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Abstract Toward our comprehensive understanding of
legged locomotion in animals and machines, the compass
gait model has been intensively studied for a systematic in-
vestigation of complex biped locomotion dynamics. While
most of the previous studies focused only on the locomotion
on flat surfaces, in this article, we tackle with the problem of
bipedal locomotion in rough terrains by using a minimalis-
tic control architecture for the compass gait walking model.
This controller utilizes an open-loop sinusoidal oscillation
of hip motor, which induces basic walking stability without
sensory feedback. A set of simulation analyses show that the
underlying mechanism lies in the “phase locking” mech-
anism that compensates phase delays between mechanical
dynamics and the open-loop motor oscillation resulting in a
relatively large basin of attraction in dynamic bipedal walk-
ing. By exploiting this mechanism, we also explain how the
basin of attraction can be controlled by manipulating the pa-
rameters of oscillator not only on a flat terrain but also in
various inclined slopes. Based on the simulation analysis,
the proposed controller is implemented in a real-world ro-
botic platform to confirm the plausibility of the approach. In
addition, by using these basic principles of self-stability and
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gait variability, we demonstrate how the proposed controller
can be extended with a simple sensory feedback such that
the robot is able to control gait patterns autonomously for
traversing a rough terrain.
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1 Introduction

Since the pioneering work of the Passive Dynamic Walk-
ers (PDWs: McGeer 1990; Collins et al. 2001), the prob-
lem of dynamic walking has attracted a number of re-
searchers in order to understand the nature of legged lo-
comotion in biological systems and to improve locomotion
capabilities of legged robots. If compared with fully actu-
ated legged robots, the use of passive dynamics is expected
not only to substantially increase energy efficiency but also
to obtain additional insights into the design principes of
legged locomotion in nature. Previously it has been demon-
strated that the use of passive dynamics leads to energet-
ically efficient dynamic locomotion (Collins et al. 2005;
Wisse and van Frankenhuyzen 2003; Tedrake et al. 2004;
Tedrake 2004) as well as mechanically self-stabilizing lo-
comotion dynamics (Hobbelen and Wisse 2008; Iida et al.
2008). Despite these demonstrations, control of the PDWs
appears to be a challenging problem because of the nonlin-
earity originated in complex mechanical dynamics, and the
locomotion capabilities of these robots are still restricted on
a level ground.

In order to obtain an in-depth understanding of dynamic
bipedal walking, the so-called compass gait walking model
(also known as the simplest walking model) has been inten-
sively studied (Kajita and Espiau 2008). An important aspect
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of this model lies in the fact that it is irreducibly simple and
analytically tractable, which enable us systematically inves-
tigate both mechanical interactions and dynamic behavior
control. Previously, the compass gait model was investi-
gated in terms of mechanical interactions in a passive regime
(McGeer 1990; Garcia et al. 1998; Goswami et al. 1998;
Su and Dingwell 2007), and its variations were developed
for investigating, for example, knee dynamics and locomo-
tion stability (van der Linde 1999; Miyakoshi and Cheng
2004; Asano et al. 2007; Harata et al. 2007; Kinugasa et al.
2008), shapes and actuation of foot segments (Kuo 2002;
Ono et al. 2004; Adamczyk et al. 2006; Kim et al. 2007;
Kwan and Hubbard 2007), mass distribution (Hass et al.
2006), and lateral balancing (Kuo 1999). Control architec-
tures for the compass gait model have also been studied
with respect to energy based optimal control (McGeer 1988;
Goswami et al. 1997; Asano et al. 2000; Spong 2003; Spong
and Bhatia 2003; Asano et al. 2004; Pekarek et al. 2007),
phase resetting mechanisms and nonlinear oscillators (Kurz
and Stergiou 2005; Aoi and Tsuchiya 2005, 2006, 2007),
and control optimization in rough terrains (Pratt et al. 2001;
Byl and Tedrake 2008a, 2008b). Through these previous
studies on the compass gait model and its variations, we
have gained accumulated knowledge about the stability and
controllability, whereas most of the studies above were con-
ducted in flat environment or only in simulation.

