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Disclosing False Identity through Hybrid Link Analysis

Abstract Combating the identity problem is crucial and urgent as false identity has

become a common denominator of many serious crimes, including mafia trafficking

and terrorism. Without correct identification, it is very difficult for law enforcement

authority to intervene, or even trace terrorists’ activities. Amongst several identity

attributes, personal names are commonly, and effortlessly, falsified or aliased by most

criminals. Typical approaches to detecting the use of false identity rely on the sim-

ilarity measure of textual and other content-based characteristics, which are usually

not applicable in the case of highly deceptive, erroneous and unknown descriptions.

This barrier can be overcome through analysis of link information displayed by the

individual in communication behaviours, financial interactions and social networks. In

particular, this paper presents a novel link-based approach that improves existing tech-

niques by integrating multiple link properties in the process of similarity evaluation. It

is utilised in a hybrid model that proficiently combines both text-based and link-based

measures of examined names to refine the justification of their similarity. This approach

is experimentally evaluated against other link-based and text-based techniques, over

a terrorist-related dataset, with further generalization to a similar problem occurring

in publication databases. The empirical study demonstrates the great potential of this

work towards developing an effective identity verification system.

Keywords false identity detection · hybrid algorithm · link analysis · terrorist data

1 Introduction

False identity has become a common denominator of many serious crimes such as mafia

trafficking, fraud and money laundering. Particularly in the UK, financial losses due

to such cause are reported to be around 1.3 billion pounds each year (Wang et al

2006). Holders of false identity intend to avoid accountability and to leave no traces

for law enforcement authority. Identity fraud is intentionally committed with a view

to perpetrating another crime from the most trivial to the most dreadful imaginable.

Organized criminals make use of counterfeit identity to cover up illicit activities and il-

licitly gained capital. Especially in the case of terrorism, it is widely utilized to provide
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financial and logistical support to terrorist networks that have set up and encourage

criminal activities to undermine civil society. Tracking and preventing terrorist ac-

tivities undoubtedly requires authentic identification of criminals and terrorists who

typically possess multiple fraudulent names, dates of birth, addresses, bank accounts,

telephone numbers and email accounts.

With present high-quality off-the-shelf equipment, it is easy to generate credible

false identity documents. On the other hand, it requires a great deal of time and ex-

perience to distinguish between genuine and forged copies. Usually, it is not feasible

for a common person to recognize the ten or fifteen security features presented in a

document in a short period. However, successful detection can prevent serious con-

sequences such as the September 11 terrorist attacks. In that particular tragic case,

US authorities failed to discover the use of false identities by nineteen terrorists, who

were all able to enter the United States without any problem. Most of them typically

possessed several dates of birth and multiple aliases (Boongoen and Shen 2008b). For

instance, ‘Mohamed Atta’, alleged ringleader of the September 11 attacks, has exploited

eight different aliases of ‘Mehan Atta’, ‘Mohammad El Amir’, ‘Muhammad Atta, Mo-

hamed El Sayed’, ‘Mohamed Elsayed’, ‘Muhammad Al Amir Awag Al Sayyid Atta’ and

‘Muhammad Al Amir Awad Al Sayad’. In such circumstance, identity verification and

name variation detection systems (Bilenko and Mooney 2003; Branting 2003; Torvik

et al 2004; Wang et al 2006) that rely solely on the inexact search of textual attributes

are effective to some extent. Nevertheless, these methods will fail to disclose the truth

that highly deceptive identities (e.g ‘Usama bin Laden’ and ‘The prince’) refer to the

same person (Hsiung et al 2005).

The aforementioned dilemma may be overcome through link analysis, which seeks

to discover knowledge based on the relationships in data about people, places, things,

and events. Intuitively, despite using distinct false identities, each terrorist normally

exhibits unique relations with other entities involved in legitimate activities found in

any open or modern society – making use of mobile phones, public transportation and

financial systems. Link analysis techniques have proven effective for identity problems

(Badia and Kantardzic 2005; Boongoen and Shen 2008b; Hsiung et al 2005; Pantel 2006)

by exploiting link information instead of content-based information, which is typically

unreliable due to intentional deception, translation and data-entry errors (Wang et al

2005, 2006). Recently, link analysis has also been employed by Argentine intelligence

organizations for analyzing Iranian-Embassy telephone records. This specific investiga-

tion aims to make a circumstantial case that the Iranian Embassy had been involved

in the July 18, 1994 terror bombing of a Jewish community centre (Porter Jan 25,

2008). In addition, this methodology has also been adopted to establish a semantic-

based retrieval mechanism on the citation network of legal cases (Zhang and Koppaka

2007) and the spatial criminal network, by which relations amongst co-defendants can

be identified (Oatley et al 2005).

To justify the similarity between entities (e.g. names, publications and web pages)

in a link network, many well-known algorithms like SimRank (Jeh and Widom 2002),

PageSim (Lin et al 2006), Connected-Triple (Reuther and Walter 2006) and Jaccard

(Liben-Nowell and Kleinberg 2007) concentrate only on the cardinality of joint neigh-

bors to which they are directly linked. Despite their notable performance, other char-

acteristics of a link pattern have so far been excluded from the underlying analysis.

As such, the quality of the similarity evaluation may be enhanced by including the

uniqueness measure (Boongoen and Shen 2008b) of an overlapping neighbor context.
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Inspired by such insight, this paper presents a novel link-based similarity algorithm,

Connected-Path, in which multiple link properties are proficiently blended to refine the

process of similarity estimation. Also, by following this initial development, a hybrid

method for false identity detection is introduced as an intelligent aggregation of the

Connected-Path and text-based measures. Unlike the supervised model in (Hsiung et al

2005) that also includes both text-based and link-based metrics, the proposed approach

is unsupervised and so avoids the problems of a supervised methodology: unintentional

encoding of human bias and noise into training data, scalability to large data collec-

tions, and adaptability to new cases. A similar unsupervised method (Angheluta and

Moens 2007) resolves cross-document co-references, by incorporating appearances and

textual properties (i.e. syntactics and semantics) with link information. That technique

relies heavily on a priori linguistic knowledge. As a result, it may be inapplicable to

a new problem domain where such information is not available. By contrast, the ap-

proach described in this paper is language-independent and knowledge-free, and so can

be easily adopted to new problem domains.

The rest of this paper is organized as follows. Section 2 introduces fundamental

concepts and practices of false identity detection, upon which the present research is

based. Section 3 illustrates the link analysis approach to the identity problem and a

number of link-based similarity measures. Following that, the new link-based similarity

algorithm, with the underlying path-based intuition, is presented in Section 4. Then,

the fifth section includes details of the hybrid method for false identity detection and

its core terminology. The experimental evaluation over the terrorist-related and publi-

cation data collections is provided in Section 6. The paper is concluded in Section 7,

with the perspective of further work.

