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Abstract. This paper presents a belief revision operator that considers time inter-
vals for modelling norm change in the law. This approach relates techniques from
belief revision formalisms and time intervals with temporalised rules for legal sys-
tems. Our goal is to formalise a temporalised belief base and corresponding timed
derivation, together with a proper revision operator. This operator may remove rules
when needed or adapt intervals of time when contradictory norms are added in the
system. For the operator, both constructive definition and an axiomatic characteri-
sation by representation theorems are given.
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1. Introduction and Motivation

One peculiar feature of the law is that it necessarily takes the form of a dynamic nor-
mative system [26,25]. In simple terms, the dynamics of law are mainly due to several
actions of lawmakers that produce or change legal norms, such as norm enactment, dero-
gation, annulment and abrogation, among others (for a rather complete list, see [16,18]).
In particular, while with norm enactment rules are introduced in the system as provisions
of new, different norms for society, with operations such as derogation, annulment and
abrogation rules are somehow—and in different ways—eliminated from the system, or
made inapplicable, or are no longer in force. The evolution, modification and adaptation
of the law is intrinsically complex and it is not free of conflicts. In particular, the intro-
duction of new rules may cause some re-interpretation of existing rules. Suppose that a
municipality establishes that all taxis licensed since 2015 must be all-yellow, and a cou-
ple of years later the city adds a new rule establishing that all taxis with license starting
in 2018 must be all-black. Hence, the yellow-taxi rule only applies for passenger cars
with a valid license from 2015 to 2017. However, this is true only years later, after the
introduction of the black-taxi rule.
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Since conflicts may arise with existing rules, a consistent revision of the rules of
the system is frequent and mandatory. Hence, formal models of belief revision should be
suitable to capture this intrinsic feature of law.

Despite the importance of norm-change mechanisms, the logical investigation of le-
gal dynamics was for long time underdeveloped. In the eighties a pioneering research
effort was devoted by Alchourrón, Gärdenfors and Makinson [5] to develop a logical
model (AGM) for also modeling norm change. As is well-known, the AGM framework
distinguishes three types of change operation over theories. Contraction is an operation
that removes a specified sentence φ from a given theory Γ (a logically closed set of sen-
tences) in such a way that Γ is set aside in favor of another theory Γ

−
φ

which is a subset of
Γ not containing φ . Expansion operation adds a given sentence φ to Γ so that the resulting
theory Γ

+
φ

is the smallest logically closed set that contains both Γ and φ . Revision oper-
ation adds φ to Γ but it is ensured that the resulting theory Γ∗

φ
be consistent. Alchourrón,

Gärdenfors and Makinson argued that, when Γ is a code of legal norms, contraction cor-
responds to norm derogation (norm removal) and revision to norm amendment. AGM
framework has the advantage of being very abstract, as it works with theories consisting
of simple logical assertions. For this reason, it can capture basic aspects of the dynamics
of legal systems, such as the change obligations and permissions [8,17].

Some research has been carried out to reframe AGM ideas within richer rule-based
logical systems [29,27]. However, also these attempts suffer from some drawbacks of
standard AGM, among them the fact that the proposed frameworks fail to handle the tem-
poral aspects of norm change: indeed, legal norms are qualified by temporal properties,
such as the time when the norm comes into existence and belongs to the legal system
or the time when the norm is in force. Since all these properties can be relevant when
legal systems change, [17] argues that failing to consider the temporal aspects of legal
dynamics poses a serious limit to correctly model norm change in the law.

Unlike rich but complex frameworks such as the one of [17], this paper claims that
belief revision techniques—which are based on an abstract and elegant machinery—can
be reconciled with the need to consider several temporal patterns of legal reasoning.
In this work we are thus interested in the formalisation of a belief revision operator
applied to an epistemic model that considers rules and time. We enrich a simple logic
language with an interval-based model of time, to represent temporal dimensions such
as the effectiveness of norms, i.e., when norms are applicable. The revision operator
may remove rules when needed or adapt intervals of time when newer, contradictory
norms are introduced in the system. For the operator, both constructive definition and an
axiomatic characterization by representation theorems are given.

The layout of the paper is as follows. Section 2 shows an example to motivate the
main ideas of our framework. Section 3 proposes the notions of temporalised belief base
and temporalised derivation. Section 4 presents a set of properties that the temporalised
belief revision operators should satisfy, by means of postulates. Section 5 introduces both
a complete construction for legal revision operator based on temporalised belief base
and their characterization regarding the presented postulates through a representation
theorem. Section 6 reports on related work. Some conclusions end the paper.



2. The Problem and a Motivating Example

As we have briefly mentioned in the introduction (see also Section 6), belief revision,
and specifically the AGM paradigm, has been advocated to be an elegant and abstract
model for legal change. Its has been however argued that standard belief techniques do
not capture the following aspects of the law [17]:

1. the law usually regulate its own changes by setting specific norms whose peculiar
objective is to change the system by stating what and how other existing norms
should be modified;

2. since legal modifications are derived from these peculiar norms, they can be in
conflict and so are defeasible;

3. legal norms are qualified by temporal properties, such as the time when the norm
comes into existence and belongs to the legal system or the time when the norm is
in force.

The general temporal model, as proposed in [17] assumes that all legal norms are
qualified by different temporal parameters:

• the time when the norm comes into existence and belongs to the legal system,
• the time when the norm is in force,
• the time when the norm produces legal effects (it is applicable), and
• the time when the normative effects (conclusions) hold.

Indeed, it is common legislative practice that, once a legal provision is enacted (for ex-
ample, the Italian 2018 budget law was enacted at 23 December 2017), its force can for
instance be postponed to a subsequent time (for example, the Italian 2018 budget law
was in force since 1 January 2018). Similarly, a part of a certain provision, which is in
force since a certain time t, can be effective (i.e., can be applied) since a different time
t ′ (for example, the Italian 2018 budget law, which was in force since 1 January 2018,
at art. 1, par. 253 states that par. 252 will be applicable since 1 January 2019), or any
provision can produce effects that hold retroactively (for example, art. 1 of Italian 2018
budget law, par. 629, states that certain tax effects cover cases since December 2017).

