
Vol.:(0123456789)

Artificial Intelligence and Law (2023) 31:829–863
https://doi.org/10.1007/s10506-022-09339-2

1 3

Legal document assembly system for introducing law
students with legal drafting

Marko Marković1  · Stevan Gostojić1 

Accepted: 23 October 2022 / Published online: 16 November 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
In this paper, we present a method for introducing law students to the writing of
legal documents. The method uses a machine-readable representation of the legal
knowledge to support document assembly and to help the students to understand
how the assembly is performed. The knowledge base consists of enacted legisla-
tion, document templates, and assembly instructions. We propose a system called
LEDAS (LEgal Document Assembly System) for the interactive assembly of legal
documents. It guides users through the assembly process and provides explanations
of the interconnection between input data and claims stated in the document. The
system acts as a platform for practicing drafting skills and has great potential as an
education tool. It allows teachers to configure the system for the assembly of some
particular type of legal document and then enables students to draft the documents
by investigating which information is relevant for these documents and how the
input data shape the final document. The generated legal document is complemented
by a graphical representation of legal arguments expressed in the document. The
system is based on existing legal standards to facilitate its introduction in the legal
domain. Applicability of the system in the education of future lawyers is positively
evaluated by the group of law students and their TA.

Keywords  Legal education · Legal documents · Document assembly · Document
drafting · Knowledge representation

1  Introduction

Document drafting is one of the most frequent tasks in the legal profession. Law-
yers use these documents to communicate some information to other parties in legal
proceedings. There are a variety of legal document types due to the broadness of
the legal system. Some of them are contracts, wills, judgments, indictments, claims,

 *	 Stevan Gostojić
	 gostojic@uns.ac.rs

1	 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

http://orcid.org/0000-0003-4373-9529
http://orcid.org/0000-0002-4458-3565
http://crossmark.crossref.org/dialog/?doi=10.1007/s10506-022-09339-2&domain=pdf

830	 M. Marković, S. Gostojić

1 3

appeals, bills, and orders. The legal documents need to meet some standards usu-
ally defined by legislation or by the legal profession. Although legal documents are
written in the natural language it uses its special type sometimes referred to as the
Language of the Law (Mellinkoff 1963).

The drafting of legal documents is taught at the law schools, but for mastering
drafting skills lawyers still have to practice document drafting at the beginning of
their career. To bridge that gap young lawyers usually do not write the documents
from scratch, but rather rely on documents created by their senior colleagues. Brant-
ing and Lester (1996) emphasize that lawyers usually search for a document that is
written before and that shares some similarities with the document they should com-
pose. These old documents serve as some kind of document templates where some
corrections have to be made to produce the needed document.

The above method for document drafting is also useful for experienced lawyers as
a shortcut that decreases the time for document drafting in comparison to writing an
entire document. Unfortunately, this approach sometimes leads to errors if a lawyer
misses to make all necessary changes and some old data remains in the new docu-
ment (Petro 2015; Allee and Elsig 2019; Henley 2001). Furthermore, choosing an
old document bears a risk of using the style that is outdated or citing legislation that
has ceased to have an effect.

The process of teaching legal writing has evolved through the years. Barnett
(2006) noticed that it has moved from a product-oriented approach, focused on
the final results in the students’ assignments, to the process-oriented approach that
encourages students to develop their ideas. Process-oriented teaching enables teach-
ers to provide students with guidance during the writing process. This helps stu-
dents to refine their writing skills before completing the assignment which in the end
improves the quality of their work. In classrooms with a large number of students,
it may be difficult for teachers to provide feedback to every student. Keene (2015)
discusses some additional improvements that are beneficial for legal writing courses.
Teachers with the help of their teaching assistants could guide students more effi-
ciently through the writing process or even peers could give feedback to each other.
However, one of the most important steps would be introducing more courses deal-
ing with legal writing in the law schools’ curriculum.

Although legal writing courses are being taught at law schools, Winek (2021)
reports that young lawyers often have difficulties with legal writing in their work-
places. Some of the deficiencies of their writing skills are wordiness and unclear
writing, with incomplete and poor document organization. Similarly, law students
also have an impression that their writing skills are insufficient for application in
legal practice. Winek suggests that more activities that involve practicing skills
related to legal writing should be included in the law school’s curriculum.

Pollman (2014) points out that students are usually taught legal writing by ana-
lyzing some legal documents with their teacher and then writing similar documents
themselves. It requires students to learn how an exemplary document is organized
and to understand how the same type of legal document should be written for some
other legal issue. It can produce cognitive overload if these two steps are taught

831

1 3

Legal document assembly system for introducing law students…

simultaneously. Pollman proposes model-based learning letting students separately
learn principles for writing a legal document for a single type of legal issue and
how to generalize those principles. This approach helps them to first focus only on
important rules that play a role in composing some document. After that, students
can be taught how to generalize these rules and how to apply them to the next legal
issue or even another type of legal document.

During the last few years pandemic of COVID-19 heavily affected the educa-
tional process in the world. It forced teachers to move from classroom teaching to
online teaching changing the way of interaction with students. Both teachers and
students had to find a way to cope with the new digital environment increasing the
demand for educational software tools. In these circumstances, interactive tools for
self-learning could be beneficial for both sides enabling students to prepare for the
next class at their own pace and reducing the teacher’s effort in explaining a new les-
son to students.

This paper discusses a method to support teaching law students legal document
drafting. The method involves a knowledge base consisting of legal knowledge rel-
evant to document assembly (legal rules, document templates, assembly configu-
ration). The legal rules represent both substantive and procedural legal norms that
affect the content of assembled documents. The document templates represent the
generalized design of legal documents. We aim to avoid the black box approach
for document assembly that outputs legal documents with no explanations for their
genesis. Instead, we put focus on the formal representation of legal knowledge to
support automatic reasoning over the given facts, provide explanations for produced
inferences, and construct the document on the basis of inferred data. We intend to
design a document assembly method for creating legal acts in a transparent manner
revealing the reasoning process that occurs behind claims stated in the document.
This approach should not replace traditional legal writing courses but it rather ena-
bles students to make the first steps in learning legal writing by themselves, and
allows once prepared system configuration to be run multiple times.

The rest of the paper is organized as follows. The next section describes research
related to legal document drafting and its application in education. The Sect. 3 pro-
poses a method for teaching the drafting of legal documents. The Sect. 4 presents a
prototype system for teaching legal document drafting and brings evaluation results.
The Sect. 5 discusses obtained results. Finally, the last section gives conclusions and
directions for future work.

2 � Related work

This section reviews some previous research related to the legal document drafting.
Canick (2014) noticed the gap between skills taught at law schools and the exper-

tise that a legal professional should have. Document drafting is recognized as a legal
communication skill that all lawyers need to perform no matter what legal area they

832	 M. Marković, S. Gostojić

1 3

work in. Students need to be taught the importance of precise language and that
every word they put in the document matters in contrast to communications they use
in informal contexts. The author suggests the introduction of technology into legal
education to prepare students for efficient work. Online document drafting tools are
proposed to give the students an insight into how to benefit from technology in their
everyday work.

There are numerous commercial solutions in the legal tools market that perform
document assembly including Contract Express (Thomson Reuters 2022), HotDocs
(AbacusNext 2022), ClauseBase (2022), Afterpattern (2022), Outlaw (2022), Legito
(2022), Woodpecker (2022), and Draftomat (2022). Users enter case data by filling
out forms and these tools put this data in predefined templates to create a legal docu-
ment. Most of these tools are either web-based systems or provide integration with
document editing software allowing users to work in an environment they are famil-
iar with. Some of these tools provide advanced features, like collaborative work,
libraries of clauses, and the use of variables and logic expressions to control if some
text part (e.g. contract clause) should be included in the generated document. Aim-
ing to support lawyers in the legal document drafting tasks and to save their time,
these tools are suitable for use by experienced lawyers.

In (Lauritsen 1993) several types of knowledge involved in legal document draft-
ing are identified. It includes knowledge that helps in presenting information the
document is intended to communicate, instantiation of document class for a par-
ticular case, selecting components to build the document, applying supplementary
non-legal-specific knowledge (e.g. language rules and writing styles), fulfilling the
purpose of the document, and arranging document sections and its sentences. How-
ever, expressing all these knowledge types in a way that supports automated docu-
ment drafting may require serious undertaking. Markup languages are recognized as
a powerful formalism for representing some drafting knowledge types. Using these
formalisms can help to produce so-called "knowledgable documents" i.e. documents
that include extra information about the content. This information facilitates the
management of legal documents by legal information systems.

In (Lauritsen and Gordon 2009) a method for modeling legal documents is pro-
posed to construct a theoretical framework for document drafting. The method
uses modeling statements to define requirements that a class of legal documents
should satisfy. Ideally, these statements bring completeness and consistency to the
document model. Nevertheless, modeling statements may originate from different
sources of drafting knowledge resulting in incompleteness or some inconsistencies
in document models. Furthermore, if a document meets the requirements defined
by the model, the final decision regarding its quality should be left to the lawyers.
Even then, they may come to different conclusions due to subjectivity in assessment.
Although the proposed method is general and domain-independent, it is likely to
produce domain-specific models at some point in modeling.

