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Generation of bipedal walking through interactions among
the robot dynamics, the oscillator dynamics, and the
environment: Stability characteristics of a five-link planar
biped robot
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Abstract We previously developed a locomotion con-
trol system for a biped robot using nonlinear oscillators
and verified the performance of this system in order
to establish adaptive walking through the interactions
among the robot dynamics, the oscillator dynamics, and
the environment. In order to clarify these mechanisms,
we investigate the stability characteristics of walking
using a five-link planar biped robot with a torso and
knee joints that has an internal oscillator with a sta-
ble limit cycle to generate the joint motions. Herein we
conduct numerical simulations and a stability analy-
sis, where we analytically obtain approximate periodic
solutions and examine local stability using a Poincaré
map. These analyses reveal 1) stability characteristics
due to locomotion speed, torso, and knee motion, 2)
stability improvement due to the modulation of oscil-
lator states based on phase resetting using foot-contact
information, and 3) the optimal parameter in the os-
cillator dynamics for adequately exploiting the interac-
tions among the robot dynamics, the oscillator dynam-
ics, and the environment in order to increase walking
stability. The results of the present study demonstrate
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the advantage and usefulness of locomotion control us-
ing oscillators through mutual interactions.
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1 Introduction

A number of studies have developed sophisticated biped
robots and have successfully established bipedal walk-
ing based on model-based approaches using inverse kine-
matics and kinetics [25,31,35,38,42,60], which basically
generate robot motions based on criteria such as the
zero moment point [56]. However, accurate modeling of
both the robot and the environment and complicated
computations are necessary. The difficulty of achieving
adaptability to various environments in the real world
is often cited to illustrate this point. Designing a lo-
comotion control system to obtain such adaptability is
crucial.

In contrast to robots, animals generate locomotion
that is adaptive to diverse environments by coopera-
tively manipulating their complicated and redundant
musculoskeletal systems, where the most crucial con-
siderations are muscle tone control and rhythm con-
trol. A number of studies on robotics have been in-
spired by biological and physiological findings and have
achieved adaptive walking. Actually, a number of re-
searchers have demonstrated the essential role of mus-
cle tone control by appropriately applying mechanical
compliance in hexapod [1, 7, 12, 46, 49], quadruped [19,
33,45], and biped robots [26,54,59]. On the other hand,
we focused on the rhythm control [2, 3] inspired by
central pattern generators (CPGs) [22, 23, 43], which
generate rhythmic motor patterns in the spinal cord
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to create limb movements in animal walking. Central
pattern generators modulate rhythmic patterns in re-
sponse to sensory information, resulting in adaptive
behaviors. Central pattern generators are widely mod-
eled using nonlinear oscillators [28, 51–53], and based
on such CPG models, a number of walking robots and
their control systems have been developed, in particu-
lar, for quadruped robots [19, 33, 36, 55], multi-legged
robots [29, 62], snake-like and salamander robots [27,
28, 30], and biped robots [37, 40, 47].

In previous studies, we developed a locomotion con-
trol system for a biped robot by referring to CPG char-
acteristics [2,3]. In this system, the control system con-
sisted of internal oscillators that have their own dynam-
ics with a stable limit cycle. The oscillators generated
desired robot motions, and the oscillator states were
modulated by phase resetting based on foot-contact in-
formation, meaning that the walking behavior is gener-
ated through the interactions among the robot dynam-
ics, the oscillator dynamics, and the environment. Al-
though we only used joint and foot-contact information
without using information regarding ground reaction
forces or the absolute orientation of the robot relative to
the ground, we accomplished adaptive bipedal walking.
For example, the gait cycle was modulated depending
on the environmental situation, such as the slope an-
gle [2], and the phase difference of the leg movements
between the right and left legs was modulated during
turning [3], as in human walking [16]. The proposed
control system did not require accurate modeling or
complicated calculations. Although the control scheme
was simple, such obtained adaptabilities were notable.