2 False Identity Detection

Identity is a set of characteristic descriptors unique to a specific person, which can be

principally categorized into three types of identity indicators (Clarke 1994; Wang et al

2006):

– attributed identity

– biographical identity

– biometric identity

Attributed identity consists of descriptions of name, details of parents, date and

place of birth, and is often used as the primary means of establishing identity. Biograph-

ical identity is constituted from personal information over a life span (e.g. criminal,

educational and financial history) and can also be exploited for the same purpose.

Biometric identity consists of personal measurements such as fingerprints and DNA

features.

Attributed and biographical identity indicators are greatly subject to deception as

they are much easier to falsify than biometric indicators. The main focus of the current

research is to disclose the possibility of attributed identity being falsely or deceptively

specified, especially for the case of personal names.

According to Fig 1 which is obtained from the study of identity deception in (Wang

et al 2004, 2006), name deception is the most common practice found in the collection

of investigated criminal records – 100 percent of occurrence in all 372 cases examined, in
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Fig. 1 Taxonomy of attributed identity deception obtained from (Wang et al 2004, 2006).
Each percentage number represents the proportion of examined cases that contain a particular
deception type.

fact. This set of records involves 24 criminals, each of which possesses one real identity

and several deceptive records.

In particular, such illegal acts can be accomplished by employing a combination of

the following falsified formats:

– Partly deceptive name, either false first or family name.

– A completely different name.

– Abbreviation or add-on to first or last name.

– Similar pronunciation, but with different spelling.

– Name swap via transposing first and last names.

To battle false identity, an exact-match query to a law enforcement computer

system is simply ineffective. A better approach that has been extensively studied in

(Bilenko and Mooney 2003; Branting 2003; Torvik et al 2004; Wang et al 2006) is to

exploit the similarity measure of names obtained from one or several string-matching

techniques. In practice, to measure the similarity s(p, q) of names p and q, the simplest

and most common approach is the Levenshtein distance, which is sometimes called

simply the Edit distance (Navarro 2001). The distance is defined as a number of edit

operations (e.g. character insertion, deletion and substitution) that convert p to q.

Note that the greater the Edit distance is, the less similar two names are deemed to

be. In addition, an adaptive string matching method has been introduced in (Bilenko

et al 2003) as an extension of the conventional metric. To enhance the quality of such

distance measure, each of the underlying edit operations is assigned a weight, which is

automatically learned from examples.

Following this pioneer method, several string-matching techniques have been de-

vised to handle different forms of name ambiguity: Monge-Elkan, Jaccard, Soundex,

Smith-Waterman and q-grams (see more details in (Navarro 2001)). Amongst these,

Jaro (Jaro 1995) and q-grams (Kukich 1992), primarily utilised with short strings (e.g.

personal names) (Navarro 2001), are widely recognized for their distinguished perfor-

mance in the area of record-linkage (Fellegi and Sunter 1969). As a result, the Jaro

and q-grams similarity measures are employed in the current research to illustrate the

performance of the content-based approach to identity problems. Despite their reported

success in the literature, the aforementioned methods may be ineffective for cases where

highly deceptive names are deployed. For instance, they would fail to recognize the as-

sociation between the following pairs of terrorists’ names, whose overlapping textual

content is very small, or even nil. Note that these name pairs are obtained from the

Terrorist data collection (Hsiung et al 2005), see further details in Section 6.1.
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– ‘Ashraf refaat nabith henin’ and ‘Salem ali’

– ‘Fahid mohammed ali msalam’ and ‘Usama al-kini’

– ‘Fadil abdallah muhamad’ and ‘Harun fazul’

– ‘Usama bin laden’ and ‘The prince’

– ‘Usama bin laden’ and ‘The emir’

– ‘Abu mohammed nur al-deen’ and ‘The doctor’

To overcome this limitation, the link-based approach has been proposed, taking

into account the relations amongst examined names. Many existing link-based methods

(Badia and Kantardzic 2005; Boongoen and Shen 2008b; Hsiung et al 2005; Pantel 2006)

to false identity detection have employed the intuition that a person (including criminal

and terrorist) naturally possesses a unique pattern of relations to other information

entities, such as vehicles, bank cards, telephone numbers, email accounts and friends.

Thus, false identity may be discovered using a link-based similarity measure which is

estimated over the link network of the kind presented in Fig 2. Given such a graphical

representation of intelligence data that entails the activities of suspected identities, it

is possible to hypothesize that ‘Identity A’ and ‘Identity B’ may actually refer to the

same person. This hypothesis emerges since these two identities have frequently used

identical email addresses and cash cards.

Fig. 2 A link network of intelligence data, in which different identities can be related by
identical objects (e.g. email accounts, telephone numbers, accommodation, social groups, cash
and credit cards). Note that each number denotes the frequency that a specific pair of entities
relate (e.g. co-occur in an observed event).

This idea resembles the methodology of link analysis (Getoor and Diehl 2005; Liben-

Nowell and Kleinberg 2007) which has proven effective for a wide range of application

domains. For instance, an author-collaboration graph has been employed for personal

name resolution in publication databases (Reuther and Walter 2006; Sun et al 2005).

Also, given a web graph that represents web pages and their hyper-link relations,

the link-based methods of (Hou and Zhang 2003; Lin et al 2006) are used to identify

similar web pages. Furthermore, link analysis has also been successful for personal name

resolution in an email collection (Minkov et al 2006) and relational entity resolution

(Bhattacharya and Getoor 2007). Recently, semantic-association discovery techniques

have been introduced to identify conflict-of-interest relationships and integrate social

networks (Aleman-Meza et al 2008).
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It is noteworthy that, in order to handle all possible formats of name deception, both

text-based and link-based similarity measures are included in the supervised model

introduced in (Hsiung et al 2005). In spite of high performance illustrated therein, the

major drawbacks of this methodology are: (i) inaccuracy of manually marked training

data, to which human bias, error or noise may be unintentionally amended, (ii) difficult

and laborious scaling up to a large data collection, and (iii) inability to adapt to new

cases. By contrast, the hybrid method described herein overcomes the aforementioned

barriers by employing an unsupervised approach that intelligently integrates the link-

based and text-based metrics to justify the similarity amongst investigated identities.

3 Link Analysis Approach to False Identity Detection

3.1 Problem Formulation

With the link analysis methodology, detecting false identities or aliases is conducted

on a link network that represents the relations amongst references (i.e. names) of real-

world entities. This graphical scheme has been effectively exploited for the problem

of link prediction in (Liben-Nowell and Kleinberg 2007; Murata and Moriyasu 2008)

and that of author-name resolution in (Reuther and Walter 2006). Formally, a link

network can be specified as an undirected graph G = (V, W ). It is represented by two

information sets, the set of vertices V and that of weighted edges W . Let X be the

set of all references and R be the set of their relations in an examined dataset. Each

vertex vi ∈ V denotes a specific reference xi ∈ X. Then, an edge wi,j ∈ W (linking

vertices vi, vj ∈ V ) corresponds to a relation ri,j ∈ R between references xi, xj ∈ X.

