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Abstract Social learning in robotics has largely fo-
cused on imitation learning. Here we take a broader
view and are interested in the multifaceted ways that
a social partner can influence the learning process. We
implement four social learning mechanisms on a robot:
stimulus enhancement, emulation, mimicking, and imi-
tation, and illustrate the computational benefits of each.
In particular, we illustrate that some strategies are about
directing the attention of the learner to objects and oth-
ers are about actions. Taken together these strategies
form a rich repertoire allowing social learners to use a
social partner to greatly impact their learning process.
We demonstrate these results in simulation and with
physical robot ‘playmates’.

Keywords Learning by Imitation · Social Learning ·
Biologically Inspired Learning

1 Introduction

Our work is inspired by the vision of service robots
existing in human environment, assisting with various
tasks in our homes, schools, and workplaces. Social learn-
ing will be crucial to the successful application of robots
in everyday human environments. It will be impossible
to give these machines all of the knowledge and skills
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Fig. 1 Robot playmates Jimmy and Jenny in the playground.

a priori that they will need to serve useful long term
roles in our dynamic world. The ability for everyday
users, not experts, to guide them easily will be key to
their success. Our research aims to build more flexible,
efficient, and teachable robots, and is motivated by the
distinction between human learning and machine learn-
ing. The research question we explore in this work is:
What are the best computational models to use in ex-
ploiting information provided by a social partner?

1.1 Social Learning in Humans and Animals

Humans and some animals are equipped with various
mechanisms that take advantage of social partners. Chil-
dren naturally interact with adults and peers to learn
new things in social situations. They are motivated
learners that seek out and recognize learning partners
and learning opportunities (Rogoff and Gardner, 1984;
Pea, 1993), and throughout development, learning is
aided in crucial ways by the structure and support of
their environment and especially their social environ-
ment (L. S. Vygotsky, 1978; Greenfield, 1984; Lave and
Wenger, 1991). These social partners guide a learn-
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ing process in a variety of ways; for example, directing
the learner’s attention to informative parts of the envi-
ronment (Wertsch et al., 1984; Zukow-Goldring et al.,
2002). Understanding these mechanisms and their role
in learning will be useful in building robots with sim-
ilar abilities to benefit from other agents (humans or
robots) in their environment, and explicit teaching at-
tempts by these agents.

Our approach is motivated by the following four
social learning mechanisms identified in natural learn-
ers (Tomasello, 2001; Call and Carpenter, 2002):

– Stimulus (local) enhancement is a mechanism through
which an observer (child, novice) is drawn to ob-
jects others interact with. This facilitates learning
by focusing the observer’s exploration on interesting
objects–ones useful to other social group members.

– Emulation is a process where the observer witnesses
someone produce a particular result on an object,
but then employs their own action repertoire to pro-
duce the result. Learning is facilitated both by at-
tention direction to an object of interest and by ob-
serving the goal.

– Mimicking corresponds to the observer copying the
actions of others without an appreciation of their
purpose. The observer later comes to discover the
effects of the action in various situations. Mimicking
suggests, to the observer, actions that can produce
useful results.

– Imitation refers to reproducing the actions of others
to obtain the same results with the same goal.

Humans exhibit all of these social learning mecha-
nisms, imitation being the most complex. While imita-
tion seems to be distinctly human, many animals make
use of the simpler relaxed versions of imitation. We are
interested in taking a broad view of the ways that so-
cial partners influence learning. In particular, we believe
the three relaxed versions of imitation learning are po-
tentially useful in creating more natural social learning
interactions between humans and robots.

1.2 Approach

In this article we show an implementation of these four
social learning mechanisms and articulate the distinct
computational benefits of each. One contribution of this
work is our analysis of relaxed versions of imitation
learning.

In order to directly compare these mechanisms we
use a controlled learning environment, where the social
partner is another robot. This allows us to systemat-
ically change the behavior of the social partner and
understand the effect it has on the different learning

strategies. We then draw conclusions about the compu-
tational benefits of each social learning strategy.

We show that all four social strategies provide learn-
ing benefits over self exploration, particularly when the
target goal of learning is a rare occurrence in the envi-
ronment. We characterize the differences between strate-
gies, showing that the “best” one depends on both the
nature of the problem space and the current behavior
of the social partner. These results are demonstrated in
simulation and with two physical robot ‘playmates’.

1.3 Overview

In the following section we present related works, and
in Section 3 we detail our implementation of the social
learning mechanisms. Section 4 covers experiments with
the baseline non-social learning strategies for compari-
son, and Section 5 is our social learning experiment and
results. In Section 7 we consider several issues related to
the generality of these findings (alternative performance
metrics, effects of noise, and alternative classifiers). Fi-
nally we have a discussion of these results and their
implications for future work in social robot learning in
Section 8.

2 Related Work

In this section we briefly review some approaches to
social learning in robots.

Several prior works deal with the scenario of a ma-
chine learning by observing human behavior. Learning
high-level tasks by observation (Kuniyoshi et al., 1994;
Voyles and Khosla, 1998), using a human demonstra-
tion to learn a reward function (Atkeson and Schaal,
1997), and skill learning by demonstration (Schaal, 1999;
Breazeal and Scassellati, 2002). There is usually a spe-
cific training phase, where the machine observes the
human, then a machine learning technique is used to
abstract a model of the demonstrated skill.

In order to imitate, the robot has to map a sensed
experience to a corresponding motor output. Many have
focused on this perceptual-motor mapping problem. Of-
ten this is learned by observation, where the robot is
given several observations of a particular motor action
(Demiris and Hayes, 2002; Jenkins and Mataric’, 2002;
Alissandrakis et al., 2006).

In other works the human is able to directly influ-
ence the actions of the machine to provide it with an
experience from which to learn. In one example, the
robot learns a navigation task by following a human
demonstrator who uses vocal cues to frame the learn-
ing (Nicolescu and Matarić, 2003). A related example
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has a robot learn a symbolic high level task within a
social dialog (Breazeal et al., 2004).

The pick and place method of programming is wide-
spread in industrial robotics, allowing an operator to
manipulate the robot and essentially record a desired
motion trajectory to be played back. Calinon and Bil-
lard have looked at how a person could similarly demon-
strate task examples to a robot by moving its arms,
generalizing a motion trajectory representation for the
task (Calinon and Billard, 2007). Others let a human di-
rectly control the actions of a robot agent with teleoper-
ation to supervise a Reinforcement Learning (RL) pro-
cess (Smart and Kaelbling, 2002), or to provide exam-
ple task demonstrations (Peters and Campbell, 2003).
Some recent approaches have the agent provide feed-
back about when these demonstrations are needed. In
confidence-based learning (Chernova and Veloso, 2007),
the robot requests additional demonstrations in states
that are different from previous examples. In our own
prior work (Thomaz and Breazeal, 2008; Thomaz and
Cakmak, 2009b), the agent communicates uncertainty
with eye gaze. Similarly in (Grollman and Jenkins, 2008),
the robot communicates certainty in order to solicit
demonstrations from the teacher.

In other cases the human influences the experience
of the machine with higher level constructs than in-
dividual actions, for example, providing feedback to a
reinforcement learner. Several approaches are inspired
by animal training techniques like clicker training and
shaping (Blumberg et al., 2002; Kaplan et al., 2002;
Saksida et al., 1998). A human trainer uses instrumen-
tal conditioning techniques and signals the agent when
a goal behavior has been achieved. Related to this, a
common approach for incorporating human input to a
reinforcement learner lets the human directly control
the reward signal to the agent (Isbell et al., 2001; Stern
et al., 1998). (Thomaz and Breazeal, 2008) have aug-
mented this approach to interactive RL.