From this perspective, the primary goal of this article is to
investigate a minimalistic control architecture for the com-
pass gait model that can be used for locomotion in rough
terrains. More specifically, the main contribution of this ar-
ticle lies in the following two intrinsic characteristics of the
proposed control scheme, which have not been reported in
the past. First, we show that the compass gait model has an
intrinsic self-stability in the locomotion of various inclined
slopes, if a specific open-loop oscillation is applied to the
hip motor. We identified that the self-stability is originated in
the “phase locking” mechanism, that is, a mechanism which
compensates undesired phase delays between walking dy-
namics and motor oscillation without any explicit control.
This mechanism is particularly beneficial if compared with
the previously proposed control architectures, because no
state feedback is necessary (including no need of detecting
stance/swing phases). And second, this article also shows
how the phase locking mechanism can be exploited further,
and facilitate the design of higher-level controller for the lo-
comotion planning in rough terrains. The proposed minimal-
istic control approach has an additional intrinsic character-
istics, that is, walking dynamics of the compass gait model
can be harnessed around specific nominal trajectories, which
are uniquely determined by the parameters of the open-loop
oscillator. Namely, different sets of parameters in the oscil-
lator (e.g. oscillator frequency and amplitude) result in dif-
ferent walking trajectories (e.g. different stride length), and

such a characteristics can be eventually used for the control
of footholds in rough terrains.

In this article, the main results are presented through both
simulation analyses and real-world experiments. In simu-
lation experiments, we intend to generalize the aforemen-
tioned arguments for the typical theoretical model of com-
pass gait, and the real-world experiments should convince
the applicability of the arguments in the real-world robots.
In the next section, we first explain the simulation model
that is used to analyze the details of phase locking mecha-
nism. In Sect. 3, the experimental platform and method are
explained. Here we analyze walking dynamics of the ro-
botic platform that we developed, and compare them with
those of the theoretical model (Iida and Tedrake 2009). Sec-
tion 4 shows the application of the proposed control ap-
proach. Namely we extend the minimalistic control archi-
tecture with a minimum sensory feedback, and demonstrate
that the proposed controller can take advantage of the in-
trinsic stability and gait variability to autonomously navi-
gate through a relatively complex rough terrain. Finally in
Sect. 5, we summarize the contributions and implications of
the main results presented in this article.

2 Control of a compass gait model

For a systematic investigation of the minimalistic control
architecture, this section first introduces the compass gait
model and basic assumptions of the controller. Then the un-
derlying mechanism of self-stability is explained through a
set of simulation experiments.

2.1 Compass gait model

The compass gait model (Fig. 1) consists of two sets of dy-
namics, i.e. a continuous dynamics of swing leg and a tran-
sition dynamics that occurs at the event of touchdown and
switching of the swing and stance legs.

Fig. 1 Compass gait model. A point mass mH is defined at the hip
joint, which is actuated by motor torque uH . Black circles denote the
centers of leg mass, which are determined by a and b
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Table 1 Specification of simulation model

Symbol Description Value

a Lower leg segment 0.5 m

b Upper leg segment 0.5 m

m Mass of leg 5.0 kg

mH Mass of body 5.0 kg

g Gravitational constant 9.8 m/s2

The swing-leg dynamics of the compass gait model can
be described as follows.

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu,

M(q) =
[

mb2 −mbl cos(θ1 − θ2)

−mbl cos(θ1 − θ2) ma2 + mH l2 + ml2

]

C(q, q̇) =
[

0 mbl sin(θ1 − θ2)θ̇1

−mbl sin(θ1 − θ2)θ̇2 0

]
,

G(q) =
[

mgb sin θ2

−mga sin θ1 − mH gl sin θ1 − mgl sin θ1

]
,

B =
[

1 1
0 −1

]
(1)

where q = [θ1, θ2]T , u = [uH ,0]T (uH is torque generated
by the hip actuator), and l = a + b (see Table 1 for specifi-
cations).

When the state variables satisfy θ1 − θ2 = γ , the swing-
leg dynamics is terminated, and the collision dynamics is
computed as follows. At the ground contact of the swing
leg and switching to the stance leg, the compass gait model
assumes the conservation of angular momentum around the
hip joint and the toe of the swing leg.