This research concentrates on analyzing a link network whose edges correspond to

‘co-occurrence’ relations amongst references. In other words, a relation ri,j ∈ R stands

for the fact that references xi, xj ∈ X appear together in a specific observation. It is

bi-directional such that ri,j is equivalent to rj,i,∀ri,j , rj,i ∈ R and ∀xi, xj ∈ X. As a

result, edges are undirected and any wi,j , wj,i ∈ W are inherently equivalent. Thus,

the developed paradigm is simple (semantics-free) and efficient regarding its informa-

tion acquisition and analysis. It can be effectively extended to the highly semantics-

embedded case, where both direction and type of examined relations are exhibited

within a directed graph (e.g. the semantic network of email communication (Minkov

et al 2006) and the citation network of scientific publications (Pasula et al 2003)).

In an undirected graph G, each edge wi,j ∈ W possesses statistical information

|wi,j | ∈ {1, . . . ,∞}, which signifies the frequency of the corresponding relation ri,j ∈ R

(i.e. the frequency of which references xi and xj co-occur in the given dataset). By

representing the multiplicity of each edge as a frequency count (or weight), the resulting

graph terminology becomes simple (i.e. no parallel edges), without losing any potential

link information (Wasserman and Faust 1994). Let O be the set of real-world entities

each of which is referred to by at least one member of the set X. Any set of two

references (xi, xj) is an alias pair when both references correspond to the same real-

world entity: (xi ≡ ok) ∧ (xj ≡ ok), ok ∈ O. In practice, disclosing an alias pair in

a graph G involves finding a couple of vertices (vi, vj), whose similarity s(vi, vj) is

significantly high. Intuitively, the higher s(vi, vj) is, the more similar vertices vi and

vj are and hence, the greater the possibility that the corresponding references xi and

xj , constitute an actual alias pair.
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To illustrate this framework, the link network of publication data, similar to that

of (Reuther and Walter 2006), is discussed here. A set of author references (i.e. names)

and their relations can be presented as a graph in Fig. 3, where X = {A, B, C, D, E},
R = {rA,B , rA,C , rA,D, rB,E , rC,D}, and ri,j denotes the fact that references xi and xj

co-occur as authors of a specific publication. In addition, the edge wA,D is presented

with |wA,D| = 2 since references A and D are co-authors of two different papers (i.e.

paper2 and paper3). Likewise, the frequency statistics |wA,C | of the edge wA,C is 1

as references A and C have only one joint publication, paper2. Given O as the set of

real-world author entities, a pair of references, such as (A, E), may be hypothesized,

based on their similarity, as the alias pair (i.e. (A ≡ ok) ∧ (E ≡ ok), ok ∈ O).

Fig. 3 Relations between author references and publications, presented in: (a) database table
format and (b) graph format.

3.2 Link Based Similarity Measures

Unlike the content-based approach in which appearances and other linguistic features

of the underlying references are directly compared, link analysis makes use of a link-

based similarity that is measured using the link pattern of any pair of references in

question. Based on this perspective and the increasing volume of network-like informa-

tion (such as online resources, publication repository, phone and credit-card usages),

several link-based similarity methods have been introduced to evaluate the similarity

between various information objects: Co-citation (Small 1973), Jaccard (Liben-Nowell

and Kleinberg 2007), SimRank (Jeh and Widom 2002), Connected-Triple (Reuther

and Walter 2006), PageSim (Lin et al 2006) and a variety of random walk algorithms

(Fouss et al 2007; Minkov et al 2006). See further details in (Getoor and Diehl 2005;

Liben-Nowell and Kleinberg 2007).

Many existing link-based similarity measures have concentrated exclusively on the

numerical count of shared neighbors. Jeh and Widom (2002) specifically emphasized

that ‘similar objects are usually linked to similar neighboring objects’. Let e be an

entity of interest (e.g. a author reference in a publication network) and Ne be a set

of entities that are directly linked to e, called neighbors of e. The similarity between

entities e1 and e2 is then determined by the cardinality of their common neighbors

|Ne1 ∩ Ne2 |, where Ne1 and Ne2 are the set of neighbors of entity e1 and that of e2,

respectively. In essence, the higher the cardinality is, the greater the similarity of these

entities becomes (Liben-Nowell and Kleinberg 2007).
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This basic concept has been adopted by the co-citation (Small 1973) and sev-

eral other well-known methods that are used to reveal the interesting relationships

amongst scientific publications. For instance, the Connected-Triple technique (Reuther

and Walter 2006) evaluates the similarity of objects given their overlapping social con-

text. It is exploited to disclose duplicated author references in a publication database,

which is represented as a social network G = (V, W ). In particular, author refer-

ences and their co-author relations are represented by the set of vertices V and a

set of edges W , respectively. The similarity of any two vertices vi, vj ∈ V can be es-

timated by counting the number of Connected-Triples they are part of. Formally, a

Connected Triple, Triple = {VTriple, WTriple}, is a subgraph of G containing three

vertices VTriple = {vi, vj , vk} ⊂ V and two edges WTriple = {wi,k, wj,k} ⊂ W ,

with wi,j 6∈ W . Fig 4 presents an example of a social network in which object a

and object b are considered similar due to the fact that there exist two Connected-

Triples connecting them together, VTriple1 = {a, b, c}, WTriple1 = {wa,c, wb,c} and

VTriple2 = {a, b, d}, WTriple2 = {wa,d, wb,d}, with wa,b 6∈ W .

Fig. 4 Example of a social network with Connected-Triples.

Despite their simplicity, the aforementioned cardinality based approaches are greatly

sensitive to noise and often generate a large proportion of false positives (Klink et al

2006). This shortcoming emerges because these methods exclusively concern the car-

dinality aspect of link patterns without taking into account another link property. As

the first attempt to extend this approach, Boongoen and Shen (2008b) suggested the

uniqueness measure as the additional criterion to the cardinality in order to crystalize

the estimation of similarity values. The resulting mechanism proved effective over the

terrorism-related data collection (Hsiung et al 2005).

Given a graph G = (V, W ) in which objects and their relations are members of the

set of vertices V and those of the set of edges W , respectively, a uniqueness measure

UQk
i,j of any two vertices vi, vj ∈ V can be approximated from each joint neighbor

vk ∈ V, wi,k, wj,k ∈ W such that:

UQk
i,j =

|wi,k|+ |wj,k|∑
∀vm∈V

|wm,k|
(1)

Here, |wi,k| is the weight (i.e. frequency) of the edge between vertices vi, vk ∈ V , |wj,k|
is the weight of the edge between vertices vj and vk, and |wm,k| is the weight of the

edge between vk and any other vertex vm ∈ V .

To summarize the uniqueness measures of joint link patterns UQi,j between vertices

vi and vj , the ratios estimated for each shared neighbor are aggregated as
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UQi,j =
1

β

β∑
k=1

UQk
i,j (2)

where β is the number of those overlapping neighbors that vertices vi and vj are

commonly linked to, i.e. β = |Nvi ∩Nvj |. With the example given earlier in Fig. 4, the

uniqueness measure UQa,b between vertices a and b can be estimated as

UQa,b =
1

2
(UQc

a,b + UQd
a,b) =

1

2
(
3

3
+

4

10
)

4 A New Link-Based Similarity Algorithm: Connected-Path

This section presents a novel link-based similarity method, Connected-Path, that em-

ploys multiple properties of a link pattern (i.e. cardinality and uniqueness) for estimat-

ing a degree of similarity. In particular, this new path-based algorithm is established

upon the simple practice of counting a number of shared neighbors that are employed

by many existing techniques (Liben-Nowell and Kleinberg 2007; Reuther and Walter

2006). However, it takes into account the neighboring context more widely than the

adjacent span originally studied.

