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Abstract 

We explore one aspect of the structure of a codified legal system at the national level using a new 

type of representation to understand the strong or weak dependencies between the various fields of 

law. In Part I of this study, we analyze the graph associated with the network in which each French 

legal code is a vertex and an edge is produced between two vertices when a code cites another code 

at least one time. We show that this network distinguishes from many other real networks from a high 

density, giving it a particular structure that we call concentrated world and that differentiates a national 

legal system (as considered with a resolution at the code level) from small-world graphs identified in 

many social networks. Our analysis then shows that a few communities (groups of highly wired 

vertices) of codes covering large domains of regulation are structuring the whole system. Indeed we 

mainly find a central group of influent codes, a group of codes related to social issues and a group of 

codes dealing with territories and natural resources. The study of this codified legal system is also of 

interest in the field of the analysis of real networks. In particular we examine the impact of the high 

density on the structural characteristics of the graph and on the ways communities are searched for. 

Finally we provide an original visualization of this graph on an hemicyle-like plot, this representation 

being based on a statistical reduction of dissimilarity measures between vertices. 

In Part II (a following paper) we show how the consideration of the weights attributed to each 

edge in the network in proportion to the number of citations between two vertices (codes) allows 

deepening the analysis of the French legal system. 

Keywords: dense graph · network · concentrated world · legal code · codified 

legal system · communities 

mailto:boulet@lmtg.obs-mip.fr
mailto:pmazzega@gmail.com
mailto:daniele.bourcier@cersa.cnrs.fr


2 

1. Introduction 

Generation after generation, the many national legal systems as well as the 

federal, Community or International legal systems are built by adding, revising, 

removing more or less important legal texts that cite each other and interfere under 

the requirement of legal coherence. A long and collective work, still continued, 

responding to the changes in the human societies it regulates, encourages or solicits, 

and to which many craftsmen contribute but none can claim to be the architect who 

has a complete and accurate picture of the produced building. The mathematics and 

computer sciences can contribute greatly to draw an overall picture of a legal system, 

promoting the development of new representations and understanding of law, less 

local or fractioned into specialty areas, more sensitive to its dynamic and evolution. 

Codification has a long tradition in French Law. Historically, the Civil Code (1804) 

has inspired several continental law systems. Methodologically, the underlying 

rationale for codification (the grouping of texts of successive and dispersed articles in 

a single structure at a given time) has become a reference for legislators who want to 

re-codify or codify existing law. The codification process may include various forms 

more or less structured. In 1989 France has systematized a codification method 

characterized as being on the basis of established law and has created a commission 

to implement it. The European Union has taken some aspects of the method of 

French codification. Codification is also intimately related to the long standing 

problem of the control of legal complexity. Two reports were made by the Council of 

State (Conseil d'Etat 1991; Conseil d'Etat 2006) which participates in a priori control 

of writing texts, lambasting this complexity. 

In an a priori control of drafting and writing of legal documents, the Constitutional 

Council has even considered that the unreasonable complexity of laws could make 

them unconstitutional: in its decision of 29 December on the Finance Bill for 2006, the 

Constitutional Council annulled outright Article 78 of the cap of tax loopholes on the 

grounds that the article would have “reached a level of complexity that [it] infringes 

Article 14 of the Declaration of Human Rights and of the Citizen, which states that all 

citizens have the right to see [...] the necessity for public contribution”. The 

codification was seen as a way to reduce the complexity of the law by organizing 

more effective links between the provisions. 

 

1.1 Analyzing the complexity of the law 

 

Whatever their nationality, lawyers and legal practitioners now recognize the 

complexity of the law. Legal complexity raises substantive issues about the essence 

of norms (normativeness), about their relation to the legal facts and the "state of 

affairs" (Epstein, 1995) or as to the cognitive dimension of any norm which degree of 

complexity induces a diversity of behavior and therefore costs to ensure their mastery 

or use (Kaplow 1995). Tullock (1995) seeks to introduce the difficult problem of the 

accuracy that the legal norm should develop, a trade-off to be found between 

genericity, applicability and legal security. 
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Now a large amount of literature is devoted to the analysis of legal complexity, 

favoring different point of view or relying on a range of methodological approaches 

like the economic analysis of law, the use of concepts of the computational 

complexity theory, doctrinal analysis, etc. (see e. g. Schuck 1992, Kades 1997, Ruhl 

1997, or more recently Pagallo 2006, Doat et al. 2007). The French State Council 

has underlined that legal complexity is opposed to several principles, some of them 

with a constitutional value, such as the legal security or accessibility to all citizens 

(Conseil d'Etat, 2006). However, an objective definition of the complexity of law is 

lacking and hence methods for its characterization and monitoring. The sciences that 

study complex systems, whether natural or artificial, provide concepts and tools that 

may be used to promote the emergence of new approaches to law and legal 

systems. 

Today the approach of the legal complexity by graph does not pretend to tackle 

with all the relevant issues of legal complexity. It develops a rather minimalist 

strategy: focus first on identifying treatable questions (showing a degree and a type 

of complexity that can be formalized) and develop adequate methodologies and tools 

for its characterization (statistical “measures”, Halmos, 1974) and analysis. In this 

way this strategy begins gradually to meet the needs expressed by many authors for 

decades (see e.g. Long and Swingen, 1987 that proposed some qualitative 

measurement of the complexity of tax law). The temporal evolution of legal systems 

via a network-based approach, discussed in Bommarito et al 2010b, Fowler et al., 

2007 or Leicht et al., 2007, is also relevant to better understand this complex 

organization.  