Qpq̇+ = Qmq̇−

Qp =
[
mb2 − mbl cos 2α

mb2 ,

ml2 + mH l2 + ma2 − mbl cos 2α

−mbl cos 2α

]
,

Qm =
[−mab −mab + (mH l2 + 2mal) cos 2α

0 −mab

]
,

α = θ−
1 − θ−

2

2
(2)

where Qp and Qm represent transition matrices between
swing and stance legs, + and − signs denote the state vari-
ables right after and right before the swing leg touchdown,
respectively.

In this paper, we consider a minimalistic control strategy
in which an open-loop motor controller plays an important
role to induce self-stabilizing walking dynamics. The con-
troller uses a sinusoidal oscillator with no sensory feedback.
More specifically, torque of the hip motor uH is determined
as follows:

uHn(t) = An sin(2πfnt + φn−1) (3)

where An and fn are amplitude and frequency parameters at
step n that determine hip joint torque. Note that, in the rest of
this paper, we consider an open-loop controller which varies
the control parameters only at the end of every oscillation
cycle. The variable φn−1, therefore, represents the phase de-
lays of the oscillator cycle at the moment of touchdown of
the swing leg.

2.2 Basin of attraction

Basic locomotion stability of the compass gait model is
shown in Fig. 2, which depicts projections of the return map.
These figures illustrate all state variables of the model at
the moments of touchdown while walking on a flat terrain
with different oscillation of the hip motor explained above.
A simulation result of passive walking on the level ground is
shown in the left most plots, in which the model exhibits un-
steady walking dynamics. More specifically, although stride
length is decreased for the energy loss at every touchdown,
all trajectories starting from three different initial conditions
follow the fix points of state variables all the way until it
falls over with the stride close to zero.

In contrast, the compass gait model exhibits a steady pe-
riodic locomotion with the energy input through the sinu-
soidal oscillation of hip motor. For example, Fig. 2 also
shows three different frequency values of the hip oscilla-
tion, and the locomotion processes starting from different
initial conditions converge to the same fix point and a con-
stant stride length that is uniquely defined by the frequency
parameter.

For more detailed analysis of the locomotion process, we
investigate one step dynamics, which can be described as
follows:⎡
⎢⎣

q+
n+1

q̇+
n+1

φn+1

⎤
⎥⎦ = S(q+

n , q̇+
n ,φn, fn,An), (4)

φn+1 = φn −
(

Tn

2
− tT D

)
· 2πfn, (5)

Tn = 1

fn

(6)

where the function S computes the swing leg dynamics (1)
and the collision dynamics (2), given q+

n and q̇+
n represent-

ing the state variables right after the collision of the swing
leg in step n − 1. tT D indicates the duration between previ-



358 Auton Robot (2010) 28: 355–368

Fig. 2 Projections of the return map of the compass gait simulation
with and without hip actuation. These projections depict the state vari-
ables (q = [θ1, θ2]T and q̇ = [θ̇1, θ̇2]T at every touchdown of the swing
leg, and three trajectories starting from different initial conditions (in-
dicated by colored triangle plots) are shown in every diagram. Stride

length of every walking step is plotted in the lower figures, where
stride length is decreased gradually without hip actuation while it con-
verges to a certain value with the hip actuation. In these simulation
experiments, the amplitude parameter is fixed at A = 1.0 N m

ous and current collisions, and An, fn and Tn are the ampli-
tude, frequency, and period of hip motor oscillation, respec-
tively (see (3)). A fix point can, therefore, be described as
follows:

⎡
⎣ q∗

q̇∗
φ∗

⎤
⎦ = S(q∗, q̇∗, φ∗, f,A) (7)