Following the terminology of a link network G = (V, W ) given in Section 3.1, a

path between two vertices vi, vj ∈ V , path(vi, vj), is a sequence of unique vertices

{vi, v1, . . . , vn, vj} such that edges wi,1, w1,2, . . . , wn−1,n, wn,j ∈ W . The length of

path p is length(p) = |p|− 1, where |p| is the number of vertices in path p. In addition,

PATH(vi, vj , r) denotes the set of all possible paths between vertices vi, vj ∈ V , whose

length satisfies the condition 2 ≤ length(p) ≤ r. Analogous to the Connected-Triple

algorithm, a direct path p∗, length(p∗) = 1, between any two vertices vi and vj is not

considered. This is due to the fact that such a path does not represent the environment

in which two vertices co-occur and its inclusion may lead to an incorrect conclusion.

The similarity between vertices vi, vj ∈ V is determined by the accumulated unique-

ness measure that is obtained from all paths p ∈ PATH(vi, vj , r). This measure can

be formally defined as follows:

Connected− Path(vi, vj) =
∑

p∈PATH(vi,vj ,r)

U(p)

length(p)
(3)

where U(p) is the uniqueness of path p, which is calculated using Equation 4. Note that

the path uniqueness is divided by its length, as longer paths are intuitively considered

to be less informative than shorter ones.

U(path(vi, vj)) =
∏

vx∈path(vi,vj),vx 6∈{vi,vj}
UQ(vx) (4)

Here, UQ(vx) is the uniqueness score measured at the vertex vx ∈ path(vi, vj), which

can be estimated using Equation 5. The multiplication is specifically used in order to

summarize the compositional quality of paths and magnify their differentiation (i.e.

contribution towards a similarity estimate).
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UQ(vx) =
|wx,x−1|+ |wx,x+1|∑

∀vg∈V
|wx,g|

(5)

Here, an edge between the vertex vx ∈ path(vi, vj) and any other vertex vg ∈ V

is denoted as wx,g, and wx,x−1 and wx,x+1 represent edges from vx to its adjacent

vertices in the path, vx−1, vx+1 ∈ path(vi, vj).

Effectively, the similarity measure SConnected−Path(vi, vj) ∈ [0, 1] between vertices

vi, vj ∈ V is obtained by the following normalization, where Connected− Pathmax is

the maximum estimate between any two vertices in a link network G. Note that this

process is necessary for the hybrid model, in which both link-based and text-based

measures are represented on a unified scale.

SConnected−Path(vi, vj) =
Connected− Path(vi, vj)

Connected− Pathmax
(6)

By applying this methodology to the task of false identity detection, the higher

the similarity measure, the greater the possibility that names represented by vertices

vi and vj constitute the use of false identity. It is noteworthy that longer paths (i.e.

higher value of r) make the overall estimation more refined and robust, but at the

cost of greater computational requirements. Fig. 5 depicts an example of different

neighborhood scopes that may be included in the similarity estimation. Note that

the network is extracted from the Terrorist dataset (Hsiung et al 2005), where each

vertex corresponds to a specific name of terrorist or event (given in the bracket). The

simplest variation of the Connected-Path method explores only the short paths, whose

length = 2. Each of these paths includes a unique adjacent common-neighbor of the

two vertices in question. Particularly to the path px = {vi, va, vj}, vi and vj (i.e. ‘The

teacher’ and ‘Usama bin laden’) can be considered similar as they are linked to the joint

neighbor va (i.e. ‘Abu abdallah’). In other words, ‘The teacher’ and ‘Usama bin laden’

may be aliases of the same person, provided that these two co-occur with another name

‘Abu abdallah’ in the reported news. This conforms the intuition taken by a number

of link-based similarity techniques, Connected-Triple (Reuther and Walter 2006) and

SimRank (Jeh and Widom 2002), for instance.

Despite its efficiency, the aforementioned model evaluates the similarity based on

information at a rather coarse level. The underlying measure can be refined by ex-

panding the scope of shared neighbors beyond those adjacent ones. This means taking

into account longer paths (i.e. length > 2), e.g. the path py = {vi, vb, vc, vj} shown in

Fig 5. Intuitively, vb and vc (i.e. ‘Abu fatima’ and ‘Abu muhammad’) that co-occur in

the collected data, provide a common neighboring context with which vi and vj (i.e.

‘The prince’ and ‘Usama bin laden’) associate. Hence, the similarity between vi and vj

can be better estimated through more remote neighbors along such paths, in addition

to exploiting associations with their immediate neighbors.

The same concept is applicable to the path pz = {vi, vd, ve, vf , vj}. Despite the

fact that they do not co-occur, vd and vf (i.e. ‘Ayman al-zawahiri’ and ‘Muhammad

atef’) are similar as they relate to the same event of ‘8/7/98 US embassy bombings’,

i.e. ve. This similarity can be propagated through the link pattern such that vi and

vj can be justified alike. However, as compared to a short path px in this example,

longer paths py and pz provides less informative and implicit evidence for justifying the

similarity between vi and vj . Unlike px that accounts for a primary, identical common-

neighbour, py and pz include only so-called ‘secondary’ common-neighbours, which are
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Fig. 5 Example of link paths between vertices vi, vj , each with a different path length:
length(px) = 2, lenght(py) = 3 and length(pz) = 4.

not identical but considered to be similar given their shared link pattern. The strength

of each common neighbor, primary or secondary, decays by the path length, which is

reflected in Equation 3. It is noteworthy that a number of existing link-based similarity

algorithms, e.g. SimRank (Jeh and Widom 2002) and PageSim (Lin et al 2006), adopt

an analogous practice of investigating joint neighbors that may be several edges away

from a given pair of vertices under examination.

5 Intelligent Hybrid Method to False Identity Detection

In order to achieve an identity resolution system that is capable of disclosing various

deception types (including the use of totally different names), this section presents an

unsupervised hybrid approach that combines both text-based and link-based similarity

measures through a re-ranking mechanism. The underlying intuition is illustrated in

Fig. 6. For a set of names X where each name xi ∈ X is represented as a vertex vi ∈ V

in a link network G = (V, W ), a set of highly possible alias pairs, (xi, xj) (equivalently

represented as (vi, vj)), are identified as follows:

– Step1: Generate a collection of ϕ pair-wise link-based similarity degrees s(vi, vj)

for all pairs of vi, vj ∈ V , using a link-based method. That is, ϕ =
N(N−1)

2 ,

where N denotes the number of vertices in the link network G. In particular, for

the Connected-Path algorithm that has been proposed in the preceding section,

s(vi, vj) = SConnected−Path(vi, vj).