 

In this paper we shall focus on the law complexity as manifested by the numerous 

cross-citations between legal texts (see Bourcier and Mazzega, 2007a,b). Fowler et 

al. (2007) show the contribution of a network approach to identify the most important 

precedents of the Supreme Court of the United States that therefore inspired the 

legal culture of this country, their importance being measured in terms of centrality in 

a network of citations in a large set of majority opinions (rather than by counting the 

number of citations; see also Fowler and Jeon, 2088). Bommarito and Katz (2009, 

2010a) analyze the United States Code as a large network where the links are 

citation links (for instance the Tax Code – Title 26 of the US Code – is linked to the 

Criminal Code – Title 18 – through more than two dozen of citations). 

 

The French Department of Justice has funded research on codification (Bourcier, 

1998). This research has attempted to systematize the contributions of technology to 

the codification and to assess the effects of computerization on the access to law. 

During the bicentennial of the Civil Code, a review of work on computers and 

codification has been reassessed (Bourcier, 2004). These studies have focused on 

analyzing the relationship between writing code and the organization of law. But 

there are no studies using these results to analyze the relationship between 

branches of law as captured by codes or by groups of codes. This work is undertaken 
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and could contribute to the partial renewal of Legal Studies. We propose here to 

study an aspect of the relationship between branches of law. We do not go into 

details about the organization of a single code or about the structuring of its network 

of citations. We develop a more comprehensive global view of the French legal 

system. To do this we simply consider each code as a legal entity and we identify the 

citations between these codes. In the representation that we draw, each code is a 

vertex and in code X a reference to code Y induces an edge between the 

corresponding vertices of the graph. 

However we did not keep all the codes that are published on the public site of 

French law LEGIFRANCE (Legifrance, 2009). The codes that were not produced 

following the procedure of legislative drafting (Secrétariat Général du Gouvernement, 

2007) prepared by the Higher Commission for Codification currently in force were 

excluded from our analysis. For example the general tax code that is produced by 

another authority (the Ministry of Budget) following a specific procedure is not part of 

the 52 codes that we selected (see Table 1). On the other side there are codes that 

have not been affected by the 1989 codification policy, as the Civil Code, 

fundamental matrix of the right (which old fashioned numbering system is 

maintained), because they were an inspiration to define good coding practices. The 

analysis of this network aims at constructing a meta-representation of the relations 

between the codes. This mapping of the work done by the coders since the launch of 

the codification policy in 1989 may be of great interest to the Higher Commission for 

Codification, which plans, manages and coordinates both the codification work and 

the maintenance of codes. 

 

1.2 Analyzing a dense network 

 

The large number (hundreds or thousands) of vertices present in the graphs built 

from real contexts requires to rely on metrological analyses and on the research of 

communities (group of vertices) to better appreciate the architecture of the network. 

Common features of these networks appear as for example the small-world structure 

found in various fields of application like peer-to-peer networks (Latapy and Magnien 

2008), lexical network (Gaume 2004), networks between firm directors (Davis et. al 

2003) or protein networks (del Sol et al., 2004). The characteristic of a small-world 

are that the average distance between two nodes of the network is low (also known 

as tight global connectivity) and secondly that the probability of existence of an edge 

between two nodes is higher if these two nodes are linked to a third one (we also say 

that the network has a strong local connectivity) (Watts, 2003). These large 

interaction networks also share a property of low density (note that fundamental 

notions such as "density" are recalled in sec. 1.3), giving them well-marked structures 

in the form of communities (sub-dense parts separated by sparse sections) allowing 

a simpler representation and making their interpretation easier. 

However, a graph with few vertices (less than one hundred) will not be 

necessarily easy to analyze provided it is dense, plenty of links that induce a specific 

complexity that is not found in large low-density graphs. Indeed, the complexity does 
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not lie in the great number of vertices to consider, but in the large number of edges 

that prevents from the straightforward recovery of separate communities. While most 

studies of real networks address the analysis of low density graphs, we here analyze 

a network with a low number of vertices but much higher density. 

The graph associated with the network of code citations of the French legal 

system is shown in Figure 1. It is formed of 52 vertices (the 52 codes retained for our 

analysis - see above) and 531 edges. The production of a representation favoring its 

interpretation is not a trivial task. In Figure 1 we use for this representation a spring-

force algorithm that better fills the space of representation and limits crossing edges. 

It remains that the calculation of structure indices and the search for a more explicit 

representation is needed to better exhibit and understand the structure underlying the 

codified legal system. In Section 2 we analyze indices obtained from a metrological 

approach taking into account the density of the graph and introduce a new class of 

networks: the concentrated world. In Section 3 we will tackle with the difficulty in 

using the traditional tools in the search for communities when applied to dense 

graphs. We propose in Section 4 a method for the interpretation of the network using 

a representation based on a dissimilarity index applied to the vertices of the graph. 