The performance of the proposed control system
was verified by numerical simulations and hardware ex-
periments [2, 3]. However, the mechanisms for achiev-
ing adaptive walking through the dynamic interactions
among the robot, the oscillators, and the environments
were not necessarily clear. Therefore, we analytically
investigated these mechanisms based on a simple com-
pass model composed of three point masses, revealing
the self-stability characteristics [4], period-doubling bi-
furcations, and chaotic behaviors [5], and the stabil-
ity improvement due to phase resetting using the foot-
contact information [6]. However, the compass model
is very restricted and does not represent actual biped
robots. Actual robots have a torso, with the center of
mass located above the hip joints, and knee joints, that
generate clearance to prevent the swing leg from scrap-
ing the ground. The influence of these considerations
on the generation of walking behavior must be clarified
in order to completely understand the mechanisms by
which to create adaptive walking.

Although the interactions among the robot dynam-
ics, the oscillator dynamics, and the environment are
crucial for generating walking, there is no guiding prin-
ciple for designing these interactions. The proposed con-
trol system produced such interactions by the modula-
tion of the oscillator states based on phase resetting
using crucial foot-contact information. However, it is
generally difficult to determine the parameters in the
control system to generate adequate interactions to cre-
ate adaptive walking.

To clarify the issues surrounding adaptive walking,
in the present paper, we used a five-link planar biped
robot with a torso and knee joints that has an inter-
nal oscillator with a stable limit cycle to generate joint
motions. We investigated walking behavior through nu-
merical simulations and stability analysis in which we
analytically obtained approximate periodic solutions and
examined local stability using a Poincaré map. These
analyses reveal 1) stability characteristics due to loco-
motion speed, torso, and knee motion, 2) stability im-
provement due to the modulation of oscillator states
based on phase resetting using foot-contact informa-
tion, and 3) the optimal parameter in the oscillator dy-
namics for adequately exploiting the interactions among
the robot dynamics, the oscillator dynamics, and the
environment in order to increase walking stability.

The remainder of the present paper is organized as
follows. Section 2 introduces the five-link planar biped
robot model and demonstrates walking behavior driven
by an internal oscillator. Section 3 investigates the sta-
bility characteristics of the walking behavior, and Sec-
tion 4 verifies the stability improvement by modulating
walking behavior through phase resetting using foot-
contact information and deals with the parameter opti-
mization. Sections 5 and 6 present a discussion and the
conclusions, respectively.

2 Model and walking behavior driven by an
internal oscillator

2.1 Biped robot model

Figure 1 shows a schematic model of a biped robot com-
prised of a torso and two legs. Each leg consists of two
links (femur and tibia). The model walks on flat ground
and is constrained on the x-y plane, where the walking
direction is along the x-axis. When the stance leg is in
contact with the ground, the tip of the stance leg is
constrained on the ground without slipping. The model
has a touch sensor attached to the tip of each leg and
proprioceptive sensors to monitor the joint angles of
the leg. All joints have motors to manipulate the an-
gles. The model, however, has no actuator between the
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Fig. 1 Schematic diagram of the five-link planar biped robot

tips of the legs and the ground. In addition, the model
has no sensor to directly monitor its posture, i.e., the
absolute orientation of the robot with respect to the
ground. Therefore, it is necessary to establish adequate
postural behavior in order to generate stable walking
by controlling the internal joints of the robot based on
such local information as joint states and intermittent
foot-contact information.

The lengths of the femur and tibia are both la. The
centers of mass of the femur and tibia are located at
the center of each link. The legs are connected to the
torso at the hips at a distant of lc from the center of the
mass of the torso. The masses of the tibia, femur, and
torso are m1, m2, and m3, respectively. The moments
of inertia around the center of mass of the tibia, femur,
and torso are j1, j2, and j3, respectively. Acceleration
due to gravity is g.

We introduce relative angle θi (i = 1, . . . , 5) to de-
scribe the configuration of the robot model. Angle θ1 is
the angle of the tibia of the stance leg relative to a line
perpendicular to the ground, which corresponds to the
posture angle (absolute orientation of the robot) with
respect to the ground. Angles θ2, θ3, θ4, and θ5 are rel-
ative angles between the tibia and femur of the stance
leg, between the femur of the stance leg and the torso,
between the torso and the femur of the swing leg, and
between the femur and tibia of the swing leg, respec-
tively. Since each joint has a motor to control its be-
havior, except for angle θ1, joint angles θi (i = 2, . . . , 5)
are directly manipulated by the motors.