Branting et al. (1998) use discourse structure as the basis for generating judi-
cial documents. This structure consists of two types of operators, namely illo-
cutionary and rhetorical. Illocutionary operators represent goals that the author

833

1 3

Legal document assembly system for introducing law students…

intends to reach and rhetorical operators represent conventions regarding dis-
course and writing style of the document’s genre. As a proof of concept, the
authors have developed a prototype application called Docu Planner. The creation
of judicial documents consists of two phases, the document planning phase which
adjusts document structure to the specifics of given case facts and the document
drafting phase which produces the final document. The application provides two
modes for document creation, text mode and web mode. The text mode enables
generating documents for printing purposes and the web mode uses hypertext for
document formatting. In the next release, the Docu Planner 2.0 (Branting et al.
1999) brings explanations to text parts of the generated document. In that way,
the user can get additional information on reasons for including that part of the
text in the document.

Visualization of information stated in the legal documents can be useful for read-
ers to help them better understand the legal text. In (Passera et al. 2014) the authors
present a set of tools for visualization of contract clauses. One of these tools shows
a graphical representation of the contract’s timeline from contract formation to ter-
mination. Another tool visually presents a payment plan agreed upon in the contract
as a sequence of installments. The third tool shows a diagram of liquidated dam-
ages depending on the delay in delivery of the goods specified in the contract. The
authors emphasize the benefits of these tools for lawyers in designing contracts and
also for non-lawyers as an instrument that helps them understand the meaning of
contract clauses. Integration of visualization tools in document assembly systems is
suggested.

Ashley (2009) investigates how the visual representation of arguments helps law
students to understand legal reasoning in oral arguments presented in the courtroom.
Students analysed the transcriptions of argumentation to identify argument parts.
One group of students was allowed to use a tool for visual designing argumentation
LARGO while the other group was making the text notes. The results show that
analysis of argumentation using the visual tool is beneficial for students’ understand-
ing of argumentation, mostly for the students with lower LSAT (Law School Admis-
sions Test) scores.

Marković and Gostojić (2020) propose a knowledge-based method for the assem-
bly of documents in enterprise settings. The authors present the system that guides
users through the assembly process for business documents whose content depends
on legislation in force. It speeds up the writing of legal documents such as service
contracts and also helps less experienced lawyers to create these documents. Gen-
erated documents are semantically annotated improving interoperability between
enterprise information systems. This method shares some similarities with the
approach presented in this paper.

The previous research on automated legal drafting shows different approaches for
producing legal documents from input data. There are varieties of methods for for-
mal representation of the drafting knowledge. It mainly depends on the purpose of
the system that uses the knowledge and target users’ profiles. Theoretical research
on legal drafting identifies some important types of drafting knowledge and suggests

834	 M. Marković, S. Gostojić

1 3

creating a knowledge base using formal representations of drafting knowledge. Most
of the legal drafting systems available on the market are created for legal profes-
sionals to simplify their everyday drafting activities and help them to create legal
documents faster. Drafting tools developed specifically for legal education are less
common. Some of these tools provide students with textual or visual explanations of
the generated content to help them understand the drafting results. Such tools show
positive effects on the education of future lawyers and the potential for introduction
in legal writing courses.

3 � Methodology

This paper proposes a method for legal document assembly that helps law students
to learn and exercise how legal documents can be constructed.

This method uses a knowledge base representing the legal knowledge needed
for legal document writing. The complexity of the legal system brings some dif-
ficulties to the acquisition of legal knowledge involved in legal writing. Lawyers
gain this knowledge at law schools and later while practicing law. It involves legal
theory, legislative texts, teachers’ instructions, senior lawyers’ advice, reusable
knowledge embedded in legal precedents, etc. Furthermore, there is a broad range
of legal areas and a diversity of legal document types that lawyers work with.

Fig. 1   The structure of legal document assembly knowledge

835

1 3

Legal document assembly system for introducing law students…

Thus, this knowledge can be seen as a two-dimensional space, where one dimen-
sion represents a legal area, and another dimension is related to a particular docu-
ment type. In this two-dimensional system of legal knowledge, an intersection of
the document type and the legal area determines the knowledge needed for the
document assembly. Therefore, to support legal document assembly the knowl-
edge base should model legal knowledge related to the target document type in a
chosen legal area.

Our method distinguishes four parts of the legal document assembly knowledge
(Fig. 1). The first part of this knowledge is legislation that regulates a relevant legal
area. This part of knowledge represents legal norms from substantial sources of law
governing the given legal area.

The second part of the knowledge is regulations prescribing constraints regarding
the content and the structure of a specific legal document type. It represents legal
norms originating from procedural sources of law relevant to the concrete document
type.

The third part is tacit knowledge of legal writing for a particular type of legal
documents. This part of knowledge represents the writing skills of experienced law-
yers and can be modeled using document templates.

The fourth part interconnects the previous three knowledge parts and defines a
procedure for document formation. It combines knowledge needed for document
assembly with instructions for students and is organized as a sequence of assembly
steps.

We adopt the modular design for the knowledge base allowing changes in any of
the knowledge base parts to extend support for some new legal area, document type,
or the flow of document assembly.

Additionally, document assembly could involve other knowledge representations.
In this paper we consider the assembly of legal documents in civil law legal systems.
For the assembly of documents in common law jurisdictions, where precedents are
legally binding sources of law, knowledge from prior decisions should be formally
represented and supported by the assembly method. For example, machine-readable
representation of judicial opinions could be performed using an ontology as pro-
posed in (Ceci and Gangemi 2016).

We seek to capture and formally represent all parts of legal document drafting
knowledge, as well as to enable the application of this knowledge in document
assembly. The objective of this method is to introduce the legal drafting process to
law students and help them to explore how changes in input data cause variations in
assembled documents.

We aim to collect the knowledge relevant for legal document assembly on sev-
eral legal issues due to the complexity of the legal system. A broader range of legal
document types could bring some differences in the creation of legal acts specific to
that document types. We focused on the assembly of legal acts in criminal proceed-
ings because claims in these documents are mostly supported by physical evidence
making it easier for students to understand the logical structure of the documents. In
particular, we chose to analyze indictments as legal acts formed in the early phases

836	 M. Marković, S. Gostojić

1 3

of criminal proceedings resulting in less dependence on claims in other documents.
Although indictments are one type of legal documents the method proposed in this
paper can be applied to other judicial documents because they are strictly based on
substantiative and procedural law. For the same reason, this approach is also appli-
cable in drafting contracts. However, legislative documents as one of the most com-
plex document types are not suitable for creation using this method due to their gen-
eral and less constrained content.

For explanations of our method, we give examples for knowledge representation.
Without losing generality we focus on the legal knowledge that belongs to the legal
system that we are the most familiar with i.e. legislation of the Republic of Serbia.
The laws used in these examples include The Criminal Code (2005), The Criminal
Procedure Code (2011), The Law on Road Traffic Safety (2009), and The Law on
Organization of Courts (2008).

In the next subsections, we briefly explain how every part of the knowledge base
is constructed and how legal document assembly is performed.

3.1 � Legal rules

The legal rules should formally represent the legal knowledge given by legal norms in
legislation. Considering assembly of indictments most of the legal norms involved in
the assembly of this document type are substantial and procedural criminal law. While
substantial criminal law defines criminal offenses and penalties, procedural criminal
law determines types of criminal proceedings and courts’ jurisdiction. To transform
these sources of law into a machine-readable format we start by representing relevant
legal norms in predicate logic.

Legal norms are governing human behavior and consist of two parts, the disposition
that describes a mandatory behavior, and the sanction that prescribes the consequence
for violation of that behavior. Both disposition and sanction can be represented as legal
rules. The applicability of these provisions is usually determined by the exact circum-
stances that have to occur. We find predicate logic appropriate formalism for the repre-
sentation of these circumstances.

For example, the substantial provision defining that excessive driving speed in a
populated area is when a person drives a vehicle at a speed greater than 50 km/h, can be
represented using predicate logic as:

where x represents a person, y represents the speed, the predicate S is the person’s
driving speed and the predicate E implies that the person x is driving over the speed
limit.

Furthermore, if a person violating the traffic rules causes bodily injuries to some
other person or produces material damage greater than 200.000 RSD, this act can be
qualified as a criminal offense represented by the formula:

(1)∀x∀y (S(x, y) ∧ y > 50 → E(x))

837

1 3

Legal document assembly system for introducing law students…

where E denotes the same predicate from the previous formula, the predicate I
asserts that person x caused injuries to others while l stands for light injuries, the
predicate D represents that person x caused material damage in the amount of q, and
the predicate C denotes that the person x have committed the criminal offense identi-
fied by the constant value a.

The penalty for this criminal offense is imprisonment of up to 3 years. We can define
this sanction as follows:

where the predicate P represents the maximum penalty for the criminal offense a, as
imprisonment for the duration of 3 years.

An example of procedural provision is a determination of jurisdiction of basic courts
for criminal offenses with a penalty less than or equal to 10 years of imprisonment. It
can be represented by the following formula:

where predicate C represents that defendant x has committed the criminal offense y,
predicate P states that for the criminal offense y the penalty is z years of imprison-
ment, and predicate B represents that a basic court has jurisdiction in the case for the
defendant x and the criminal offense y.