The major features of the network associated to the French legal system are 

discussed in Section 5 and some conclusions and perspectives are given in the last 

Section 6. 

 

1.3 Usual notions in graph theory 

 

For the reader not acquainted with graph theory, we remind here the meanings of 

some  terms used in this study. The usual notions of network analysis present in this 

paper can be found in reference books (such as Brandes and Erlebach, 2005). 

 A graph G(V,E) is defined by a set of vertices V and a set of edge E, an edge 

linking two vertices. 

 A sub-graph induced by a subset W V of the set of vertices of the graph G is the 

graph whose set of vertices is W and the set of edges is constituted by all the 

edges of G linking two elements of W. 

 Two vertices are neighbors if they are linked by an edge. 

 The neighborhood   of a vertex v, is the set of neighbors of v. 

 The degree of a vertex is the number of its neighbors, that is  . 

 The density of a graph is the ratio between the number of edges that actually 

exists in the graph by the total number of possible edges of the graph, that is, 

)1(

2

nn

m
 where n is the number of vertices of the graph and m is the number of 

edges. 

 A path between two vertices 1v and kv  is a sequence of vertices ),...,,( 21 kvvv  where 

the vertices jv  and 1jv  (for kj  ) are linked by an edge. The length of the path is

)1( k . 
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 A shortest path between two vertices is a path of minimal length between these 

vertices. Several shortest paths can exist between two given vertices (with the 

same length). 

 The average path length is the mean of the length of the shortest paths between 

each pair of vertices (Watts and Strogatz, 1998). 

 The characteristic path length of a graph is the median of the means of the 

shortest paths from a vertex to the other vertices (Watts and Strogatz, 1998). 

 The diameter of a graph is the longest of the shortest paths between two any 

vertices of the graph. 

 A clique of a graph G is a complete sub-graph of G, that is, a sub-graph in which 

all the vertices are pair-wise linked by an edge.  A clique with k vertices is also 

called a k-clique. A clique is maximal if it is not contained into another clique. 

 An Erdös-Rényi random graph with parameters n ∈ N and p ∈ [0,1], denoted by 

G(n, p), is a graph with n vertices where each edge exists with a uniform 

probability p (Erdös and Rényi, 1959). 

 The adjacency matrix of a graph G with n vertices labeled from 1 to n is the matrix 

whose (i,j)th entry is 1 if there is an edge between the vertices i and j and 0 

otherwise. 

2. Structural analysis 

2.1 Constructing the FLC network 

 

The codes citation network of the French legal system is constructed as follows. 

Each of the 52 codes adopted is interrogated in turn on the site of Legifrance (2009), 

considering only their legislative part. For each code we do an automatic search for 

the occurrence of the word "code". Each of these citations is edited so as to verify 

that this is a citation of one of 52 legal codes (and not e. g. the occurrence of the 

string "code", use of word "code" in a sense irrelevant to our analysis, or one of the 

codes produced without following the legistic criteria established by the High 

Commission of Codification) and to identify that or those cited codes. The number of 

citations between two codes is well recognized. As we explained earlier in this article 

we do not consider these numbers, but only the existence of at least one quotation 

(which we represent as an undirected and un-weighted link). The graph whose edges 

are weighted by the number of citations is analyzed in Part II of this study. 

The representation of the graph associated with the system of French legal codes 

(FLC) given in Figure 1 is produced with a spring-force algorithm. We first notice that 

this system is forming only one connected component (plus the "code of the honor 

legion" sharing no citation with any of the other codes). The code of the monetary 

media (with label INM; see Tab.1) presents a single connection with the rest of the 

FLC system. But at first glance no obvious structure appears (on this particular 

representation of the graph but as well on many alternative representations that we 

can draw). A more detailed analysis of the graph is required in order to have an 



7 

overview of the properties (structural measures) of the FLC system and to identify 

code communities (if any). 

 

2.2 Structural measures 

 

Several quantitative measures can be used to characterize the structure of a 

network. Among these measures we here mainly rely on: 

 General indices like the number n of vertices, the number m of edges, the density 

d (see Sec. 1.3) and the mean degree k = 2m/n. 

 Small-world indices (Watts and Strogatz, 1998), that is: 

o indices measuring the global connectivity such as the diameter D, the 

mean of shortest paths l or the characteristic path length L (Watts, 2003); 

o indices measuring the local connectivity such as the first clustering 

coefficient 1C which is the mean of the densities of neighborhood of vertices 

and the second clustering coefficient 2C  which is the ratio between the 

number of triangles and the number of connected triples. 

 Centralization measures: according to Freeman (1979) three centralizations 

measures of a network can be defined based on three notions of vertex centrality 

(or power): 

o the degree centrality proportional to the degree of a vertex; 

o the betweenness centrality proportional to the number of shortest paths 

going through a vertex; 

o the closeness centrality, inversely proportional to the mean of shortest 

paths beginning at a given vertex. 