A few studies have also taken inspiration from non-
imitative social learning mechanisms seen in animals
and humans. Melo et al. (2007) present a framework
for RL in which relaxed versions of imitation learning
involve observing a subset of the information in an ex-
pert demonstration. For example, in a strategy that
corresponds to emulation, the learner only observes the
sequence of states during a demonstration (as opposed
to a complete transition-reward tuple sequence). Lopes
et al. (2009) present a computational model of social
learning in which the behavior of the learner depends on
a weighted sum of three sources of information: action
preferences, observed effects and inferred goals. They
show that different weight distributions result in behav-
iors that are similar to social learners in cited experi-

ments with chimpanzees and children. One distinction
of our work is our approach to modeling the various
social learning strategies through changes in an atten-
tion mechanism. Additionally, our evaluation compares
the computational benefits of each of the four strategies
across various environments.

Any approach that takes input from a human teacher
has to determine the amount of teacher involvement in
the process. Prior work has investigated a wide spec-
trum of teacher involvement. From systems that are
completely dependent on the teacher in order to learn
anything, to others that do self-learning and incorpo-
rate some human feedback and guidance along the way.

One high level point we take away from social learn-
ing in humans and animals is the ability to flexibly op-
erate along this spectrum of teacher engagement. The
four social learning mechanisms we implement here rep-
resent different points on this spectrum: from imitation
(complete dependence on the teacher’s demonstration)
to relaxed versions of imitation that are biased by the
teacher in various ways. Our experiments with these
mechanisms illustrate how these strategies are mutually
beneficial and argue for a social learning approach that
incorporates a variety of ways to exploit social partners.

3 Implementation

In this work, we have a social learning situation com-
posed of two robot playmates with similar action and
perception capabilities. Our experiments focus on learn-
ing a “sound-making” affordance for different objects in
the environment.

We use two robots, Jimmy and Jenny (Fig. 1), which
are upper torso humanoids on wheels built from Bi-
oloid kits and Webcams. Their 8 degrees of freedom
enable arm movements, torso rotation and neck tilt.
The wheels are used to navigate the workspace.

The behavior system is implemented in C6, a branch
of the latest revision of the Creatures architecture for
interactive characters (Blumberg et al., 2002). This con-
trols the real robots with percepts from sensors, as well
as a graphical model of the robots with simulated sens-
ing, world dynamics, and virtual objects. In simulation,
we can set up environments composed of different ob-
ject properties (Fig. 2).

The behavior system implements a finite state ma-
chine to control the exploration for collecting learning
experiences. In non-social exploration the robot (i) ob-
serves the environment, (ii) approaches the most salient
object, (iii) performs the selected action, (iv) observes
the outcome (sound or no sound), (v) goes back to its
initial position and (vi) updates the saliency of objects
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Table 1 Features and feature values of objects.

Feature # of Values Values

Color 4 Pink, Blue, Green, Orange

Size 3 Small, Medium, Large

Shape 2 Cube, Sphere

Table 2 Sound-maker property of objects in different learning

environments in simulation.

Description of Number of
Percentage

sound-makers sound-makers

All objects with color
18 75%

other than green

All green and orange
12 50%

objects

All green objects 6 25%

All green objects that
4 ∼17%

are not large

All small and green
2 ∼8%

objects

Only the small, green,
1 ∼4%

cube-shaped object

and actions based on its exploration strategy. In so-
cial exploration, after each object interaction the robot
goes into an observing state and performs the same up-
dates, of object saliency and action desirability, based
on its observation of the other agent’s interaction. In
the rest of this section we give details on the domain of
our simulation experiments and our implementation of
exploration strategies. Details specific to the physical
robot experiment are given in Section 6.

3.1 Objects

The learning environment involves objects with three
discrete perceived attributes: color, size and shape, and
one hidden property of sound-maker (see Table 1). In
our experiments, the environment always contains all
possible combinations of color, size and shape, how-
ever the sound-making properties of these objects can
change. Different learning problems are obtained by
changing the percentage of objects that make sound in
the environment. For instance, all green objects could
be sound makers in one environment, while in another,
all objects with a particular shape and size are sound-
makers.

Based on prior work (Thomaz and Cakmak, 2009a),
we hypothesize that social learning will be especially
beneficial in the case of rare sound-makers; thus, we
systematically vary the frequency of sound-makers in
the environment to compare various non-social and so-
cial exploration strategies.

The simulation environment has 24 objects with dif-
ferent attributes (one of 4 colors, 3 sizes and 2 shapes).
We control the percentage of objects in the environment
that produce sound, resulting in six learning environ-
ments as described in Table 2. These environments are
chosen to cover a range of different learning problems
where the target class varies from frequent to rare. Note
that there are a number of environments with the same
fraction of sound-makers and the choice of the partic-
ular environment used in our experiment is arbitrary.
The choice of these particular fractions is also arbitrary,
however it is intended to cover the range with more em-
phasis on rare sound-maker environments.

3.2 Perception

The social learning task considered in this study re-
quires several perceptual capabilities:

1. Detecting objects in the environment and their prop-
erties

2. Detecting objects that are being interacted by a so-
cial agent

3. Detecting the actions performed by a social agent
4. Detecting the effects of own actions or social part-

ner’s actions on objects

All of these perceptual problems are trivialized in
the simulation experiment by making all information
available to the learner directly from the internal data
structures of the simulator. Some of these problems are
also simplified on the real robots by the fact that we are
using two identical robots (with the same action reper-
toire and perceptual capabilities) and by constraining
the environment.

3.3 Actions

The playmates’ action set has two actions: poke–a sin-
gle arm swing (e.g., for pushing objects) and grasp–a
coordinated swing of both arms. Both involve an initial
approach to an object of interest, and are parametrized
with the following discrete parameters (i) acting dis-
tances and (ii) grasp width or (iii) poking speed. In
simulation we use 24 different actions (poke or grasp, 4
grasp widths, 4 poke speeds and 3 acting distances) as
summarized in Table 3.

As with objects, we vary the frequency of sound-
producing interactions by tuning the actions to have
different effects on the objects, yielding different learn-
ing problems. This is achieved by making only one or
both of the actions able produce sound and by vary-
ing the range of grasp width, poking speed and acting
distance within which an action produces sound.
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Table 3 Action parameters and their values.

Action Parameter # of Values Values

Action Type 2 Grasp, Poke

Grasp

Distance 3 Far, Middle, Close

Width 4
Very-large, Large,
Small, Very-small

Poke
Distance 3 Far, Middle, Close

Speed 4
Very-fast, Fast,

Slow, Very-slow

Table 4 Actions that produce sound in different learning envi-
ronments in simulation.

Description of sound # of such
Percentage

producing actions actions

Both actions, except when
18 75%(Grasp) width is very-large, or

(Poke) speed is very-slow.

Both actions, when

12 50%width is very-small, small, or
speed is very-fast, fast.

Both actions, when

6 25%width is very-small, or
speed is very-fast.

Both actions, when

4 ∼17%
distance is not far, and
width is very-small, or
speed is very-fast.

Both actions, when

2 ∼8%
distance is close, and
width is very-small, or

speed is very-fast.

Only grasp, when
1 ∼4%distance is close, and

width is very-small.

In the simulation experiments, we have six cases in
which a different fraction of the action set is able to
produce sound when executed on a sound-maker object
(Table 4).

