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Abstract Many everyday human skills can be framed in
terms of performing some task subject to constraints im-
posed by the environment. Constraints are usually unobserv-
able and frequently change between contexts. In this paper,
we present a novel approach for learning (unconstrained)
control policies from movement data, where observations
come from movements under different constraints. As a key
ingredient, we introduce a small but highly effective modi-
fication to the standard risk functional, allowing us to make
a meaningful comparison between the estimated policy and
constrained observations. We demonstrate our approach on
systems of varying complexity, including kinematic data
from the ASIMO humanoid robot with 27 degrees of free-
dom, and present results for learning from human demon-
stration.

Keywords Direct policy learning · Constrained motion ·
Imitation · Nullspace control

1 Introduction

A wide variety of everyday human skills can be framed in
terms of performing some task subject to constraints im-
posed by the physical environment (Ohta et al. 2004; Svinin
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et al. 2005). Examples include opening a door, pulling out a
drawer or stirring soup in a saucepan.

In a more generic setting, constraints may take a much
wider variety of forms (Udwadia and Kalaba 1996). For ex-
ample, in climbing a ladder, the constraint may be on the
centre of mass or the tilt of the torso of the climber to
prevent over-balancing. Alternatively, in problems that in-
volve control of contacts such as manipulation or grasping
solid objects, the motion of fingers is constrained during
the grasp by the presence of the object (Sapio et al. 2006;
Park and Khatib 2006). In systems designed to be highly
competent and adaptive, such as humanoid robots, behav-
iour may be subject to a wide variety of constraints that are
usually non-linear in actuator space and often discontinuous
(Sentis and Khatib 2004, 2005, 2006; Gienger et al. 2005;
Sapio et al. 2005). Consider the task of running or walking
on uneven terrain: the cyclic movement of the legs of the
runner is constrained by the impact of the feet on the ground
in a dynamic, discontinuous and unpredictable way.

A promising approach to providing robots with such
skills as running and opening doors is to take examples
of motion from existing demonstrators (e.g., from humans)
and attempt to learn a control policy that somehow cap-
tures the desired behaviour (Ratliff et al. 2009; Calinon
and Billard 2007; Billard et al. 2007; Alissandrakis et al.
2007; Grimes et al. 2006, 2007; Chalodhorn et al. 2006;
Takano et al. 2006; Schaal et al. 2003; Inamura et al. 2004;
Ijspeert et al. 2003). An important component of this is the
ability to deal with the effect of constraints and the appar-
ent variability in movements induced by these constraints.
For example, one wishes to learn a policy that allows one
not only to open a specific door of a particular size (e.g.
constraining the hand to a curve of a particular radius), but
rather to open many doors of varying sizes (or radii).
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The focus in this paper is on modelling control policies
subject to a specific class of constraints on motion, with
the aim of finding policies that can generalise over differ-
ent constraints. We take a direct policy learning (DPL) ap-
proach (Martinez-Cantin et al. 2009; Vlassis et al. 2009;
Stolle and Atkeson 2009; Chalodhorn et al. 2006; Nakanishi
et al. 2004; Schaal et al. 2003; Atkeson and Schaal 1997;
Mussa-Ivaldi 1997) whereby we attempt to learn a contin-
uous model of the policy from motion data. While DPL
has been studied for a variety of control problems in recent
years,1 crucially these problems involved policies that are ei-
ther directly observable from motion data, i.e. unconstrained
policies, or policies subject to identical constraints in every
observation, in which case the constraints can be absorbed
into the policy itself. The difference here is that we consider
observations from policies projected into the nullspace of a
set of dynamic, non-linear constraints, and that these con-
straints may change between observations, or even during
the course of a single observation.

Our strategy is to attempt to consolidate movement ob-
servations under different specific constraints to find the un-
derlying unconstrained policy common to all. Learning the
latter enables generalisation since we can apply new con-
straints to predict behaviour in novel scenarios. In general,
learning (unconstrained) policies from constrained motion
data is a formidable task. This is due to (i) the non-convexity
of observations under different constraints, and; (ii) degen-
eracy in the set of possible policies that could have produced
the movement under the constraint (Howard et al. 2008;
Howard and Vijayakumar 2007). However, despite these
hard analytical limits, we will show that it is still possible
to find a good approximation of the unconstrained policy
given observations under the right conditions. Noting that
the policy observations are projected into the nullspace of
the constraints, our proposal is to reformulate the standard
risk functional by introducing a projection of the estimated
policy onto the observations before calculating errors. By
making this simple, but significant alteration, we show that it
is possible to model the unconstrained policy (i) with no ex-
plicit knowledge of the constraints, and; (ii) without explicit
access to unconstrained policy vectors. Furthermore, we
show that using this approach one can fully reconstruct the
unconstrained policy given observations under a sufficiently
rich set of constraints. To validate the approach we modify
standard regression techniques to use the proposed objective
function and demonstrate robust learning for several policies
on complex, high-dimensional movement systems, subject
to realistic constraints. Finally, we demonstrate the use of
our approach for learning from human demonstrations and
transferring behaviour to the ASIMO humanoid robot.

1For a review on DPL, please see (Billard et al. 2007) and references
therein.

2 Problem formulation

In this section, we characterise the problem of DPL in gen-
eral, and discuss the problems encountered when variable
constraints are applied to motion.

2.1 Direct policy learning

Following Schaal et al. (2003), we consider the learning of
autonomous policies

u(t) = π(x(t)), π : R
n �→ R

d, (1)

where x ∈ R
n and u ∈ R

d are appropriately2 chosen state-
and action-spaces, respectively. The goal of DPL is to ap-
proximate the policy (1) as closely as possible (Schaal et
al. 2003). It is usually formulated as a supervised learn-
ing problem where it is assumed that we have observa-
tions of u(t), x(t) (often in the form of trajectories), and
from these we wish to learn the mapping π . In previ-
ous work this has been done by fitting parametrised mod-
els in the form of dynamical systems (Ijspeert et al. 2002,
2003), non-parametric modelling (Peters and Schaal 2008a;
Calinon and Billard 2007; D’Souza et al. 2001), probabilis-
tic Bayesian approaches (Grimes et al. 2006, 2007) and
hidden Markov models (Takano et al. 2006; Inamura et al.
2004).

An implicit assumption found in DPL approaches to date
is that the data used for training comes from behavioural
observations of some unconstrained or consistently con-
strained policy (Calinon and Billard 2007). By this it is
meant that the policy is observed either under no constraint
(e.g. movements in free space such as gestures or figure
drawing), or under constraints consistent over observations
(e.g. interacting with the same objects or obstacles in each
case). However, in many everyday behaviours, there is vari-
ability in the constraints, such as when opening doors of
varying sizes or walking on uneven terrain. This variabil-
ity in the constraints cannot be accounted for by standard
DPL approaches.