A centralization measure lies between 0 (regular and not centralized network) 

and 1 (highly centralized network). In order to appreciate how high or low these 

indices are we compare them to an Erdös-Rényi random graph and to other real 

networks. In Table 2 we summarize the estimates of these measures for the FLC 

system, for the associated Erdös-Rényi random graph (which is in fact the mean of 

indices obtained by generating 10000 random graphs) and for three networks already 

studied by various authors, say a network of collaborations between mathematicians 

(Grossman, 2002), a Peer-to-Peer network (Latapy and Magnien, 2008) and a 

medieval social network (Boulet, 2008).  

Let us compare these measure estimates for the different graphs. With only 51 

codes in the connected component, the FLC system is a small system (as compared 

for example with the peer-to-peer network P2P with several millions of vertices). But 

its density is high, with a value of 0.416, the other graphs presenting densities of at 

most a few percent (medieval social network). This distinguishing property is to be 

related to the mean degree found in the FLC system: in average, a code is 

connected (being cited or citing) with more than 20 codes (k=20.8). The P2P network 

has a high mean degree but a very low density because of the plethora of vertices.  

This high density of the FLC system also impacts the other measure estimates: a) 

the very low value (1.595) of the mean of shortest paths (i.e. the fact that it is most 

likely to be able to go from one code to any other code in one or two references) can 
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be seen as a consequence of the high density: among the large amount of edges 

present in the network, some of them are creating shortcuts for the linkage of pairs of 

vertices (the same holds for the value of the characteristic path length L and the 

diameter); b) the values of the clustering coefficients and centralization measures of 

the FLC network are systematically and significantly higher than those of the 

population of the equivalent random graphs but the clustering coefficients are also 

high as a result of the high connectivity of the FLC network, a global property that is 

almost perceptible on Fig. 1. c) the betweenness centrality is high in the FLC network 

because there are many shortest paths with length 1 or coexisting shortest paths 

between any two codes with length 2.  

Small-world networks are graphs with a tight global connectivity (that is a low 

diameter or a low mean of shortest paths) and a high local connectivity (high 

clustering coefficients – see e.g. the network of mathematicians in Table 2). The FLC 

network seems to have these properties but it is implicitly admitted that a small-world 

network is a globally sparse network (ie with a low density), which contrasts with the 

FLC network. Moreover the values of clustering or shortest path length for the FLC 

network are influenced by the very high density of this network  (which is a global 

value of the network) whereas the local properties of a small world network 

(clustering) cannot be inferred by the global property of the density. Therefore we do 

not qualify the FLC network as a small-world network. 

However we expect that some hidden code communities are structuring the FLC 

system: the reason is that the clustering coefficient 1C  (mean density of the 

neighborhoods of vertices) is quite higher than the average density d though we 

notice that the values of these measures are the same in the case of the random 

graphs. Indeed in a random graph the local density (C1) is the same as the global 

one (d) whereas in a real network (and especially in a small world network) the graph 

is globally sparse but locally dense (in particular due to the presence of 

communities). 

3. Finding communities 

The network of references in the FLC system can reveal some preferences of 

inter-citations within groups of codes. The existence of such communities of codes 

would express the privileged interdependence between different legal domains. 

These communities are not immediately visible in the FLC system so that to identify 

them we use several algorithms. Community detection is an essential stage in 

understanding the architecture of a network and it constitutes a very active field of 

research in graph theory and network analysis. Some recent surveys (Fortunato, 

2010; Porter et al., 2009) are detailing some of the algorithms and methods used to 

find communities in a network. 
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3.1 The rich-club 

 

Another structural characteristic of networks is the presence or the absence of a 

rich-club (Colizza et al, 2006). A rich-club occurs in a network if the nodes with 

highest degree (also called „rich nodes‟) tend to be strongly interconnected. The rich-

club, if it exists, can be seen as a whole community with a central and influent role. 

The analysis of the function )(r which gives the density of the graph induced by 

the first r  vertices of highest degree (that is the vertices with highest degree 

centrality) (Zhou and Mondragon, 2004) and whose layout is given in Figure 3 

reveals the presence of a single and influent pole called rich-club: the richest vertices 

are highly interconnected, forming a cohesive and influential group. 

The seven codes with highest degree centrality are all connected together and 

then three codes come to the eighth place. Each of these three codes has a degree 

equal to 35 and is linked to the seven previous codes, forming cliques of order 8. 

These ten codes of highest degree are listed in Table 3. They form a dense sub-

graph (only one edge is missing: the link between the environmental code - label 

ENV - and the code of employment - label TRAV) and constitute the rich-club. 

Moreover the betweenness and closeness centralities are represented are 

represented in Figure 3 as a function of the degree. We can see that the ten codes 

with the highest degree also have the highest betweenness centrality and highest 

closeness centrality. This emphasizes the central position of this influential group. On 

this point the FLC network contrasts with other real networks as it is not uncommon 

in real networks to have vertices with a low degree but with a high betweenness 

centrality measure (Newman, 2005; Boulet et al, 2008). We also note in Figure 3 that 

the Criminal code presents a betweenness centrality particularly high and can be 

seen as a code (and therefore legal domain) central to the French legal system but 

also a hinge between several legal domains. 

As explained in the previous sub-section, the FLC network looks like a small 

world with regard to some of its connectivity characteristics but the density of links is 

much higher than what has been currently observed by researchers analyzing many 

networks or graphs representing natural or artificial systems but this high 

concentration of links gives the network a particular structure, different from a small 

world structure. Moreover it has a central rich club of codes concentrating also the 

betweenness and closeness centrality. For these reasons we propose to call this kind 

of network a “concentrated world”. 