The jurisdiction of higher courts for criminal offenses with a penalty greater than
10 years of imprisonment is determined by the formula:

where C and P are the same predicates used in the previous formula, while the pred-
icate H represents the jurisdiction of a higher court in the case against defendant x
for the criminal offense y.

An example of another procedural provision that grants jurisdiction to higher courts
in juvenile criminal cases can be represented as:

where predicate C represents that the defendant x has committed the criminal
offense y, the predicate A represents that age of the defendant x is z, and the predi-
cate H states that the case will be judged by the higher court.

When the defendant is a minor and the penalty for a committed criminal offense
is less than 10 years of imprisonment, the formulas (4) and (6) may lead to contra-
dictory conclusions because the former formula (4) supports the jurisdiction of a
basic court for the criminal case while the latter formula (6) supports jurisdiction of
a higher court. In this case, the legislator grants the jurisdiction to the higher court
because the provision represented by formula (6), due to its specificity in terms of

(2)∀x∀y∀q (E(x) ∧ (I(x, l) ∨ (D(x, q) ∧ q > 200000)) → C(x, a))

(3)P(a, 3)

(4)∀x∀y∀z (C(x, y) ∧ P(y, z) ∧ z ≤ 10 → B(x, y))

(5)∀x∀y∀z (C(x, y) ∧ P(y, z) ∧ z > 10 → H(x, y))

(6)∀x∀y∀z (C(x, y) ∧ A(x, z) ∧ z < 18 → H(x, y))

838	 M. Marković, S. Gostojić

1 3

the defendant’s age, represents an exception to the provision represented by formula
(4).

The important characteristic of legal rules is their non-monotonic nature that
allows the retraction of inferences when new information appears. For example, if
some legal rule makes an exception to the other legal rule it also retracts its con-
clusion when conditions for that exception are met. In the same way, the legal
principles known as lex specialis, lex superiori, and lex posteriori prioritizes one
legal rule over another. To support nonmonotonicity in our knowledge base, we use
defeasible logic.

Using the defeasible logic to represent rules determining the jurisdiction of basic
and higher courts the formulas (4), (5), and (6) becomes:

Defeasible logic provides superiority relations for resolving the contradictory con-
clusions between rules. These relations give priority to one rule over another. For
rules on court jurisdictions the superiority relation should grant priority to the rule
r3 over the rule r1:

3.1.1 � Substantial legal norms

Having the logical representation of relevant sources of law, we formed the rule base
as a set of machine-readable legal norms that defines criminal offenses related to a
traffic violation and drug abuse i.e. substantial law, along with legal norms defining
procedural constraints related to form and content of indictments i.e. procedural law.
We decided to use the OASIS LegalRuleML standard (OASIS 2021) for modeling
the rule base. This standard is designed as an interchange format for legal rules. It is
an open standard specified as an XML-based language that facilitates the representa-
tion of semantics and logic properties of legal norms. The LegalRuleML supports
the defeasibility of legal rules and its syntax is based on the RuleML language mak-
ing it easier to find a compatible reasoner.

The legal rules can be represented by the LegalRuleML language as a  <Prescrip-
tiveStatement> element based on the RuleML <Rule > element. The rule is given in

(7)
r1: commited_offence(Defendant,Offence),
max_imprisonment(Offence, Years), Years <= 10
⇒ basic_court_jurisdiction(Defendant)

(8)

r2: commited_offence(Defendant,Offence), max_imprisonment(Offence, Years),
Years > 10 ⇒ higher_court_jurisdiction(Defendant)

(9)

r3 ∶ commited_offence(Defendant,Offence), age(Defendant, Years), Years < 18

⇒ higher_court_jurisdiction(Defendant)

(10)r3 > r1

839

1 3

Legal document assembly system for introducing law students…

the if–then form consisting of logical expressions. The  <if > part of the rule repre-
sents a condition that is needed for the rule to be applied and the  <then> part con-
tains a consequence that occurs for the given condition. Both, the  <if> part and the 
<then > part are formed of  <Atom> elements i.e. expressions representing predi-
cates. Atoms use  <Rel > elements to name predicates,  <Var > elements to denote
variables and  <Ind > elements to reference an individual or a constant value.

The legal rule that qualifies a driving speed as excessive speed (Formula 1) can
be represented using a  <PrescriptiveStatement > element (Listing 1). Representation
of the legal rule in its  <if> part contains the conjunction of two atoms, one atom for
the predicate on the person’s driving speed, and another atom that tests if the driving
speed is greater than the speed limit. The  <then> part of the rule specifies a conse-
quence as an atom built on the predicate indicating that the driver exceeds the speed
limit.

<lrml:PrescriptiveStatement key="ps_lorts_art43b">
 <ruleml:Rule key=":lorts_art43b" closure="universal" strength="defeasible">
 <ruleml:if>
 <ruleml:And>
 <ruleml:Atom>
 <ruleml:Rel iri=":speed"/>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Speed</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Atom>
 <ruleml:Expr>
 <ruleml:Fun>></ruleml:Fun>
 <ruleml:Var>Speed</ruleml:Var>
 <ruleml:Ind>50</ruleml:Ind>
 </ruleml:Expr>
 </ruleml:Atom>
 </ruleml:And>
 </ruleml:if>
 <ruleml:then>
 <ruleml:Atom>
 <ruleml:Rel>excessive_speed_in_populated_area</ruleml:Rel>
 <ruleml:Var>Defendant</ruleml:Var>

</ruleml:Atom>
 </ruleml:then>
 </ruleml:Rule>
</lrml:PrescriptiveStatement>

Listing 1 - Legal rule on excessive speed in a populated area

The qualification of excessive driving speed that causes bodily injuries or prop-
erty damage, as a criminal offence (expressed by the Formula 2), is represented by
LegalRuleML as shown in Listing 2.

840	 M. Marković, S. Gostojić

1 3

<lrml:PrescriptiveStatement key="ps_cc_art289para1">
 <ruleml:Rule key=":cc_art289para1" closure="universal" strength="defeasible">
 <ruleml:if>
 <ruleml:And>
 <ruleml:Atom>
 <ruleml:Rel iri="excessive_speed_in_populated_area"/>
 <ruleml:Var>Defendant</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Or>
 <ruleml:Atom>
 <ruleml:Rel iri="caused_injuries"/>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Ind>light</ruleml:Ind>
 </ruleml:Atom>
 <ruleml:And>
 <ruleml:Atom>
 <ruleml:Rel iri="caused_damage"/>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Damage</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Atom>
 <ruleml:Expr>
 <ruleml:Fun>></ruleml:Fun>
 <ruleml:Var>Damage</ruleml:Var>
 <ruleml:Ind>200000</ruleml:Ind>
 </ruleml:Expr>
 </ruleml:Atom>
 </ruleml:And>
 </ruleml:Or>
 </ruleml:And>
 </ruleml:if>
 <ruleml:then>
 <ruleml:Atom>
 <ruleml:Rel>commited_offence</ruleml:Rel>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Ind>art289para1</ruleml:Ind>
 </ruleml:Atom>
 </ruleml:then>
 </ruleml:Rule>
</lrml:PrescriptiveStatement>

Listing 2 - Legal rule on the criminal offence committed by a traffic violation

In this rule, the severity of the injuries is denoted by the constant value ‘light’. The
criminal offence is identified by the constant value ‘art289para1’ representing the
article and the paragraph of the Criminal Code which defines this criminal act.

To represent penalty for a criminal offence, LegalRuleML provides  <PenaltyS-
tatement > and  <ReparationStatement > elements, where former defines the sanc-
tion and the latter connects that sanction with the corresponding disposition i.e. 
<PrescriptiveStatement > element.

841

1 3

Legal document assembly system for introducing law students…

The penalty defined by Formula 3, which represents maximum imprisonment of
3 years for criminal offences denoted by the value ‘art289para1’, can be represented
in LegalRuleML as defined in Listing 3.

<lrml:PenaltyStatement key="pen_cc_art289para1">
 <lrml:SuborderList>
 <lrml:Obligation>
 <ruleml:Atom>
 <ruleml:Rel iri=":max_imprisonment"/>
 <ruleml:Var>art289para1</ruleml:Var>
 <ruleml:Ind>3</ruleml:Ind>
 </ruleml:Atom>
 </lrml:Obligation>
 </lrml:SuborderList>
</lrml:PenaltyStatement>

Listing 3 - Definition of a sanction in the LegalRuleML

Now, the penalty given by Listing 3 can be connected to the disposition given by
Listing 2, as presented in Listing 4 of Online supplementary material.