In this paper concentrate on issue 3 in the list above, i.e., how to integrate belief re-
vision with time in the law. As regards issue 2, we do not work directly on rule-based de-
feasible reasoning, but we define a revision operator that may remove rules when needed
or adapt intervals of time when contradictory norms are introduced in the system: for
instance, if n is effective from 2001 and 2008 and a contradictory norm n′ is added at
2006, we know that n is still effective from 2001 and 2005.

Let us now present a concrete example that will serve to motivate the main ideas
of our proposal. It involves information and rules referring to intervals of time in which
some taxes applies.

EXAMPLE 1. Consider the following pieces of information regarding a legislative at-
tempt to ease tax pressure for people that have been unemployed.

(a) A citizen was unemployed from 1980 to 1985.
(b) If unemployed from 1980 to 1983, then a tax exemption applies from 1984 to 1986,

in order to increase individual savings.



(c) New authorities in government revoke tax exemption for years 1985 and 1986.

(d) Tax exemption reinstated for the year 1985 due to agreements with labor unions.

However, later on the legislator approved a new provision establishing that finally there
is no tax-exemption for all citizens for the years 1985 and 1986.

Here some rules are produced and, as it happens in legislative bodies, norms change
later according to the political and economical context. Rule (a) provides time-bounded
information: only between 1980 and 1985 the status of being unemployed holds for a
given citizen. Rule (b) states that if some property (unemployed) holds between 1980
and 1983, then other property (tax exemption) holds between 1984 and 1986. Rule (c)
establishes that this is no longer valid for a certain interval of time. This means that,
from now on, rule (b) of tax exemption should not be applied in its original text. In other
words, the intervals of rule (b) are revised according to new political positions. Finally,
rules are revised again as a consequence of labor unions, only to be revoked later. In
this example the general rule of tax-exemption is revised several times. This revision is
actually about the moments in which this benefit can be applied. In fact, rule (c) solely
demands a revision of the interval for tax exemption. Hence, it cannot be the case that
there is a rule in the normative system that entails a tax exemption for 1985 and 1986.
From (c) and (b), it can be concluded that the benefit is only applied to 1984. Therefore,
(b) should be not used anymore and a new rule for 1984 should be introduced.

This is naturally a process of belief revision. Our interest is the formalization of a
belief revision operator that can address the evaluation of timed rules representing legal
norms. Technical aspects of temporalised knowledge are considered in the following
section.

3. Legal System as Temporalised Belief Base

The problem of representing temporal knowledge and temporal reasoning arises in many
disciplines, including Artificial Intelligence. A usual way to do this is to determine a
primitive to represent time, and its corresponding metric relations. There are in the litera-
ture two traditional approaches to reasoning with and about time: a point based approach,
as in [17], and an interval based approach as in [6,11]. In the first case, the emphasis is
put on instants of time (e.g., timestamps) and a relation of precedence among them. In
the second case, time is represented as continuous sets of instants in which something
relevant occurs. These intervals are identified by the starting and ending instants of time.

In this work, time intervals (like in [7,11]) are considered. This design decision has
been taken because it simplifies the construction of a revision operator which we will
introduce below. That is, following the semantics of the temporalised rules proposed in
[17] and explained in Section 3 (in an adapted version), the revision operator in many
cases only consists in modifying the intervals to maintain the consistency.

The above-mentioned temporal machinery is able to explicitly model two tempo-
ral dimensions among those mentioned above in Section 2, that is the time of norm
effectiveness—i.e. when a norm can produce legal effects—and the time when the norm
effects hold [17].



3.1. Preliminaries and Notation

We will adopt a propositional language L with a complete set of boolean connectives:
¬, ∧, ∨, →, ↔. Each formula in L will be denoted by lowercase Greek characters:
α,β ,δ , . . . ,ω . We will say that α is the complement of ¬α and vice versa. The char-
acters σ will be reserved to represent cut function for a change operator. We also use
a consequence operator, denoted Cn(·), that takes sets of sentences in L and produces
new sets of sentences. This operator Cn(·) satisfies inclusion (A⊆Cn(A)), idempotence
(Cn(A) = Cn(Cn(A))), and monotony (if A ⊆ B then Cn(A) ⊆ Cn(B)). We will assume
that the consequence operator includes classical consequences and verifies the standard
properties of supraclassicality (if α can be derived from A by deduction in classical logic,
then α ∈ Cn(A)), deduction (β ∈ Cn(A∪ {α}) if and only if (α → β ) ∈ Cn(A)) and
compactness (if α ∈Cn(A) then α ∈Cn(A′) for some finite subset A′ of A). In general,
we will write α ∈Cn(A) as A ` α .

Note that the AGM model [5] represents epistemic states by means of belief sets, that
is, sets of sentences closed under logical consequence. Other models use belief bases; i.e.,
arbitrary sets of sentences [12,22]. Our epistemic model is based on an adapted version
of belief bases which have additional information (time intervals). The use of belief bases
makes the representation of the legal system state more natural and computationally
tractable. That is, following [24, page 24], we consider that legal systems sentences could
be represented by a finite number of sentences that correspond to the explicit beliefs on
the legal system. That norm change can be better captured by base revision was also
discussed by [17].

3.2. Time Interval

We will consider a universal finite set of time labels T= {t1, . . . , tn} strictly ordered; each
time label will represent a unique time instant. Simplifying the notation, we assume that
ti− 1 is the immediately previous instant to the instant ti and ti + 1 is the immediately
posterior instant to the instant ti.