 

3.2 Other communities 

 

Discarding the 10 codes belonging to the rich club, which can be seen as a 

dominating community, can we separate the FLC network in a few components (sub-

graphs) that present a high degree of internal connectivity? Shall we find hidden 

clusters of codes in the complex FLC network (see Figure 1)? Is there some 

underlying legal logic inducing such partitioning? In order to answer these questions 
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we use three different well-known algorithms of graph partitioning whose aim is to 

maximize modularity. The modularity M measures how good is a partition 

(V1,V2,…,Vk) and is defined as: 
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where im  is the number of edges in Vi and d(u) denotes the degree of the vertex 

u. It measures the difference between the number of edges in a cluster and the 

number of expected edges. The value of M is high when the trial partition separates 

well-marked communities (if any) that structure the analyzed network. Three well-

known algorithms are considered: 

 A fast-greedy algorithm for partitioning which finds communities in graphs via a 

direct optimization of the modularity of trial aggregations of vertices (Clauset et al, 

2004; Newman, 2004). At each step of the process we choose the aggregation of 

communities which results in the greatest increase of the modularity; 

 A spectral graph partitioning based on the normalized Laplacian (von Luxburg, 

2007). The normalized Laplacian of a simple graph is L=D-1/2(D-A)D-1/2 where A is 

the adjacency matrix (see Section 1.3) and D = diag(A1). The vertices are 

mapped in Rk via their coordinates given by the first k eigenvectors of L. This 

allows performing a partitioning algorithm such as a k-means algorithm, see 

(Hartigan and Wong, 1979) for instance, to find communities. The number of 

clusters is chosen in order to maximize modularity;  

 The walk-trap algorithm (Pons and Latapy, 2005) based on random walks; the 

underlying idea is that a random walk on a graph will be trapped into a community 

after a certain number of steps. The proposed algorithm in (Pons and Latapy, 

2005) begins to compute a distance between vertices through random walks on 

the graph. This distance yields a distance between group of vertices 

(communities) and then a hierarchical clustering is performed by merging two 

communities if they are close.  

We perform each algorithm on the graph obtained by removing vertices belonging 

to the rich-club. The graph associated with the FLC system exhibiting the rich-club 

and the partitions obtained with these three algorithms are presented in Figures 4, 5 

and 6 respectively. These figures are equivalent to Figure 1 but they show the 

modular structures found in the FLC network. 

The rich-club is represented by a central rectangle. The communities obtained by 

the partitioning algorithms are represented by diamonds and disks represent the 

Honour Legion code (LGA; isolated vertex) on the one hand and Monetary media 

code (INM; pendant vertex) on the other hand. A weighted edge between two 

symbols indicates the total number of links between these two groups of codes. The 

acronym of each code is transcribed in the symbol of the community to which it 

belongs. For example in Figure 4, the ASF code belongs to the community of 12 

codes most strongly linked to the rich club. 

At first glance, the two graphs obtained with the fast-greedy (Fig.4) and spectral 

(Fig.5 algorithms are quite similar, the third graph (walk-trap algorithm) exhibiting a 
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larger number of smaller communities. Of course on these figures the particular 

representations chosen for these graphs tend to emphasize the similarities but the 

lists of codes belonging to similar communities of Fig.4 and 5 are not identical 

(except of course for the rich-club which is preserved by the analysis). In fact the 

results differ depending on the process chosen to establish the partitioning. In 

contrast the non-uniqueness of optimal partitioning justifies our strategy of using 

several algorithms (based on different partitioning approaches). 

These partitioning highlight two stable groups that is sets of codes belonging to 

the same class for the three considered partitions. These two groups can be seen as 

two stable communities of respectively 12 codes and 11 codes. The first group is also 

the second largest class obtained using the fast-greedy partitioning algorithm 

(Clauset et al, 2004). The second stable community also coincides with the second 

largest class in the partition obtained by the method of random walks (Pons and 

Latapy, 2005). An interpretation of these two communities is outlined in the Section 

5. 

4. An hemicycle-like representation 

Because of the abundance of links it is difficult to build a clear representation of 

the distributions of the codes and codes communities in the FLC system. We here 

propose a new kind of representation. If we make an analogy between the FLC 

network and a social network that is if we consider that the codes are individuals, 

where do these individuals would lie in a sort of hemicycle? First we put the rich-club 

of central and influent "individuals" at the center. Then we endow the set of codes 

with an Euclidean dissimilarity, the Czekanovski-Dice dissimilarity, which is well 

adapted to reveal the structure of a graph (De Fraysseix, 1999; Kuntz, 1992). This 

dissimilarity measures the proportion of neighbors that two vertices v and w

 

don‟t 

have in common and is defined as: 

wv

wv
wv






Γ
),(2

  

      (2) 

where   is the symmetric difference1 (see Sec. 1.3 for the other notations). The 

dissimilarity between two codes is null when they have the same neighboring codes; 

it takes a unit value when they have no common neighbors.  