3.4 Learning Task

Our experiments focus on the task of learning a relation
between a context in which an action produces a cer-
tain outcome; referred to as affordance learning. These
relations are learned from interaction experiences of
[context-action-outcome] tuples (Sahin et al., 2007).
We use a 2-class Support Vector Machine (SVM) clas-
sifier (Vapnik, 1998) to predict an action’s effect in a
given environmental context. We consider other classi-
fiers in Section 7.2.

SVMs are widely used discriminative classifiers. SVM
classification is based on a linear separator constructed
from a set of representative points close to the margin
(support vectors). The input space is implicitly pro-

jected to a higher dimensional space with the help of
kernels. A linear kernel was used in our experiments.
For implementation, we use the open source library
LibSVM (Chang and Lin, 2001) integrated with the
WEKA data mining software (Hall et al., 2009).

The SVM inputs are the values of perceived features
of the interacted object (Table 1) and parameters of
the action performed on that object (Table 3). The in-
put vector contains one variable for each possible value
of features and parameters. The variable corresponding
to the current value is set to 1 while all other values
are set to 0. The prediction target is whether or not
this context-action produces sound. In this frame-
work the robot is simultaneously learning the object
features and action parameters required to produce a
desired effect in the environment. Exploration is the
process of collecting these interaction experiences.

3.5 Exploration Strategies

Our goal is to compare social and non-social exploration
strategies, i.e. rules for interacting with the environ-
ment to collect data. The exploration strategy deter-
mines which object in the environment to interact with
next, and what action to perform. Similar to the way
that animals benefit from social learning mechanisms,
these strategies can help a robot by guiding its ex-
ploration of the space of possible objects and actions
towards useful parts of the space. While stimulus en-
hancement and emulation direct the learner’s attention
to informative parts of the object space, (i.e. the en-
vironment) mimicking guides the learner in the action
space. Imitation combines the benefits of both types of
information.

The alternative to social learning is non-social learn-
ing, in which a robot can use various exploration strate-
gies. For instance, it can randomly select an object and
try all possible actions on it, or it can adapt its explo-
ration based on previous interactions.

In this study, an exploration strategy is implemented
as an attention mechanism, where each object attribute
value and action parameter value has a corresponding
saliency ranging from 0 to 1. The robot always performs
the most salient action on the most salient object. For
example if the saliencies of the four possible values of
the color attribute are as given in Fig. 2(b) (pink: 0.00,
blue: 0.48 green: 0.56 orange: 0.51) the robot will in-
teract with a green object because it has the highest
saliency. Other feature values of the object are chosen
in a similar way. As a result, given the saliency distri-
bution in Fig. 2(b) the robot interacts with the green,
large, sphere object.
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(a) Social partner’s object interaction (b) Learner’s object interaction

Fig. 2 Snapshot of the simulation experiments in C6. The bars show the learner’s object attribute saliencies for color, size and shape.

Action selection works similarly. Each action param-
eter value (e.g. far, middle, close for the Grasp-Distance
parameter) has a corresponding saliency. There is an ex-
tra parameter that can take two values (grasp or poke)
that determines which of the two actions is used in the
interaction. The robot chooses the action with higher
saliency and uses the parameter values with highest
saliency for the parameters of the chosen action.

Object and action selection is the same in all ex-
ploration strategies (i.e. select most salient), whereas
the way that saliencies are updated is different in all
strategies. Each strategy has a different rule for updat-
ing saliencies after every interaction. Details on how
each strategy updates saliencies is given in Sec. 4 and 5.

As an example, consider the exploration strategy
used by the learner in Fig. 2. This strategy increases
the saliency of the attributes of the object that the so-
cial partner interacts with and decreases the saliency
of different object attributes. Since the social partner
interacts with a green object (Fig. 2(a)), the saliency of
green is increased by 0.2 while the saliency of other col-
ors is decreased by 0.1. Similarly the saliency of small
and sphere are increased. As a result of this update,
the learner interacts with a similar object (large, green,
cube as shown in Fig. 2(b)). Note that even though the
saliency of large was increased and the saliency of small
was decreased in the update, the saliency of small was
large enough in the previous interaction to make the
learner interact with a small object once more. Note
also that the saliencies of actions and action parame-

ters are randomized in this strategy, therefore it can be
considered as a strategy that guides the learner in the
object space.

We remark that this implementation of exploration
strategies is feature-based rather than object-based. While
this provides a simple mechanism to explore objects
based on feature similarities, it is limited in terms of
recognizing object identity.

3.6 Experimental Method

We conducted a series of experiments in order to an-
alyze and compare social and non-social exploration
strategies. In each experiment the learner uses a par-
ticular strategy to collect a data set which is used for
training a sound-maker classifier. The experiment is re-
peated in several environments that present different
learning problems. In social learning experiments the
social partner has one of three pre-defined behaviors
that are described in Sec. 5.2.

Different environments have different frequencies of
sound producing interactions. Whether or not rareness
is due to object or action has a different impact on
the object-oriented versus action-oriented social learn-
ing strategies. Thus, we systematically experiment with
both kinds of rareness. In these experiments, we first
keep the percentage of sound producing actions con-
stant at 25% and vary the sound-maker object rareness;
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and then keep the object percentage constant at 25%
and vary the percentage of sound producing actions.

We present experimental results from simulation for
all environments, exploration strategies and social part-
ner behaviors. Then we present a validation of these
experiments with physical robots. In simulation there
are 576 (24x24) possible test cases (interactions). SVM
classifiers are trained in a batch mode after 28 interac-
tions. This corresponds to a small subset of all possi-
ble interactions (∼5%). For each environmental con-
dition, the experiments are repeated 200 times with
random initialization. We report average performance
across these repeated experiments.

With classifiers trained using the various strategies,
we can compare performance. In doing this comparison,
our performance measure is recall rate in prediction of
the effect for all object-action combinations. Recall
corresponds to the ratio of true positives and the sum of
true positives and false negatives (i.e., of all the sound-
making cases in the test set, the percentage predicted as
such). In a later section (Sec. 7) we consider alternate
performance metrics.

4 Baseline Experiments: Non-social Learning

An initial question for this research is the selection of a
fair or appropriate non-social learning baseline to com-
pare social learning against. We consider three differ-
ent non-social exploration strategies for learning affor-
dances: random, goal-directed and novelty-based explo-
ration. We also compare these strategies with a system-
atic data set that consists of all possible interactions.
This section describes the exploration strategies and ex-
perimental results for non-social learning. The details
of how saliencies are updated for individual exploration
strategies are summarized in Table 6.

4.1 Implementation of Exploration Strategies

(1) Random: In each interaction the robot randomly
picks a new object, action and a set of action param-
eters. This is achieved by randomizing the saliency of
each object attribute and action parameter and select-
ing the most salient object and action. The data sets
collected with random exploration are equivalent to ran-
dom subsets of the systematic data set.

(2) Goal-directed: In goal-directed exploration, the robot
keeps interacting with objects similar to ones that have
given the desired effect in a previous interaction. Like-
wise, it performs actions that are similar to those that
produced sound in the past. If an interaction produces

sound, the saliency of some attribute values of the ob-
ject used in that interaction are increased and the saliency
of different ones are decreased. Increasing or decreas-
ing all attributes deterministically is avoided because
this will result in interacting with the exact same ob-
ject once it has produced sound, therefore will stop the
exploration. By updating a random subset of the at-
tributes of an object that made sound, the robot will in-
teract with objects that have common attributes, rather
than exactly the same object.