– Step2: Arrange these pair-wise measures in descending order of their magnitude,

and select the first K pairs that are of the top values. Note that K << ϕ is

pre-defined, allowing subjective input of intelligence analysts to be incorporated.

– Step3: Estimate the final similarity s∗(xi, xj) of each selected name pair (xi, xj)

(represented by (vi, vj) in the link network) by aggregating its link-based and text-

based similarity measures:
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Fig. 6 Descriptive model of the hybrid approach.

s∗(xi, xj) = AGG
(
s(vi, vj), str(xi, xj)

)
(7)

where str(xi, xj) is the text-based similarity score that can be obtained using a

string-matching technique like that of (Jaro 1995). Here, AGG denotes an aggrega-

tion operator that is employed to combine the link-based and text-based measures.

For the present research, the following four aggregation models are investigated:

(i) AGG-Text, where s∗ is defined by

s∗(xi, xj) = str(xi, xj) (8)

(ii) AGG-Average, where s∗ is defined by

s∗(xi, xj) =
s(vi, vj) + str(xi, xj)

2
(9)

(iii) AGG-Max, where s∗ is defined by

s∗(xi, xj) = max
(
s(vi, vj), str(xi, xj)

)
(10)

(iv) AGG-Min, where s∗ is defined by

s∗(xi, xj) = min
(
s(vi, vj), str(xi, xj)

)
(11)

– Step4: Identify the likely alias pairs in accordance with the assumption that the

higher the similarity s∗(xi, xj) is, the greater such possibility becomes.

Effectively, the proposed hybrid model does not require the manual preparation of

training samples (i.e. supervised instances), in which human bias and error are usually

encoded. Such a process can be laborious or even infeasible with a large data collection.

Another distinct advantage of this unsupervised method is its ability to adapt to new
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cases, where the supervised counterpart normally fails. This is particularly the case as

a supervised model usually relies on a limited number of historical scenarios or rules

that encompass some but not all possible different combinations of analytic variables.

6 Empirical Evaluation

In order to evaluate the performance of the proposed approach, similarity estimates

acquired from Connected-Path and the hybrid method are compared with those derived

by other link-based and text-based techniques, for the task of discovering aliases in the

terrorism-related dataset (Hsiung et al 2005). Further assessment is also carried out

with a publication data collection (Reuther and Walter 2006).

6.1 Investigated Datasets

Terrorist. To reflect the difficulty of detecting aliases in intelligence data, this dataset

has been constructed by extracting 919 real alias pairs from terrorism-related web

pages and news stories (Hsiung et al 2005). Each of the 4, 088 nodes in this link network

corresponds to a name of person (criminal/terrorist), place, organization or event, while

each of the 5, 581 links denotes the co-occurrence of a specific pair of names with its

weight representing the frequency of such occurrence. Fig. 7 shows an example of this

link network in which the names ‘Bin laden’ and ‘Abu abdallah’ truly refer to the same

real-world person. Note that the model originally developed for this dataset is not the

same as that used here, due to their fundamental differences regarding the adopted

learning schemes: supervised and unsupervised, respectively.

Fig. 7 Example of the Terrorist dataset.

DBLP1-2. In order to evaluate the generality of the Connected-Path algorithm

and the hybrid model, additional experiments are carried out to identify duplicated

author names in the DBLP (Digital Bibliography and Library Project) publication

data collection (Reuther and Walter 2006). With the same terminology and format,

there are originally three versions of such dataset: DBLP-SUB01, DBLP-SUB02 and

DBLP-SUB03. For the present work, applications to DBLP-SUB01 and DBLP-SUB02

are examined, with the corresponding datasets abbreviated to DBLP1 and DBLP2

hereafter. Statistically, DBLP1 consists of 2,796 author names, 8,157 co-authoring links

and 23 duplicated name pairs. DBLP2 is larger than the first version with 6,351 names,

18,543 links and 73 duplicated name pairs. Fig. 8 depicts an example of this dataset

where ‘Hepu Deng’ and ‘Hepu Dong’ are references to the same author.
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Fig. 8 An example of the DBLP dataset.

Note that aliases in the Terrorist dataset are caused mostly by deception and

translation errors. As shown in Fig. 9, about 70 percent of true alias pairs are difficult

to recognize – with the Jaro string-matching scores (Jaro 1995) being less than 0.6.

Approximately 20 percent of them are highly deceptive, with a nil matching degree.

On the other hand, duplicates in the DBLP data collection are brought about mainly

by data entry errors. In particular, around 65-70 percent of duplicated name pairs

possess very high Jaro scores (more than 0.8). Although this problem is not subject

to deception, the DBLP1-2 datasets are included to support performance evaluation

between the proposed model and other comparable methods.

Fig. 9 Percentage of true alias/duplicated pairs in the Terrorist and DBLP1-2 datasets, cat-
egorized in accordance with their string-matching scores, i.e. Jaro measures (Jaro 1995).

6.2 Compared Methods

The performance of the Connected-Path method and the hybrid model are assessed

against many state-of-the-art link-based similarity algorithms and string-matching

measures. These compared methods include

– Connected Triple (CT): This link-based technique was originally used to reveal

possible duplicated names in the DBLP data collection (Reuther and Walter 2006).

Its core concept is provided earlier in Section 3.2.
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– Jaccard (JC): Given a graph G = (V, W ), this metric is commonly used in infor-

mation retrieval (Liben-Nowell and Kleinberg 2007) and measures the similarity

s(vi, vj) between any two vertices vi, vj ∈ V by

s(vi, vj) =
|Nvi ∩Nvj |
|Nvi ∪Nvj |

(12)

where Nvx ⊂ V denotes the set of neighbors of vx ∈ V , i.e. ∀vy ∈ Nvx , wx,y ∈
W . A similar metric, called ‘interest distance’, has been developed to deduce

shared-interest relations between people based on the history of email communica-

tion (Schwartz and Wood 1993). This distance measure d(vi, vj) between vertices

vi, vj ∈ V is defined by

d(vi, vj) =
|Nvi ∪Nvj | − |Nvi ∩Nvj |

|Nvi ∪Nvj |
(13)

Note that this is equivalent to the Jaccard coefficient, where s(vi, vj) = 1−d(vi, vj).

– Pointwise Mutual Information (PMI): This metric has been extended and applied

to estimating the similarity amongst vertices in a link network (Pantel 2006). Given

a graph G = (V, W ), a frequency vector Fvi = (fi,1, fi,2, . . . , fi,|V |) is constructed

for each vertex vi ∈ V , where |V | is the total number of vertices and fi,j , j =

1 . . . |V | is defined as follows:

fi,j =

{
wi,j if wi,j ∈ W

0 otherwise
(14)

The mutual information vector Mvi = (mi,1, mi,2, . . . , mi,|V |) is created for each

vertex vi ∈ V , where mi,j is the pointwise mutual information between vertices

vi, vj that are estimated by

mi,j = log

fi,j

α
|V |∑
x=1

fi,x

α ×

|V |∑
y=1

fy,j

α

(15)

where α is the total frequency count in the given graph G, i.e. α =
|V |−1∑
x=1

|V |∑
y=x+1

fx,y.