With this Euclidean dissimilarity the codes can be displayed in Rn (n may be large 

and equal to the number of codes minus 1), the Euclidean distance between two 

codes in Rn being equal to the Czekanovski-Dice dissimilarity of these two codes. 

Performing a principal component analysis on a distance matrix permits to display the 

codes on a principal plane (see the Appendix for details). The position of the ith code 

in the hemicycle that is in the half disk of unit radius, is determined by two 

parameters: 

                                                
1
 The elements of AΔB are the elements belonging to A but not to B and the elements 

belonging to B but not to A. In other words it is the set of elements belonging to either A or B 

but not both. 
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 A radial component )( jr which we set to be proportional to the mean distance )( j

of the code to the Rich-Club: 
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being the size of the rich-club. 

 An angular component )( j , which we want to be proportional to the first principal 

component of the principal component analysis performed of the dataset in which 

the effect of the mean distance to the rich-club has been suppressed, that is on 

the data projected on the orthogonal component to a  (see the Appendix) where a  

is the vector such that the coordinates of the jth code along this vector is )( j .  

Two codes may have the same mean distance to the rich-club (although the links 

with the club's codes are different). Therefore the addition of the angular coordinate 

is necessary to distinguish them on a planar representation. This hemicycle 

representation of the simple FLC network is given on Figure 7 where the codes are 

represented by their label (see Table 1). Let us note that if we do not remove the 

effect of the distance to the rich-club on our data then the correlation coefficient 

between the first principal component and this distance to the rich-club is 0.81.  

Figure 7 shows two main things: a) ten codes are quite close to the rich-club 

without being members: they are quite influential codes, relatively central in the 

architecture of the FLC system; b) the codes belonging to the same stable 

community tend to end up in the same angular sectors. Quite influential among the 

codes, some belong to one of two main stable communities previously identified, 

others not as the monetary and financial code (with label MOF) and the defense code 

(with label DEF). The angular dispersion of communities (see Tab. 4) are of nearly 

the same amplitude, the community of the 11 codes on our representation occupying 

the left half of the amphitheater, the community of 12 codes the right half. This 

reflects an equal range of dissimilarity between codes within each community. 

However the most interesting feature is that we find on this representation groups of 

codes belonging to the same stable community, on the basis of criteria independent 

of those that were used to partition the system. This observation tends to corroborate 

the existence of these code communities that had hitherto escaped the analysis. 

5. Discussion 

At this point what have we learned? Firstly we have produced for the first time a 

visualization of the French network of legal codes. A pedagogical virtue of such a 

map is to show unequivocally the rich network of interrelationships between codes, 

and between major areas of law. Another is to realize how necessary it is to who 
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wants to master this complexity to dispose of such set of navigation instruments, 

methodologies and analysis tools for understanding the emerging and evolutionary 

legal structure (Bourcier and Mazzega, 2007a). 

At one level of the analysis, we find the club of the 10 codes most related to other 

codes. These codes (see Table 3) are, with one exception, all connected in pairs. 

They form a rich club that structures the inner-core of the French legal system. 

Foremost is the penal code, strongly connected to many other codes, as it is 

gathering all the measures relating to penalties and offenses, whatever the domain 

they apply to. There is also the civil code for its antiquity, its notoriety and 

fundamental dimension for the human rights that it ensures (rights of individuals). It is 

found to be central in the French legal system. 

The Rapporteur for the Higher Commission for Codification that was also 

responsible for drafting the general code for local authorities (GCT), has commented 

some aspect of our results. First, as a kind of "blind test", we asked her to give a list 

of most central or influent codes, on the basis of her intuitive knowledge of the full 

legal system. She gave us seven codes of the rich-club. From her point of view, the 

most unexpected codes in the rich clubs are the general code for local authorities 

(GCT), the code of the environment (ENV) and the code for the public health (SAP). 

These three codes have in common to regulate areas covering a wide range of topics 

and cases, all linked to many other dimensions of the social life, politics and our living 

environment. For example, the code for local authorities organizes all links between 

the state and its decentralized services, administration in the regions, links with 

regional and local services, etc. Just check the table of content of these codes to be 

convinced of the extent and diversity of subjects they cover (to be consulted on the 

Legifrance web site).  

If we discard these 10 most central codes from the network, we find again a form 

of organization which probably has so far escaped analysis. Indeed we have found 

two communities of codes, the identification of which is stable and robust regardless 

of the analysis criterion and the algorithm used for partitioning the FLC system. 

Looking through the list of 12 codes belonging to the first community there appears a 

common feature for all matters within a fuzzy “social domains” (codes of social action 

and families, insurance, consumers, etc.), “activities with a social character” (code of 

handicraft, education, tourism, etc.) and regulation of these areas (code of 

administrative justice, but also traffic, etc.). We could group under the term “codes for 

social issues” this stable community. The second community could be called “codes 

for territories and resources”, suggesting perhaps too indirectly the idea of ownership 

(of land, natural resources with a geographical or spatial character): codes for 

housing, state-owned property, expropriation in public interest, forestry, mining, urban 

planning, etc. 