Figure 3 (upper figures) shows how variations of ini-
tial phase delays φ0 converge to the phase delay at the fix
point φ∗, which essentially indicates the basin of attraction
around the fix point. For example, with the frequency pa-
rameter 0.67 Hz, the locomotion process starting from an
initial phase delay φ0 = 5.5 rad converges to φ∗ = 2.9 rad
after approximately 15 steps. As shown in these figures, the
basins of attraction are generally large enough that a signif-
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Fig. 3 The compass gait simulation with different frequency parame-
ters. Upper figures show basins of attraction with respect to different
initial phase delays φ0 in hip actuation. The unstable regions (shown in
gray areas) represent the initial phase delays φ0 which do not converge
to φ∗ within 30 steps of locomotion. The detailed walking dynamics
starting from φ0 = π (highlighted by the red lines) are shown in lower
figures. These figures illustrate time series trajectories of state variables

q (gray curves), hip motor torque uH (black curves), and the time of
collision tT D . Here the “phase locking” mechanism can be clearly
observed by tracking a time of collision tT D converging to the period
of motor oscillation T

2 , particularly in left and right figures (i.e. the
oscillation frequency 0.67 Hz and 0.77 Hz, respectively). In these sim-
ulation experiments, the amplitude parameter is fixed at A = 1.0 N m

icant deviation of phase delay can converge to the fix point.
More detailed trajectories of walking dynamics can be ana-
lyzed through the state variables and motor torque, which is
also shown in Fig. 3 (lower figures). These figures illustrate
the simulation started from an initial phase delay φ0 = π

for all three frequency parameters. Here we clearly observe
the “phase locking” mechanism, that is, a time of collision
tT D converges to the period of motor oscillation T

2 , and ac-
cordingly the phase delay φ (computed by (5)) converges
to φ∗.

It is important to note that, through these simulation ex-
periments, we always found only one unique fix point rep-
resented by q∗, q̇∗, and φ∗ when the control parameters f

and A are specified. Also another interesting characteristic
shown in Fig. 3 (upper figures) is that it requires more steps
to converge when an initial phase delay is smaller than the
fix point, if compared with starting from larger ones. In ad-
dition, as a natural consequence of the phase locking mecha-
nism, similar basins of attraction can also be observed when
started from some deviations of the other initial parameters,
i.e. q+

0 and q̇+
0 .

2.3 Variations of fix point

So far we explained a basin of attraction induced by the
phase locking mechanism, and how the variations of fix-
point walking dynamics can be generated by one of the
model parameters (i.e. frequency parameter) through the
same mechanism. The fix point, however, is not indepen-
dently determined by a frequency parameter, but strongly
coupled with the other model parameters including the am-
plitude of oscillator A and the slope angle γ , for example.
The goal of this section, therefore, is to characterize the in-
fluence of model parameters in relation to the phase locking
mechanism, and to explore possible walking dynamics in-
duced by the proposed control approach.

The first set of simulation was conducted on a flat ground
γ = 0 rad, and we searched fix points with respect to both
control parameters A and f . As explained in the previous
subsection, each fix point (represented by q∗, q̇∗, φ∗) can be
uniquely found once we set these control parameters, and the
result is shown in Fig. 4. Note that, once a fix point is found,
we are also able to estimate stride length of the fix point
Stride∗, which is an important metric to determine footholds
during locomotion in rough terrain. From the state variable
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Fig. 4 State variables, phase delays, and stride lengths at fix points on a flat terrain with respect to the control parameters A and f . Stride∗ is
calculated based on q∗ = [θ∗

1 , θ∗
2 ]T and the leg length l as explained in (8)

q∗ = [θ∗
1 , θ∗

2 ]T , Stride∗ can be estimated as follows:

Stride∗ = l(sin θ∗
1 + sin θ∗

2 ) (8)

In general, from the figure of Stride∗ (lower right figure
in Fig. 4), it is shown that stride length generated by the
open-loop controller is essentially influenced not only by the
frequency parameter f but also by the amplitude parame-
ter A. In particular, around the parameter space f � 0.7 Hz
and 0.0 < A < 6.0 N m, large variations of stride length can
be achieved with respect to the amplitude parameter. With
smaller values of the frequency parameter (e.g. 0.5 < f <

0.6 Hz), however, we cannot expect significant variations
of stride length even by large changes of the amplitude pa-
rameter. In contrast, regardless of the amplitude value, it is
possible to control stride length approximately between 0.15
and 0.25 m when the frequency parameter is varied.