In the goal-directed strategy, if no sound is produced
the robot updates saliencies randomly. As a result, the
robot only pays attention to positive information. An
alternative strategy could reduce the saliency of at-
tribute values of the object used in an interaction that
did not produce sound, in order to avoid objects similar
to the ones that do not make sound.

(3)Novelty-based: In this strategy the robot prefers novel
objects and actions. After every interaction the robot
reduces the saliency of attribute values of the object
that it just interacted with, while increasing the saliency
of different values. Actions and action parameters are
altered similarly.

(4) Systematic Data Set: In addition to the data sets
collected using three exploration strategies, we consider
a training set that consists of all possible object-action
pairs in the learning space. Note that the data sets ob-
tained with the exploration strategies have much fewer
examples than the systematic dataset. In fact, the num-
ber of examples collected with exploration strategies is
chosen to be a small fraction of all possible examples
(e.g. in simulation 28 interactions is 5% of the size of
the systematic data set).

4.2 Results for Non-social Learning

Our experiments let us compare the performance of the
three individual exploration strategies, showing that
novelty-based exploration performs best. Additionally
we look at the effect of rareness of sound-makers in the
environment, and number of interactions allowed.

4.2.1 Comparison of strategies

The systematic training set is designed to cover the
complete learning space. Training with the systematic
data set is a best-case scenario for the learning algo-
rithm; it demonstrates how well the affordances can be
learned when complete and equally distributed data is
available and essentially shows that this is a learnable
problem.
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Fig. 3 Recall rate for non-social strategies after 28 interactions

for (a) six environments with different sound-maker frequencies

(sound producing action frequency held constant at 25%) and (b)
six environments with different sound-producing action frequen-

cies (sound-maker object frequency held constant at 25%).

A 20-fold cross validation test is performed on the
systematic data set for 12 environments with varying
degrees of sound-maker object and action rareness. We
observe that prediction is 100% accurate for the sys-
tematic strategy in all environments with sound-maker
frequency of 8% or greater (Fig. 3).

In the last environment case (4% sound-makers) the
event of sound-making happens so infrequently that the
resulting SVM always predicts ‘no sound’ and the re-
call rate is 0%. Standard SVMs are known to have a
bias towards the larger class in the case of unbalanced
datasets (Huang and Du, 2005). In this case (4% sound-
maker objects and 25% sound producing actions, or the
other way around) the systematic dataset is highly un-
balanced: it has 6 positive interactions (interaction that
produced sound) out of a total of 576 interactions.

Fig. 3 compares the recall rate for non-social learn-
ing strategies in different environments. The perfor-
mance of the random exploration strategy reduces as
the sound-maker objects become rare in the environ-
ment, since it is less likely to randomly interact with a
sound-maker when it is rare.

The novelty-based strategy outperforms the other
exploration strategies especially when the sound-makers
are frequent. The strength of this strategy in these envi-
ronments is its uniform coverage of the search space by
always interacting with different objects. As the sound-
makers become very rare the performance of all three
strategies degrade and the difference between the strate-
gies becomes less significant.

The goal-directed strategy results in lower recall
rates than random when the sound-makers are frequent
in the environment. With this strategy the robot inter-

Table 5 Effect of (a) sound-maker object rareness and (b)

sound producing action rareness on different exploration strate-

gies (measured with 1-way ANOVA). These tests show that per-
formance is significantly different as the target becomes rare with

all of the strategies.

(a)

Strategy Analysis of variance

Random F (5, 1194) = 93.91, p < .001

Goal-directed F (5, 1194) = 11.51, p < .001

Novelty-based F (5, 1194) = 178.19, p < .001

(b)

Strategy Analysis of variance

Random F (5, 1194) = 138.20, p < .001

Goal-directed F (5, 1194) = 10.51, p < .001
Novelty-based F (5, 1194) = 130.99, p < .001

acts only with a subset of objects that are similar to the
first object that was discovered to be a sound-maker.
However, when the environment has a high percentage
of sound-makers, objects with no common perceptual
attributes may also be sound-makers. Therefore, in such
environments covering only a subset of objects degrades
the performance of the goal-directed strategy. As the
sound-makers become less frequent the goal-directed
strategy becomes better than the random strategy.

In the last environment, we observe that all strate-
gies have non-zero recall unlike the systematic dataset.
Even though the sound producing interactions happen
rarely, the resulting data sets are less unbalanced since
they include only a total of 28 interactions. As result
the average recall rate is non-zero.

4.2.2 Comparison of environments

In Fig. 3, we see a significant effect of the rareness
of sound-makers in the environment on all three ex-
ploration strategies (see Table 5 for statistical signifi-
cance). While the performance of random and novelty-
based strategies monotonically decrease with decreas-
ing sound-maker frequency, the performance of the goal
directed strategy increases initially and decreases after-
wards for reasons explained above.

4.2.3 Comparison of number of interactions

All three strategies result in imperfect learning because
they cannot explore the complete object/action space.
However, we expect that the longer we allow the robot
to interact with the environment, the better its learn-
ing will be. In Fig. 4 we present learning curves for
non-social exploration strategies in three sample envi-
ronments. In general, it can be observed that learning
improves with increasing number of interactions. How-
ever, in the case of very rare sound-makers (4%), in-
creasing the number of interactions does not improve
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Fig. 4 Learning curves (i.e. change of recall rate with increas-
ing number of interactions) for non-social learning methods in

three sample environments with different action and object space

rareness.

performance. The reason being that when the sound-
makers are very rare, even 116 interactions is often not
sufficient to randomly discover a sound-maker.

5 Experiments with Social Learning

Next, we present experiments evaluating social explo-
ration strategies. In these experiments one of the robots
(learner) explores the environment using a social strat-
egy while the other robot (social partner) has a pre-
defined behavior. The social partner behavior influences
how much the learner can benefit from the social part-
ner as a ‘teacher’, therefore we systematically vary it.
We first present the implementation of the strategies
and social partner behaviors, followed by comparative
results.

5.1 Implementation of Social Exploration Strategies

As with the non-social strategies, the four social explo-
ration strategies are implemented by varying the ways
in which object and action saliencies are updated after
each interaction with the environment.

(1) Stimulus Enhancement: The robot prefers to inter-
act with objects that its playmate has interacted with.
After every observed interaction, the learner increases
the saliency of attributes of the object that the social
partner has interacted with and decreases others.

(2) Emulation: The robot prefers objects seen to have
given the desired effect. If an observed interaction pro-
duces sound, the saliencies of the attributes of the ob-
ject used are increased. Otherwise, the saliencies are
randomized.

(3) Mimicking: This strategy involves copying the ac-
tions of the social partner. We implement two versions:

– Blind: The learner mimics every partner action.
– Goal-based: The learner mimics actions only after it

observes the goal.

Use of the term ‘mimicking’ in animal behavior liter-
ature is closer to blind, but this distinction is useful in
illustrating computational differences between the so-
cial mechanisms.

(4) Imitation: In imitation, the learner focuses on the
objects used by its social partner and copies the actions
of the social partner. Again, there are two versions:

– Blind: The learner always imitates its social partner.
– Goal-based: It imitates after it observes the goal.