<lrml:ReparationStatement>
 <lrml:Reparation>
 <lrml:appliesPenalty keyref="#pen_cc_art289para1"/>
 <lrml:toPrescriptiveStatement keyref="#ps_cc_art289para3"/>
 </lrml:Reparation>
</lrml:ReparationStatement>

Listing 4 - Connection between the sanction and the disposition in the LegalRuleML

3.1.2 � Procedural legal norms

Procedural legal norms can be similarly transformed into the LegalRuleML for-
mat as substantial legal norms. To represent court jurisdictions in the judicial
hierarchy as determined by procedural law, we use  <PrescriptiveStatement > ele-
ments. Thus, the jurisdiction of basic courts defined by Formula 4 can be repre-
sented as shown in Listing 5 of Online supplementary material

842	 M. Marković, S. Gostojić

1 3

<lrml:PrescriptiveStatement key="ps_lorts_art43b">
 <ruleml:Rule key=":lorts_art43b" closure="universal" strength="defeasible">
 <ruleml:if>
 <ruleml:And>
 <ruleml:Atom>
 <ruleml:Rel iri="commited_offence"/>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Offence</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Atom>
 <ruleml:Rel iri="max_imprisonment"/>
 <ruleml:Var>Offence</ruleml:Var>
 <ruleml:Var>Years</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Atom>
 <ruleml:Expr>
 <ruleml:Fun><=</ruleml:Fun>
 <ruleml:Var>Years</ruleml:Var>
 <ruleml:Ind>10</ruleml:Ind>
 </ruleml:Expr>
 </ruleml:Atom>
 </ruleml:And>
 </ruleml:if>
 <ruleml:then>
 <ruleml:Atom>
 <ruleml:Rel>basic_court_jurisdiction</ruleml:Rel>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Offence</ruleml:Var>
 </ruleml:Atom>
 </ruleml:then>
 </ruleml:Rule>
</lrml:PrescriptiveStatement>

Listing 5 - Legal rule on jurisdiction of basic courts

Determination of jurisdiction of higher courts expressed in Formula 5 is also trans-
formed into the LegalRuleML format, but its listing is not given separately due to
the minor differences compared to Listing 5.

The jurisdiction of higher courts for criminal offenses committed by juvenile
defendants (Formula 6) can be represented by LegalRuleML as shown in Listing 6
of Online supplementary material.

843

1 3

Legal document assembly system for introducing law students…

<lrml:PrescriptiveStatement key="ps_lorts_art43b">
 <ruleml:Rule key=":lorts_art43b" closure="universal" strength="defeasible">
 <ruleml:if>
 <ruleml:And>
 <ruleml:Atom>
 <ruleml:Rel iri="commited_offence"/>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Offence</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Atom>
 <ruleml:Rel iri=":age"/>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Years</ruleml:Var>
 </ruleml:Atom>
 <ruleml:Atom>
 <ruleml:Expr>
 <ruleml:Fun><</ruleml:Fun>
 <ruleml:Var>Years</ruleml:Var>
 <ruleml:Ind>18</ruleml:Ind>
 </ruleml:Expr>
 </ruleml:Atom>
 </ruleml:And>
 </ruleml:if>
 <ruleml:then>
 <ruleml:Atom>
 <ruleml:Rel>higher_court_jurisdiction</ruleml:Rel>
 <ruleml:Var>Defendant</ruleml:Var>
 <ruleml:Var>Offence</ruleml:Var>
 </ruleml:Atom>
 </ruleml:then>
 </ruleml:Rule>
</lrml:PrescriptiveStatement>

Listing 6 - Legal rule on jurisdiction of higher courts by defendant’s age

A potential contradiction between the conclusions of legal rules given by Listing 5
and Listing 6 can occur in juvenile cases for crimes whose prescribed imprisonment
is not more than 10 years. The LegalRuleML format supports defeasible logic and
is capable of establishing superiority relations between rules. The  <OverrideState-
ment > element can be used for setting a priority of one legal rule over another.
Because juvenile criminal cases are exempt from the jurisdiction of basic courts,
priority should be given to the legal rule shown in Listing 6 over the legal rule
shown in Listing 5, as presented in Listing 7 of Online supplementary material.

<lrml:OverrideStatement>
 <lrml:Override under="#ps_cc_art246para1f" over="#ps_cc_art246apara1"/>
</lrml:OverrideStatement>

Listing 7 - Giving a priority to one rule over another in LegalRuleML

Similarly, we transformed other legal norms related to indictments and to selected
criminal offenses into the LegalRuleML format.

844	 M. Marković, S. Gostojić

1 3

3.2 � Legal document assembly knowledge

To enable computer-guided legal document assembly we aim to represent the draft-
ing skills of experienced legal professionals. We call this knowledge the document
assembly knowledge and it represents a tacit knowledge gained through experience
in legal writing. We seek to formally represent a procedure for creating these docu-
ments rather than simply producing the legal document. It is an important feature for
educational purposes that enables tutoring the students on how they should perform
the document drafting by themselves. Thus, we build the assembly knowledge by
combining the method for generating the document from case facts with instructions
on how to conduct the whole document assembly procedure. We intend to represent
this knowledge in a machine-readable format.

Our research of assembly knowledge responsible for generating legal documents
includes analysis of real-world examples of legal documents. By the courtesy of the
Higher Public Prosecutor’s Office in Novi Sad, we obtained a sample of indictments
for our research. The sample contains 21 fully anonymized documents involving
indictments charging drug and traffic offenses. After examining these documents
we noticed some consistency in document style although the indictments are cre-
ated by different deputy public prosecutors. All these documents follow procedural
norms that regulate the structure and mandatory data in indictments while substan-
tial norms are included in explanations of committed criminal acts.

The sample documents contain a variety of data e.g. defendant’s personal data,
crime description, competent court, qualification of crime, and proposed sentence.
Some of these data are simple facts about the crime, while others can be derived
on the basis of these facts and legal norms. For example, the qualification of crime
and the proposed sentence depends on the crime description. Similarly, the court
jurisdiction can be determined by the crime severity, the location where the crime
is committed and also by age of the defendant. Therefore, we identified a set of base
facts that is sufficient to derive the rest of the data needed for document assembly.
Detailed analysis of the indictments also shows that some common phrases are used
to include case data in the document.

To formally represent the assembly knowledge that models document formation
procedure spanning the entire assembly process, from obtaining basic case facts to
the completely generated legal document, we are separately modeling the text com-
posing knowledge and the assembly procedure knowledge. The text composing
knowledge defines how the text in the document should be put together and it can
be represented by document templates. The assembly procedure knowledge defines
how document assembly and interaction with the student should be conducted. The
next two subsections briefly explain machine-readable representation for both parts
of the assembly knowledge.

3.2.1 � Document template

Before designing the document templates to represent the knowledge for composing
text in the legal documents, the target format for the generated documents should be
selected. There are a variety of formats for representing legal documents. We intend

845

1 3

Legal document assembly system for introducing law students…

to generate legal documents in an open and machine-readable document standard to
allow students to analyze the anatomy of the semantic documents and potentially reuse
these documents for other educational purposes. We choose the Akoma Ntoso stand-
ard (Palmirani and Vitali 2011) which enables the representation of legal documents in
XML format. It is a technology-neutral standard that supports the structural and seman-
tic markup of legal documents.

To build legal documents complying with the Akoma Ntoso schema, we need a tem-
plate modeling language providing support for generating XML documents. For this
purpose, we use ToXgene (Barbosa et al. 2002) which is both a document template lan-
guage and a document generator. We chose ToXgene because its template language is
based on the well known XML Schema standard and enables using variables and data
values to control if some document part should be generated.

Our observations regarding the style of the sample documents, such as the layout of
the document, used phrases, the order of presented facts, text formatting, etc. helped us
to construct machine-readable document templates using the ToXgene language. These
templates support loading the input data from provided XML files. The template initi-
ates the data loading using the  <tox-list > element by specifying the collection name
(attribute ‘name’) and the name of the XML file that contains input data (attribute
‘readFrom’). The structure of loaded data should be modeled according to the structure
of the XML file containing the input data. When the input data consists of key-value
pairs, it could be represented as elements with two child elements, one for the data
name and the other for the data value (Listing 8).

<tox-list name="fact_list" readFrom="facts.xml">
<element name="fact">

 <complexType>
 <element name="name" type="string"/>
 <element name="value" type="string"/>
 </complexType>

</element>
</tox-list>

Listing 8 - Loading input data by ToXgene document template

When the list of case facts is constructed, these data can be embedded in the generated
document. The data can also be included in logical expressions for determining if some
text fragments should be displayed in the document or should be omitted.

Presenting the case facts in the document can be performed by putting their val-
ues in some of the structural elements. Because AkomaNtoso uses grammar similar to
HTML for markup of paragraphs, we use  <p > elements to embed the data. The part of
the ToXgene document template representing some facts related to a traffic accident is
shown in Listing 9.