Like in [20] we propose temporalised literals, however, we use intervals. We will
consider an interval like a finite ordered sequence of time labels ti, . . . , t j where i, j are
natural numbers (i ≤ j) and ti, . . . t j ∈ T denoting instances of time or timepoints. Thus
we have expressions of the type α interval , where interval can be as follow:

• [ti, ti]: meaning that α holds at time ti. Following [17] α is transient (holding at
precisely one instant of time). For simplicity [ti, ti] = [ti].

• [ti,∞]: meaning that α holds from ti. Following [17] α is (indefinitely) persistent
from ti.

• [ti, t j]: meaning that α holds from time ti to t j with ti < t j.

Then we will consider a set of time intervals I which contains intervals as those described
previously. Thus, for simplicity, we can have expressions like αJ where J ∈ I. Intervals
in I will be denoted by uppercase Latin characters: A,B,C, . . . ,Z. Two intervals may not
be disjoint, as defined next.

Definition 1 (Contained interval). Let R,S ∈ I be two intervals. We say that R is con-
tained in S, denoted R⊆ S if and only if for all ti ∈ R it holds that ti ∈ S.



Definition 2 (Overlapped interval). Let R,S ∈ I be two intervals. We say that R and S
are overlapped, denoted R≈ S if and only if there exists ti ∈ R such that ti ∈ S.

EXAMPLE 2. Let R,S,V ∈ I where R = [t3, t7], S = [t4, t6] and V = [t5, t9] with
t3, t4, t5, t6, t7, t9 ∈ T. Then S⊆ R, R≈V and S≈V .

3.3. Temporalised Belief Base

As rules are part of the knowledge, they are subject of temporal effectiveness too. In this
perspective we can have expressions like

α [ta,tb]→ β [tc,td ]

meaning that the rule can derive that β holds from time tc to td if we can prove that α

holds from time ta to tb. In the same way a conclusion can persist, this applies as well to
rules and then to derivations.

EXAMPLE 3. The provision from Example 1 “If unemployed from 1980 to 1983, then a
tax exemption applies from 1984 to 1986” can be formalised as follows:

Unemployed[1980,1983]→ Tax Exemption[1984,1986].

Thus, it is possible to define temporalised belief base which will contain tempo-
ralised literal and temporalised rules (see Example 4). This base represents a legal sys-
tem in which each temporalised sentence defines a norm whose time interval determines
the effectiveness time.

EXAMPLE 4. The set

K= {α [t1,t3],α [t4],α [t1,t4]→ β
[t4,t6],

β
[t5,t6],β [t6,t8],β [t10],δ [t11],

δ
[t11]→ β

[t15,t20],ω [t2,t8],

ω
[t4]→ β

[t6,∞],ε [t1,∞]}

is a valid temporalised belief base for a legal system.

This type of belief base representation implies that a sentence can appear more than
once in a temporalised belief base; but from the point of view of the temporalised sen-
tences stored in the temporalised belief base there is no redundancy because each tem-
poralised sentence has different time interval. For instance, consider Example 4, where
α appears twice, but with different intervals. In this case, we will say that α is intermit-
tent and it means that α is held from t1 to t3 and it holds in the instant t4. Besides, if
the intervals of a sentence are overlapped (β [t5,t6], β [t6,t8] in Example 4), despite that the
time interval of the sentence intuitively be only one ([t5, t8]), we decided to maintain all
versions because this makes more natural modelling the dynamics of the legal system.



3.4. Temporalised Derivation

Note that a norm can explicitly be in a temporalised belief base, as α [t5] ∈K in Example
4. However, a norm can implicitly be represented in a temporal belief base if some con-
ditions hold. For instance, in Example 4, norm β is implicitly represented with ω [t2,t8],
ω [t4]→ β [t6,∞] due to the antecedent of the rule is held in t4 by the temporalised sentence
ω [t2,t8]. Next, the notion of temporalised derivation for a sentence is defined to capture
this intuition. To do this, we first define a temporalised derivation in a time instant and
then we give a definition of temporalised derivation in time interval.

Definition 3 (Temporalised derivation in a time instant). Let K be a set of temporalised
sentences and α [ti] be a temporalised sentence. We say that α [ti] is derived from K, de-
noted K `t α [ti], if and only if:

• αJ ∈K and ti ∈ J, or

• β H → αP ∈K and ti ∈ P and K `t β [t j ] for all t j ∈ H.

Definition 4 (Temporalised derivation in a time interval). Let K be a set of temporalised
sentences and α [ti,t j ] be a temporalised sentence. We say that α [ti,t j ] is derived from K
(denoted K `t α [ti,t j ]) if and only if K `t α [tp] for all tp ∈ [ti, t j].

Computing the temporalised derivation of a sentence through checking each instant
of the intervals is useful in special cases where implicit sentences need temporalised
sentences with overlapped intervals as antecedents. To determine the time interval of the
implicitly derived temporal sentence, the temporal consequence will be defined below.

Definition 5 (Temporalised consequence). Let K be a set of temporalised sentences and
α [ti,t j ] be a temporalised sentence. We say that α [ti,t j ] is a temporalised consequence of
K (α [ti,t j ] ∈Cnt(K)) if and only if K `t α [ti,t j ].

EXAMPLE 5. Consider again the temporalised belief base of Example 4. Then, K `t

β [t4,∞], that is, β [t4,∞] ∈Cnt(K); and K `t α [t1,t4], that is, α [t1,t4] ∈Cnt(K).

The underlying semantics of this type of derivation differs from that in propositional
logic [11]. Also, following Definition 4, notice that the interval of an implicitly derived
sentence will be the interval of the consequent of the rule that derives the conclusion of
the proof. For instance, suppose that K= {γ [t2,t5],γ [t3,t4]→ ε [t6,t9]} then the time interval
of ε is [t6, t9].