It is also shown that, from the figure of phase delay (upper
right plot in Fig. 4), the phase delays between mechanical
dynamics and the oscillator is more significant with respect
to the frequency parameter if compared with the amplitude
parameter (especially at a smaller amplitude parameter, i.e.
A � 2.5 N m). This essentially means that, when the robot
varies the frequency parameter at a smaller amplitude para-
meter for a switch of stride length, it requires many leg steps
for the transition between one stride length to the other.

The fix points can be also found in locomotion on in-
clined slopes, and Fig. 5 shows stride length Stride∗ with
respect to the frequency parameter in various slopes (the
amplitude parameter is fixed at A = 7.0 N m). In general,
it is possible to control stride length also in inclined slopes
through the frequency parameter by considering the fact
that stride length becomes smaller as the frequency para-
meter increases. However, it is generally the case that con-
trol of shorter stride is more difficult in downhill slopes
(γ < 0), and longer one in uphill (γ > 0). Moreover, vari-
ations of stride lengths tend to be richer in uphill locomo-
tion since Stride∗ exists between 0.10 and 0.25 m in the
slope angle γ = 0.005 rad, whereas it is much narrower in
downhill slopes (e.g. 0.30 < Stride∗ < 0.34 m in the slope
γ = −0.015 rad). Note that, while the walking dynamics in
the inclined slopes are also dependent on the amplitude pa-
rameter A, we found that the characteristics explained here
(i.e. the relation between stride length, inclination of slopes,
and the frequency parameter) are preserved over a large va-
riety of the parameter.

3 Dynamics of a compass gait robot

For a real-world evaluation of the proposed control frame-
work, we developed a robot platform based on the compass
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Fig. 5 Stride length at the fix
points determined by frequency
parameter f and slope angles γ

(γ < 0 indicates downhill
slopes, and γ > 0 uphill slopes).
Amplitude parameter is fixed at
A = 7.0 N m in these
experiments. In general, a larger
amplitude value results in more
variations of walking dynamics
in inclined slopes

Fig. 6 (a) Photograph of compass gait robot, and (b) Compass gait
model with hip and foot actuators (gray circle and rectangles)

gait model with a few practical modifications. In this section,
we first describe the design and control of the platform, then
behavioral characteristics are analyzed through locomotion
experiments.

3.1 Design and control of robot

The robot platform shown in Fig. 6. consists of two leg seg-
ments connected through a hip joint, where a direct-drive
motor (Maxon Motor RE40 with no gear reduction) exerts
torque between two legs. The hip joint is then connected to
a boom that allows pitch rotation while restricting yaw and
roll. At the other end of the boom, we installed a counter
weight to avoid a large ground impact of every step, and of
harmful crashes of the entire robot (see Table 2 for more
specifications of the robot platform).

Table 2 Specification of robot

Symbol Description Value

a Lower leg segments 0.260 m

b Upper leg segments 0.055 m

l1, l2 Foot segments 0.000–0.040 m

m Mass of leg 1.3 kg

mH Mass of body 0.2 kg

CW Counter weight 4.1 kg

BL1 Boom length to robot 1.210 m

BL2 Boom length to counter weight 0.560 m

A Amplitude of oscillation 1.0 N m

Pi,12 Amplitude of foot extension 0.000–0.015 m

ψ Phase delay of foot oscillation 2.2 rad

In contrast to the simulation model, foot retraction is nec-
essary to avoid the swing leg colliding with the ground, and
for this reason, each leg segment has a servomotor (Hitech
HSR-5980SG) that extends and retracts a foot segment for
ground clearance during swing phase. To reduce the differ-
ence in dynamics between the simulation and the real-world
experiments, we minimize the mass of the foot segments
such that they are negligible. Because of the foot actuation,
the state variables of this platform are q = [θ1, θ2, l1, l2]T
and their velocity components q̇. In addition to the sinu-
soidal oscillation of hip motor torque described by (3), the
robot receives an additional control input for control of foot
actuators. The motor torque uf i of the foot motor i can be
described as follows:

uf i(t) = Kp(li − Pi(t)) + Kd(l̇i − 0.0), (9)
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Fig. 7 Basin of attraction with
and without hip actuation. Phase
plots (top), return maps of the
robot’s outer leg (middle), and
corresponding stride length
(bottom). Red triangles denotes
the beginning of data recording.
In both experiments, the
oscillation frequency is set to
1.0 Hz