846	 M. Marković, S. Gostojić

1 3

<element name="p">
<complexType>

 <tox-value>Indictment</tox-value>
</complexType>

</element>
<element name="p">

<complexType mixed="true">
 <tox-value>against </tox-value>
 <element name="party">

 <attribute name="id">
 <tox-expr value="'party1'"/>
 </attribute>
 <attribute name="refersTo">
 <tox-expr value="'#defendant'"/>
 </attribute>
 <complexType>
 <tox-sample path="[fact_list/fact]" where="EQ([name],'defendant')">
 <tox-expr value="[value]"/>
 </tox-sample>
 </complexType>
 </element>

</complexType>
</element>
<element name="p">

<complexType>
 <tox-value>because of justified suspicion that:</tox-value>

</complexType>
</element>
<element name="p">

<complexType>
 <tox-value>on </tox-value>
 <tox-sample path="[fact_list/fact]" where="EQ([name],'accident_date')">
 <tox-expr value="[value]"/>
 </tox-sample>
 <tox-value>caused traffic accident, driving the vehicle </tox-value>
 <tox-sample path="[fact_list/fact]" where="EQ([name],'vehicle_model')">
 <tox-expr value="[value]"/>
 </tox-sample>
 <tox-value> plates number </tox-value>
 <tox-sample path="[fact_list/fact]" where="EQ([name],'vehicle_plates')">
 <tox-expr value="[value]"/>
 </tox-sample>
 <tox-value> and caused </tox-value>
 <tox-sample path="[fact_list/fact]" where="EQ([name],'victim_injuries')">
 <tox-expr value="[value]"/>
 </tox-sample>
 <tox-value> bodily injuries.</tox-value>

</complexType>
</element>

Listing 9 - Fragment of document template

 In general, the ToXgene document template defines XML elements, similar to
XML Schema language, and these definitions are used to generate the content of

847

1 3

Legal document assembly system for introducing law students…

the output document. For every paragraph in the document, we define a  <p > ele-
ment that has a complex type to enable child elements and mixed content. To
embed constant strings in the content of a paragraph we use the ToXgene ele-
ment  <tox-value> . Retrieval of data from the collection of loaded case facts is
performed by  <tox-sample> elements, specifying the collection name (attribute
‘path’) and criteria that the fact name must meet (attribute ‘where’). Retrieved
fact is included in the document using  <tox-expr > element and by specifying
that the corresponding data value should be embedded in the document (attrib-
ute ‘value’). Additionally, Akoma Ntoso annotation using the  <party > element is
applied to the defendant’s name to improve the machine-readability of the docu-
ment data.

3.2.2 � Assembly configuration

The knowledge base represents general document assembly knowledge. It consists
of the rule base and the document templates. To create an instance of the legal docu-
ment the data about a particular legal case is needed. Using the rule base to reason
over the case facts produces legal conclusions relevant for the document genesis.
Both the case facts and the reasoning results, shape the final document on the basis
of the document template.

To define relevant facts and to set up the assembly process we designed an assem-
bly configuration. The assembly configuration determines the flow of the document
assembly for a particular legal document type. It puts together the knowledge base
and instructions on how the document assembly process should proceed. The assem-
bly configuration is stored as an XML document and its structure is shown in Listing
10.

<Exercise name="Indictment for traffic violation" templateFilename="indictment_art297para2.tsl">
 <RuleFacts>...</RuleFacts>
 <TemplateFacts>...</TemplateFacts>
 <Steps>...</Steps>
</Exercise>

Listing 10 - The assembly configuration structure

 The assembly configuration consists of its name, the filename of the document tem-
plate, definitions of case facts relevant for reasoning using the rule base, definitions
of case facts that appear in the document, and definitions of assembly steps. The
filename of the rule base is not explicitly specified because a single rule base is used
for all assembly configurations. We intend to facilitate the construction and mainte-
nance of the rule base since numerous legal rules can be used in various assembly
configurations, in contrast to document templates that are specially designed for the
particular document type and the legal area.

The connection between assembly configuration and the legal rules both, sub-
stantial and procedural, is established by definitions of all case facts the assembly

848	 M. Marković, S. Gostojić

1 3

process should obtain to draw conclusions relevant for the document assembly.
These facts are defined as illustrated in Listing 11 of Online supplementary material.

<RuleFacts>
 <RuleFact name="defendant" type="string"/>
 <RuleFact name="speed" type="int"/>
 <RuleFact name="property_damage" type="float"/>
 <RuleFact name="caused_injuries" type="enum(minor,grievous,death)"/>
 <RuleFact name="defendant_age" type="int"/>

…
</RuleFacts>

Listing 11 - Definition of facts needed for the rulebase

 The case facts are defined by their names and data types. The fact names must
match the corresponding variable names used in LegalRuleML statements. The
fact type determines if some format conversion is needed before reasoning over
the fact. Most common data types are supported including the enumerations that
consist of constant values allowed as the fact’s input values.

The assembly configuration also contains definitions of case facts needed by
the document template. These definitions specify case facts that appear in the
legal document as shown in Listing 12.

<TemplateFacts>
 <TemplateFact name="defendant" type="string"/>
 <TemplateFact name="speed" type="int"/>
 <TemplateFact name="property_damage" type="float"/>
 <TemplateFact name="accident_date" type="date"/>
 <TemplateFact name="vehicle_model" type="string"/>
 <TemplateFact name="jurisdiction:court" type="reasoningResult"/>

…
</TemplateFacts>

Listing 12 - Definition of facts needed for the document template

The case facts needed for populating the document template are specified by their
name and their value, similarly to the definitions of facts needed for legal reason-
ing. The type ‘reasoningResult’ is reserved for inferred case facts determined by
the reasoning over the input data. The name of these facts consists of a relation
name and variable name, separated by a colon, that should match the correspond-
ing relation and the variable name in reasoning conclusions.

Our plan is to organize the document assembly process as a set of assembly
steps which gradually build the final document. This way students can track how
a single fact reflects on the generated document. Every assembly step defines
interaction with the student for gathering a case fact. Therefore, an assembly step
consists of a question the student should be asked, a type of data the student is
expected to enter, and explanatory material for the current step. Currently, the

849

1 3

Legal document assembly system for introducing law students…

assembly configuration does not support loops of assembly steps for multiple
entries. An example of a step definition is shown in Listing 13.

<Steps>
 <Step ruleFact="defendant" templateFact="defendant" answerType="string"
 text="Defendant's name" hint="e.g. John Doe">
 <StepExplanations ref="explanatory_cpc332.xml"/>
 </Step>

…
</Steps>

Listing 13 - Definition of an assembly step

 The assembly step is defined using  <Step > element with attributes determining
the fact name used for reasoning by legal rules (attribute ‘ruleFact’), the fact name
passed to the document template (attribute ‘templateFact’), a type of data the user
is expected to enter (attribute ‘answerType’), the text of the question asked to the
user (attribute ‘text’), and the example of expected answer format (attribute ‘hint’).
The child element  <StepExplanations> refers to a document containing explana-
tions for the current assembly step. The configuration allows multiple explanatory
documents. Explanatory materials are stored in XML files with a simple structure
presented in the example in Listing 14.

<ExplanatoryMaterial>
 <title>Criminal Procedure Code (Article 332)</title>
 <content>Indictment contains the following: first name and surname of the defendant with personal data, brief
description of the offence, …</content>
</ExplanatoryMaterial>

Listing 14 - Structure of an explanatory material

 

The structure of explanatory material consists of title and content. The title indicates
the origin of the explanation (e.g. title of textbook or legislation) and the content
provides its excerpt. Storing explanatory material separately from assembly configu-
ration enables the reuse of the materials by multiple assembly configurations.

3.3 � Document assembly method

The document assembly method employs the knowledge base previously described
in this section to assemble the legal documents. It is intended to support the educa-
tion of law students in legal writing by guiding them through the assembly steps.

850	 M. Marković, S. Gostojić

1 3

The assembly configuration is designed to enable successive addition of facts to the
case description enabling building of legal documents iteratively.

The assembly method should enable data input and document assembly in cycles
and can be decomposed into several processes, namely the assembly process, the
reasoning process, the document generating process, and the argument graph gener-
ating process.

Our legal document assembly method consists of the steps defined by document
assembly configuration. The document assembly process is performed in cycles,
providing the explanations to the student, asking for the case fact, and obtaining the
given answer. At every step, the legal document and the argument graph are gener-
ated using the data collected so far.

The student is expected to provide only basic facts that cannot be automatically
inferred. Application of the rule base consisting of substantial and procedural legal
norms to the input facts should obtain inferred facts. A reasoning process is respon-
sible for drawing these conclusions about the case. The inferred facts are used in
addition to the input facts for creating output documents. It is mandatory for the
reasoning process to support defeasible reasoning.

Assembly of the legal document is performed using the case data and the docu-
ment template to populate the content of the document. The document generating
process performs the document assembly task supporting the complexity of the doc-
ument structure and relations between its elements.

Application of the document assembly method in the education of law students
should reveal the chains of reasoning about the case, exposing how the input data
and the rule base lead to the conclusions. The argument graph generating process
should build an argument graph on the top of these inferences by creating the argu-
ments to connect facts and rules i.e. premises with their conclusions in deductive
reasoning. Representation of the argument graph should help students to better
understand how legal norms apply to the case.

An illustration of the document assembly method is shown in Fig. 2.
The processes participating in the document assembly method are depicted as the

gear shapes. The rectangles with gray color represent components of the knowledge
base. Other rectangles with white background represent the case-specific data, col-
lected or produced during the assembly process.

The document assembly is performed in cycles i.e., steps enabling the student
to enter an answer to the given question and providing him with explanations on
the purpose of that step. Input facts are a collection of answers entered by the stu-
dent. These data are used for document assembly as they represent key facts in a
particular legal case. The reasoning component uses the input facts and legal rules
to obtain inferred facts. Drawing conclusions by the reasoning component is based
on defeasible logic. The document generator component produces legal documents
from the document template, input facts and inferred facts. The generated document
is displayed to the user reflecting the case description collected so far. The argument
graph is constructed by the argument graph generator using legal rules to identify
relations between input facts and inferred facts. The argument graph shows the stu-
dent how the law applies to the case facts and what it implies. After the assembly

851

1 3

Legal document assembly system for introducing law students…

step is completed, the whole cycle is repeated for the next assembly step until the
last step is reached.