The step cycle of the walking motion consists of
two types of successive phases: swing and foot contact

phases. In the following sections, we explain the gov-
erning equations for these phases.

2.2 Swing phase model

When the model is supported only by the stance leg
and the swing leg is not in contact with the ground, the
equation of motion for state variable qT = [ θ1 θ2 θ3 θ4 θ5 ] ∈
R

5 is given as

K(q)q̈ + c(q, q̇) + ν(q) = u(q, q̇) (1)

where K(q) ∈ R
5×5 is the inertia matrix, c(q, q̇) ∈ R

5 is
the nonlinear term, ν(q) ∈ R

5 is the gravity term, and
u(q, q̇) ∈ R

5 is the input torque term (see Appendix A).
The model receives reaction force λT = [ λx λy ]

from the ground, where λx and λy represent the hori-
zontal and vertical components, respectively. This force,
which is equivalent to the constrained force to kinemat-
ically fix the tip of the stance leg on the ground, can
be derived from the equation of motion using general-
ized state variables, including the position of the tip of
the stance leg relative to the ground (see Appendix A).
When the reaction force satisfies the condition whereby
|λx| < μ|λy| during this phase, where μ is the static
friction coefficient, the tip of the stance leg remains
constrained on the ground. Otherwise, the tip of the
stance leg slips relative to the ground, which destroys
the physical conditions for investigating walking behav-
ior. Therefore, the condition of the tip of the stance leg
must be verified in order to validate the investigation
of the walking motion of the model, which is discussed
in Section 2.5.

The motors manipulate the joints based on PD feed-
back control using the desired states. Letting input torque
term u(q, q̇)T = [ 0 u2 . . . u5 ], input torque ui (i =
2, . . . , 5) of each motor is given by

ui = −κi(θi − θ̂i) − σi(θ̇i − ˙̂
θi) i = 2, . . . , 5 (2)

where κi and σi (i = 2, . . . , 5) are the gain constants

and θ̂i and ˙̂
θi (i = 2, . . . , 5) are the desired states of θi

and θ̇i, respectively, as explained in Section 2.4.

2.3 Foot contact model

When the tip of the swing leg touches the ground,
both legs contact the ground. During such a double-
supported phase, the model receives two reaction forces
from the ground. In general, humans and biped robots
have a step cycle of approximately 10% for the double-
supported phase during walking. As walking speed in-
creases, the ratio of the double-supported phase de-
creases. In the foot contact model, we follow the as-
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sumptions given in [24] and concentrate on the condi-
tion in which the swing leg has no slip and no rebound
at the foot contact and the double-supported phase du-
ration is sufficiently short relative to the step cycle. This
implies that immediately following the foot contact of
the swing leg, the tip of the swing leg is in turn con-
strained on the ground and the stance leg leaves the
ground, i.e., the swing leg instantaneously becomes the
stance leg, and vice versa.

The geometric condition for the swing leg to touch
the ground is given by

r(q) = cos θ1 + cos(θ1 + θ2) − cos(θ1 + θ2 + θ3 + θ4)

− cos(θ1 + θ2 + θ3 + θ4 + θ5) = 0 (3)

Since the roles of the legs switch between swing and
stance immediately following foot contact, the relation-
ship of the angles between just before and after foot
contact is obtained by⎡
⎢⎢⎢⎢⎣

θ+
1

θ+
2

θ+
3

θ+
4

θ+
5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0
0 −1 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

θ−1
θ−2
θ−3
θ−4
θ−5

⎤
⎥⎥⎥⎥⎦ (4)

where ()− and ()+ indicate the state immediately be-
fore and after foot contact, respectively. We write this
equation as q+ = Scq