Pi(t) =
{
Pi1 : sin(2πf t + ψ) > 0
Pi2 : otherwise

(10)

(i = 1,2)

where Kp and Kd are the proportional and differential gains
of PD controller, and Pi{1,2} represents the given setpoints
of the foot segment i.

For sensory feedback and measurement of locomotion
dynamics, we implemented an encoder at the hip motor
(Maxon Motor HEDS5540), force sensitive resistors in both
foot segments, and a potentiometer that measures horizon-
tal position around the boom. These motors and sensors
are connected to a PC104 computer (Digital-Logic MSM-
P5SEN) with a sensor board (Sensoray Model-526), which
enables the control bandwidth of approximately 100 Hz. In
addition, in order to measure the overall dynamics of the

robot during locomotion, we conducted the experiments un-
der the motion capture systems (Vicon MX consisting of 16
cameras, which use infrared light to track reflective markers
on the robot at approximately 120 Hz sampling rate).

3.2 Steady state dynamics

When we properly set the control parameters described in
the previous section, the compass gait robot exhibits stable
periodic walking gait on a flat terrain. In order to charac-
terize basic behaviors of the robotic platform, the first set
of experiments were conducted on a flat terrain with a few
different configurations of control parameters.

Figure 7 shows a phase plot and return map of a leg, and
stride length of every step with and without the hip motor
control. As shown in the left plots of Fig. 7, the basic loco-
motion dynamics of the compass gait robot can be generated
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simply by using the foot segment control without hip actu-
ation (i.e. uH = 0.0). Specifically, even when starting with
an initial condition [θ1, θ2, θ̇1, θ̇2]T = [0,0,0,0]T , walking
dynamics of the robot reaches a relatively stable walking
dynamics after several steps. This behavioral characteristics
in the robotic platform is clearly different from those of the
simulation model, which is essentially induced by the ac-
tuation of foot segments. It is also important to note that,
while this walking dynamics is seemingly stable on a flat
terrain, the walking direction is not controllable (the limit
cycle of forward or backward walking is largely dependent
on the initial conditions and environment), and the robot is
not able to walk uphill. In contrast, with the hip actuation
(Fig. 7 right plots), we can observe a similar limit cycle of
locomotion, but the amplitude and the perturbation of leg
swing are much larger resulting in the longer stride.

Figure 8 shows trajectories of the motor command
[uH ,uf 1]T and the state variables q = [θ1, θ2]T of succes-
sive ten steps, which are aligned with respect to the ground
contact detected by the foot pressure sensors. This figure
shows the phase locking in the real-world platform, which
can be observed by how the hip motor oscillation is syn-
chronized with the mechanical dynamics regardless of the
different oscillation frequencies. In addition, it is important
to note that another common characteristics of the simula-
tion model and the robot lies in the amplitude of swing legs,
which decreases as the frequency parameter increases (this
feature can also be observed in Fig. 3, lower figures).

3.3 Gait variability

As in the simulation analysis, we also conducted a set of
experiments to examine stride length with respect to the fre-
quency parameter of the oscillator and the slope angles. Fig-
ure 9 (the filled circle plots) shows the mean stride length
and standard deviation of ten steps of walking with respect
to the set of frequency parameter. From this figure, we can
see that it is possible to increase stride length of the steady
state locomotion approximately 50% by changing the fre-
quency from 1.11 to 0.77 Hz.