In this proposal, a contradiction arises when two complementary sentences can be
derived with time intervals overlapped. For instance, suppose K = {α [t2,t9],¬α [t1,t3]},
in this case there exist a contradiction. However, consider K = {α [t5],¬α [t1,t3]}, in this
case, we will say that K does not have contradictions. Moreover, we will say that a
temporalised belief base is temporally consistent if the base does not have contradictions.
The temporalised belief base of Example 4 is temporally consistent.

A set of postulates for the revision operator is needed. These are formalised in the
following section. Later on, we will provide a theorem linking postulates and construc-
tion of this operator.



4. Temporal Belief Revision Postulates

We modify the notion of safe element proposed in [1] for contraction; in that work,
the authors consider an order among sentences and define a contraction operator over
belief sets. Here, we follow a different route and consider a prioritised revision operator
defined as acting over belief bases containing temporalised sentences. This choice is also
motivated by the fact that legal changes typically prevail over existing norms and modify
them. So, we will consider a temporalised belief base K and a temporalised sentence αJ

that we would like to add to K. As done in [1], in what follows we consider an element
β P ∈ K to be safe with respect to the revision of K by αJ iff β P is not a sentence that
can produce effects in favour of a possible temporally contradiction with αJ where J and
P are overlapped time interval. In the rest of the paper, when no confusion arise we will
write “is safe” instead of “is safe with respect to revision” by αJ in K ; and, if β J ∈ K
and ti ∈ J then we will say that β [ti] ∈K.

The temporalised postulates are:

(TBR-1) Success: αJ ∈K∗αJ .
(TBR-2) Inclusion: If β [ti] ∈K∗αJ then β [ti] ∈K∪{αJ}.
(TBR-3) Consistence: If α is consistent then K∗αJ is temporally consistent.
(TBR-4) Uniformity: If for all K′ ⊆K, {αJ}∪K′ is temporally inconsistent if and
only if {β J}∪K′ is temporally inconsistent then K∩ (K∗αJ) =K∩ (K∗β J).
(TBR-5) Safe retainment: β P ∈ K ∗αJ if and only if β P is a safe element with
respect to αJ in K.

Since the revision operator defined here is prioritised (the new information has pri-
ority), the first postulate establishes that the revision should be successful. That is, the
result of revising a belief base K by a sentence αJ should be a new belief base in which
α is effective during the interval determined by the time interval J. The Inclusion postu-
late says that the result of applying the temporal change operator over an arbitrary base
and an effective sentence in the time determined by the interval J is included in the (un-
restricted) union of them. Consistency determines that the changed base is temporally
consistent whenever the input is consistent. Uniformity determines that if two sentences
are temporally inconsistent in the same time with the same subsets of the original belief
base K then the respective sentences erased from K should be identical. Safe Retainment
expresses that the prevailing elements after revision will be the elements that are safe
before the revision, similarly to [1]. That is, every element that is retained after revision
is there because it was not involved in any conflict with respect to the epistemic input,
or it was involved but there was another element also involved in the conflict that was
considered to be less safe.

In the following section we define the construction of the temporalised belief revi-
sion operator.

5. Legal Belief Revision

From a rational point of view, a legal system should be temporally consistent, i.e., it
cannot contain contradictory norms at any time. Hence, we propose a prioritised legal
revision operator that allows to consistently add a temporalised sentence α [ti,t j ] to a
consistent legal system K.



5.1. Construction of Legal Revision Operators

Our special revision operator is inspired by the rule semantics explained above in Section
3 (an adapted version from the one proposed in [17]). Thus, following the concept of
consistency of Section 3, the revision operator may remove temporalised sentences or, in
some cases, may only modify the intervals to maintain consistency.

To incorporate a norm¬β J into a legal system, it is necessary to consider all possible
contradictions that may arise if the norm is added without checking for consistency. For
this reason, it is necessary to compute all proofs of β considering only those temporalised
sentences β P whose effectiveness time is overlapped with the time interval J, that is,
J ≈ P. Note that it is optimal to compute all minimal proofs of a temporal sentence
considering only those in which the time interval is overlapped with the time interval of
the input sentence. Next, a set of minimal proofs for a sentence is defined.

Definition 6 (Minimal proof). Let K be a temporalised belief base and αJ a tempo-
ralised sentence. Then, H is a minimal proof of αJ if and only if

1. H⊆K,
2. αP ∈Cnt(H) with J ≈ P, and
3. if H′ ⊂H, then αP 6∈Cnt(H′) with J ≈ P.

Given a temporalised sentence αJ , the function Π(αJ ,K) returns the set of all the mini-
mal proofs for αJ from K.

REMARK 1. Each set of Π(αJ ,K) derives α in at least one time instant of J.

EXAMPLE 6. Consider the temporalised belief base of Example 4. Then Π(β [t5,t6],K)
= {H1,H2,H3,H4} where:

• H1 = {α [t1,t3],α [t4],α [t1,t4]→ β [t4,t6]},
• H2 = {β [t5,t6]},
• H3 = {β [t6,t8]},
• H4 = {ω [t2,t8],ω [t4]→ β [t6,∞]}

Note that H1 is minimal: α should be derived from t1 to t4 to use the rule α [t1,t4]→ β [t4,t6]

hence, α [t1,t3] and α [t4] should be in H1.

Now, we will define a type of legal revision operator. The construction of prioritised
legal revision by a temporalised sentence is based on the concept of a minimal proof;
to complete the construction, we must define an incision function which selects in every
minimal proof the sentence to be erased later and which can produce legal effects in
favour of a possible contradiction with the new norm. So, in what follows we say that
a temporalised sentence β P of K is not safe with respect to revision by αJ in K if and
only if β P belongs to some minimal subset of K that proves ¬αJ , J ≈ P and β = ¬α or
β = δ →¬α for any δ in L.

Our operator is based on a selection of sentences in the knowledge base that are
relevant to derive the sentence to be retracted or modified. In order to perform a revision,
following kernel contractions [23], this approach uses incision functions, which select
from the minimal subsets entailing the piece of information to be revoked or modified.