−.
When the tip of the swing leg touches the ground,

the leg tip receives an impact from the ground and the
angular velocities suddenly change. Following [24], we
assume that the stance leg lifts off the ground without
interaction and that the double-supported phase dura-
tion is infinitesimally small relative to the time con-
stant of the feedback control of the motors. Angular
velocity q̇+ immediately after the foot contact and im-
pulse ξT = [ ξx ξy ] of this foot contact are given as (see
Appendix A)

q̇+ = Q(q−)q̇− (5)

ξ = X(q−)q̇− (6)

Note that, as described in the previous section, the im-
pulse components must satisfy the condition whereby
|ξx| < μ|ξy|, so that the tip of the swing leg does not
slip relative to the ground at foot contact, which is also
discussed in Section 2.5.

The assumptions of this foot contact model are sum-
marized as follows:

FA1. the swing leg has no slip and no rebound at touch-
down on the ground.

FA2. the double-supported phase duration ε is infinites-
imally short with respect to step cycle τ and time
constant δ of the feedback control of the joint mo-
tors (ε � τ, δ).

FA3. the stance foot leaves the ground without inter-
action.

2.4 Internal oscillator that generates desired joint
motions

As described in the introduction, CPG models are widely
used to control walking robots. In general, these mod-
els use one oscillator for each limb to generate mo-
tor commands to activate the limb, which means that
the relationship between the oscillator phases repre-
sents interlimb coordination [14,50,63]. For example, in
quadruped robots, the phase difference between the os-
cillators explains such gait patterns as walk, pace, trot,
and gallop. When biped robots turn to change walking
direction during walking, the phase difference between
the leg motions plays an important role in achieving
adaptive behavior [3]. However, when biped robots walk
in a straight line, the leg motions must be out of phase
in order to maintain alternating leg behavior. Since the
present paper focuses on normal planar walking, we use
one oscillator to keep the leg motions out of phase. Let
the amplitude and the phase of the oscillator be γ and
φ, respectively. Referring to [44], we use the following
dynamics, which determines the oscillator behavior

γ̇ = −κωγ(γ2 − s2)

φ̇ = ω (7)

where κ is a gain parameter, ω is a constant frequency,
and s is an input parameter. This oscillator dynamics
implies that the oscillator has a stable limit cycle, where
the oscillator amplitude has asymptotically stable value
(γ = s) and the phase has constant frequency ω.

Physiological findings imply that CPGs consist of
hierarchical networks: Rhythm Generator (RG) and Pat-
tern Formation (PF) networks [11,48]. The RG network
generates the basic rhythm and alters this rhythm by
producing phase shift and rhythm resetting affected by
sensory afferents and perturbations. The PF network
shapes the rhythm into spatiotemporal patterns of mo-
toneuron activation. Based on these findings, we gener-
ate desired joint motions using the rhythmic behavior
of the oscillator. More specifically, since human walking
behavior must represent such optimality as energy effi-
ciency to generate bipedal walking, we use human-like
walking motion for the desired joint motions. In human
walking during the swing phase, hip motion generates
the basic walking frequency, and the knee motion of
the swing leg has a frequency that is approximately
double that of the hips [58], which enables clearance to
prevent the swing leg from scraping the ground. These
motions appear as simple oscillation. Before the swing
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Fig. 2 Block diagram of the control system

leg touches the ground, it stretches the knee joint to
prepare for foot contact. Although the knee motion of
the stance leg has a double-knee action, its amplitude
is too small. Therefore, based on these kinematic char-
acteristics, we use the following desired joint motions:

θ̂2 = 0

θ̂3 = γ cos φ

θ̂4 = γ cos φ

θ̂5 =
{

βγ{1 − cos α(φ − φ0)} 0 ≤ α(φ − φ0) < 2π

0 α(φ − φ0) ≥ 2π
(8)

where the amplitude and phase of the oscillator deter-
mine the amplitude and phase of the leg motion, respec-
tively, φ0 is the oscillator phase value just after foot
contact, and β determines the amplitude of the knee
motions. We use α ≥ 2 to stretch the knee joint be-
fore foot contact. When we use β = 0, the robot model
has no knee motion and the walking behavior becomes
similar to that of a compass model. Note that since pa-
rameter ω in (7) implies the oscillator frequency, this
parameter determines the walking period.