2It should be noted that, as with all DPL approaches, the choice of
state- and action-space is problem specific (Schaal et al. 2003) and,
when used for imitation learning, depends on the correspondence be-
tween demonstrator and imitator. For example if we wish to learn the
policy a human demonstrator uses to wash a window, and transfer that
behaviour to an imitator robot, an appropriate choice of x would be the
Cartesian coordinates of the hand, which would correspond to the end-
effector coordinates of the robot. Transfer of behaviour across non-
isomorphic state- and action-spaces, for example if the demonstrator
and imitator have different embodiments, is also possible by defining
an appropriate state-action metric (Alissandrakis et al. 2007).
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Fig. 1 Illustration of two apparently different behaviours from the
same policy: (a) unconstrained movement (b) movement constrained
by an obstacle (black box) (c) the unconstrained (red) and constrained
(black) policy over two of the joints of the finger (y-axis: base joint;
x-axis: first knuckle)

2.1.1 Example: finger extension with contact constraints

As an example, consider the learning of a simple policy
to extend a jointed finger. In Fig. 1(a) the finger is uncon-
strained and the policy simply moves the joints towards the
zero (outstretched) position. On the other hand, in Fig. 1(b),
an obstacle lies in the path of the finger, so that the finger
movement is constrained—it is not able to penetrate the ob-
stacle, so moves along the surface. The vector field repre-
sentation of the two behaviours is shown in Fig. 1(c).

Given the task of learning in this scenario, applying tra-
ditional DPL approaches would result in one of two pos-
sibilities. The first is that if the observations are labelled
with respect to the constraint (here, the orientation, position
and shape of the obstacle) one could learn a separate pol-
icy model for the behaviour in each of the settings. However
this is clearly unsatisfactory, since each model would only
be valid for the specific setting, and we would need increas-
ing numbers of models as we observed the policy under new
constraints (for example different shaped obstacles at differ-
ent positions and orientations). The second possibility is that
the data is unlabelled with respect to the constraint. In this
case, one might try to perform regression directly on the ob-
servations, that is observations from both vector fields (cf.
Fig. 1(c), black and red vectors). However, this presents the
problem that model averaging would occur across observa-
tions under different constraints, resulting in a poor repre-
sentation of the movement in terms of the magnitude and
direction of the predictions (see Sect. 2.3).

We can avoid the need for multiple policy models if we
relax our assumptions on the form (1) of the observed com-
mands, and allow for an additional transformation of π(x).
We thus model both the red and black observations as stem-
ming from the same policy (‘extend the finger’), and at-

tribute its different appearance to the transformations as in-
duced by the constraints. With a restriction on the class of
possible transformations, as will be detailed in the next sec-
tion, we can model the unconstrained policy even if we only
observed constrained movements, and we can apply new
constraints to adapt the policy to novel scenarios.

2.2 Constraint model

In this paper we consider constraints which act as hard re-
strictions on actions available to the policy. Specifically, we
consider policies subject to a set of k-dimensional (k ≤ n)
Pfaffian constraints3

A(x, t)u = 0. (2)

Under these constraints, the policy is projected into the
nullspace of A(x, t):

u(x, t) = N(x, t)π(x(t)), (3)

where A(x, t) ∈ R
k×d is some matrix describing the con-

straint, I ∈ R
d×d is the identity matrix and N(x, t) ≡ (I −

A†A) ∈ R
d×d is projection matrix,4 that in general has non-

linear dependence on both time and state. Constraints of the
form (2) commonly appear in scenarios where manipula-
tors interact with solid objects, for example when grasping
a tool or turning a crank or a pedal, that is, contact con-
straint scenarios (Park and Khatib 2006; Murray et al. 1994;
Mattikalli and Khosla 1992). Such constraints are also com-
mon in the control of redundant degrees of freedom in high-
dimensional manipulators (Liégeois 1977; Khatib 1987;
Peters et al. 2008), where policies such as (3) are used, for
example, to aid joint stabilisation (Peters et al. 2008), or to
avoid joint limits (Chaumette and Marchand 2001), kine-
matic singularities (Yoshikawa 1985) or obstacles (Choi and
Kim 2000; Khatib 1985) under task constraints. As an exam-
ple: Setting A to the Jacobian that maps from joint-space to
end-effector position increments would allow any motion in
the joint space provided that the end-effector remained sta-
tionary. The formalism is generic and can also readily be ap-
plied to learning policies based on dynamic quantities such
as torques or (angular and linear) momentum subject to con-
straints (e.g., see Peters et al. 2008 and Kajita et al. 2003,
respectively). Such constraints are also not limited to ma-
nipulator kinematics and dynamics, for example Antonelli
et al. (2005), apply it to team coordination in mobile robots.

In general, the effect of constraints (2)–(3) is to disal-
low motion in some sub-space of the system, specifically

3A thorough treatment of the role of constraints such as (2)–(3) on the
dynamics of multibody systems can be found in many standard texts
on analytical mechanics, for example see Udwadia and Kalaba (1996).
4Here, A† denotes the (unweighted) Moore-Penrose pseudoinverse of
the matrix A.
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Fig. 2 Illustration of the effect of constraints on the unconstrained
policy, the averaging effect of standard DPL and the degeneracy prob-
lem. Left: Two constraints applied to the policy π result in projected
observations u1,u2. Centre: direct regression results in averaging of

the two movements ū in a way that cannot explain the observations.
Right: Two policies π ,π ′ that both may be constrained in such a way
as to produce the observation u2

the space orthogonal to the image of N(x, t). In essence,
these components of motion are projected out of the ob-
served movement. For example, as illustrated in Fig. 2(a), a
policy π is constrained in two different ways corresponding
to two different projections of the unconstrained movement.
In the first observation u1, the constraint prevents movement
in the direction normal to the vertical plane.5 For the second
observation u2, the constraint only allows movement in the
horizontal plane.

2.3 Learning from constrained motion data

From the viewpoint of learning, constraints as described in
the previous section present problems for traditional DPL
approaches. Specifically there are two issues that must be
dealt with; that of non-convexity of observations and degen-
eracy between policies (Howard et al. 2008).

The non-convexity problem comes from the fact that be-
tween observations, or even during the course of a single ob-
servation, constraints may change. For example, in Fig. 2(b),
the two policy observations under the different constraints,
u1 and u2, appear different depending on the constraint. To
the learner, this means that the data from the two scenar-
ios will appear non-convex, i.e. for any given point x in the
input space, multiple outputs u may exist. This causes prob-
lems for supervised learning algorithms since, for example,
directly training on these observations may result in model-
averaging. Here, averaging of u1,u2 results in the prediction
ū that clearly does not match the unconstrained policy π ,
neither in direction nor magnitude (ref. Fig. 2(b)).