It is quite remarkable that these same communities also reappear when 

completely different criteria are used to build another representation suggesting an 

interpretation of the network associated to the French legal system (based on a factor 

analysis of a dissimilarity table and representation in a hemicycle). These results 

confirm the validity of the interpretative approach to the main code communities 

found as far in the system (rich club, codes for social issues, codes for territories and 
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resources). Facing such new representation of a whole legal system, the doctrine 

might raise new questions and investigation, elaborate a new perception of the 

French legal system, even if the names proposed here for these communities should 

be submitted to further reflections coupled with a more detailed analysis (returning 

the content of these codes). These first results also strengthen that the conception of 

law as structured is not only legitimate but also that it can now rely on a body of 

theories and tools designed to address the analysis of complex large legal systems. 

Such approaches have been carried out on the United States Code in, for instance, 

(Bommarito and Katz, 2010a) by considering the US Code as a network with 

hierarchical links and citation links; even if the underlying models are the same 

(networks) our study is performed at a different scale or granularity (coarse-grained 

system) and focuses on the discovering of community. We shall change the scale of 

study and consider interactions between citation links and hierarchical links in other 

(Boulet R., Mazzega P. and D. Bourcier, 2009) and future works. 

6. Conclusion  

We have produced a map of the French system of legal codes. This map may be 

a kind of dashboard for managers of law. It is also of interest to theorists and analysts 

of law, providing a visualization of some networks (and sub-networks) invisible to a 

reader of law, even circumspect. The novelty of this approach in law is also 

evidenced by the absence of a tradition in legal theory that would establish a 

quantitative analysis of the architecture that we reveal in the French legal system, 

even if the in-depth development of the structures of law are the subject of rich 

contemporary analysis linking these structural changes with the evolution of stakes 

and moving powers from the State level to the scene of the international politics 

(Delmas-Marty, 2007; Ost and van de Kerchove, 2002). 

Through the study of a real graph taken from our legal corpus, we find a new type 

of network characterized by a high centralization and a high density that we call 

concentrated world, paving the way for research and study of other graphs of this 

type found in real applications. Indeed we suspect that such concentrated-world 

structures to be typical of various legal systems considered at the national scale and 

with a granularity at the code-level (or equivalent groups of legal texts), in particular 

those related to the large family of civil law. 

The high number of edges in a concentrated world being a handicap for its 

analysis, we have introduced the idea of a “representation in a hemicycle”, to better 

visualize and understand the structure of the graph, and to corroborate the existence 

of hidden code communities. In this representation some groups of codes appear, 

consistent with groupings obtained from the graph partitioning, hitherto unknown to 

lawyers. By producing a new map of the national legal system, many opportunities 

open to analysis, which may offer significant innovations on our perception of law at 

this scale, on the development of the engineering of law, on its understanding and 

within the “factories of law”. 
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At this stage we have mainly opened new perspectives. In particular in Part II of 

this study we analyze the weighted graph whose edges are weighted by the number 

of citations between codes. These weights induce a metric in where two codes citing 

each other many times are very “close”. As we shall see this analysis provides new 

insights on the community structure of codes we have found in the Part I. So doing, 

we pursue the process of defining measures of the complexity of the law (Bourcier 

and Mazzega, 2007b) based on an analysis of its formal structure and content. 
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Appendix 

Let us recall some aspects of a Principal Component Analysis (PCA). If X is a 

data matrix with n rows and p columns (the ith row of X represents the coordinates in 

Rp of the ith individual), a PCA gives a new coordinate system, that is a set of vectors 

u1, ...,up which is the new basis of Rp. The individuals have new coordinates in this 

basis. The vector consisting of the jth coordinate of the individuals is called jth principal 

component and we denote it by cj. This new coordinate system is such that 

maximizing the variance of the data projected on an r-dimensional subspace is done 

by projecting the data on the r first principal coordinates. It turns out that the vectors 

ju  are the orthonormal eigenvectors of the covariance matrix V = XX′ (X’ being the 

transpose of X). The principal coordinates cj are given by cj = X ju  with jjj zu 

where the jz  are the orthonormal eigenvectors of the scalar product matrix W = X′X. 

with matrix Λ of eigenvalues j . 

Proceeding in the same way with the distance matrix D we obtain the scalar 

product matrix W by the Torgerson formula  
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Once we have the matrix W, a principal component analysis gives us the principal 

coordinates. Now, let X be a pn data matrix and let *a (Rp)* be a variable 

represented by the vector a  Rp (Riesz representation theorem). If we want to 

suppress the influence of the variable *a  on the data matrix, we can consider the 

data projected on the orthogonal space of a  (denoted a ). The new data matrix is Y 

= XP where P = I − 'aa  is the matrix of the projection on a  (with 1a ), we can then 

perform a principal component analysis on the new data matrix Y. 

If we do not have X but the distance matrix D (and consequently the matrix W, 

the eigen decomposition of which is W =QΛQ−1) we can reconstruct a data matrix by 

setting X =Q√Λ (which is in fact the coordinates of individuals in the principal 

component system). Moreover we may not have directly the vector a  Rp 

representing the variable *a (Rp)* but we have the value c~ of the n individuals for the 

variable *a . The jth coordinate of a  is the correlation coefficient between c~ and the jth 

principal component cj.  