Both stimulus enhancement and emulation influ-
ence object attribute saliencies, but do not imply any-
thing about actions. Action selection is random in these
strategies. On the other hand, mimicking influences ac-
tion saliencies while having no implication on objects.
Object saliencies are updated randomly in mimicking.
Imitation combines the strength of both, varying both
the object and action saliencies based on the observa-
tion of the social partner. The social exploration strate-
gies and their use of object, action and result compo-
nents of the demonstration are summarized in Fig. 5.
The implementation details for saliency update rules
are given in Table 6.
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Table 6 Saliency update rules of all exploration strategies. f denotes an object feature (e.g. color ), vf denotes an object feature value
(e.g. green), sal(vf ) denotes the saliency of the feature value, pa denotes parameters related to action a (including the ActionType

parameter), p denotes any action parameter, vp denotes the value of an action parameter (e.g. very-far), soundprev denotes whether
the learner’s previous interaction produced sound, soundpartner denotes whether the interaction of the social partner produced sound.

Note that saliency values are bounded to the [0, 1] range to avoid divergence. The upper and lower bounds are asserted after every

update.

Strategy
Update Rules

Object Saliencies Action Saliencies

Random ∀f : ∀vf : sal(vf )← rand(0, 1) ∀p : ∀vp : sal(vp)← rand(0, 1)

Goal-directed

if(soundprev) ∀f : if(soundprev) ∀paprev :

∀vf = vf prev
: sal(vf )← sal(vf ) + 0.2 ∀vp = vpprev : sal(vp)← sal(vp) + 0.2

∀vf 6= vf prev
: sal(vf )← sal(vf )− 0.1 ∀vp 6= vpprev : sal(vp)← sal(vp)− 0.1

else: ∀f : ∀vf : sal(vf )← rand(0, 1) else: ∀p : ∀vp : sal(vp)← rand(0, 1)

Novelty-based
∀f : ∀vf = vf prev

: sal(vf )← sal(vf )− 0.1 ∀paprev : ∀vp = vpprev : sal(vp)← sal(vp)− 0.1

∀vf 6= vf prev
: sal(vf )← sal(vf ) + 0.2 ∀vp 6= vpprev : sal(vp)← sal(vp) + 0.2

Stimulus enh.
∀f : ∀vf = vf partner

: sal(vf )← sal(vf ) + 0.2
Same as Random.

∀vf 6= vf partner
: sal(vf )← sal(vf )− 0.1

Emulation

if(soundparner) ∀f :

Same as Random.
∀vf = vf partner

: sal(vf )← sal(vf ) + 0.2

∀vf 6= vf partner
: sal(vf )← sal(vf )− 0.1

else: ∀f : ∀vf : sal(vf )← rand(0, 1)

B. Mimicking Same as Random.
∀papartner : ∀vp = vppartner : sal(vp)← sal(vp) + 0.2

∀vp 6= vppartner : sal(vp)← sal(vp)− 0.1

G. Mimicking Same as Random.

if(soundparner) ∀papartner :

∀vp = vppartner : sal(vp)← sal(vp) + 0.2

∀vp 6= vppartner : sal(vp)← sal(vp)− 0.1

else: ∀p : ∀vp : sal(vp)← rand(0, 1)

B. Imitation Same as Stim. Enhancement. Same as B. Mimicking.

G. Imitation Same as Emulation. Same as G. Mimicking.

DEMONSTRATION 
[object; action; result]

Stimulus Enhancement 
increase object saliency

Emulation

if (result = goal)
increase object saliency

else
randomize object saliency

Mimicking (blind) 
increase action saliency

Mimicking (goal-based)

if (result = goal)
increase action saliency

else
randomize action saliency

SOCIAL EXPLORATION 

Social partner

Learner

Imitation (blind)

increase object and action saliency

Imitation (goal-based)

if (result = goal)
increase object and action saliency

else
randomize object and action saliency

OBJECT ATTENTION ACTION SELECTION

BOTH

Fig. 5 Implementation of the social learning mechanisms and
their use of object, action and result information from the social

partner’s demonstration.

5.2 Social Partner Behavior

The behavior of the social partner has a crucial effect
on the learner. With particular social partner behaviors,

these exploration strategies can become equivalent. For
instance if the partner produces a sound with every
interaction, stimulus enhancement and emulation be-
have very similarly. If the partner explores objects and
actions randomly, a learner that blindly imitates will
learn as if it was exploring randomly itself. Therefore
to compare the strategies fairly, we systematically vary
the behavior of the social partner.

There are four possible types of demonstrations in
terms of the useful information communicated to the
learner:

– Goal-demonstration: The target goal (sound) is shown
with an appropriate action (sound-producing action)
and appropriate object (sound-maker object).

– Action-demonstration: A sound-producing action is
demonstrated on a non-sound-maker object.

– Object-demonstration: A non-sound-producing ac-
tion is performed on a sound-maker object.

– Negative-demonstration: A non-sound-producing ac-
tion is performed on a non-sound-maker object.

Social partner behaviors emerge as a result of dif-
ferent demonstration preferences. We consider three be-
haviors, summarized in Table 7:
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Table 7 Demonstration type preferences for three social partner
behaviors.

Demo. Type Same-goal Different-goal Focused-demo.

Goal-demo. 60% 20% 20%
Action-demo. 20% 20% 80/0%

Object-demo. 20% 20% 0/80%

Neg.-demo. 0% 40% 0%

Social partner with same goal: In this case, the goal
of the social partner largely overlaps with that of the
learner. The partner spends a lot of time demonstrating
the goal.

Social partner with different goal: Here, the goal of
the partner has a small overlap with the learner and
it spends little time demonstrating the goal. We do not
define a particular goal for this social partner but we as-
sume that it is related to an effect that is different from
sound and that as a result the sound effect is demon-
strated infrequently.

Social partner with focused demonstration: In the
third case, the partner spends most of its time focusing
either on the target action or object, without produc-
ing the goal. Focused demonstration can be considered
a typical kind of teaching behavior. A teacher who is
trying to teach a particular action might demonstrate
it on an arbitrary object. Similarly, a teacher might
present objects that are known to have useful affor-
dances to the learner but let the learner discover what
actions produce the desired effects on the object.

From the perspective of the learning strategies these
different social partners give different amounts of infor-
mation. While the same goal partner gives useful infor-
mation most of the time for all strategies, the different
goal partner rarely gives useful information. The social
partner with focused demonstrations also gives useful
information all the time, but it is partial. Strategies
that pay attention to the wrong part of their demon-
strations, or strategies that pay attention only when
the goal is observed will not benefit from such partially
useful demonstrations.

These social partner behaviors are ones we believe
are fairly generic, and will transfer well to a situation in
which a human is the social partner. Experiments with
human trainers is left as future work. The goal of this
work is to show the computational differences between
strategies in a controlled learning environment.
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Fig. 6 Comparison of social learning mechanisms for (a) dif-

ferent sound-maker object frequencies and (b) different sound
producing action frequencies. The social partner has the same

goal as the learner.

5.3 Results of Social Learning Experiments

As in the non-social experiments, the different environ-
ments correspond to different frequencies of sound pro-
ducing objects or actions, which we systematically vary.
In this section we present results from simulation for all
environments, strategies and social partner behaviors.

Performance of social learning with a same goal so-
cial partner is presented in Fig. 6 for environments with
different sound-maker object frequencies and different
sound producing action frequencies. Similarly, perfor-
mance for learning with a different goal social partner
is given in Fig. 7; and for learning with a focused demon-
strations social partner is given in Fig. 8. In this section,
we analyze these results with respect to the environ-
ments in which each strategy is preferable. The effect
of sound-maker rareness on learning performance, as
determined by one-way ANOVA tests, are reported on
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each graph. Additionally, the significance level of the
difference between the two strategies plotted in each
graph according to a T-test are indicated (* for p < .05,
** for p < .005). The T-tests indicate the difference be-
tween the blind and goal-directed versions of the strate-
gies that focus on a particular aspect of the learning
space (object space, action space or both).