We adapt this notion of incision function from [23] and import in our epistemic model.
An incision function only selects sentences that can be relevant for α and at least one
element from each Π(αJ ,K):

Definition 7 (Incision function). Let K be a temporalised belief base. An incision func-
tion σ for K is a function such that for all αJ ∈Cnt(K):

• σ(Π(αJ ,K))⊆
⋃
(Π(αJ ,K)).

• For each H ∈Π(αJ ,K), H∩σ(Π(αJ ,K)) 6= /0.

In Hansson’s approach it is not specified how the incision function selects the sen-
tences that will be discarded of each minimal proof. In our approach, this will be solved
by considering those sentences that can produce legal effects in favour of a possible con-
tradiction with the new norm. Thus, if the new norm is ¬β J then the incision function
will select the temporalised sentences β P or αQ→ β F of each Π(β J ,K).

Definition 8 (Search consequence function). Sc: L×K 7→K, is a function such that for
a given sentence α and a given temporalised base K with H⊆K,

Sc(α,H) = {αJ : α
J ∈H} ∪{β P→ α

Q : β
P→ α

Q ∈H and β ∈ L}.

Definition 9 (Consequence incision function). Given a set of minimal proofs Π(αJ ,K),
σ cis a consequence incision function if it is a incision function for K such that

σ
c(Π(αJ ,K)) =

⋃
H∈Π(αJ ,K)

Sc(α,H).

EXAMPLE 7. Consider Examples 4 and 6. Then, Sc(β ,H1) = {α [t1,t4] → β [t4,t6]},
Sc(β ,H2) = {β [t5,t6]}, Sc(β ,H3) = {β [t6,t8]}, and Sc(β ,H4) = {ω [t4] → β [t6,∞]}. Thus,
σ c(Π(β [t5,t6],K)) =

⋃
H∈Π(β [t5 ,t6 ],K)

Sc(β ,H) = {α [t1,t4]→ β [t4,t6], β [t5,t6], β [t6,t8], ω [t4]→
β [t6,∞]}.

As mentioned before, the revision operator may remove temporalised sentences or,
in some cases, may modify the intervals to maintain consistency. Next, a temporal pro-
jection will be defined based on a given time interval. The idea here is, given a tempo-
ralised belief base K and given a time interval [ti, t j], to return a temporalised belief base
K′ containing those sentences from K whose time intervals be out of [ti, t j].

Definition 10 (Excluding temporal projection). Let K be a temporalised belief base and
let [ti, t j] be a time interval where ti, t j ∈ T. A excluding temporal projection of K from ti
to t j, denoted out(K, [ti, t j]), is a subset of K where for all α [tp,tq] ∈K, out(K, [ti, t j]) will
contain:

• α [tp,ti−1] if tp < ti, tq ≥ ti and tq ≤ t j,
• α [t j+1,tq] if tp ≥ ti, tq > t j and tp ≤ t j,
• α [tp,ti−1] and α [t j+1,tq] if tp < ti, tq > t j,
• α [tp,tq] if tq < ti or tp > t j.



REMARK 2. Note that when tp ≥ ti and tq ≤ t j, the temporal sentence is not considered.
In this case, this sentence is erased.

REMARK 3. Note that if δ [th,tk] ∈ out(K, [ti, t j]) and the interval [th, tk] is generated
through excluding temporal projection of K from ti to t j then there exists a temporal
sentence δ [tp,tq] in K such that [th, tk]⊆ [tp, tq].

EXAMPLE 8. Consider Example 7 and suppose that S is a temporalised belief base and
S = σ c(Π(β [t5,t6],K)). Then, out(S, [t5, t6]) = {α [t1,t4]→ β [t4], β [t7,t8], ω [t4]→ β [t7,∞]}.

Following the notion of excluding temporal projection (Definition 10) a norm pri-
oritised revision operator can be defined. That is, an operator that allows to consistently
add temporalised sentences in a temporalised belief base. If a contradiction arises, then
the revision operator may remove temporalised sentences or modify the corresponding
intervals in order to maintain consistency.

Definition 11. Let K be a temporalised belief base and αJ be a temporalised sentence.
The operator “ ⊗”, called prioritised legal revision operator, is defined as follow:

K⊗α
J = (K\σ

c(Π(¬α
J ,K)))∪out(σ c(Π(¬α

J ,K)),J)∪ {αJ}.

EXAMPLE 9. Consider Example 4 and suppose that a new norm ¬β [t5,t6] it is wished
to add. To do this, it is necessary to do K⊗¬β [t5,t6]. Consider Examples 6 and 7. Then,
K⊗¬β [t5,t6] = {α [t1,t3], α [t4], α [t1,t4]→ β [t4], β [t7,t8], β [t10], δ [t11], δ [t11]→ β [t15,t20], ω [t2,t8],
ω [t4]→ β [t7,∞], ε [t1,∞], ¬β [t5,t6]}. Note that, this new temporalised base is temporally con-
sistent.

The following example shows how our operator works in a particular situation when
a legal system undergoes many changes and has rules that complement each other.

EXAMPLE 10. Consider following temporalised belief base K = {β [t1,t10],β [t1,t5] →
α [t1,t5],β [t6,t10] → α [t6,t10],δ [t4]}. Note that, K `t α [t1,t10] because K `t α [ti] for all
ti ∈ [t1, t10]. Suppose that it is necessary to adopt ¬α [t1,t10]. To do this, it is neces-
sary to compute all the minimal proofs of α [t1,t10] in K. In this case, Π(α [t1,t10],K) =
{{β [t1,t10],β [t1,t5]→α [t1,t5],β [t6,t10]→α [t6,t10]}}. Then, S=σ c(Π(α [t1,t10],K))= {β [t1,t5]→
α [t1,t5],β [t6,t10]→ α [t6,t10]}. Thus, out(S, [t1, t10]) = /0. Therefore, K⊗¬α [t1,t10] = {β [t1,t10],
δ [t4],¬α [t1,t10]}.