In practice, we obtained the angular coordinate )( j of the jth code in the hemicycle 

representation of the FLC network (see Sec. 4) in the following way: from the 

distance matrix D we get the scalar product matrix W, perform a first PCA and we 

recover X. Then we compute the vector a  and perform a second PCA on XP (where 

P is the matrix of the projection on a ) and get a first principal component 1c . Finally 

)( j  is given (in rd) by: 
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TABLE 1: Labels and short name of the 52 French Legal Codes retained in this study. 

Label Short Name Label Short Name 

ART Handicraft  LGA  Honor Legion 

ASF Social service  MIN  Mining 

ASS Insurance  MOF  Monetary & financial 

AVI Civil aviation  MPU  Public contract 

CHA Housing  MUT  Mutual society 

CIV Civil  OGJ  Admin. of justice 

CNS Consumer  PAT  Estate 

COM Trade  PCI  Civil procedure 

DEF Defense  PCO  Post  communication 

DMM Mercantile marine  PEN  Criminal 

DOE State-owned property  PIT  Intellectual property 

DOU Customs  PMA  Seaports 

DPF Public rivers  PPE  Criminal procedure 

EDU Education  REC  Research 

ELE Elections  ROU  Traffic 

ENV Environment  RUR  Rural 

EUP  Expropriation in public 
interest  

SAP  Public Health 

FAS Family  SDA  Asylum 

FOR Forestry  SNA  National service 

GCT Local authorities  SPO  Sport 

GPP Property legal person  SSC  Social Security 

ICI Film industry  TMA Marine employment 

INM Monetary media  TOU  Tourism 

JUA Administrative court  TRA  Employment 

JUF Financial court  URB  Urbanism 

JUM  Military court VOR Road system 
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TABLE 2: Structural indices for the FLC network, the associated random graph and 

some other networks already studied. The number of vertices is denoted by n, the 

number of edges is denoted by m, d denotes the density and k the mean degree. The 

mean of shortest paths is denoted by   , and the characteristic path length by L. D 

denotes the diameter, C1 and C2 the clustering coefficients. Degree centralization, 

betweenness centralization and closeness centralization are denoted by CD, CB and CP 

respectively.  

 

 FLC 

network 

G(n,d) 

simulated 

Math. 

network 

P2P 

network 

Medieval 

network 

n 51 51 2.1 105 6.2 106 615 

m 531 531 4.6 105 1.6 108 4193 

d 0.416 0.416 2.1 10-5 8.2 10-6 0.022 

k 20.8 20.8 4.4 51.3 13.64 

   1.595 1.584 7.73 4 3.9 

L 1.569 1.553 - - 3.71 

D 3.0 2.06 27 10 10 

C1 0.694 0.416 0.72 0.13 0.78 

C2 0.601 0.415 - 0.07 0.46 

CD 0.441 0.163 - - 0.105 

CB 0.047 0.006 - - 0.061 

CP 0.456 0.141 - - 0.252 
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TABLE 3: List of the ten codes forming the rich-club. These codes also have the highest 

degrees (see text). 

 

 

Label Short Name Degree 

PEN Criminal 42 

GCT Local authorities 40 

SAP Public health 40 

PPE Criminal procedure 39 

CIV Civil 38 

RUR Rural 37 

COM Trade 36 

ENV Environment 35 

SSC Social security 35 

TRA Employment 35 
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TABLE 4: The two main stable communities (excluding the rich-club – see text). 

A stable community with 12 

codes 

A stable community with 11 codes 

Label Short Name Label Short Name 

ART Handicraft CHA Housing 

ASF Social service DOE State-owned property 

ASS Insurance DPF Public Rivers 

CNS Consumer EUP Expropriation in public interest 

EDU Education FOR Forestry 

JUA Administrative Court GPP Property legal person 

JUF Financial Court MIN Mining 

MUT Mutual society PAT Estate 

REC Research PMA Seaports 

ROU Traffic URB Urbanism 

SPO Sport VOR Road system 

TOU Tourism - - 
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FIGURE 1: Representation of the network of the French Legal Codes, with the labels of 

the codes (see Table 1). 
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FIGURE 2: Density and diameter of the subgraph induced by a percentage of 

highest degree vertices (log scales). In the FLC system, the rich-club, determined by a 

drop of the density and a concomitant increase of the diameter, forms a central 

community with a very high density and low diameter. 
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FIGURE 3: Betweenness centrality measure (top) and closeness centrality measure 

(bottom) of vertices sorted by decreasing order of degree of the codes (vertices) of the 

French Legal System. 
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FIGURE 4: Modular representation of the network associated to the FLC system (see 

Fig. 1), as obtained with the fast-greedy partitioning algorithm (see text). Labels of the 

legal codes are given in Table 1. The number of edges between two communities are 

represented by a weighted edge between these two communities. 
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FIGURE 5: Same as Figure 4 but with the spectral partitioning algorithm (see text). 
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FIGURE 6: Same as Figure 4 but with the walk-trap partitioning algorithm (see 

text). 
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FIGURE 7: The hemicyle-like representation of the weighted FLC network. The two 

stable groups (Table 4) are highlighted: the one with twelve codes is in pink (and in 

italic), the one with eleven codes is in blue (and in bold). The center of the hemicycle 

represents the rich-club. 

 

 

 

 

 