Although joint angles exhibit no sudden changes be-
tween just before and just after foot contact, we switch
the leg roles between swing and stance at foot contact,
as in (4). Therefore, we also need to switch the desired
joint angles of the swing and stance legs. Desired state
(8) and relationship (4) generate the following condi-
tions for the oscillator states:

γ+ = γ−

φ+ = φ− − π (9)

The control scheme by the internal oscillator is shown
in Fig. 2.

2.5 Simulation results

In this section, we demonstrate the walking behavior of
the biped robot model driven by the oscillator. We use
the physical parameters shown in Table 1 and feedback
gains κi and σi (i = 2, . . . , 5) in (2) as follows:

κi = j2ω
2
0, σi = j22ζ0ω0 i = 2, 5

κi = j3ω
2
0, σi = j32ζ0ω0 i = 3, 4 (10)

Table 1 Physical parameters of the biped robot model

Parameter Value Parameter Value Parameter Value

la [m] 0.4 m1 [kg] 3.0 j1 [kgm2] 0.2

lc [m] 0.3 m2 [kg] 6.0 j2 [kgm2] 0.4

m3 [kg] 20.0 j3 [kgm2] 1.4
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Fig. 3 Stick diagram of walking behavior and postural motion
θ1 and θ̇1. (a) ω = 4.0 rad. Walking motion converges to periodic
motion. (b) ω = 2.5 rad. The walking model falls forward, and
the trajectory diverges from periodic behavior.

where we set ζ0 = 0.8 and ω0 = 40π. The other pa-
rameters are as follows: κ = 70, α = 2.5, β = 1.0, and
s = 0.1 rad.

In particular, we illustrate two cases of walking speed
using frequency ω. Figure 3 shows stick diagrams of the
walking behaviors, where the dotted lines indicate the
swing leg, and postural motion θ1 and θ̇1. In Fig. 3(a),
ω = 4.0 rad, where the walking motion converges to a
periodic motion, i.e., the walking motion is stable. In
Fig. 3(b), ω = 2.5 rad, the model falls forward, and
the trajectory in the θ1-θ̇1 plane deviates from periodic
behavior and diverges, i.e., the walking motion is un-
stable.

Since we use PD feedback control for the joint move-
ments, the gain parameters influence the walking be-
havior. In order to investigate the effects of the gain
parameters, we calculated the maximum value among
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Fig. 4 Effects of gain parameters in (a) joint feedback control
and (b) actuator saturation, showing the maximum error among

joint errors |θi − θ̂i| (i = 2, . . . , 5) and ratios between horizontal
and vertical reaction forces |λx/λy | and between horizontal and
vertical impulse at foot contact |ξx/ξy |. In the gray area, the
walking model falls down.

joint errors |θi−θ̂i| (i = 2, . . . , 5) and the ratios between
the horizontal and vertical reaction forces |λx/λy| and
between the horizontal and vertical impulse at foot con-
tact |ξx/ξy| for gain parameter ω0 during stable walking
with ω = 4.0 rad in Fig. 4(a). When the parameters are
too small, the errors between the joint angles and the
desired angles increase, and stable walking cannot be
obtained in the light gray area. In contrast, when the
parameters are too large, maximum motor torque in-
creases and influences the ground reaction force. How-
ever, for a large range of the gain parameters, the joint
errors and these ratios remain small. When the static
friction coefficient of the ground is larger than these ra-
tios, the stance tip remains constrained on the ground,
and the model can establish walking.

In addition to the feedback gains, actuator satu-
ration also influences the walking behavior. In order
to examine the effect of actuator saturation, we cal-
culated the maximum value among joint errors and the
ratios (|λx/λy|, |ξx/ξy|) for various actuator saturations
in Fig. 4(b). When the saturation is small, the errors
between the joint angles and the desired angles increase,
and stable walking cannot be obtained in the light gray
area. However, when the saturation is not so small, the
influence is sufficiently small.