5.2. Characterisation of Legal Revision Operators

After introducing the legal revision operator ⊗, we will now complete its presentation
with a proper characterisation of its behaviour with respect to the proposed postulates. To
that end, below we will offer a Representation Theorem for the operator that establishes
the correspondence between the postulates and the construction that formalises it.

THEOREM 1. An operator ⊗ is a prioritised legal revision for K if and only if it satis-
fies the postulates of (TBR-1) Success, (TBR-2) Inclusion, (TBR-3) Consistency, (TBR-4)
Uniformity, and (TBR-5) Safe Retainment.



Proof.
Proof has two parts. First, we start from the satisfaction of postulates to the construc-
tion as a legal revision operator. Second, we prove that an operator is a legal revision if
previous postulates are satisfied.

⇐) Postulates to construction:

Let ∗ be an operator that satisfies Success, Inclusion, Consistency, Uniformity and
Safe Retainment. We have to show that ∗ is a legal revision operator.

(1) Let σ c be a function such that for every temporalised base K and for every tempo-
ralised sentence αJ holds σ c(Π(¬αJ ,K)) =K\K∗αJ .

We first show that σ c is an incision function. To do this we show that the conditions
in Definition 9 are satisfied by σ c; that is:

• σ c is a well-defined function: if ¬αJ and ¬β J are such that Π(¬αJ ,K) =
Π(¬β J ,K) then σ c(Π(¬αJ ,K)) = σ c(Π(¬β J ,K)).
Let ¬αJ and ¬β J be two temporalised sentences such that Π(¬αJ ,K) =
Π(¬β J ,K). We need to show that σ c(Π(¬αJ ,K)) = σ c(Π(¬β J ,K)). By Def-
inition 6 and Definition 5, for all subset K′ of K, ¬αJ ∈ Cnt(K′) if and only if
¬β J ∈Cnt(K′). Then¬αJ∪K′ is temporally inconsistent if and only if¬β J∪K′ is
temporally inconsistent. Thus, by uniformity, K∩ (K∗αJ) =K∩ (K∗β J). Then,
K\(K∗αJ)=K\(K∗β J). Therefore, by (1), σ c(Π(¬αJ ,K))=σ c(Π(¬β J ,K)).

• σ c(Π(¬αJ ,K))⊆
⋃
(Π(¬αJ ,K)).

Let β P ∈ σ(Π(¬αJ ,K)). By (1), we have that β P ∈K\K∗αJ . Then, it holds that
β P 6∈K∗αJ , and from Safe Retainment we have that β P is not a safe element, oth-
erwise it will be part of the revision. Since β P is not a safe element then it holds that
β P is a sentence that can produce effects in favour of a possible temporal contradic-
tion with αJ where J and P are overlapped time interval. Then, β P is in a minimal
subset (under set inclusion) H of K such that H∪αJ is temporally inconsistent. By
Definition 6, if H is a minimal subset such that H∪αJ is temporally inconsistent
then H ∈Π(¬αJ ,K), and therefore β P ∈

⋃
(Π(¬αJ ,K)). Since this holds for any

arbitrary β P ∈ σ(Π(¬αJ ,K)) we have that σ c(Π(¬αJ ,K))⊆
⋃
(Π(¬αJ ,K)).

• If H ∈Π(αJ ,K), H∩σ c(Π(αJ ,K)) 6= /0.
Let H∈Π(αJ ,K). We need to show that H∩σ c(Π(αJ ,K)) 6= /0. We should prove
that, there exists β P ∈H such that β P ∈σ c(Π(αJ ,K)). Suppose ¬αJ is consistent.
Since we have assumed that K is temporally consistent, by consistency, K∗¬αJ

is temporally consistent. Since H is inconsistent with ¬αJ then H 6⊆ K ∗¬αJ by
success. This means that there is some β P ∈H and β P 6∈K∗¬αJ . Since H⊆K it
follows that β P ∈ K\K∗¬αJ ; i.e., by our definition of σ c, β P ∈ σ c(Π(αJ ,K)).
Therefore, H∩σ c(Π(αJ ,K)) 6= /0.

• β P ∈ σ c(Π(αJ ,K)) then for some H ∈ Π(αJ ,K) such that β P ∈ H it holds that
β = α or β P = δ Q→ αP and δ ∈ L.
Let β P ∈ σ c(Π(αJ ,K)). Then β P ∈ K \ (K ∗¬αJ), hence β P 6∈ K ∗¬αJ . There-
fore, by Safe Retainment we have that β P is not a safe element. Since β P is not a
safe element then it holds that β P is a sentence that can produce effects in favour
of a possible temporally contradiction with αJ where J and P are overlapped time



interval. Then, β P is in a minimal subset (under set inclusion) H of K such that
H∪αJ is temporally inconsistent. By Definition 6, if H is a minimal subset such
that H∪αJ is temporally inconsistent then H ∈ Π(αJ ,K). Then, since β P is a
sentence that can produce effects in favour of a possible temporally contradiction
with αJ , β = α or β P = δ Q→ αP and δ ∈ L.

Once we have proven that σ c is a proper incision function, to finalise the proof we
must show that K∗αJ =K⊗αJ .

(⊆) Let β [ti] ∈K∗αJ .
It follows by inclusion that β [ti] ∈K∪{αJ}.
Then, β [ti] ∈K.
It follows from β [ti] ∈K∗αJ and β [ti] ∈K that β [ti] 6∈K\K∗αJ .
Thus, by (1), β [ti] 6∈ σ c(Π(¬αJ ,K)). Hence, β [ti] ∈K⊗αJ .