The same set of frequency parameters was also tested in
different inclinations of slopes in order to analyze control-
lability of foot placement in rough terrains. Figure 9 shows
that the robot is able to walk with different stride length in
large variety of slopes (between +0.087 and −0.122 rad).
On the level ground, the variability of stride length is be-
tween approximately 0.09 and 0.15 m. With the same range
of the frequency parameter, the stride length becomes larger
in downhill, and smaller in uphill environments. An impor-
tant characteristic of the proposed control architecture is the
fact that the robot is not able to walk uphill with the lower
frequency of oscillator, and downhill with the higher fre-
quency. More specifically, the +0.087 radian uphill can be

dealt with by the frequency of 0.83 Hz and larger, and the ro-
bot can walk down −0.122 radian slope with the frequency
of 1.0 Hz or lower. In other words, the limit of the proposed
controller is the control of small stride in downhill, and large
stride in uphill.

4 Locomotion control in rough terrain

One of the most significant advantages of the proposed con-
trol architecture lies in the fact that, by exploiting the self-
stability, one control parameter is sufficient to vary the basic
walking dynamics. This section explains how the aforemen-
tioned open-loop controller can be extended with a sensory
feedback to deal with a rough terrain, and analyzes the loco-
motion performance in complex environment.

4.1 Feedback controller

For the sake of simplicity, we assume that the feedback con-
troller receives only the location of horizontal axis every
control step, and determines the frequency value of the os-
cillator. The feedback controller, therefore, can be described
as

f = freq(x, t) (11)

where x represents the current horizontal position of the
hip joint with respect to an absolute coordinate system. The
function freq(x, t) also depends on the time variable of os-
cillator, because the controller is allowed to change the fre-
quency only at the end of every oscillation period for smooth
transitions of motor command.

In the following case study, we heuristically determined
the function freq(x, t) for a given rough terrain. Owing to
the minimalistic control architecture, it requires only several
trials and errors until we found a set of thresholds for the
parameter x for multiple successful travels over the rough
terrain.

4.2 Experiments

In this case study, we tested the proposed controller in a
test environment consisting of a flat terrain, an uphill slope,
molded “flat rocks”, and a downhill as shown in Figs. 10
and 11. The important features of this terrain are a +0.065
radian uphill, −0.045 radian downhill, 0.60 m of rough ter-
rain with the largest gap length of 0.03 m and the largest step
hight of +0.02 m and −0.03 m.

After several trials and errors, we set the control parame-
ters as follows:

freq(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0.77 Hz : x < 3.4 m
1.11 Hz : x ≥ 3.4 and x < 4.5 m
1.00 Hz : x ≥ 4.5 and x < 5.1 m
0.77 Hz : x ≥ 5.1 m

(12)
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Fig. 9 Variability of stride with respect to five frequency parame-
ters in the different inclinations of slope (downhill −0.052, −0.087,
−0.122 rad, level ground, and uphill: +0.052 and +0.087 rad). Every
plot represents a mean stride length of 10 steps and their standard de-
viation in each environment

Based on the basic knowledge about the gait variability
(shown in Fig. 9), here we set the frequency parameter to
a larger value for the uphill slope, and set to a smaller fre-
quency for larger strides in the downhill slope and flat sur-
faces. This controller was tested under the motion capture
system which recorded the kinematics of the robot as shown
in Fig. 10, and the kinematic data of three successful travels
over the rough terrain are reproduced in Fig. 11.

In general, the controller is able to maintain the loco-
motion mostly on the flat surfaces including the uphill, the
downhill, and the small step around x = 3.6 m. Moreover
the controller also is able to cope with locomotion over
sparse gaps and steps on the ground by appropriately set-
ting the function freq(x, t), even though there are some vari-
ance in the foot placement. It is important to note that the
online modification of frequency parameter essentially re-
quires a few steps of transient period before converging to
a steady stride length shown in Fig. 9. In Fig. 11, for ex-
ample, the stride length changed from 0.19 m to 0.05 m (at
around x = 3.5 m), but approximately three steps were nec-
essary for the convergence. In these experiments, therefore,
we needed several trials and errors to determine freq(x, t)

in (12). In addition, another potential limitation of the con-
troller is that it occasionally failed on the rocks (x = 4.9–
5.5 m). Considering the large variance of stride length in
this area of the terrain shown in Fig. 11, the main reason of
failures seems to be originated in the irregular ground inter-
actions.