Following that, the similarity s(vi, vj) between any two vertices vi, vj ∈ V can be

found using the cosine coefficient of their mutual information vectors (i.e. Mvi and

Mvj ), which is given by

s(vi, vj) =

∑
∀x

mi,x ×mj,x√∑
∀y

m2
i,y ×

∑
∀y

m2
y,j

(16)

– SimRank (SR): With the principal objective of finding similar publications given

their citation relations, the SimRank algorithm (Jeh and Widom 2002) relies on the

cardinality of shared neighbors that are iteratively refined to a fixed point. In each

iteration, the similarity s(vi, vj) of any pair of vertices vi, vj ∈ V is approximated

as follows:
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s(vi, vj) =

C
|Nvi

|∑
p=1

|Nvj
|∑

q=1
s(Np

vi , N
q
vj )

|Nvi ||Nvj |
(17)

where Nvi , Nvj ⊂ V are sets of neighboring vertices to which vertices vi and vj

are linked, respectively. Individual neighbors of both vertices are denoted as Np
vi

and Nq
vj , for 1 ≤ p ≤ |Nvi | and 1 ≤ q ≤ |Nvj |. The constant C ∈ [0, 1] is a decay

factor that represents the confidence level of accepting two non-identical entities as

similar. Note that s(vi, vj) = 0 when Nvi = ∅ or Nvj = ∅.

– PageSim (PS): Within a different domain, PageSim (Lin et al 2006) was developed

to capture similar web pages based on associations implied by their hyperlinks. In

essence, a similarity s(vi, vj) of vertices vi and vj is dictated by the coherence of

ranking scores R(vg, vi) and R(vg, vj) propagated to them from any other vertex

vg ∈ V . It is noteworthy that ranking scores are explicitly generated using the page

ranking scheme, PageRank (Brin and Page 1998), of the well-known Google search

engine.

Given a link network G = (V, W ), let P (vi) denote the PageRank score of a vertex

vi ∈ V . Its value can be estimated from the following iterative refinement (i.e.

P (vi) = lim
k→∞

Pk(vi)):

Pk(vi) = (1− β) + β
∑

vj∈V,wi,j∈W

Pk−1(vj)×Dist(vj , vi) (18)

where β is a dampening factor that is usually set to 0.85 (Brin and Page 1998),

and P0(vi),∀vi ∈ V is initially set to 1. In addition, Dist(vj , vi) can be found by

Dist(vj , vi) =
|wj,i|∑

vx∈V,vx 6=vj

|wj,x|
(19)

Having achieved this, the score R(vi, vj) propagated from vi ∈ V to vj ∈ V can be

calculated as follows:

R(vi, vj) =
∑

p∈PATH(vi,vj ,r)

d× P (vi)× PDist(p, vi, vj) (20)

where d ∈ (0, 1] is a decay factor, r is the maximum path length, and PDist(p, vi, vj)

is defined by the following equation with vx+1 denoting the vertex adjacent to vx

in path p, along the direction from vi to vj :

PDist(p, vi, vj) =
∏

vx∈p,vx 6=vj

|wx,x+1|∑
vy∈V,vy 6=vx

|wx,y|
(21)

Effectively, the similarity measure can be defined as

s(vi, vj) =
∑

∀vg∈V,vg 6∈{vi,vj}

min(R(vg, vi), R(vg, vj))
2

max(R(vg, vi), R(vg, vj))
(22)
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– Jaro (JR): In addition to the aforementioned link-based methods, the Jaro string-

matching measure (Jaro 1995) is employed to illustrate the effectiveness of the

text-based approach and also to set the base-line performance for the underlying

tasks. This distance-based metric relies on the number and order of the common

characters between strings p = a1 . . . aK and q = b1 . . . bL. Particularly, a character

ai ∈ p is common with q when there is bj ∈ q, bj = ai such that i−H ≤ j ≤ i + H

and

H =
min(|p|, |q|)

2
(23)

where |p| denotes the length of string p.

Let p′ = a′1 . . . a′K∗ , (K∗ ≤ K) be the sequence of characters in p that are common

with q (in the same order that they appear in p) and q′ = b′1 . . . b′L∗ , (L∗ ≤ L) be

the similar sequence of characters in q that are common with p, transposition for

p′ and q′ is specified as the cardinality of positions i where a′i 6= b′i. Effectively, the

Jaro similarity metric for strings p and q is defined as follows.

Jaro(p, q) =
1

3

(
|p′|
|p| +

|q′|
|q| +

|p′| − Tp′,q′

|p′|

)
(24)

where Tp′,q′ is a half of transposition for p′ and q′.

– q-grams (QG): To consolidate the underlying evaluation, the performance of the q-

grams (also called n-grams) string matching method (Kukich 1992) is also assessed.

q-grams are substrings of length q in longer strings. Note that bigrams (q = 2)

are exploited in the current evaluation, while other commonly used q-grams are

unigrams (q = 1) and trigrams (q = 3). For instance, ‘peter’ contains the bigrams

‘pe’, ‘et’, ‘te’ and ‘er’. A bigram similarity measure between two strings is estimated

by counting the number of bigrams in common (i.e. bigrams contained in both

strings) and dividing the count by the number of bigrams in the shorter string

(called ‘Overlap coefficient’). Other alternatives are the number in the longer string

(called ‘Jaccard similarity’) and the average number of q-grams in both strings

(called the ‘Dice coefficient’).

6.3 Experimental Results

6.3.1 Performance of the Connected-Path Method

Table 1 shows the number of alias pairs that are disclosed by each examined method,

with respect to the number of retrieved entity pairs (K ∈ {200, 400, 600, 800, 1000}) of

the highest similarity values in each dataset (Terrorist, DBLP1, DBLP2). Note that

‘CP’ denotes the Connected-Path technique and the corresponding ‘Precision’ and

‘Recall’ measures are estimated by

Precision =
Number of disclosed alias pairs

Number of retrieved entity pairs
(25)

Recall =
Number of disclosed alias pairs

Number of all alias pairs
(26)
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Table 1 Number of alias pairs that are discovered in the Terrorist and DBLP1-2 datasets by
each method, where K is the number of retrieved pairs of the highest similarity values. The
corresponding (Precision/Recall) measures are given in brackets.