(⊇) Let β [ti] ∈K⊗αJ .
By definition, β [ti] ∈ (K\σ c(Π(¬αJ ,K)))∪out(σ c(Π(¬αJ ,K)),J)∪ {αJ}.
From Remark 3, out(σ c(Π(¬αJ ,K)),J) ⊆ K and then, β [ti] ∈ K and β [ti] 6∈
σ c(Π(¬αJ ,K)).
Thus, by (1), β [ti] 6∈K\K∗αJ .
Hence, β [ti] ∈K∗αJ .

The second part of the demonstration follows.

⇒) Construction to postulates: Let σ c be a consequence incision function and ⊗ its as-
sociated operator and K a knowledge base. Then, for all αJ :

K⊗αJ = (K\S)∪out(S,J)∪ {αJ} where S = σ c(Π(¬αJ ,K)).
We prove that the postulates hold for the given construction, as follows.

• Success: αJ ∈K⊗αJ .
Straightforward by Definition 11.

• Inclusion: If β [ti] ∈K⊗αJ then β [ti] ∈K∪{αJ}.
Let β [ti] ∈K⊗αJ . From Definition 11 we have that K⊗αJ = (K\S)∪out(S,J)∪
{αJ} where S = σ c(Π(¬αJ ,K)). Following Remark 3, for all β P ∈ S there exists
β Q ∈ out(S,J) such that Q⊆ P. Then, out(S,J)⊆K. Therefore, β [ti] ∈K∪{αJ}.

• Consistence: if αJ is consistent then K⊗αJ is temporally consistent.
Suppose α is consistent. Since σ c(Π(¬αJ ,K)) cuts every of K temporally in-
consistent with αJ then K \σ c(Π(¬αJ ,K)) is temporally consistent. From Def-
inition 10, if there exists ¬αQ or β P → αQ in out(σ c(Π(¬αJ ,K)),J) then
the intervals J and Q are not overlapped. Therefore, K \ σ c(Π(¬αJ ,K)) ∪
out(σ c(Π(¬αJ ,K)),J) is temporally consistent. Then, following Definition 11,
K⊗αJ is temporally consistent.

• Uniformity: if for all K′ ⊆K, {αJ}∪K′ is temporally inconsistent if and only if
{β J}∪K′ is temporally inconsistent then K∩ (K⊗αJ) =K∩ (K⊗β J).
Let α and β be consistent sentences and J a time interval. Suppose that for
all subset K’ of K, {αJ} ∪K′ is temporally inconsistent if and only if {β J} ∪
K′ is temporally inconsistent. Then Π(αJ ,K) = Π(β J ,K) and since σ c is a
well defined function then σ c(Π(αJ ,K)) = σ c(Π(β J ,K)). In the same way
out(σ c(Π(αJ ,K)),J) = out(σ c(Π(β J ,K)),J). Therefore, K∩ (K⊗αJ) = K∩
(K⊗β J).



• Safe retaiment: β P ∈ K⊗αJ if and only if β P is a safe element with respect to
αJ in K.

- Proof that if β P ∈K⊗αJ then β P is a safe element with respect to αJ in K.
Let β P ∈K⊗αJ then by Definition 11 we have two alternatives:
∗ β P 6∈ σ c(Π(¬αJ ,K)). We can identify two different cases: either β P

does not belong to any minimal proof, or it does. Let us consider the two
cases separately.
If β P 6∈ X for every X ∈ Π(¬αK,J) then ¬αJ does not belong to any
minimal set (under set inclusion) B of K such that ¬αQ ∈Cnt(B) with
J ≈ Q and then it is a safe element with respect to αJ in K.
Now consider the case where β P ∈ X for every X ∈ Π(¬αK,J). Since
β P 6∈ σ c(Π(¬αJ ,K)) then by Definition 9 and Definition 8, β 6= α and
β 6= δ → α . Then β P is not a sentence that can produce effects in favour
of a possible temporally contradiction with αJ . Hence, β P is a safe ele-
ment with respect to αJ in K.
∗ β P ∈ σ c(Π(¬αJ ,K)). Since β P ∈K⊗αJ then, by Definition 11, β P ∈

out(σ c(Π(¬αJ ,K)),J). Then, by Definition 10, the time intervals P and
J are not overlapped. Therefore, β P is a safe element with respect to αJ

in K.
- Proof that if β P is a safe element with respect to αJ in K then β P ∈K⊗αJ .

Let β P ∈K be a safe element with respect to the revision of K by αJ . Then,
β P is not a sentence that can produce effects in favour of a possible tempo-
rally contradiction with αJ where J and P are overlapped time interval. Then,
β P does not belong to any minimal subset under set inclusion X of K such
that ¬αJ ∈Cnt(X) with J ≈ P. Thus, by Definition 6, β P 6∈

⋃
(Π(¬αJ ,K)).

Following Definition 9, β P 6∈ σ c(Π(¬αJ ,K)). Therefore, by Definition 11,
β P ∈K⊗αJ .

The Representation Theorem above properly shows that a temporalised legal opera-
tor is defined in terms of our timed postulates.

6. Related work

Alchourrón and Makinson were the first to logically study the changes of a legal code
[3,4,2]. The addition of a new norm n causes an enlargement of the code, consisting
of the new norm plus all the regulations that can be derived from n. Alchourrón and
Makinson distinguish two other types of change. When the new norm is incoherent with
the existing ones, we have an amendment of the code: in order to coherently add the new
regulation, we need to reject those norms that conflict with n. Finally, derogation is the
elimination of a norm n together with whatever part of the legal code that implies n.

In [5], inspired by the works above, the so called AGM framework for belief revi-
sion is proposed. This area proved to a very fertile one and the phenomenon of revision
of logical theories has been thoroughly investigated. It is then natural to ask if belief
revision offers a satisfactory framework for the problem of norm revision. Some of the



AGM axioms seem to be rational requirements in a legal context, whereas they have been
criticised when imposed on belief change operators. An example is the success postulate,
requiring that a new input must always be accepted in the belief set. It is reasonable to
impose such a requirement when we wish to enforce a new norm or obligation. However,
it gives rise to irrational behaviors when imposed to a belief set, as observed in [13].