5.3.1 Comparison with non-social exploration

Comparing Fig. 3 and Fig. 6 we observe that social
learning usually outperforms non-social learning. How-
ever, when the learned affordance is not rare, random
and novelty-based exploration have comparably high
performance. Non-social learning in such cases has two
advantages: (1) it does not require social partners and
(2) it is less perceptually demanding on the learner in
terms of identifying social partners and perceiving ac-
tions performed and objects used.

Additionally, non-social strategies can do better in
environments with high sound-maker frequency when
they are allowed to interact for a longer duration. For
instance doubling the number of training interactions
raises the performance of random and novelty-based
exploration to 90-100% in environments with 75% and
50% sound-makers (Cakmak et al., 2009). Fig. 4 also
shows that increasing the number of interactions im-
proves the performance for non-social exploration es-
pecially in environments with frequent sound-makers.
Since there’s no requirement of a social partner, it’s ac-
ceptable to perform non-social exploration for longer
durations to collect more interaction samples.

5.3.2 Paying attention to objects

As observed in Fig. 6(a), increasing object rareness does
not affect the performance of object focused strategies
(stimulus enhancement and emulation) but it signifi-
cantly reduces the performance of action focused strate-
gies (mimicking). This suggests that when the object
with the desired affordance is very rare, it is useful to
let the social partner point it out. By randomly explor-
ing actions on the right object the learner can discover
affordances.

5.3.3 Paying attention to actions

Similarly, when the sound producing actions are rare,
doing the right action becomes crucial. Performance of
mimicking stays high over reducing sound-producing
action frequencies (Fig. 6(b)).

Practically, mimicking will often be more powerful
than the object-focused strategies since action spaces

are usually larger than object spaces (which are natu-
rally restricted by the environment). For instance, the
most salient feature combination may be large-red-square,
but if there is no such object the robot may end up
choosing small-red-square. Generally, all feature combi-
nations are not available in the environment, but all ac-
tions are. In these experiments, action and object spaces
had the same number of possible configurations, thus
having similar rareness effects.

5.3.4 Imitation

Following from the previous two cases when everything
is rare the most powerful strategy is imitation. As ob-
served from Fig. 6 imitation performs well in all envi-
ronments. This raises a question as to why imitation
should not be the default strategy. There are two main
disadvantages to always using imitation. First, it is the
most computationally demanding for the learner; it re-
quires paying attention to the context and and the ac-
tion. Second it is also demanding of the demonstrator.
For instance in the case where sound-maker objects are
rare but the sound producing action is not, the demon-
strator can just perform an object-demonstration rather
than a goal-demonstration (Sec. 5.2). A robot could be
equipped with other means for directing the attention
of the learner to the right object without a demonstra-
tion. Examples include pointing to the object, pushing
the object towards the learner, shaking the object, gaz-
ing at the object or putting away all other objects.

5.3.5 Paying attention to the goal

The performance of stimulus enhancement and emula-
tion are very similar in Fig. 6. Likewise there are few sig-
nificant differences between goal-based and blind strate-
gies for mimicking or imitation. This suggests that when
interacting with a social partner with the same goal as
the learner, paying attention to the effect of demon-
strations is less important. The attention of the learner
is already attracted to the object that was interacted
with, which happened to also produce sound since a
high fraction of the demonstrations do so.

If the social partner has a different goal we observe
that the performance of blind strategies is lower than
that of goal-based strategies as shown in Fig. 7. In this
case, blindly copying aspects of the demonstration re-
sults in an exploration focused on the wrong objects or
actions. In other words they are misled to uninforma-
tive parts of the context and action spaces. Goal-based
strategies, on the other hand, only pay attention to the
social partner’s useful demonstrations. The rest of the
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Fig. 7 Comparison of social learning mechanisms for (a) dif-

ferent sound-maker object frequencies and (b) different sound
producing action frequencies; social partner has a different goal.

time they randomly explore based on this useful infor-
mation and thus have a higher chance to discover and
gain experience with sound-makers.

In Fig. 8 we observe that the performance of the
blind strategies are better than those of the goal-based
strategies when the social partner performs focused demon-
strations of objects or actions without producing the
desired effect. The blind strategies benefit from these
demonstrations by being directed to the right parts
of their action or context space while the goal-based
strategies ignore these demonstrations.

We could imagine a teacher providing action demon-
strations on an arbitrary object, or simply presenting
objects that are known to have useful affordances to the
learner. In such cases it is useful to trust the teacher
even if the goal has not been observed. By trusting the
teacher the learner later comes to uncover the use of
copied actions.
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Fig. 8 Comparison of social learning mechanisms for (a) dif-

ferent sound-maker object frequencies when the social partner
demonstrates the sound-maker objects and (b) different sound

producing action frequencies when the social partner demon-
strates the sound producing actions without actually producing

sound–focused demonstration

5.4 Asymmetry between object and action spaces

It can be noticed that the performance in similar parts
of the object and action space are not exactly symmet-
ric for similar behaviors. For instance in Fig. 7, in (a) at
high sound-maker object frequencies the performance of
emulation is as high as 90-100%, whereas in (b) at high
sound-producing action frequencies the performance of
goal-directed mimicking is about 70%. This is due to a
subtle difference between the representation of object
and action spaces. The action space consists of two in-
dependent smaller subspaces corresponding to each ac-
tion. Learning about the parameters of one action does
not provide any information for the other action and
therefore both actions need to be explored sufficiently.
For instance if the robot is performing a grasp, the val-
ues of poking parameters are meaningless. Additionally



14

the robot needs to simultaneously learn which action is
useful in a given situation, as well as its parameters. On
the other hand interaction with one object provides in-
formation about all attributes in the object space since
all objects are represented with a value for each at-
tribute. This makes the action space harder to explore
than the object space. As a result the performance of
object focused strategies in the object space, is better
than the performance of action focused strategies in the
action space.

6 Validation on the Physical Robots

A simplified version of the simulation experiments were
run on the physical robots as described in Section 5.
In this section we first give implementation and exper-
imental details specific to the physical experiment and
then present results that support our findings from the
simulation experiment.

6.1 Implementation

Objects and Actions: As noted earlier, in practice the
action space is often much larger than the object space.
Accordingly, in the physical experiments we have 4 ob-
jects (2 colors, 2 sizes) and 18 possible actions (poke
or grasp, 3 grasp widths, 3 poke speeds and 3 acting
distances).

Perception: In the real robot experiment the configu-
ration of objects in the environment is assumed to be
fixed. When the learner decides to interact with a spe-
cific object it first navigates to the a known location
that is approximately in front of the desired object.
Then it uses the location of the object in the camera
image and the known neck angle to adjust its distance
to the object. The objects are detected in the camera by
filtering the image for pre-defined color templates and
finding connected components (blobs) in the filtered im-
age. Features of the desired object (color and size) are
also verified based on the detected blob. Sound detec-
tion is based on pitch thresholding through the micro-
phones embedded on the webcams. The sound-maker
objects have coins inside which makes them produce a
detectable sound when dropped or tapped.

Perception of the social partner is also simplified in
the physical robot experiment. After each action of the
social partner, the information about the object that
was interacted with, the action that was performed and
the outcome of the interaction (sound/no sound) is sent
to the learner by its social partner.

Table 8 Recall rate in physical robot experiments.