The degeneracy problem stems from the fact that for
any given set of projected (constrained) policy observations,

5It should be noted that in general the orientation of the constraint plane
onto which the policy is projected may vary both with state position
and time.

there exist multiple candidate policies that could have pro-
duced that movement. This is due to the projection elimi-
nating components of the unconstrained policy that are or-
thogonal to the image of N(x, t) so that the component of π

in this direction is undetermined by the observation. For ex-
ample, consider the constrained observation u2 in Fig. 2(c),
where the restriction of the motion in vertical direction im-
plies that we do not observe that specific component of π .
Given only u2 we cannot determine if the policy π or an
alternative, such as π ′ (ref. Fig. 2(c)), produced the observa-
tion. In effect, we are not given sufficient information about
the unconstrained policy to guarantee that it is fully recon-
structed.

Despite these restrictions, we wish to do the best we can
with the data available. We adopt a strategy whereby we
look for policies that are, at the very least, consistent with
the constrained observations u. For example, returning to
Fig. 2(c), if we only observe u2, (that is the policy under a
single, specific constraint), the simplest (and safest) strategy
would be to use that same vector as our prediction. In this
way, we can at least accurately predict the policy under that
constraint (albeit only under that particular constraint). If we
are given further observations under new constraints, we can
recover more information about the unconstrained policy π .
For instance, observing u1 eliminates the possibility that π ′
underlies the movements since it cannot project onto both
u1 and u2. Applying this strategy for increasing numbers
of observations, our model will not only generalise over the
constraints seen, but also come closer to the unconstrained
policy π .

Finally, it should be noted that if in all observations cer-
tain components of the policy are always constrained, then
we can never hope to uncover those components. However,
in such cases it is reasonable to assume that, if these com-
ponents are always eliminated by the constraints, then they
are not relevant for the scenarios in which movements were
recorded.
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Fig. 3 Illustration of our learning scheme. The projection of the cor-
rect policy π onto the observations matches those observations

In the following, we propose a method by which we
can overcome these problems by reformulating the standard
DPL problem. We will show that it is still possible to learn
a good model of the policy π , without need for explicit
knowledge of the constraints N(x, t), and that is, as a min-
imum, consistent with all constrained observations. In pre-
vious work, we demonstrated the feasibility of this and pro-
posed an algorithm that allowed us to learn potential-based
policies from constrained motion data (Howard et al. 2008).
Here we remove the restriction to potential-based policies
allowing us to learn any generic policy that can be repre-
sented as a vector function of state. We turn to the details of
the new method in the next section.

3 Method

Our method works on data that is given as tuples (xn,un) of
observed states and constrained actions. We assume that all
commands u are generated from the same underlying policy
π(x), which for a particular observation might have been
constrained, that is un = Nnπ(xn) for some projection ma-
trix Nn. Furthermore, we assume that the projection matrix
for any given observation is not explicitly known, i.e. our
data is unlabelled with respect to the constraints in force at
the time of observation.

With only xn and un given, one may be tempted to esti-
mate a policy π̃(·) by simply minimising

Enaive[π̃ ] =
N∑

n=1

‖un − π̃(xn)‖2. (4)

However, this would ignore that constraints might have been
in force and result in a naive averaging of commands from
different circumstances (cf. Fig. 2). This corresponds to the
standard DPL approach.

If we had access to samples of either (i) the (uncon-
strained) policy πn = π(xn), or (ii) the projection matrices
Nn, we could use standard regression techniques to estimate

a policy π̃(x) by minimising an appropriate risk functional.
Specifically, in the former case, we could minimise

Eupe[π̃ ] =
N∑

n=1

‖πn − π̃(xn)‖2 (5)

and in the latter case, we could minimise

Ecpe[π̃] =
N∑

n=1

‖un − Nnπ̃(xn)‖2, (6)

where we refer to the former as the unconstrained policy
error (UPE) and the latter as the constrained policy error
(CPE), respectively. However, since by assumption samples
of πn and Nn are not available, these functionals cannot be
used to estimate the policy.

Instead, we aim to estimate a policy π̃(·) that is consistent
with our observations, that is, a policy that can be projected
in a way that the observed commands are recovered. To this
end, we replace Nn in (6) by a projection onto un and min-
imise the inconsistency which we define as the functional

Ei[π̃] =
N∑

n=1

‖un − ûnûT
n π̃(xn)‖2

=
N∑

n=1

(
rn − ûT

n π̃(xn)
)2

with rn= ‖un‖, ûn= un

rn
. (7)

Since un = Nnπn, we can write ‖un − Nnπ̃(xn)‖2 =
‖Nn(πn − π̃(xn))‖2 and recognise that the CPE is always
less than or equal to the UPE, because the projections Nn

can only decrease the norm of the difference between true
and predicted policy. The same argument holds for the in-
consistency error (7) where the projection onto the 1-D sub-
space spanned by ûn possibly takes away even more of the
error. So we can establish the inequality

Ei[π̃] ≤ Ecpe[π̃] ≤ Eupe[π̃ ].
Naturally, for estimating the correct policy, we would rather
like to minimise an upper bound of Eupe, but it is unclear
how such a bound could be derived from the data we are as-
sumed given. Note that by framing our learning problem as a
risk minimisation task, we can apply standard regularisation
techniques such as adding suitable penalty terms to prevent
over-fitting due to noise.

The proposed risk functional can be used in conjunc-
tion with many standard regression techniques. However,
for the experiments in this paper, we restrict ourselves to
two classes of function approximator for learning the (un-
constrained) policy to demonstrate how the risk functional
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can be used. The example function approximators we use
are (i) simple parametric models with fixed basis functions
(Sect. 3.1), and (ii) locally linear models (Sect. 3.2). In the
next section, we describe how these two models can be re-
formulated to take advantage of the new risk functional.

3.1 Parametric policy models

A particularly convenient model of the policy is given by
π̃(x)= Wb(x), where W ∈ R

d×M is a matrix of weights,
and b(x)∈R

M is a vector of fixed basis functions. This no-
tably includes the case of (globally) linear models where
we set b(x)= x̄ = (xT ,1)T , or the case of normalised ra-
dial basis functions (RBFs) bi(x)= K(x−ci )∑M

j=1 K(x−cj )
calculated

from Gaussian kernels K(·) around M pre-determined cen-
tres ci , i = 1 . . .M . With this model, the inconsistency error
from (7) becomes

Ei(W) =
N∑

n=1

(
rn − ûT

n Wb(xn)
)2

=
N∑

n=1

(
rn − vT

n w
)2 = Ei(w),

where we defined w ≡ vec(W) and vn ≡ vec(ûnb(xn)
T )=

b(xn) ⊗ ûn in order to retrieve a simpler functional form.
Since our objective function is quadratic in w, we can solve
for the optimal weight vector easily:

Ei(w) =
∑

n

r2
n − 2

∑

n

rnvT
n w + wT

∑

n

vnvT
n w

= E0 − 2gT w + wT Hw

yielding

wopt = arg minEi(w) = H−1g (8)

with g = ∑
n rnvn, Hessian H = ∑

n vnvT
n and E0 = ∑

n r2
n .

For regularisation, we use a simple weight-decay penalty
term, that is, we select wopt

reg = arg min(Ei(w) + λ‖w‖2).
This only requires modifying the Hessian to Hreg =∑

n vnvT
n + λI.