Dataset Method Number of K

200 400 600 800 1,000

Terrorist CP (r = 4) 52 81 136 170 193

(0.26/0.06) (0.20/0.09) (0.23/0.15) (0.21/0.18) (0.19/0.21)

CP (r = 2) 18 76 98 140 165

(0.09/0.02) (0.19/0.08) (0.16/0.11) (0.18/0.15) (0.17/0.18)

CT 1 5 5 77 77

(0.01/0.00) (0.01/0.01) (0.01/0.01) (0.10/0.08) (0.08/0.08)

JC 7 15 23 29 37

(0.04/0.01) (0.04/0.02) (0.04/0.03) (0.04/0.03) (0.04/0.04)

PMI 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

SR 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

PS 7 36 63 79 92

(0.04/0.01) (0.09/0.04) (0.11/0.07) (0.10/0.09) (0.09/0.10)

JR 22 33 40 43 47

(0.11/0.02) (0.08/0.03) (0.06/0.04) (0.05/0.05) (0.05/0.06)

QG 21 31 37 46 53

(0.11/0.02) (0.07/0.03) (0.06/0.04) (0.06/0.05) (0.05/0.06)

DBLP1 CP (r=4) 5 6 10 11 11

(0.03/0.22) (0.02/0.26) (0.02/0.43) (0.01/0.48) (0.01/0.48)

CP (r=2) 3 4 9 10 11

(0.01/0.13) (0.01/0.17) (0.01/0.39) (0.01/0.43) (0.01/0.48)

CT 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

JC 2 3 7 7 8

(0.01/0.09) (0.01/0.13) (0.01/0.30) (0.01/0.30) (0.01/0.35)

PMI 0 3 5 7 9

(0.0/0.0) (0.01/0.13) (0.01/0.22) (0.01/0.30) (0.01/0.39)

SR 1 2 3 3 3

(0.01/0.04) (0.01/0.09) (0.01/0.13) (0.00/0.13) (0.00/0.13)

PS 1 2 4 4 4

(0.01/0.04) (0.01/0.09) (0.01/0.17) (0.01/0.17) (0.00/0.17)

JR 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

QG 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

DBLP2 CP (r=4) 4 9 14 16 20

(0.02/0.05) (0.02/0.12) (0.02/0.19) (0.02/0.22) (0.02/0.27)

CP (r=2) 3 8 12 15 18

(0.02/0.04) (0.02/0.11) (0.02/0.16) (0.02/0.21) (0.02/0.25)

CT 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

JC 3 8 8 8 8

(0.02/0.04) (0.02/0.11) (0.01/0.11) (0.01/0.11) (0.01/0.11)

PMI 2 4 4 5 6

(0.01/0.03) (0.01/0.05) (0.01/0.05) (0.01/0.07) (0.01/0.08)

SR 1 1 2 3 3

(0.01/0.01) (0.00/0.01) (0.00/0.03) (0.00/0.04) (0.00/0.04)

PS 1 1 1 4 5

(0.01/0.01) (0.00/0.01) (0.00/0.01) (0.01/0.05) (0.01/0.07)

JR 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)

QG 0 0 0 0 0

(0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0) (0.0/0.0)



19

These results show that the new Connected-Path algorithm (CP) consistently out-

performs string-matching techniques (JR and QG) and link-based similarity algorithms

(CT, JC, PMI, SR and PS), over the identified sets of top-K similar entity pairs. Also,

the more-refined CP model (i.e. r = 4) achieves a better performance than its basic

counterpart (i.e. r = 2). This finding indicates that long paths can help to improve

the underlying similarity measure, thereby reinforcing the quality of the resulting CP

method. Amongst the link-based methods investigated, PS possesses the best preci-

sion/recall statistics. Analogous to the CP approach, PS has such a superior outcome

because of the inclusion of edge weights (i.e. co-occurrence frequencies) in its similarity

estimation process. On the other hand, CT is ineffective as it does not take account of

this link property.

Unlike the CP and CT techniques that concentrate on joint neighbors, JC, PMI

and SR also consider unshared neighbors that may reduce the strength of the similar-

ity measure. For the Terrorist network which contains a large number of uninformative

edges (i.e. arbitrary and semantic-free co-occurrences), such methods become inaccu-

rate. Their performance degrades even more when the similarity evaluation is carried

out beyond the set of adjacent neighbors. However, they perform better (as compared

to their application to Terrorist) on the DBLP1-2 datasets in which links (i.e. co-

authoring relations) are more reliable. In spite of its low performance, the SR measure,

which has been recognized as a benchmark for link-based analysis technique for the

publication (Getoor and Diehl 2005) and Internet (Calado et al 2006) domains, is in-

cluded in the present evaluation to reflect the difficulty of deceptive alias detection. Of

course, as false identity detection is an extremely difficult task, it is generally the case

that precision/recall statistics are much lower than what might be expected in usual

classification problems. Despite this, the proposed method leads to the best overall

performance, for a variety of data collections.

Note that the string-matching algorithms are effective in discovering a minority

of alias pairs in the Terrorist dataset: those with a very high appearance-based simi-

larity. However, these methods become ineffective with ‘highly deceptive’ cases where

overlapping textual content is extremely small, or even nil. Based on the collection of

183 name pairs in the Terrorist data that are highly deceptive (i.e. whose JR measures

are 0), Fig. 10 presents the number of such pairs that can be revealed per link-based

method. These results demonstrate that the CP approach is effective for tackling the

deception problem, with its performance being generally robust to different parameter

(r) settings. The results of PMI and SR are omitted since they are totally ineffective

at detecting any of the deceptive pairs.

6.3.2 Effectiveness of the Hybrid Model

For comparison purposes, the following steps are employed to evaluate the performance

of the proposed hybrid model for false identity detection:

– Step1: The Connected-Path method is used to derive pair-wise link-based similarity

SConnected−Path(vi, vj) for any vi, vj ∈ V , where each vi ∈ V corresponds to a

particular name xi ∈ X.

– Step2: K = 1, 000 name pairs (e.g. equivalently represented as (vi, vj)) with top

Connected-Path measures are selected.

– Step3: These selected pairs are re-ranked in accordance with their ultimate similar-

ity score s∗(xi, xj), using each of the aggregation models introduced in Section 5:
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Fig. 10 Number of ‘highly deceptive’ alias pairs in the Terrorist dataset that can be discovered
from the K name pairs of the highest similarity measures.

AGG-Text, AGG-Average, AGG-Max and AGG-Min. In particular, the Jaro tech-

nique (JR) is utilized to generate the string-matching scores of those selected name

pairs.

The results of Table 2 show that the hybrid models can further improve the perfor-

mance achievable by the Connected-Path (r = 4) method alone. The number of false

positives is substantially reduced, especially regarding the collections of top-200 and

top-400 name pairs. The most and the least effective hybrid methods are AGG-Text

and AGG-Min, respectively. These findings which can be analogously observed on all

investigated datasets, strongly indicate that the proposed hybrid approach is robust

to the choice of aggregation mechanism that is used to combine the text-based and

link-based similarity measures. Note that this positive performance is also observed

when the less accurate, but more efficient, Connected-Path estimation (i.e. r = 2) is

used in the hybrid models. The corresponding results on the Terrorist and DBLP1-2

datasets are given in Figs 11-13.

Fig. 11 Number of alias pairs discovered in the Terrorist dataset by different hybrid models,
where K is the number of retrieved pairs which are of the highest similarity values. Note that
CP(r = 2) is employed to generate the link-based similarity measures in these hybrid methods.
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Table 2 Number of alias pairs discovered in the Terrorist and DBLP1-2 datasets by different
hybrid models, where K is the number of retrieved pairs which are of the highest similarity
values. Note that CP(r = 4) is employed to generate the link-based similarity measures in
these hybrid methods.