Environment Stim. Enh. B. Mimicking

Act.:50%, Obj.:50% 70% 100%

Act.:50%, Obj.:25% 86% 60%
Act.:3%, Obj.:50% 0% 100%

Act.:3%, Obj.:25% 20% 100%

6.2 Experiments

The experiments are performed in two different envi-
ronments where (i) all small objects make sound (50%)
and (ii) only the small green object makes sound (25%).
We consider only two cases in which (i) poke always
produces a sound (50%) and (ii) only one particular set
of parameters for the grasp produces a sound and poke
does not produce a sound (∼3%). Thus there are four
different learning settings with different combinations
of action and object sound-making properties.

In the physical experiment there are 72 (4x18) possi-
ble test cases (interactions). SVM classifiers are trained
in a batch mode 8 interactions (∼10% of all possible in-
teractions). For each environmental condition, the ex-
periments are repeated 5 times with random initializa-
tion. We report average performance across these re-
peated experiments.

As we focus on the effect of asymmetry between the
object and action spaces in the physical experiment, we
experimented with two social strategies that focus on
the objects and actions respectively: stimulus enhance-
ment and blind mimicking. The social partner in these
experiments always demonstrates the goal.

6.3 Results

Table 8 gives the results of learning in four different en-
vironments for the two strategies. The given results are
the averages over 5 runs of 8 world interactions. The
results support our findings from simulation that the
performance of stimulus enhancement is less affected
by decreasing sound-maker percentage, while the per-
formance of mimicking is less affected by the decreasing
sound-producing action frequency. Furthermore, due to
the asymmetry in the action and object spaces in the
physical experiments, we observe that the reduction in
the performance of mimicking is less severe.

7 Generality of Results

In this section we address several follow-up items re-
lated to the generality of our results. We identify the
limitations of the results presented so far and provide
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extensions for these results in a sample setting. First
we consider alternative metrics to recall rate (accuracy
and correct decision making), second we consider dif-
ferent classifiers for learning, and finally we look at the
effects of noise on our results.

7.1 Alternate Performance Metrics

All of the previous results report recall rate. This cor-
responds to the correct prediction on the set of positive
examples (i.e. examples in which a sound was produced
as a result of the interaction). Although we motivate our
choice of recall rate as the main performance metric in
Section 7.1.2, this metric has some limitations. First, in
cases where positive examples are very rare, recall rate
reflects a test on very few samples. Secondly, this metric
does not give any information about what the classifier
will predict for negative interactions. In these respects,
another metric of interest is accuracy (i.e., correct pre-
diction on the complete systematic data set).

7.1.1 Accuracy

We look at accuracy results for both non-social and so-
cial strategies, across environments with different sound-
maker object rareness. In Fig. 9, we see that accuracy
remains high or increases for non-social strategies even
though we know from our previous analysis (see Fig. 3)
that recall rate goes down for all three strategies. When
positive interactions are rare, the number of positive
samples in the data set collected with non-social explo-
ration has very few or no positive samples. This results
in an overly negative classifier with a low recall rate.
On the other hand, the accuracy of the classifier is very
high since the test set mostly has negative samples, and
the classifier predicts them correctly.

In the social strategies, we primarily see accuracy
results that are complimentary to the recall results.
For example, Fig. 10(b) shows the accuracy of the vari-
ous social strategies, with a same-goal social partner, as
sound-maker objects become more rare. When sound-
makers are rare, we see that stimulus enhancement and
emulation have consistent accuracy results (which agrees
with the recall results). But the accuracy of mimick-
ing goes up with rareness (which is the inverse of its
falling recall performance). This is due to the classi-
fier’s propensity to predict false, which becomes more
accurate as positive examples become rare.

In both of these examples, the accuracy metric agrees
with the recall rate conclusions about social exploration
strategies. When sound-maker objects are rare, stimu-
lus enhancement or emulation would be preferred for
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Fig. 9 Comparison of accuracy for non-social learning mecha-

nisms on different sound-maker object frequencies.

their high recall rate and relatively high accuracy. Sim-
ilarly when sound producing actions are rare mimick-
ing is preferable. What accuracy tells us in these cases
is that the classifier is able to correctly predict nega-
tive cases as well as positive cases. This is a result of a
data set with balanced positive and negative samples.
With imitation on the other hand, we see that accu-
racy is quite low. Remember that imitation had excel-
lent performance in the previous experiments, very high
recall rates across various environments. However, the
accuracy results show that the classifiers built from the
imitation exploration strategies are too positive, and
haven’t had enough experience with the negative space
to build a good model.

In the accuracy analysis of social strategies pre-
sented above, the social partner has the same goal be-
havior. Similar results can be seen for the different goal
social partner, with accuracy results complimentary to
recall results in every respect except for imitation. In
the case of a different goal partner, goal-based imitation
has a low accuracy (overly positive) classifier, whereas
blind imitation does get some experience with negative
examples and therefore has a better accuracy.

7.1.2 Correct Decisions

Since our end-goal is for the robot to be able to make
appropriate use of its learned models, another perfor-
mance metric we consider is the percentage of “correct
decisions” the robot can make with its classifier. After
learning we ask the robot to “make sound” and measure
how often it can successfully choose an action-object
combination to do so.

In some ways this is the most interesting metric for
a robot learner, and it tests the applicability of the
learned classifiers. For example, a classifier that always
predicts ‘no sound’ may often be correct in terms of
prediction, but it would not be able to produce sound
because it does not know about any action-object pairs
that make sound. On the other hand, a classifier that
does predict ‘sound’ in some cases can decide to perform
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(b) Accuracy
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(c) Correct Decision

Fig. 10 Comparison of social and non-social learning mecha-

nisms for (a) different sound-maker object frequencies and (b)

different sound producing action frequencies. The social partner
has the same goal as the learner.

the interaction that predicts sound with the highest
confidence. To measure correct decision performance,
we do 100 randomly initialized learning sessions, and
determine how many result in the ability to choose an
action-object pair that makes sound.

When we look at this metric across all of the en-
vironments, exploration strategies and social partner
behaviors, we see that it directly correlates with the re-
call results. As one example, Fig. 10(c) shows correct
decision performance in environments with decreasing
sound-maker object percentage for social learning strate-
gies with a common-goal social partner. Similarly for
other environments and social partner behaviors, cor-
rect decision percentage correlates to the recall rate.
What this says is that even when learning results in
a classifier that is too optimistic, the confidence about
actually positive samples will be higher, so the robot
will make correct decisions by choosing the interaction
for which it is most confident that sound will be pro-
duced. When recall rate is low (that means the classifier
recalls fewer or maybe zero of the available positive in-
teractions) the chance of making a correct decision will
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(a) Naive Bayes Classifier
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(b) Decision Tree

Fig. 11 Comparison of different classifiers.

be lower or zero. Thus recall rate indicates how good
the resulting decision making will be.

7.2 Different Classifiers

The results presented in this paper are based on the per-
formance of an SVM classifier trained with the data col-
lected with different exploration strategies in different
environments. In order to investigate the limitations of
this particular choice of classifier we analyze the learn-
ing performance of two classifiers other than SVMs:
Naive Bayes classifiers (Langley et al., 1992) and Deci-
sion Trees. The Naive Bayes classifier learns the class-
conditional probabilities P(X=xi|C=cj) of each vari-
able xi (object features and action parameters) given
the class label cj (sound or no sound). It then uses
Bayes’ Rule to compute the probability of each class
given the values of all variables and predicts the more
probable class. A decision tree is a tree structure that
describes the prediction process based on the values of
each variable. Leaves on the tree correspond to predic-
tions (sound or no sound) and branches correspond to
different values or ranges of variables (object features
or action parameters). The decision trees are learned
using the C4.5 algorithm (Quinlan, 1993). We use the
WEKA (Hall et al., 2009) implementation of both clas-
sifiers with default parameters.