4 � Results

As a proof of concept for the method proposed in this paper, we constructed a
legal document assembly system called LEDAS. The source code of the system is
available at Marković and Gostojić 2022. The system is developed as a web appli-
cation to support simultaneous access of multiple students (e.g. in the classroom)
using various client platforms.

The system structure is illustrated using the UML deployment diagram shown
in Fig. 3. The system consists of the backend and the frontend application. The

Fig. 2   The document assembly method

852	 M. Marković, S. Gostojić

1 3

backend application is developed as a Java application that handles requests initi-
ated by the frontend application. For communication with the frontend applica-
tion, it implements RESTful web services by JAX-RS specification using the Jer-
sey framework (Eclipse 2022). The backend application also generates and serves
documents and other content that should be presented to the student. It imple-
ments the processes used by the document assembly method i.e., the assembly
process, the reasoning process, and the processes for generating the legal docu-
ment and the argument graph. Implementation of the reasoning process is a vital
component of our assembly system. It uses the input data and the rule base to
produce inferred data required for generating the legal document and the argu-
ment graph.

Defeasible reasoning over the case facts and the rule base is enabled using the
DR-DEVICE engine (Bassiliades et al. 2004). We chose this reasoning engine
because it uses similar formats for data representation as our method. The engine
supports reasoning over rule base in DR-RuleML format and input facts in RDF
format (Kontopoulos et al. 2011). DR-RuleML refers to an extension of RuleML
language enabling the representation of defeasible rules. To enable reasoning
over the rule base given in LegalRuleML format our application performs XSLT
transformation of the rule base into the DR-RuleML format.

The major difference between LegalRuleML and DR-RuleML formats is the
representation of arguments in relations. The LegalRuleML use positional repre-
sentation while DR-RuleML uses slotted argument representation. Additionally,
rules defined in LegalRuleML by  <PrescriptiveStatement> elements use  <if > and 
<then> elements as wrapper elements for the body and the head part of the rule,
while rules in DR-RuleML format are given by  <Implies > elements and consists of 
<body > and  <head > elements.

For instance, the transformation of the rule shown in Listing 1 into the DR-
RuleML syntax using results in the content given by Listing 15.

Fig. 3   UML deployment diagram

853

1 3

Legal document assembly system for introducing law students…

<Implies ruletype="defeasiblerule">
<oid>

<Ind uri="lorts_art43b">lorts_art43b</Ind>
</oid>
<body>

<And>
<Atom>

<op>
<Rel uri="dd:case"/>

</op>
<slot>

<Ind uri="dd:defendant"/>
<Var>Defendant</Var>

</slot>
<slot>

<Ind uri="dd:speed"/>
<Var>Speed</Var>

</slot>
</Atom>
<Equal>

<Expr>
<Fun in="yes">></Fun>
<Var>Speed</Var>
<Ind>50</Ind>

</Expr>
</Equal>

</And>
</body>
<head>

<Atom>
<op>

<Rel>excessive_speed_in_populated_area</Rel>
</op>
<slot>

<Ind uri="defendant"/>
<Var>Defendant</Var>

</slot>
</Atom>

</head>
</Implies>

Listing 15 – The rule from Listing 1 transformed into the DR-RuleML format

The document generation process is implemented using the ToXgene engine. The
engine uses the document template and the case data to generate the legal document.
The case data consisting of input facts and the inferred facts needs to be exported
into an XML before generating the document. The output of the ToXgene engine
is Akoma Ntoso documents because in our method we designed the document
templates for producing the documents of this type. The download of generated

854	 M. Marković, S. Gostojić

1 3

documents in RTF and PDF format is supported using the Apache FOP library
(Apache 2022).

Implementation of the argument graph generation process is performed on the
basis of input facts, the rule base, and the reasoning results. As the legal rules
are represented in the if–then form, we search through the rule base to find which
rules have their then part confirmed by the reasoner. The arguments are con-
structed using atoms from the if part as premises and the atom from the then part
as the conclusion. The argument graph is constructed by establishing connections
between them when two or more arguments are sharing the same relations in their
atoms. Representation of the argument graph is exported in JSON format.

Pseudo-code for generating the argument graph is given in Algorithm 1. It relies
on proofs generated by the DR-DEVICE reasoner. The proofs are a collection of
inferences obtained during the reasoning process indicating which atoms are proven,
either strictly or defeasibly. This information is helpful for identifying rules whose
head and body are both confirmed. We take identifiers of these rules and use them
as vertices in the argument graph. Also, relation names found in atoms of these rules
are used as vertices. Connections between rules and their atoms become edges in the
argument graph.

Algorithm 1 : Generating argument graph
input 1: R, the rulebase
input 2: P, the proofs
output: G(V,E), the argument graph
V ← ∅ ← ∅
for all rule ∈ R do

ruleconfirmed ← rule.head.atom.rel ∈ P;
for all atom ∈ rule.body do

if atom.rel ∉ P then
ruleconfirmed ← false;

end if
end for
if ruleconfirmed then

V ← V ∪ {rule.oid } ∪ {rule.head.atom.rel };
E ← E ∪ {(rule.oid , rule.head.atom.rel)}
for all atom ∈ rule.body do

V ← V ∪ {atom.rel};
E ← E ∪ {(atom.rel, rule.oid)}

end for
end if

end for
Output G(V,E)

Additionally, for the visual representation of the argument graph, we translate rule
identifiers and relation names into meaningful labels. Also, we use different shapes
to indicate statement nodes (rectangle) and argument nodes (ellipse).

855

1 3

Legal document assembly system for introducing law students…

The assembly process is implemented by the frontend application because it
controls interaction with the student. Once the frontend application gets the assem-
bly configuration from the backend application it can run the assembly process as
specified by the configuration. Sequentially, going through the assembly steps, the
explanatory materials are provided to the student, and the question is being asked.
The student’s answer is sent to the backend application resulting in a generated legal
document and argument graph. These data are presented to the student and the pro-
cess moves to the next question.

The frontend application is developed using the Angular framework (Google
2022) and PrimeNG library (PrimeTek 2021) of user interface components. For
a visual representation of the argument graph, we use the vis.js library (Almende
2022). Due to the complexity of the user interface it is designed for use on a desktop
computer.

When the student starts using the system the dialog box is shown with the list of
available assembly configurations created for particular document types and crim-
inal offenses (Fig. 4). Currently, assembly configurations are available for indict-
ments on traffic violations and drug abuse.

The dialog also allows the user to select the language of the user interface offer-
ing English and Serbian at this point. After choosing some of the displayed assembly
configurations, the dialog box disappears showing the user interface as illustrated in
Fig. 5.

The user interface consists of four panels. In the “Assembly progress” panel dis-
played at the top of the page, the chosen assembly configuration is specified and the
progress of the assembly procedure is indicated. Every assembly step is illustrated
with a button. The buttons enable the student to return to some of the prior steps and
alter the entered data. Just below the button of the current step a dialog box is dis-
played asking the student to enter the needed information. The dialog box contains
the question, input field and action buttons. The first button cancels the data input
by closing the dialog, but it can be shown again if the student clicks on the button of
the current assembly step. The second button reverts the document assembly to the
previous step, while the third button forwards the assembly to the next step. Also, if
the student just confirms the input by pressing the ‘enter’ key on the keyboard the
document assembly advances to the next step.

The “Document” panel displayed on the left side shows the content and layout of
the generated document. It is updated on every assembly step reflecting the changes

Fig. 4   The dialog for choosing assembly configuration

856	 M. Marković, S. Gostojić

1 3

caused by the student’s input. The document content is read-only but the panel con-
tains the three buttons for exporting the document in Akoma Ntoso, RTF or PDF
format. The placeholders showing the name of a case fact surrounded by symbols
‘ ≪’ and ‘ ≫’ mark positions in the document where input data will be embedded.
After the assembly procedure reaches the step asking for some of these facts and
the student enters the value, it will replace the corresponding placeholder. Some of
these values also become hyperlinks that, if clicked, enable the student to return to
the assembly step in which the value is entered. Hyperlinks are not provided for
inferred case facts because they usually depend on multiple input data.

On the right side of the application window, there are two panels. The “Argu-
ment graph” panel is the top panel showing the argument graph built on the
results of reasoning over the input data. With each assembly step, the argument
graph is updated showing the inferences that can be drawn using the input data
and the knowledge base. The statements i.e. premises and conclusions are rep-
resented by rectangles and arguments are represented by ellipses. Arguments are
connected by lines with their premises and the conclusion. Orientation of the
arguments is from left to the right, meaning the premises of an argument are on
its left side and the conclusion is on its right side. The rectangles that represent
input facts perform as hyperlinks enabling the user to directly access the assem-
bly step where the fact was entered.

The “Explanatory material” is the bottom panel on the right side of the page that
displays explanatory material for the current assembly step. It supports multiple

Fig. 5   The user interface of the document assembly system

857

1 3

Legal document assembly system for introducing law students…

documents organized in tabs. These materials help students to understand why the
case fact they are asked to enter is relevant to the legal document. Using teachers’
instructions, excerpts from textbooks, legal norms, etc. these materials provide
assistance to the student enabling them to practice document assembly on their own.