Please note that the projection onto u introduces a cou-
pling between the different components of π̃ , which pre-
vents us from learning those independently as is common in
normal regression tasks. For the same reason, the size of the
Hessian scales with O(d2M2).

3.2 Locally linear policy models

The basis function approach quickly becomes non-viable
in high-dimensional input spaces. Alternatively, we can fit
multiple locally weighted linear models π̃m(x) = Bmx̄ =

Bm(xT ,1)T to the data, learning each local model indepen-
dently (Schaal and Atkeson 1998). For a linear model cen-
tred at cm with an isotropic Gaussian receptive field with
variance σ 2, we would minimise

Ei(Bm) =
N∑

n=1

wnm

(
rn − ûT

n Bmx̄n

)2

=
N∑

n=1

wnm

(
rn − vT

n bm

)2 = Ei(bm),

where we defined bm = vec(Bm) and vn ≡ vec(ûnx̄T
n ) simi-

larly to the parametric case. The factors

wnm = exp

(
− 1

2σ 2
‖xn − cm‖2

)

weight the importance of each observation (xn,un), giving
more weight to nearby samples. The optimal slopes Bm in
vector form are retrieved by

bopt
m = arg minEi(bm) = H−1

m gm (9)

with Hm = ∑
n wnmvnvT

n and gm = ∑
n wnmrnvn.

For predicting the global policy, we combine the local
linear models using the convex combination

π̃(x) =
∑M

m=1 wmBmx̄
∑M

m=1 wm

where wm = exp(− 1
2σ 2 ‖x − cm‖2).

4 Experiments

To explore the performance of our algorithm, we per-
formed experiments on data from autonomous control poli-
cies (Schaal et al. 2003) applied to three plants. In our first
set of experiments we illustrate the concepts involved on an
artificial two-dimensional toy system.6 We then demonstrate
how our method can generalise across constraints on a phys-
ically realistic simulation of the 7-DOF DLR lightweight
arm (Sect. 4.2). Next, we apply our algorithm to whole body
motion control of the humanoid robot ASIMO (Gienger et
al. 2005), where we learn policies in both a 6-D task space
(Sect. 4.3) and in the 27-DOF joint space (Sect. 4.4).

Having validated the approach on the data where the
ground truth is known, we finally explore the utility of our
approach for learning in a real imitation learning setting: We
demonstrate an application of our approach to enable the
ASIMO robot to learn a car washing task from observed hu-
man movements (Sect. 4.5).

6In fact even these ‘simplified’ problems are relevant to learning poli-
cies in low dimensional task spaces, such as end-effector space.
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Fig. 4 Results on 2D toy data. (a) true limit cycle policy, (b) learnt
policy trained on 4 constrained trajectories, (c) learnt policy from 40
constr. traj., (d) policy resulting from naive regression on observed
commands. Trajectories are shown as dotted lines, black arrows depict

the policy evaluated at a grid of points in the 2-D state space. The
normalised CPE and UPE (mean±s.d. over 100 data sets) are given
below the figures

4.1 Toy example

Our first experiment demonstrates the learning of uncon-
strained policies from constrained trajectories in a simple
toy example consisting of a two-dimensional system with
discontinuously switching motion constraints. As an exam-
ple policy, we used a limit cycle attractor (Fig. 4(a)) of the
form

ṙ = r(ρ − r2), θ̇ = ω (10)

where r, θ are the polar representation of the Cartesian state
space coordinates (i.e. x1 =r sin θ , x2 =r cos θ ), ρ is the ra-
dius of the attractor and θ̇ is the angular velocity. For the
experiments, we set ρ=0.5 m and ω=1 rad s−1 with a sam-
pling rate of 50 Hz. Data (xn,un) (where xn is the Cartesian
position and un ≡ ẋn the Cartesian velocity) was collected
by recording 40 trajectories of length 40 time steps each,
generated by the policy from a random start state. During
the movement the policy was subjected to random 1-D con-
straints

A(x, t) = (α1, α2) ≡ α, (11)

where the α1,2 were drawn from a normal distribution, αi =
N(0,1). The constraints mean that motion is constrained in
the direction orthogonal to the vector α in state space. These
were randomly switched by generating a new α twice at
regular intervals during the trajectory, inducing sharp turns
which can be seen in Fig. 4 (b–d).

We used a parametric model to learn the policy through
minimisation of the inconsistency (7) as described in
Sect. 3.1. We included the regularisation term and picked
the parameter λ by minimising the inconsistency on a vali-
dation subset. For this toy problem, we chose our function
model as a set of 36 normalised RBFs centred on a 6 × 6

grid, and we simply fixed the kernel width to yield suitable
overlap. We repeated this experiment on 100 data sets and
evaluated7 the normalised UPE, CPE and the inconsistency,8

that is, the functionals from (5), (6) and (7) divided by the
number of data points and the variance of the policy πn on
a subset held out for testing. For comparison, we repeated
the experiment using a naive approach that attempted to per-
form regression with the same RBF model directly on the
constrained observations, i.e., the naive approach attempted
to minimise the functional (4).

Figure 4 shows the true policy, the trajectories we trained
on, the policies learnt using our and the naive approach,
and finally the error statistics below the plots. With an av-
erage nUPE of 0.0027, our method outperforms the naive
approach by orders of magnitude. Notably, even with only 4
trajectories (Fig. 4(b)), the reconstructed policy already re-
sembles the limit cycle, although large errors still persist in
some parts of the state space (e.g., the lower right corner).
Further to this, the left panel of Fig. 5 depicts how the nUPE
and nCPE evolve with increasing size of the training set,
showing a smooth decline (please note the log. scale). In
order to further explore the performance of our algorithm,
we contaminated the observed commands un with Gaussian
noise, the scale of which we varied to match up to 20% of
the scale of the data. The resulting nUPE roughly follows
the noise level, as is plotted in Fig. 5 (right).

7Here, since we wish to evaluate the performance of the approach, we
calculate errors in the model against the ground truth, i.e. the policy
(10) and constraints (11) from which the data was sampled. Note that
these quantities are not made available to our algorithm during learn-
ing.
8Actually, for u ∈ R

2 the inconsistency is exactly equivalent to the
CPE, since both necessarily involve the same 1-D projection.
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Fig. 5 Left: Normalised UPE and CPE versus data set size as a per-
centage of the full K =40 trajectories of length N =40. Right: Nor-
malised UPE and CPE for increasing noise levels in the observed un.