5 Conclusion

This paper presented a minimalistic control architecture for
dynamic walking of the compass gait model. The controller

Fig. 10 Rough terrain experiment with the motion capture system. 12
markers are attached in the boom and legs

makes use of an open-loop sinusoidal oscillation at the hip
joint, and we identified the phase locking mechanism that
self-calibrates phase delays between walking dynamics and
oscillation of the hip motor. This mechanism can be nicely
explained by a fix point analysis, by which we could also
systematically investigate the relation between walking dy-
namics and the motor control parameters. The main contri-
bution of this paper lies in the fact that, owing to the phase
locking mechanism, a simple open-loop based controller can
deal with various uneven terrains such as steady walking in
uphill and downhill slopes as well as controlling foot place-
ment to deal with gaps and steps. This minimalistic con-
troller is particularly important for planning and optimiza-
tion of locomotion control in moderately complex environ-
ment. In the case study we showed in Sect. 4, for example,
it required only several trials and errors until we found the
set of parameters. It should, therefore, be straight forward to
automate the search process of control parameters by using
a depth-first algorithm, for example.

The self-stability of dynamic walking achieved by the
proposed control architecture is comparable to those of the
bio-inspired oscillators, typically labeled as the central pat-
tern generator (CPG) models. Although both approaches in-
duce the synergy between motor oscillation and mechan-
ical dynamics for a stable periodic locomotion in a self-
organized manner, the present work demonstrated that a set
of relatively large basins of attraction can be achieved with-
out explicit sensory feedback. In addition, owing to its sim-
plicity, we were able to conduct a systematic analysis of be-
havioral variations as well as an extended control architec-
ture for foot placement in complex rough terrain. It is, how-
ever, still an open question to what extent the locomotion
performance (e.g. stability and controllability of walking dy-
namics) is different in these two approaches. From this per-
spective, it is particularly interesting to conduct a compara-
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Fig. 11 Walking experiments in rough terrain. Top figures show the
trajectories of the three successful travels of the rough terrain. The lo-
cation and pose of the robot are depicted every 0.8 second. The dots

in the middle plot represent foot placement over three successful trials.
The lower plots show the frequency parameter of oscillator, and the
stride length of every step during the three successful trials

tive study between the proposed controller and the other ap-
proaches such as the phase resetting controllers, the reflex-
based controllers and the CPG-based controllers (Aoi and
Tsuchiya 2007; Taga et al. 1991; Manoonpong et al. 2007;
Ijspeert 2008).

For dynamic locomotion in more complex environment,
however, we also identified a few potential limitations of the
proposed control framework. First, as shown in the simula-
tion of Sect. 2.3 and the real-world experiment of Sect. 3.2,
controllability of stride length is degraded as the angle of
slope increases for both uphill and downhill. Second, we
still do not know the influence of the impact force at ground
contact and the counterweight to the stability and walking
dynamics in the real-world experiments. For example, there
should be a control architecture of foot actuation that im-
proves locomotion performance (as exemplified in Byl and
Tedrake (2008a, 2008b)), which we have not considered in
details in this article. And third, in the proposed control ap-
proach, it requires several steps until a stride length con-
verges to another when switching the control parameter of
the oscillator. For example, in the upper plots of Fig. 3, it
took approximately three to ten steps until it converges to a

steady stride length when the simulated compass gait model
started with various initial conditions. And in Fig. 11, we
also observed three to five steps of transition steps when the
controller switched the parameter in the real-world platform.

To cope with these open problems, we expect two future
research directions based on our achievement presented in
this paper. One of the potential extensions of the proposed
controller is to examine the effects of different oscillator tra-
jectories. For example, although we tested only control of
frequency parameter in this paper, the amplitude parame-
ter of the oscillator could potentially provide an additional
increase of controllability as our simulation analysis sug-
gested in Sect. 2.3. Second, it is also important to pursue the
use of sensory feedback in the low-level controller. In par-
ticular, it is interesting to investigate further how the phase
locking mechanism identified in this paper can be integrated
into a more comprehensive optimization process of state-
feedback controllers as demonstrated in Byl and Tedrake
(2008a, 2008b), Manchester et al. (2009), for example.
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