We trained these classifiers using data obtained with
the different social exploration strategies. We focused
on the particular situation where the social partner
has a common goal and we present results for different
sound-maker object frequencies while the sound pro-
ducing property of actions is kept constant. The recall
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rates are shown on Fig. 11 and can be compared with
the performance of SVM given in Fig. 10(a).

We observe that the performance of both classifiers
are similar to SVMs, where we see the action focused
strategies drop in recall performance as the as sound-
maker objects become more rare. The performance of
the Naive Bayes Classifier takes longer to converge, so
it has slightly lower performance in all cases. This dif-
ference is more emphasized for Stimulus Enhancement
and Emulation in environments with high percentage
of sound-makers, which may be due to several reasons.
First, these strategies get exposed to less positive ex-
amples as the social partner is not very helpful in these
environments. Secondly, in these environments the posi-
tive class (sound) is determined by disjunctive variables
(e.g. “all green and orange objects”, Table 2) which
takes more examples to learn since our input repre-
sentation is essentially conjunctive (i.e. when an ob-
ject is green it is also not-orange). The recall rate of
Decision Trees is similar to SVMs in all environments.
Even though no assertions can be made for other clas-
sifiers or learning algorithms based on these results, we
demonstrate that three very different classifiers have
very similar performances when using the same explo-
ration strategy to collect data. The exploration strate-
gies are independent of the learning algorithms. They
effect the content of the data and how good the data
set represents the concept that the classifier is learning.
Thus, we can expect similar effects on other classifiers.

7.3 Effects of Noisy Data

In all of the simulation experiments presented here, the
data was noise-free. Thus a final analysis we can look
at is the effect of different amounts of noise in sound
detection. For example, 5% noise means that randomly
5% of the interactions will do the opposite of what they
were supposed to: if they were supposed to produce
sound they will not, otherwise they will.

We analyze the effect of noise on learning curves.
Fig. 12 shows the effect of 5%, 10% and 20% noise
on social learning mechanisms for a fixed environment
(sound-maker percentage: 17%, sound-producing action
percentage: 17%, social partner behavior: common-goal).
We observe that increasing noise reduces the conver-
gence rate of the classifiers. As a consequence, the per-
formance of the classifier at a given instance (e.g. af-
ter 28 interactions) is reduced. Similar results are ob-
tained for different environments and social partner be-
haviors. Although the overall performance is degraded
by noise, the observations made in the previous experi-
ments holds for noisy data. In other words, the impact
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(a) 5% Noise
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(b) 10% Noise
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(c) 20% Noise

Fig. 12 Effect of different amounts of noise on learning curves
for social learning strategies.

of noise is similar on all strategies and their relative
performance remains the same in the presence of noise.

8 Discussion

In looking at social versus non-social learning, we see
that social learning often out performs self-learning and
is particularly beneficial when the target of learning is
rare (which confirms prior work (Thomaz and Cakmak,
2009a)). However, when the target is relatively easy to
find in the world, then many of the self-learning strate-
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gies had performance on par with social exploration.
One conclusion we draw from this work is that rather
than using one or the other, self and social learning
mechanisms will likely be mutually beneficial within a
single robot learning framework.

The bulk of our results in this work center on the
computational benefits of four biologically inspired so-
cial learning mechanisms: stimulus enhancement, em-
ulation, mimicking, and imitation. We demonstrated
that each strategy leads to different learning perfor-
mance in different environments. Specifically, we inves-
tigated two dimensions of the environment: 1) the rarity
of the learning target, and 2) the behavior of the social
partner. Furthermore, when the learning target is a rare
occurrence in the environment this can be due to the
size of the object (feature) space or the size of the ac-
tion space, and we differentiated between these two in
our analyses.

When the rareness of the target is due to the par-
ticular object space, then the mechanisms related to
object saliency (stimulus enhancement, emulation, and
imitation) perform best. These three all do equally well
if the social partner is actively demonstrating the goal.
However, if the partner is demonstrating other goals,
or only one aspect of the goal (either action or object),
then emulation and goal-based imitation outperform
stimulus enhancement because they pay attention to
the effects of the partner’s action to ignore demonstra-
tions unrelated to the target learning goal.

Alternatively, in an environment where only a few
specific actions produce the goal, then action oriented
mechanisms (mimicking and imitation) are best. Again,
when the social partner is demonstrating the goal, both
do equally well. Otherwise, goal-based mimicking and
imitation are preferred as they pay attention to effects.

Perhaps not surprisingly, goal-based imitation is ro-
bust across all the test environments. This might lead
one to conclude that it is best to just equip a robot
learner with the imitation strategy. However, there are
a number of reasons that a social robot learner should
also consider making use of non-imitative strategies.

Imitation is not always possible. When the agents
have different morphologies or different action reper-
toires, then the learner may not be able to copy the
exact action of the teacher. In this case emulation is a
good strategy, in which the learner tries to achieve the
demonstrated effects using its own action set. Paying
attention to effects as opposed to blind copying will also
be beneficial when there are multiple goals the robot
wants to learn. Various social partners might share only
a subset of these target goals, hence only a portion of
their demonstrations will be useful to the robot. Fi-
nally, requiring full demonstrations of the learning tar-

get may be a burden for the teacher, particularly when
this teacher is a human partner.

Imitation does not take full advantage of a social
partner. The learner should be able to make use of full
demonstrations when available, but as our results have
shown, social learning is more than just demonstra-
tions. Using non-imitative mechanisms in conjunction
with imitation learning can let a robot use more of the
partner’s input, taking advantage of their presence and
interactions in the environment even when they are not
actively giving demonstrations.

Imitation has a positive bias. When we compare the
strategies based on accuracy instead of recall rate, we
find that imitation has poor accuracy. Having seen a
very positive and small swath of the problem space,
imitation results in a classifier that is too optimistic.
The imitation strategy is best suited for a learning al-
gorithm that is not affected by a data set that is largely
biased in the positive direction. Alternatively, this pos-
itive bias could work well within a framework of self
and social learning in which self exploration accumu-
lates negative examples to create a balanced data set.

Thus, it is not surprising that nature endows hu-
mans and animals with a variety of mechanisms for
taking advantage of social partners in the learning pro-
cess. Our computational analysis finds that each serve
a different purpose in the learning process, and have
benefits over the others depending on the environment
(the rareness of the learning goal and the behavior of
the social partner).

Inspired by biological systems, we conclude that to
best take advantage of a social environment robots need
a repertoire of social learning mechanisms. In our future
work we are building a framework in which all four of
the mechanisms presented here can operate simultane-
ously in conjunction with self-learning. The challenge
becomes appropriately switching between strategies. A
näıve approach is to adopt a new strategy when the cur-
rent one ceases to be informative. A more sophisticated
approach might look for social or environmental “cues”
that indicate what “kind” of social partner is present
and how to best take advantage of their interactions in
the world.

9 Conclusion

We presented a series of experiments on four social
learning mechanisms: stimulus enhancement, emulation,
mimicking, and imitation. We looked at the task of a
robot learning a sound-making affordance of different
objects, while another robot (a social partner) inter-
acts with the same objects. The contribution of this
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work is the articulation of the computational benefit of
these four social learning strategies for a robot learner.
The fact that each strategy has benefits over others in
different situations indicates the importance of a social
learner having a repertoire of strategies available to take
advantage of social partners.
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