For clarity, we do not report the (consistently high) errors of the naive
method. Both plots show the (mean±s.d.) over 100 data sets (coloured
area indicates one standard deviation from the mean)

4.2 Generalisation over unseen constraints

The two goals of our second set of experiments were (i) to
characterise how well the algorithm scaled to more com-
plex, realistic constraints and (ii) to characterise how well
the learnt policies generalised over unseen constraints. For
this, we used a kinematic simulation of the 7-DOF DLR
lightweight robot (LWR-III). The experimental procedure
was as follows: We generated a random initial posture by
drawing 7 joint angles uniformly from half the range of
each joint, that is xi ∼ U [−0.5xmax

i ;0.5xmax
i ], where for ex-

ample xmax
1 = 170◦. We set up a joint limit avoidance type

policy as π(x) = −0.05∇φ(x), with the potential given by
φ(x) = ∑7

i=1 |xi |p for p = 1.5,p = 1.8, or p = 2.0. We
then generated 100 trajectories with 100 points each, follow-
ing the policy under 4 different constraints, which we refer
to as 1-2-3, 4-5-6, 1-3-5, and 2-4-6. Here, the three num-
bers denote which end-effector coordinates in task space9

we kept fixed, that is, 1-2-3 means we constrained the end-
effector position, but allowed arbitrary changes in the orien-
tation (here, orientation was represented as yaw, pitch and
roll angles in the inertial frame). Similarly, 2-4-6 means we
constrained the y-coordinate and the orientation around the
x- and z-axis, while allowing movement in x-z position and
around the y-axis. For all 4 constraint types, we estimated
the policy from a training subset, and evaluated it on test
data from the same constraint, as well as on trajectories from
the complementary constraint (e.g., 2-4-6 is complementary
to 1-3-5).

For learning in the 7-D state space, we selected locally
linear models as described in Sect. 3.2, where we chose
rather wide receptive fields (fixing σ 2 = 3) and placed the
centres {cm} of the local models such that every training
sample (xn,un) was weighted within at least one receptive

9The numbers can also be read as row indices of the 6×7 Jacobian
matrix.

field with wm(xn) ≥ 0.7. On average, this yielded about 50
local models.

While the linear policy π(·) corresponding to p = 2.0
was learnt almost perfectly (all normalised errors were in
the order of 10−9), the less linear policies (p=1.8 and es-
pecially p=1.5) turned out to be a much harder problem.
This can be seen when comparing both the nUPE and nCPE
for the two policies (ref. Table 1). Still, we recovered the
constrained policy in all cases to good accuracy (ref. Ta-
ble 1, 4th column), with good generalisation to the comple-
mentary constraints (ref. Table 1, 5th column). We can also
see that constraining the end-effector position (1-2-3) made
it more difficult to recover the unconstrained policy com-
pared to constraining the orientation (4-5-6), or using mixed
constraints (1-3-5 and 2-4-6). It should also be noted that
running the same experiment using the naive approach (ref.
Sect. 4.1) gave consistently poor results; for example, when
training on data under the (1-2-3) constraint, the naive ap-
proach gave nUPE of 83.44±1.20×10−2 for the p=1.5 pol-
icy, 80.94 ± 1.37×10−2 for p=1.8 and 79.62 ± 1.39×10−2

for p=2.0.

4.3 Reaching for a ball

The goal of our next set of experiments was to illustrate the
utility of our approach for learning from observations of an
everyday task with realistic constraints. For this, we chose
an example scenario, in which a set of observations of a
demonstrator performing the task of reaching for a ball on a
table are given, and the student is expected to learn a policy
to enable it to reproduce this task. The learning problem is
complicated however, by the presence of different obstacles
on the table for each of the example trajectories, constrain-
ing the possible motions of the hands. The goal is to uncover
a policy that accurately predicts the demonstrator’s (uncon-
strained) behaviour and generalises to predict the behaviour
under novel constraints.
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Table 1 Normalised UPE, CPE on the training constraints, CPE on complementary constraints and inconsistency error, for data from the DLR
arm (right). All errors normalised by the variance of the policy. We report (mean ± s.d.)×10−2 over 100 trials with different data sets

Potential Constraint nUPE nCPE Compl. nCPE Norm. Incon.

p=1.5 1-2-3 64.338 ± 32.030 2.917 ± 0.368 15.951 ± 6.473 0.755 ± 0.067

4-5-6 34.753 ± 19.125 2.491 ± 0.228 15.478 ± 7.755 0.388 ± 0.036

1-3-5 16.179 ± 3.813 3.204 ± 0.276 5.108 ± 1.079 0.706 ± 0.067

2-4-6 10.355 ± 1.827 2.723 ± 0.237 4.749 ± 0.956 0.401 ± 0.039

p=1.8 1-2-3 8.096 ± 5.766 0.477 ± 0.088 2.278 ± 1.133 0.112 ± 0.011

4-5-6 5.364 ± 2.961 0.352 ± 0.038 2.221 ± 0.984 0.051 ± 0.006

1-3-5 2.275 ± 0.645 0.455 ± 0.041 0.773 ± 0.171 0.098 ± 0.011

2-4-6 1.421 ± 0.314 0.401 ± 0.042 0.729 ± 0.174 0.058 ± 0.007

Fig. 6 Example constrained trajectory used as training data in the ball-reaching experiment. Starting with hands at the sides, the demonstrator
robot reaches between the barriers to get the ball. Note that the width of the gap in the barriers was randomly altered for each trajectory recorded

The example scenario was implemented using the whole
body motion (WBM) controller of the 27-DOF humanoid
robot ASIMO (for details see Gienger et al. 2005). For this,
data was recorded from a ‘demonstrator’ robot that followed
a policy defined by an inverted Gaussian potential

π(x) = −∇xφ(x); φ(x) = α
(

1 − e‖x−xc‖2/2σ 2
)
, (12)

where x ∈ R
6 corresponds to the Cartesian position of

the two hands (hereafter, the ‘task space’) and the actions
u = ẋ = π(x) correspond to the hand velocities. We chose
σ 2 = 2, α = 0.25 and the target point xc ∈ R

6 to correspond
to a reaching position, with the two hands positioned on ei-
ther side of the ball. Following the policy (12) with this set
of parameters, the demonstrator was able to reach the ball
under each of the constraints considered in this experiment
(see below). Inverse kinematics via the WBM controller was
used to map the desired task space policy motion into the ap-
propriate joint-space velocity commands for sending to the
robot.

The demonstrator’s movements were constrained by the
presence of a barrier on the table with a gap in it, placed so
that the demonstrator robot had to reach through the gap to
get the ball (ref. Fig. 6). The barriers acted as inequality con-
straints on each of the hands so that motion in the direction
normal to the barrier surface was prevented if a hand came

too close. Specifically, the constraints took the form

A(x, t) =

⎛

⎜⎜⎝

A[1,1] 0
A[1,2] 0

0 A[2,1]
0 A[2,2]

⎞

⎟⎟⎠ , (13)

where

A[i,j ](x, t) = n̂T
j ; di,j ≤ dmin and ûT[i]n̂j > 0

A[i,j ](x, t) = 0; otherwise.