Formation of the knowledge base for legal document assembly requires the
rule base consisting of substantial and procedural legal norms, the document
template and the assembly configuration. To make it easier for teachers to create
a formal representation of the assembly configuration, we developed a simple
tool for generating this configuration based on the rule base and the document
template. The tool uses a command-line interface and works in text mode. The
source code of the tool is available at Marković and Gostojić 2016.

Assuming that the user has legal norms represented in LegalRuleML format
and the document template in ToXgene format, this tool first asks the user to
enter the name of the assembly configuration and names of files containing the
rule base and the document template. The tool then detects all input data needed
by the rule base and the document template. The names of the variables found
in the body of LegalRuleML prescriptive statements are extracted as case facts
needed by the rule base. The names of the facts referenced by ‘where’ attrib-
utes in  <tox-sample > elements of ToXgene template are extracted as case facts
needed by the document template. These names of the facts are then listed to the
user as two numbered sequences (Listing 16).

Rulebase facts:
0:speed, 1:defendant, 2:property_damage, 3:alcohol_level,

Template facts:
0:accident_date, 1:defendant_vehicle, 2:victim_injuries, 3:defendant,

Listing 16 - Lists of detected case facts

The user defines the assembly configuration, step by step, by choosing the rule
base fact and the template fact by entering their numbers and typing the text of
the question that should be displayed to the student when asked to enter a value
for these facts (Listing 17 of Online supplementary material).

[step=0] rulebase fact: 1
[step=0] template fact: 3
[step=0] question: Defendant’s name

Listing 17 - Lists of detected case facts

When all detected facts become referred by assembly steps the teacher is asked
to choose a filename for the assembly configuration and the data is saved. The
tool assigns string type as the default data type for all fact and step definitions.

858	 M. Marković, S. Gostojić

1 3

Further improvements to assembly configuration in terms of reorganizing assem-
bly steps or linking assembly steps to explanatory materials should be made
manually using an XML editor.

5 � Evaluation

To evaluate the assembly system we asked 24 law students to use the software and
to participate in a survey. The evaluation was conducted in a computer laboratory
with a computer for every student. We prepared two assembly configurations, one
for indictments on traffic offenses and the second for indictments for drug offenses.
We printed anonymized descriptions of two real prosecuting cases and distributed
them to each student, one description of a traffic accident and one of narcotic abuse.
To introduce students to the evaluation process, we first explained the purpose of the
system and how the system works. Then, we demonstrated the document assembly
process using the system to assemble an indictment on a traffic violation based on
the description of the traffic accident. During the assembly, we gave instructions to
the students on how to perform each step on the computer in front of them. When
we finished document assembly, we let students examine by themselves how differ-
ent case facts reflect on the generated document.

In the second part of the evaluation, we let students to assemble by themselves an
indictment for drug abuse. While the students were engaged in assembling we moni-
tored their progress, and provided support in interaction with the system.

When all students finished their work on indictments, we distributed a survey
to them to evaluate their experience and satisfaction with the system. The survey
aims to determine how students perceive help they can get from the system while
being introduced to indictments creation. The questionnaire consists of nine Lik-
ert scale questions and four open-ended questions. Five-point Likert-scale questions
measure students’ first impression of ease of use and usefulness of the system. The
open-ended questions allow students to enter their grade point average, give their
opinion on the advantages and disadvantages of the system, and also suggest some
improvements.

Table 1   The survey results

Question Average score Median score

Q1: Getting started with the software is easy 5.00 5
Q2: The software is easy to use 5.00 5
Q3: The user interface is intuitive 4.79 5
Q4: It is always clear what am I expected to do 4.83 5
Q5: I understand how to fix potential errors 4.29 5
Q6: The software helps me to understand the content of the indictment 4.58 5
Q7: The software helps me to assemble an indictment 4.88 5
Q8: I would recommend this software to others 5.00 5
Q9: I would like to use similar software in professional work 4.83 5

859

1 3

Legal document assembly system for introducing law students…

The analysis of the students’ answers by questionnaire is summed in Table 1.
The grade point average is reported by 18 students and their overall grade point

average is approximately 8.56 (ranging from 6 to 10) with a median value of 8.595.
Most of the students’ answers on the advantages of the assembly system are

related to time-saving i.e. increased speed of document assembly, easiness of use,
helpful explanatory material, clarity of assembly procedure, automatic reasoning on
court jurisdiction and its explanation by the argument graph. Disadvantages identi-
fied by the students include the small number of supported criminal offenses, inabil-
ity to edit generated documents, grammatical incorrectness in sentence construction,
and inadequate flexibility of case description to support the complexity of real-life
cases. Suggestions the students gave us for the system improvement are: extending
the set of supported crimes, involving more municipalities for determining the ter-
ritorial jurisdiction, providing support for the assembly of contracts, and showing
excerpts from legislation as hints on the argument graph when the user places the
pointer over an argument.

During the evaluation the students were asked to write down their email addresses
if they would like to receive installation of the document assembly system. 13 stu-
dents out of 24 took this opportunity and applied for a free copy of the software.

6 � Discussion

All the students completed the evaluation process successfully.
The highest score (5.00) is achieved for Q1, Q2, and Q8. The scores for Q1 and

Q2 suggest that the students had no difficulties understanding how to use the system.
The score for Q8 and the slightly lower score for Q9 (4.83) indicates that the stu-
dents find the system valuable for them and their colleagues.

Question Q7, measuring how much the software is helpful, achieved a score of
4.88 suggesting that the students perceive the system as a useful tool for document
assembly.

The score for Q4 (4.83) and the score for Q3 (4.79) show that the students had no
major difficulties interacting with the system. Considering that law students rarely
have a technical background, a higher score could be achieved by improving the
user interface. During the survey, several students asked for the meaning of the term
“user interface”. It is possible that the Q3 is not clearly understood by students.

The lowest score on the questionnaire is given to Q5 (4.29). We assume this score
reflects a minor software bug the students experienced during the evaluation when
they were unable to deal with the error by themselves.

The ability of the system to improve students’ understanding of the document
content measured by the question Q6 achieved a score of 4.58 suggests that the fea-
tures of the system that supports learning of the document drafting are helpful for
the students. It is a very promising result for introducing the assembly system in the
lawyers’ education.

The overall grade point average suggests the students are above average academic
performance. The feedback they provided is predominantly positive, also indicating

860	 M. Marković, S. Gostojić

1 3

the urge for extending the knowledge base, providing new features to the user inter-
face and improving the grammatical correctness of the generated document.

The students evaluated the system in the presence of their teaching assistant who
commended the assembly system and positively assessed its potential application
both as an educational tool in the teaching process and as a document assembly tool
in the legal practice. This opinion is in accordance with the scores obtained from
the survey and confirms the urge for introducing this kind of software in the law-
yers’ education. The application of the LEDAS system in education as an alternative
to the traditional teaching of legal writing should require a more complex evalua-
tion process. It should include pre-test and post-test of students’ legal writing skills
and the assessment of these skills should be performed by their teachers. Students
should be divided into two groups, the first one taught by the LEDAS system, while
the second one would be the control group having their lessons organized in the tra-
ditional way. Besides the results of such evaluation, the final decision on the effects
of using the LEDAS system in education should also consider the evaluation results
presented in this paper to estimate the quality of the proposed approach from both
perspectives, the students’ and the teachers’.

7 � Conclusion

In this paper, we present a legal document assembly method for teaching legal writ-
ing to law students. The method is supported by legal knowledge represented as a
machine-readable knowledge base. To demonstrate the application of this method
in the education of law students, we developed LEDAS, a legal document assembly
system. The system uses an interactive approach to gather case facts from students
and to gradually create the legal document and the argument graph representing the
influence of individual facts on claims stated in the document. The system is posi-
tively evaluated by a group of law students and their teachers.

The system enables students to exercise document assembly by themselves and
demonstrates how an instance of chosen document type could be composed on the
basis of facts entered by the student. Thoroughly prepared assembly configurations
including explanatory material allow students to investigate numerous combinations
of factual circumstances and examine the results.

The knowledge base of the proposed solution is developed on the basis of several
criminal offenses. However, other legal norms could also be supported as the rule
base relies on the promising LegalRuleML standard. Besides indictments consid-
ered in this research, the proposed solution could also support other types of ini-
tial documents (e.g. motions to indict, private prosecution, motion to pronounce a
security measure, order to conduct an investigation, etc.). Once identified elements
of the legal norm (disposition and sanction) can be relatively easy represented in
LegalRuleML format as it follows the logical structure of legal rules. It makes the
transformation of substantial and procedural law into machine-readable format a
straightforward operation. Also, the simplicity of assembly configuration structure
and similarity of document template language with XML Schema standard facili-
tates modeling of document assembly knowledge. The logging capabilities of the

861

1 3

Legal document assembly system for introducing law students…

LEDAS system, the reasoning engine, and the document generating engine mini-
mize effort in testing and debugging the knowledge base making it easier for users to
find and fix potential errors.