The AGM operation of contraction is perhaps the most controversial one, due to
some postulates such as recovery [17,31], and to elusive nature of legal changes such as
derogations and repeals, which are all meant to contract legal effects but in remarkably
different ways [17]. Standard AGM framework is of little help here: it has the advantage
of being very abstract—it works with theories consisting of simple logical assertions—
but precisely for this reason it is more suitable to capture the dynamics of obligations
and permissions than the one of legal norms. In fact, it is hard in AGM to represent how
the same set of legal effects can be contracted in many different ways, depending on how
norms are changed. For this reason, previous works [14,15,17] proposed to combine a
rule-based system with some forms of temporal reasoning.

Difficulties behind standard AGM have been considered and some research has been
carried out to reframe AGM ideas within reasonably richer rule-based logical systems,
combining AGM ideas with Defeasible Logic [27,19] or Input/Output Logic [8,29].
[31] suggested a different route, i.e., employing in the law existing techniques—such
as iterated belief change, two-dimensional belief change, belief bases, and weakened
contraction—that can obviate problems identified in [17] for standard AGM.

In this paper we showed to extend base revision with temporal reasoning, and, in
particular, with time intervals. Our approach, like in [17], is able to deal with constituents
holding in an interval of time, thus an expression =⇒ a[t1,t2] meaning that a holds between
t1 and t2 can be seen as a shorthand of the pair of rules from [17] (defeasible and defeater)
=⇒ a[t1,pers] and  ¬a. We have taken this design decision because it simplifies the
construction of the revision operator: following the semantics of the temporalised rule
proposed in [17] and explained in Section 3 (an adapted version), the revision operator
in many cases only consists in modifying the intervals to maintain the consistency.

Interval and duration based temporal defeasible logic have been developed [7,21].
[21] focuses on duration and periodicity and relationships with various forms of causal-
ity. [7] proposed a sophisticated interaction of defeasible reasoning and standard tempo-
ral reasoning (i.e., mutual relationships of intervals and constraints on the combination
of intervals). In both cases it is not clear whether the techniques employed there are rel-
evant to the application to norm modifications, and such works consider only a single
temporal dimension.

There some works in the literature that have discussed the relation between belief re-
vision and temporal reasoning, though none of them addressed the issue in the normative
domain. Two prominent lines of investigation are [9,10] and [28].

[9,10] address belief revision in a temporal logic setting. The main purpose of these
works is to represent the AGM postulates as axioms in a modal language. The assumption
is that belief revision has to do with the interaction of belief and information over time,
thus temporal logic seemed a natural starting point. The technical solution is to consider
branching-time frames to represent different possible evolutions of beliefs. Hence, belief
revision operators are interpreted over possible worlds.

[28] is based on a well-developed theory of action in the situation calculus extended
to deal with belief. The authors add this framework a notion of plausibility over situa-



tions, an show how to handle nested belief, belief introspection, mistaken belief, belief
revision and belief update together with iterated belief change.

An interesting line of investigation is to study possible correlations with these two
last research lines in literature as compared to our system. Such a comparison cannot be
directly done from technical viewpoint for two reasons. First of all, our work is specifi-
cally focused in a propositional language following kernel contraction construction pro-
posed in [23]. Second, our propositional language is equipped with explicit time-stamps
and with temporal intervals, which allow us for expressing richer temporal specifications
in the language.

7. Conclusions and Future Work

Law is, by nature, a dynamic system of rules. As times goes by, rules are introduced in the
system, which may be either unexpectedly in conflict with existing rules or be intended to
provide new, different norms for society. This demands a consistent revision of the rules
of the system. In particular, some dynamic features of legal reasoning can be captured
by considering a temporal dimension applied to normative elements such as rules. Since
the normative system is revised as a consequence of new rules, two dynamic aspects of
the law must be considered: the change of the set of rules to take into account new pieces
of information, and the ability to reason about temporalised knowledge. Hence, formal
models of belief revision under timed rules should be suitable to capture this intrinsic
dynamism of law.

Following that idea, in this work we have introduced an interval-based model of
temporalised knowledge, together with a time-based belief revision operator for legal
systems. Intervals are used to model a period of time for a piece of knowledge to be
effective or relevant, leading to the definition of a new kind of temporal rules. On these
interval-decorated rules we have defined the corresponding temporalised derivation.

The consideration of time requires an adaptation of the notions of contradiction and
inconsistency in the classical sense. We state that temporalised knowledge base is incon-
sistent only if contradictory information can be derived for the same moment of time.
Hence, if a new rule is added to the legal system causing a and ¬a to be both conse-
quences of the theory at moment i, a revision of rules is required. We have defined a
novel belief revision operator that allows the consistent addition of temporalised sen-
tences in a temporalised belief base. If a contradiction arises, then the revision operator
may either completely remove conflictive temporalised sentences or modify the intervals
of some rules. This last action is made because a given consequence a at interval I may
fall in contradiction during a sub-interval of I. Thus, a should be a consequence, after the
revision, only for the rest of I. Then, intervals in rules should be taken into account for
the revision process.

Change operators are presented following the AGM model [5] where the operators
are defined through constructions and representation theorems. We then presented a new
temporalised revision operator. This operator is based on the notion of kernel [23], and
the selection of norms to remove are either contradictory norms or rules with a contra-
dictory consequent, both with respect to the new information to be added to the legal
system. As expected, intervals of existing rules may be affected towards consistency.

The operator is characterised through a set of rationality postulates that consider
intervals of time. These new timed postulates provide a rational formalisation of the



process of belief change. We have also introduced a Representation Theorem that proves
the relation between our operator and the timed rationality postulates, as it is mandatory
when defining belief revision operators.
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