Here, di,j is the distance of the ith hand (where i ∈ {1,2},
i.e. left and right hands respectively) to the closest point on
the j th barrier (where j ∈ {1,2}, i.e. left and right barriers
respectively), n̂j ∈ R

3 is the normal to the barrier surface10

at that point and û[i] ∈ R
3 is the normalised command for

the ith hand (i.e. the ith 3-vector block of the command
vector u corresponding to that hand; for example for the
right hand (i = 2) this was u[2] ≡ (u4, u5, u6)

T with û[2] =
u[2]/|u[2]|). Here, the full constraint matrix A(x, t) ∈ R

4×6

was constructed by assigning 3-vectors to the appropriate

10Note that in order to ensure smooth, natural-looking trajectories the
barriers were modelled as planes with smooth ‘swept-sphere’ edges,
similar to those described in Sugiura et al. (2007).
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matrix blocks A[i,j ], according to the system state. For ex-
ample, if the left hand (i = 1) approached the left barrier
(j = 1) to a distance of d1,1 < dmin, and if the next com-
manded movement would bring the hand toward that bar-
rier (i.e. ûT[1]n̂1 > 0), then the elements of the constraint ma-
trix corresponding to that hand/barrier pair were updated (in
this example the first row of the matrix would be updated,
A1,: = (n̂T

1 ,0,0,0), constraining the left hand). Note that
under this setup the constraints are highly nonlinear (due to
the complex dependence on state) and have discontinuously
switching dimensionality (i.e. the rank of A(x, t) switches)
when either of the hands approaches or recedes from the
barrier.

Data was collected by recording K =100 trajectories of
length 2s at 50 Hz, (i.e. N =100 points per trajectory) from
the demonstrator following the policy (12) under the con-
straints (13). Start states were sampled from a Gaussian dis-
tribution over joint configurations q ∼N(q0,0.1I) (where
q0 corresponds to the default standing position) and using
forward kinematics to calculate the corresponding hand po-
sitions. The joint vector q was clipped where necessary to
avoid joint limits and self collisions, and to ensure the start
postures looked natural.

For each trajectory, the constraints were varied by ran-
domly changing the width of the gap in the barriers. The gap
widths were sampled from a Gaussian distribution dgap ∼
N(μgap, σgap) where μgap = 0.25m, σgap = 0.1m and the
diameter of the ball was 0.15m. The hand-barrier distance
at which the constraints came into force was fixed at dmin =
0.05m. Figure 6 shows an example trajectory under this set-
up.

We used our algorithm to perform learning on 50 such
data sets using 150 local linear models, with centres placed
using k-means. For comparison, we also repeated the exper-
iment on the same data with the same local linear model
(i.e. same number and placement of centres), but using the
naive approach for training (i.e. training on (xi ,ui ≡ ẋi ),
i = 1, . . .K × N directly, using the risk functional (4)).

To assess the performance for both methods we evaluated
the errors in predicting the policy subject to (i) the training
data constraints (nCPE), (ii) no constraints (nUPE), and (iii)
a novel constraint, unseen in the training data, on a set of
test data. For the latter, a barrier was placed centrally be-
tween the robot and the ball, so that the robot had to reach
around the barrier to reach the ball (see Fig. 8). Specifically,
the constraint took a form similar to (13) but this time with
only one barrier present (i.e. j ≡ 1), so that the constraint
matrix A(x, t) ∈ R

2×6 attained a maximum rank of k = 2
when both hands approached the barrier. The width of the
new barrier was fixed at 0.5m.

As expected, learning using the proposed risk functional
(7) (the ‘non-naive’ approach) performed several orders of

Table 2 Normalised policy errors for predicting the policy under three
constraint conditions from the ball-reaching data for the naive and non-
naive methods. Values are mean±s.d. over 50 data sets

Constraint Naive Non-naive

Training 0.1940 ± 0.0153 0.0056 ± 0.0022

Unseen Barrier 0.4678 ± 0.0264 0.0057 ± 0.0023

Unconstrained 0.7014 ± 0.0430 0.0058 ± 0.0023

magnitude better than the naive approach in terms of the nu-
merical error measures (ref. Table 2). However, the real dif-
ference in the methods is best highlighted if we compare tra-
jectories generated by the two policies under different con-
straint settings.

Firstly, Fig. 7 shows example trajectories for the uncon-
strained reaching movements produced by the demonstra-
tor (‘expert’), and the policies learnt by (i) the naive ap-
proach, and; (ii) the non-naive approach; from a number of
start states. In the former the hands always take a curved
path to the ball (Fig. 7, top), reproducing the average be-
haviour of the (constrained) demonstrated trajectories. The
naive method is unable to extract the underlying task (pol-
icy) from the observed paths around the obstacles. In con-
trast, the policy learnt with the non-naive approach better
predicts the unconstrained policy, enabling it to take a direct
route to the ball that closely matches that of the demonstra-
tor (Fig. 7, bottom).

Secondly, Fig. 8 shows example trajectories when the
policies are again constrained. Figure 8 (top) shows the
movement from the non-naive policy under a similar con-
straint as in the training data. Under this constraint both
naive and non-naive policies take a similar path as the
demonstrator: The hands move in first, then forward to the
ball. Note that under this constraint the movement of the
naive policy is noticeably slower due to averaging of the
constrained observations.

Finally, under the unseen barrier constraint, there is a
marked difference in behaviour. Under this constraint, the
demonstrator (still following the policy (12)) reaches around
the barrier to get the ball. This behaviour is reproduced by
the policy learnt with the proposed approach (Fig. 8, mid-
dle). In contrast however, the naive policy does not gener-
alise to the new constraint and gets trapped behind the bar-
rier, eventually dislodging it11 (Fig. 8, bottom). The behav-
iour of the three policies (demonstrator, naive and non-naive
policies) can be examined in detail in the accompanying
video.

11Note that the collision of the hands with the barrier in fact violates
the constraint. The reason for this is that on the real robot, under this
constraint, the naive policy forces the robot into a self-collision (of the
robot’s arms with the torso). To prevent damage to the robot, an on-
board safety mechanism then kicks in and pushes the hands away from
the body, causing collision with the barrier.
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Fig. 7 Reaching movements produced by the policies learnt by the
naive approach (top) and by optimisation of the inconsistency (bot-
tom) when unconstrained. Shown are trajectories of the hands from
five start states, with one example highlighted (thick line). The demon-
strator (‘expert’) trajectory corresponding to the highlighted example is
overlaid (black dashed line). Twenty example training data trajectories
are also shown (thin grey lines)

4.4 Learning from High-dimensional Joint-space Data

In our next experiment we tested the scalability of our ap-
proach for learning in very high dimensions. For this we
chose a policy defined by a quadratic potential in the joint
space (i.e. x ≡ q ∈ R

27)

π(x) = −∇xφ(x); φ(x) = (x − xc)
T W(x − xc), (14)

where xc ∈ R
27 is a target posture and W is a weighting ma-

trix. The policy (14) represents an attractor in joint space
that pulls the robot into a desired posture at xc. For the ex-
periments, xc was chosen to correspond to a reaching pos-
ture with both arms outstretched (ref. Fig. 9, right) and we
chose W = 0.05I.

