Gerard Noodt Instituut.

[4] Trevor Bench-Capon and Giovanni Sartor. A model of legakoning with cases incorporating theories
and valuesArtif. Intell., 150(1-2):97-143, 2003.

[5] Trevor J.M. Bench-Capon and Peter R.S. Visser. Deep tpdetologies and legal knowledge based
systems. In.egal Knowledge Based Systems. JURIX 1996: The Nineth AGonéerence.pages 3—-14.
Tilburg University Press, 1996.

[6] Joost Breuker et al. Ontologies for legal informatiomvé®g and knowledge management. In John
Horty, Aspassia Daskalopulu, and Radboud Winkels, editoegal Knowledge and Information Sys-
tems: Proceedings of Jurix 200gages 73-82. |I0S Press, 2002.

[7] Stefanie Briininghaus and Kevin D. Ashley. Generatimgl@rguments and predictions from case texts.
In ICAIL 2005 pages 65-74, New York, NY, USA, 2005. ACM Press.

[8] John Henderson and Trevor Bench-Capon. Dynamic argtgmiera case law domain. IICAIL '01:
Proceedings of the 8th international conference on Aréfigitelligence and lawpages 60-69, New
York, NY, USA, 2001. ACM Press.

[9] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, aneé¥dnder Boer. The Ikif core ontology of basic
legal concepts. Ihegal Ontologies and Atrtificial Intelligence Techniqu&anford University, Palo
Alto, CA, USA, June 2007.

[10] Natalya Noy and Deborah McGuinness. Ontology develpini01: A guide to creating your first
ontology. Technical report, Standford University, 2000.

[11] Henry Prakken and Giovanni Sartor. A dialectical modhssessing conflicting arguments in legal
reasoning Artificial Intelligence and Law4(3-4):331-368, 1996.

[12] Edwina L. Rissland and David B. Skalak. Cabaret: ruteripretation in a hybrid architecturdnt. J.
Man-Mach. Stud.34(6):839-887, 1991.

[13] Edwina L. Rissland, David B. Skalak, and M. Timur Friegim Bankxx: Supporting legal arguments
through heuristic retrievalArtificial Intelligence and Law4(1):1-71, 1996.

[14] Bram Roth and Bart Verheij. Cases and dialectical arguis) an approach to case-based reasoning. In
R. Meersman, Z. Tari, and A. Corsaro, editds) the Move to Meaningful Internet Systems 2004: OTM
2004 Workshops. WORM’'04: The Second International WogksimRegulatory Ontologiesvolume
Volume 3292 ofLecture Notes in Computer Sciengages 634—-651, Heidelberg, 2004. Springer.

[15] M. Uschold and M. Gruninger. Ontologies: Principlesthods and application&nowledge Engineer-
ing Review11(2):93-155, 1996.

[16] Adam Wyner and Trevor Bench-Capon. Argument schemeedal case-based reasoning. In to appear,
editor, JURIX 2007 page to appear, Amsterdam, 2007. I0S Press.

[17] Yiming Zeng, Ruili Wang, John Zeleznikow, and Elizabét. Kemp. Knowledge representation for the

intelligent legal case retrieval. In Rajiv Khosla, Robertdwlett, and Lakhmi C. Jain, editol€ES (1)
volume 3681 oL ecture Notes in Computer Scienpages 339-345. Springer, 2005.