Dataset Method Number of K

200 400 600 800 1,000

Terrorist CP(r = 4) 52 81 136 170 193

AGG-Text 81 123 149 175 193

AGG-Average 75 122 148 171 193

AGG-Max 79 123 149 170 193

AGG-Min 57 106 144 170 193

DBLP1 CP(r = 4) 5 6 10 11 11

AGG-Text 10 11 11 11 11

AGG-Average 9 10 11 11 11

AGG-Max 7 8 11 11 11

AGG-Min 6 7 10 11 11

DBLP2 CP(r = 4) 4 9 14 16 20

AGG-Text 18 20 20 20 20

AGG-Average 17 19 20 20 20

AGG-Max 14 16 19 20 20

AGG-Min 10 13 15 18 20

Fig. 12 Number of alias pairs discovered in the DBLP1 dataset by different hybrid models,
where K is the number of retrieved pairs which are of the highest similarity values. Note that
CP(r = 2) is employed to generate the link-based similarity measures in these hybrid methods.

6.4 Complexity Analysis

6.4.1 Complexity of Connected-Path and Compared Link-Based Algorithms

In addition to evaluating these methods in terms of discovered alias pairs, it is impor-

tant to investigate the computational complexity that would determine their actual

efficiency for real-world applications. Suppose that a link network consists of n distinct

entities (i.e. vertices), each averagely linked to m other entities. The time complexity

for the Connected-Path method to generate all pair-wise similarity values is O(n2mr),

where r is the maximum length of paths that are included in the similarity estimation

and r ∈ {2, . . . ,∞}.
CT is the most efficient amongst the compared link-based methods, with its time

complexity being O(n2m). Both JC and PMI are slightly more expensive than the



22

Fig. 13 Number of alias pairs discovered in the DBLP2 dataset by different hybrid models,
where K is the number of retrieved pairs which are of the highest similarity values. Note that
CP(r = 2) is employed to generate the link-based similarity measures in these hybrid methods.

simple CT model, where their complexity is generally O(n2m2). With the f iterations

of refinement, the time complexity of SimRank algorithm is O(n2m2f). Note that

the results shown in Table 1 are obtained using f = 3 (with its usual range being

around 3-5). In contrast, PageSim is rather more complex compared to the others as it

begins with ranking all entities using the PageRank technique, whose time complexity

is O(nmk) where k is the number of iterations for refining the ranking values (k = 3

in this experiment). Having accomplished the ranking process, the similarity of two

entities is estimated on the ranking values propagated from their shared neighbors,

with the maximum connecting-path length of r (r and d set to 3 and 0.8 for the

results given in Table 1). Hence, the overall time complexity of PageSim method is

O(n2m2r + nmt).

It is noteworthy that the outcomes of the Connected-Path measure given in Table 1

are achieved by setting the maximum path length as r = 4, which consequently results

in the time complexity of O(n2m4). Essentially, this requirement can be substantially

reduced to O(n2m2) by including only short paths (i.e. r = 2), in which case the

number of disclosed aliases drops slightly, but it is still considerably larger than those

of its counterparts. These results imply the efficient exploitation and flexibility of the

Connected-Path algorithm in real-time applications.

6.4.2 Efficiency of the Hybrid Approach

The time complexity of the proposed hybrid model is the combination of those re-

quired by the underlying string-matching (i.e. Jaro) and Connected-Path methods.

In general, the time complexity of Jaro is O(l2), where l denotes the average length

of studied names. Thus, the hybrid method with Connected-Path possesses the over-

all time complexity of O(n2mr + Kl2). This is reduced to O(n2m2 + Kl2) when the

shortest-path variation of Connected-Path (r = 2) is employed. It is O(n2m4 + Kl2)

if r = 4.

The above analysis indicates that the hybrid method offers great flexibility in its

potential applications. The algorithm specification can vary with respect to different

time requirements. In particular, the Connected-Path measure that includes only short

paths is efficient for a quick or immediate response, whilst the measure with longer

paths can be carried out in the background, as the supporting module for the former.
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7 Conclusion

This paper has presented a new link-based similarity method, Connected-Path, that

exploits multiple link properties to estimate the degree of similarity. Unlike many ex-

isting link-based algorithms that concentrate exclusively on the cardinality of joint

neighbors, this measure further includes the uniqueness property of the link patterns

in order to refine the similarity estimate. Connected-Path outperforms both well-known

link-based and text-based methods, on the terrorist-related and publication data col-

lections. Furthermore, the paper has offered a hybrid model for name disambiguation,

which efficiently aggregates both link-based and text-based similarity metrics. It has

been empirically demonstrated that this hybrid approach can enhance the performance

obtained by using the link-based measure alone.

Despite such achievements, their efficacy may be further demonstrated with more

terrorist-related or similar intelligence datasets. In addition, the proposed novel link-

based similarity measure can be exploited for resolving identities and aggregating rel-

evant scenarios in the environment of intelligence data analysis (Shen et al 2006).

Specifically, as part of on-going work, the concepts of qualitative reasoning have been

adopted to enhance a conventional numerical link analysis (that usually fails to achieve

accurate and coherent interpretation of similarity measures). Based on the order-of-

magnitude model (Raiman 1991), an initial qualitative method of (Boongoen and Shen

2009a) is introduced such that the similarity and associated link properties can be

expressed by linguistic descriptors. Effectively, it allows the detection results to be nat-

urally explained and validated. This is similar to the computational model of (Ashley

and Bruninghaus 2009), which aims to classify case texts and predict case outcomes in

a manner that can be explained in terms that law practitioners can understand.

In spite of its simplicity, a significant limitation exists with the aforementioned

order-of-magnitude based model. This is because of its ineffective interpretation of the

underlying real-valued variables and ambiguous products of interval-based qualitative

values. In addition, this model does not address the gradual nature of qualitative

labels, i.e. the extent to which a suspect’s height of 170 cm. is ‘moderate’ or ‘tall’

is often a matter of degree and differently perceived by one analyst or another (Ali

et al 2003; Shen and Leitch 1992). To improve this initial method, the theory of fuzzy

sets (Zadeh 1965) may be employed to represent the qualitative model such that the

vagueness and uncertainty inherent in human knowledge and judgement can be better

captured and rationalized. For AI and Law research, the potential of such practice has

long been recognized. For instance, it has provided a mathematical means to link the

determinacy of decisions to fact patterns described in indeterminate terms (Philipps

and Sartor 1999).

Another on-going research project concentrates on combining multiple link prop-

erties using the methodology of OWA (Ordered Weighted Averaging) (Boongoen and

Shen 2008a). The preliminary method of (Boongoen and Shen 2009b) makes use of

stress functions (Yager 2007), by which users can determine the actual behavior of an

aggregation process. Although the current work uses only a limited number of pre-

defined stress functions, it is in line with the attempt to bridge law practitioners and

AI researchers (Oskamp and Lauritsen 2002). Indeed, this aggregation model allows

practicing lawyers to guide the formulation of computational methods at high levels

without necessarily making choices about the underlying mathematical details.
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