During data collection, the policy was constrained by the
presence of obstacles which took the form of a vertical wall

placed directly in front of the robot at different orientations
and distances (ref. Fig. 9, left). Specifically, the constraint
matrix, A(x, t) ∈ R

2×27, took the form

Ai (x, t) = 0; di > 0

Ai (x, t) = n̂T Ji (x); otherwise. (15)

Here, n̂ ∈ R
2 is the normal12 to the wall surface, di is the

perpendicular distance of the ith hand from the wall sur-
face (with i ∈ {1,2}, i.e. left and right hands respectively),
Ji (x) ∈ R

2×27 is the Jacobian mapping from joint-space to
the lateral (i.e. horizontal planar) coordinates of that hand
and Ai (x, t) ∈ R

1×27 is the corresponding row of the con-
straint matrix. At the start of each trajectory, the orientation
of the wall was drawn from a uniform random distribution
θ ∼ U [−θmax, θmax] where θ is the angle of the wall with
respect to the left-right axis of the robot heel frame (hori-
zontal axis in Fig. 9, left), and we chose θmax = 27◦. The
distance of the wall was adjusted at the start of each trajec-
tory to ensure that the hands were a minimum distance of
0.15m from the wall before the onset of movement.

The effect of the constraints was to restrict the movement
of the hands when they approached the wall. This constraint
was projected back into the joint space where the policy
was operating via the Jacobian. This causes the policy to ap-
pear highly complex and non-linear in the state space (joint
space), with discontinuous changes to the dimensionality of
the constraints as the hands of the robot approached the wall.

Using the formalism from Sect. 3.1 with b(x) = x̄, we
fitted linear models to 100 data sets, each consisting of
100 trajectories of 100 data points. Despite the high di-
mensionality, our method reached a normalised UPE of
0.291 ± 0.313 × 10−2. It is important to point out that this
result can not only be explained by our choice of a linear
model where we knew that the true policy (14) was also lin-
ear: Direct (naive) linear regression on the observed com-
mands resulted in a normalised UPE of 63.9 ± 3.1 × 10−2

(nCPE was 7.98 ± 0.66 × 10−2), which again is orders of
magnitude higher and similar to our results on toy data.

4.5 Washing a car

Having validated our approach on data where the ground
truth (true unconstrained policy) was known, in this section,
we report experiments on learning from human demonstra-
tions for seeding the robot motion. For this experiment, we
chose to investigate the problem of learning to wash a car.
This is an example of a task which can be intuitively de-
scribed in terms of a simple movement policy (‘wiping’)

12Note that since the wall was vertical in all example trajectories (and
thus did not affect vertical movements) only the normal in the horizon-
tal plane is relevant to calculation of the constraints.
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Fig. 8 Reaching movements produced by the learnt policies under
different constraints. Shown are trajectories from (i) the non-naive pol-
icy under a similar constraint as in the training data (top row); (ii) the

non-naive policy under a new, unseen barrier constraint (middle row),
and; (iii) the naive policy under the new constraint

Fig. 9 Data collection for the joint space policy under wall constraints.
Left: Start states for two example reaching movements with the wall at
different distances and orientations with respect to the robot. Right:
Side view after reaching

subject to contact constraints that vary depending on the dif-
ferent surfaces of the car to be wiped. Due to the different
shapes and orientations of the car surfaces, complex, non-
linear constraints are imposed on the motion. The resultant
trajectories appear periodic, but are perturbed in different
ways by the constraints. The goal of our experiments was
to learn a policy that captured the periodic nature of the
movements, while eliminating artifacts induced by the con-
straints.

Fig. 10 Human wiping demonstrations on surfaces of varying tilt and
rotations. The ASIMO stereo vision system was used to track the 3-D
coordinates of the sponge (coloured rectangles show the estimated po-
sition). Tilts of ±16o and +27o about the x-axis are shown

The experimental setup was as follows. Seven demon-
strations of a human wiping different surfaces with a sponge
were given to the robot. To simulate observations of wash-
ing different surfaces of the car, the wiping was performed
on a perspex sheet placed at different tilts and rotations with
respect to the robot (see Fig. 10). Specifically, the sheet was
oriented to be flat (horizontal), tilted ±16◦ and ±27◦ about
the x-axis (horizontal axis pointing directly ahead from
the robot) and ±16◦ about the y-axis (horizontal right-left
axis). The three-dimensional coordinates of the sponge were
tracked using the on-board stereo cameras of the ASIMO
robot at a rate of 20 frames per second (for details on the
ASIMO vision system please see Bolder et al. 2007). The
recorded trajectories are shown in Fig. 11 (left).

The policy was modelled as the R
3 �→ R

3 mapping from
hand (sponge) positions to velocities. Since this is a rela-
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Fig. 11 Learning from human wiping demonstrations. Left: Trajecto-
ries of the sponge when wiping on the surface when flat (black), tilted
+16◦ and +27◦ about the x-axis (red), −16◦ and −27◦ about the x-
axis (blue), and ±16◦ about the y-axis (grey). Centre and right: Re-

produced trajectories using the policies (black arrows) learnt with the
non-naive and naive approaches respectively. In each case the same ex-
ample trajectory is highlighted (thick black). The top and front views
are shown (top and bottom rows)

tively low-dimensional problem, and for ease of comparison
with the toy problem (Sect. 4.1), we used RBFs to model
the policy. For each of the experiments described below, we
used a set of 300 RBFs with centres placed by k-means as
our policy model.

Since the ground truth (i.e. the true unconstrained pol-
icy and the exact constraints in force) is not known for the
human data, performance was evaluated on a behavioural
level. In particular, we looked at how the movements pro-
duced by the learnt policies compared with those of the hu-
man when subject to (what we assumed to be) a similar set
of constraints. For this, we implemented the learnt policies
on the ASIMO humanoid robot and applied constraints that
approximated13 those contained in the demonstrations.

Specifically, we assumed the constraints in the car wash
task to arise from two sources, namely (i) environmental (i.e.
physical) constraints and (ii) constraints self-imposed by the
demonstrator to ensure task success. In this experiment, the
former can be clearly identified as an inequality constraint
preventing the hand from penetrating the wiping surface, i.e.

A(x, t) = n̂s(x); d = 0 and ûT n̂s(x) > 0 (16)

where d is the distance of the hand from the surface and
n̂s(x) is the normal to the surface s at point x. In addition,

13Please note that for training the policy models, the constraints were
not explicitly modelled.

we can also identify a self-imposed constraint in force. In
the car wash setting, successful performance of the task (i.e.
wiping) requires the sponge to maintain contact with the
surface at all times so that motion of the hand away from
the surface (i.e. lifting the sponge) is not permitted. To cap-
ture this, we therefore assumed a further constraint of the
form

A(x, t) = n̂s(x); d = 0 and ûT n̂s(x) < 0. (17)

Note that in combination, the effect of the two constraints
(16)–(17), when considered on the wiping surface (d = 0),
amounts to the single equality constraint

A(x, t) = n̂s(x); d = 0. (18)

This constraint was applied to the learnt policies as a reason-
able approximation of the true constraints contained in the
data, in order to compare the demonstrated and reproduced
movements for any given surface s and assess the generali-
sation across constraints.