Extending support of the LEDAS system to other legal areas and document types
requires the preparation of formal representation of the relevant document assem-
bly knowledge. Although the complexity of the legal system brings numerous
possibilities of legal areas and document types, some of their intersections might
never appear in legal practice, for instance, the environment law and wills. Further-
more, substantial legal norms can be applied to several document types. For exam-
ple, besides indictments, the legal norms about traffic violations are applicable to
motions to indict in criminal cases and motions in misdemeanour cases. Although
formal representation of legal knowledge may seem a complex and demanding task
it is still feasible due to the fact that sets of legal norms and document types are
finite sets. Moreover, the reusability of legal norms for multiple legal areas and doc-
ument types reduces the overall effort to codify legal knowledge.

Broad use of the proposed approach in the classrooms would require simplifica-
tion of the language used to model assembly knowledge (the assembly steps, the
rules, and the document templates). It would enable law professors, in coopera-
tion with knowledge engineers or even by themselves, to customize the application
more easily to a particular legal domain. A solution could be the development of a
domain-specific language that can be automatically translated to native knowledge
formats.

According to the legal tradition, public prosecutors write whole indictments
or motions to indict in a single sentence. This brings additional complexity to the
assembling process. Natural language generation mechanisms should be used in the
document assembly process to improve the quality of generated documents.

Further evaluation of the proposed system as an educational tool should be con-
ducted in the classroom in some of the legal writing courses. It could be used to
teach one group of law students to draft legal documents. The control group should
be taught using the traditional approach. The legal drafting skills of both groups
should be assessed by their teachers, before and after the legal writing course. A
comparison of obtained results will reflect how the LEDAS is successful as an alter-
native method for teaching legal writing.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10506-​022-​09339-2.

References

AbacusNext (2022) Document automation software: generation & assembly. https://​www.​hotdo​cs.​com/.
Accessed 5 June 2022

Afterpattern (2022) Afterpattern: build a better way to practice law. https://​after​patte​rn.​com/. Accessed 5
June 2022

Allee T, Elsig M (2019) Are the contents of international treaties copied and pasted? Evidence from preferen-
tial trade agreements. Int Stud Quart 63(3):603–613

Almende B V (2022) vis.js: A dynamic, browser based visualization library. http://​visjs.​org/. Accessed 5 June
2022

https://doi.org/10.1007/s10506-022-09339-2
https://doi.org/10.1007/s10506-022-09339-2
https://www.hotdocs.com/
https://afterpattern.com/
http://visjs.org/

862	 M. Marković, S. Gostojić

1 3

Marković M, Gostojić S (2016) Configuration tool for the legal document assembly system. Available at:
https://​github.​com/​legal-​infor​matics/​knowl​edge-​based-​docum​ent-​assem​bly/​tree/​master/​src/​legal/​docum​
entas​sembly/​cli. Accessed 5 June 2022

Marković M, Gostojić S (2020) A knowledge-based document assembly method to support semantic inter-
operability of enterprise information systems. Enterprise Information Systems. https://​doi.​org/​10.​1080/​
17517​575.​2020.​17933​89

Marković M, Gostojić S (2022) The legal document assembly system. Available at: https://​github.​com/​legal-​
infor​matics/​docum​ent-​assem​bly-​webapp. Accessed 5 June 2022

Apache (2022) The Apache FOP Project. https://​xmlgr​aphics.​apache.​org/​fop/. Accessed 5 June 2022
Ashley KD (2009) Teaching a process model of legal argument with hypotheticals. Artif Intell Law

17(4):321–370
Barbosa D, Mendelzon A, Keenleyside J, Lyons K (2002) ToXgene: a template-based data generator for

XML. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data,
pp. 616–616.

Barnett D (2006) Triage in the trenches of the legal writing course: the theory and methodology of analytical
critique. Univ Toledo Law Rev 38:651–704

Bassiliades N, Antoniou G, Vlahavas I (2004) DR-DEVICE: a defeasible logic system for the Semantic
Web. In: international workshop on principles and practice of semantic web reasoning (pp. 134–148).
Springer, Berlin.

Branting LK, Lester J, Callaway C (1998) Automating judicial document drafting: a discourse-based
approach. Artif Intell Law 6(2–4):111–149

Branting L K, Lester J C (1996) A framework for self-explaining legal documents. In Tilburg University, the
Netherlands.

Branting L K, Callaway C B, Mott B W, Lester J C (1999) Integrating discourse and domain knowledge for
document drafting. In: Proceedings of the 7th international conference on Artificial intelligence and
law, pp 214–220.

Canick S (2014) Infusing technology skills into the law school curriculum. Cap UL Rev 42:663
Ceci M, Gangemi A (2016) An OWL ontology library representing judicial interpretations. Semantic Web

7(3):229–253
ClauseBase (2022) Contract Drafting Software. https://​www.​claus​ebase.​com/. Accessed 5 June 2022
Draftomat (2022) Welcome to Draftomat. https://​www.​draft​omat.​app/. Accessed 5 June 2022
Eclipse (2022) Eclipse Jersey. https://​eclip​se-​ee4j.​github.​io/​jersey/. Accessed 5 June 2022
Google (2022) Angular. https://​angul​ar.​io/. Accessed 5 June 2022
Henley BK (2001) Avoid malpractice traps with practice management software. Ohio Lawyer 15(6):26–30
Keene SL (2015) Are we there yet: aligning the expectations and realities of gaining competency in legal

writing. Duquesne Law Rev 53(1):99–132
Kontopoulos E, Bassiliades N, Antoniou G (2011) Visualizing Semantic Web proofs of defeasible logic in

the DR-DEVICE system. Knowl-Based Syst 24(3):406–419
Lauritsen M, Gordon T F (2009) Toward a general theory of document modeling. In: Proceedings of the 12th

international conference on artificial intelligence and law, pp. 202–211.
Lauritsen M (1993) Knowing documents. In: Proceedings of the 4th international conference on Artificial

intelligence and law, pp. 184–191.
The Law on Road Traffic Safety (2009) Official Gazette of the Republic of Serbia, no. 41/2009
Legito (2022) Document Automation—Legito. Available at: https://​www.​legito.​com/​US/​en/​docum​ent-​autom​

ation (accessed 5 June 2022)
Mellinkoff D (1963) The language of the law. Little, Brown & Company, Boston
OASIS (2021) OASIS LegalRuleML TC. https://​www.​oasis-​open.​org/​commi​ttees/​legal​ruleml. Accessed 5

June 2022
Outlaw (2022) Draft—Outlaw. https://​getou​tlaw.​com/​platf​orm/​draft/. Accessed 5 June 2022
Palmirani M, Vitali F (2011) Akoma-Ntoso for legal documents. In Legislative XML for the semantic Web

(pp. 75–100). Springer, Dordrecht.
Passera S, Haapio H, Curtotti M (2014) Making the meaning of contracts visible–Automating contract visu-

alization. In: Transparency. Proceedings of the 17th international legal informatics symposium IRIS
(pp. 443–450).

Petro N (2015) Document automation: using technology to improve your practice. Gpsolo 32(5):56–63
Pollman T (2014) The sincerest form of flattery: examples and model-based learning in the classroom. J Leg

Educ 64(2):298–333
PrimeTek (2021) PrimeNG. https://​www.​prime​faces.​org/​prime​ng/. Accessed 5 June 2022

https://github.com/legal-informatics/knowledge-based-document-assembly/tree/master/src/legal/documentassembly/cli
https://github.com/legal-informatics/knowledge-based-document-assembly/tree/master/src/legal/documentassembly/cli
https://doi.org/10.1080/17517575.2020.1793389
https://doi.org/10.1080/17517575.2020.1793389
https://github.com/legal-informatics/document-assembly-webapp
https://github.com/legal-informatics/document-assembly-webapp
https://xmlgraphics.apache.org/fop/
https://www.clausebase.com/
https://www.draftomat.app/
https://eclipse-ee4j.github.io/jersey/
https://angular.io/
https://www.legito.com/US/en/document-automation
https://www.legito.com/US/en/document-automation
https://www.oasis-open.org/committees/legalruleml
https://getoutlaw.com/platform/draft/
https://www.primefaces.org/primeng/

863

1 3

Legal document assembly system for introducing law students…

Thomson Reuters (2022) Document automation. https://​mena.​thoms​onreu​ters.​com/​en/​produ​cts-​servi​ces/​
legal/​highq/​docum​ent-​autom​ation.​html. Accessed 5 June 2022

The Criminal Code (2005) Official Gazette of the Republic of Serbia, no. 85/2005
The Criminal Procedure Code (2011) Official gazette of the Republic of Serbia, no. 72/2011
The Law on Organization of Courts (2008) Official Gazette of the Republic of Serbia, no. 116/2008
Winek KM (2021) Writing like a lawyer: how law student involvement affects self-reported gains in writing

skills in law school. J Leg Educ 69(2):568–598
Woodpecker (2022) Legal document automation. https://​www.​woodp​ecker​web.​com/. Accessed 5 June 2022

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://mena.thomsonreuters.com/en/products-services/legal/highq/document-automation.html
https://mena.thomsonreuters.com/en/products-services/legal/highq/document-automation.html
https://www.woodpeckerweb.com/

	Legal document assembly system for introducing law students with legal drafting
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Legal rules
	3.1.1 Substantial legal norms
	3.1.2 Procedural legal norms

	3.2 Legal document assembly knowledge
	3.2.1 Document template
	3.2.2 Assembly configuration

	3.3 Document assembly method

	4 Results
	5 Evaluation
	6 Discussion
	7 Conclusion
	Anchor 17
	References