Under this set-up, we first compared learning with our
approach against learning with the naive approach. For this,
we trained two RBF models on the full data set of seven
demonstrations (i.e. wiping data for each of the surfaces).
The first model was trained with the approach described in
Sect. 3.1, the second with the standard (naive) approach to
regression. We then used the policies learnt by the two ap-
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Fig. 12 Reproduced movements on the ASIMO robot for the surface tilted 0◦, +16◦, −27◦ about the x-axis, and +16◦ about the y-axis

proaches to reproduce the movements under each of the sur-
face constraints (i.e. constraint (18) for s = 1, . . . ,7). The
results are shown in Fig. 11, where we show the demon-
strated trajectories (left), those produced by the non-naive
policy (centre) and those learnt by the naive approach (right)
under the different constraints (tilts of the surface).

Looking at the learnt policies, we see that our approach
learns a smooth policy that resembles the limit cycle of
Sect. 4.1. The trajectories under each of the constraints are
smooth periodic movements, similar to those of the human.
These were implemented on the ASIMO robot to produce
natural wiping movements (see Fig. 12). The policy learnt
with the naive approach also captures the periodicity to some
extent. However, it appears highly irregular in several re-
gions and the trajectories are unstable, with some spiralling
in to the centre, and others diverging to other parts of the
state space. By attempting to learn all of the artifacts induced
by the constraints, the naive approach learns an unstable pol-
icy that cannot be safely used for movement reproduction on
the robot.14

Finally, to confirm that our approach is able to gener-
alise well over unseen constraints, we repeated the experi-
ment, but this time training the model on a subset of the data
containing one set of constraints, then testing on a different
subset containing different constraints. Specifically, we used
our approach to train a model on the three demonstrations
corresponding to the surface tilted by 0◦, +16◦ and +27◦
about the x-axis (Fig. 13, left). We then took the demon-
strated movements for the surface tilted at −16◦ and −27◦
about the x-axis (Fig. 13, right) as our test set and compared
the movement reproduction.

In Fig. 13 we show the demonstrated (grey) and repro-
duced (black) trajectories for the training data constraints
(left) and the test data constraints (right). Though we train
on a smaller data set here, the policy learnt by our approach
again produces a stable wiping movement that reproduces
the human movement well, both under the training data con-
straints and under the unseen test constraints.

14The behaviour produced by the two methods can be examined in
detail in the second video accompanying this paper.

5 Discussion

In this work, we introduced a novel approach to direct pol-
icy learning in cases where demonstrated movements are
subject to variable, dynamic, non-linear constraints. Due
to a small but very effective modification in the calcula-
tion of an empirical risk, our method can recover the un-
constrained policy from arbitrarily constrained observations,
without the need for explicit knowledge of the constraints.
This allows us to learn policies that generalise over con-
straints, including novel constraints, unseen in the training
data. We demonstrated our method using parametric (RBF)
and locally linear function approximators to learn policies
for problems of varying size and complexity.

Our results clearly show the efficacy of learning from
constrained demonstrations using our approach, and then
applying the resultant policies to new constraint scenarios.
However, in terms of lessons learnt from these experiments
there are also some bigger issues raised. One such issue
is the question of when, faced with a new constraint, the
learnt policy will fail at the desired task. For example, in
the ball grasping experiment, under certain configurations
of the constraints (e.g. if the barriers were placed exactly on
either side of the ball, or a much larger barrier was placed
between the robot and the ball) the learnt policy would fail
at the task of grasping. This may be due to several factors,
for instance if the control vector happens to be orthogonal to
the nullspace of the constraint, deadlock would occur (this
is similar to the problem of local minima in many gradient-
based controllers, e.g. see Conner et al. 2003). While prob-
lems such as these are in general unavoidable when deal-
ing with constrained systems, one of the nice properties of
our approach is that it learns a policy that is successful un-
der the same constraints that the demonstrator is success-
ful. So, although the learnt policy for the grasping task is
not guaranteed to successfully get the ball in the presence of
any arbitrary barrier (constraint), it successfully reaches the
ball whenever (i.e. with whatever barriers) the demonstrator
does. In some sense we can say the robustness of the demon-
strator’s policy against different constraints was transferred
to the learner.

A second, related issue concerns the role of adaptation of
policies in response to constraints. Clearly there are circum-
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Fig. 13 Generalisation over
constraints when learning from
human wiping data. Left: Three
demonstrated trajectories with
surface tilt 0◦, +16◦ and +27◦
(grey lines) used to train the
model. Right: Two trajectories
with tilt −16◦ and −27◦ (grey
lines) held out for testing.
Reproduced trajectories from
the learnt policy under the
corresponding constraints (both
train and test) are overlaid in
black

stances in which it is desirable to re-plan the policy to cope
with certain sets of constraints, especially if the learner’s ex-
isting policy (here, learnt from demonstration) fails under
those constraints (and in some cases the learner may even
take advantage of certain types of constraint to improve per-
formance). However, here a balance must be struck. On the
one hand re-planning the policy will likely improve perfor-
mance under any given set of constraints; but on the other
hand the adapted policy will also become more specialised
to that particular set of constraints (and may even lead to
degraded performance for other constraints). In other words
we lose the generalisation to other constraints that here we
attempt to extract from the demonstrator. Furthermore, due
to the inherent uncertainty in the constraints in most real
world problems, it may not be feasible to explicitly incor-
porate all of the constraints when re-planning. For example
consider planning a policy for walking on uneven terrain;
to explicitly incorporate the constraints involved here would
require a detailed model of the terrain, which is rarely avail-
able. The proposed approach, however, allows us to sidestep
this, providing a shortcut to uncovering the policy used by
the demonstrator15 (who, if observed to use the same policy
under a number of constraint settings, presumably finds it
sufficient successful for those and similar settings). There-
fore in this sense, we envisage a move away from the tra-
ditional approach of planning explicitly with respect to all
possible constraints that is typically only possible in highly
controlled, structured environments.

In future work we intend to continue our analysis of
learning from variable constraint data. An interesting direc-

15It should also be noted that our approach may also be combined with
adaptive methods, for example using the policy learnt from demonstra-
tion to initialise further optimisation of the policy (e.g. through rein-
forcement learning, Peters and Schaal 2008b; Riedmiller et al. 2009),
similar to, e.g., Guenter et al. (2007).

tion would be to test the approach for learning policies that
incorporate forces as well as positions and velocities. For
example in the car wash experiment, one might consider us-
ing kinesthetic demonstrations to generate data including,
for example, the normal force to the surface. One might also
use such data to model the forces that constrain the policy
(as distinct from the forces applied by the policy to generate
the movement), and thus potentially lead to automated meth-
ods for explicitly decomposing observations into the policy
actions and the (environmental or self-imposed) constraints
affecting those actions.
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