3 Stability characteristics

The numerical simulations in the previous section demon-
strated that the proposed biped robot model achieves
stable or unstable walking depending on parameters
such as walking speed. This section clarifies the stability
characteristics of the proposed biped robot by analyt-
ically investigating walking behavior. We first conduct
an approximate analysis to establish the broad charac-
teristics and then verify these characteristics through
rigorous numerical simulations.

3.1 Assumptions for approximate analysis

For approximate analysis, we assume the following:

AA1. the motor controller uses high-gain feedback gains,
so that time constant δ of the feedback control is
infinitesimally short with respect to step cycle τ

(= π/ω) (δ � τ).
AA2. angles θi (i = 1, . . . , 5) are relatively small during

walking.

Assumption AA1 suggests that we can analyze walking
behavior when joint angles θi and angular velocities θ̇i

(i = 2, . . . , 5) are equivalent to the desired states (θi =

θ̂i(γ, φ), θ̇i = ˙̂
θi(γ, φ)). Under this assumption, we can

redefine the state variable as qT = [ θ1 θ̇1 γ φ ]. That
is, the walking behavior is determined by the postural
motion (absolute orientation of the robot) and oscillator
states. Assumption AA2 implies that we can deal with
the equations linearized with respect to the angles.

These assumptions facilitate the analysis of walk-
ing motion. However, note that, although assumption
AA1 demands that joint angles and angular velocities
be equivalent to the desired states, assumptions FA1
through FA3 mentioned in Section 2.3 imply that joint
angular velocities suddenly change based on (5) just
after foot contact, causing a discrepancy between joint
angular velocities by (5) and desired joint angular veloc-

ities by (8) and (9), i.e., θ̇+
i �= ˙̂

θi(γ+, ω+) (i = 2, . . . , 5).
Assumptions FA2 and AA1 suggest that double-supported
phase duration ε, time constant δ of the feedback con-
trol of the motors, and step cycle τ are related as ε �
δ � τ , which means that 1) when the swing leg touches
the ground, joint angular velocities change into θ̇+

i fol-
lowing (5) in period ε due to foot contact, 2) after
which, joint angular velocities change to desired veloc-
ities ˙̂

θi(γ+, ω+) following (8) and (9) in period δ due
to the feedback control in the motors. That is, joint
angular velocities change to desired velocities in pe-
riod δ (+ε) � τ from ˙̂

θi(γ−, ω−) to ˙̂
θi(γ+, ω+) (i =
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2, . . . , 5) after foot contact. Although the feedback con-
trol torques affect angular velocity θ̇1 of the posture
angle, they are internal forces. Since the model only re-
ceives external forces at the swing foot contact point,
the angular momentum around this point is conserved
during the duration in which joint angular velocities
change to desired velocities. Therefore, we can calcu-
late the angular velocity of the posture just after foot
contact θ̇+

1 from angular momentum conservation under
the conditions that the joint angles and angular veloci-
ties achieve the desired state just before and just after
foot contact. The angular momentums around the tips
of the legs are derived in Appendix B.

3.2 Approximate equations and solutions

Based on assumptions AA1 and AA2 in the previous
section, we reconstruct the equations to achieve approx-
imate periodic solutions. During the swing phase, the
joint angles are equivalent to desired states θi = θ̂i(γ, φ)
(i = 2, . . . , 5) in (8), and thus linearization of the first
row of (1) and (7) gives

q̇ = f(q)

=

⎡
⎢⎢⎢⎢⎣

θ̇1{
β1θ1 −

∑5
i=2

[
αi

¨̂
θi(γ, φ) − βiθ̂i(γ, φ)

]}
/α1

−κωγ(γ2 − s2)
ω

⎤
⎥⎥⎥⎥⎦(11)

where

αi =
5∑

j=i

aj , βi =
5∑

j=i

bj i = 1, . . . , 5

a1 = (3m1/4 + 3m2 + 2m3)l2a + m3lalc + j1

a2 = (m1/2 + 9m2/4 + 2m3)l2a + m3lalc + j2

a3 = m3(2la + lc)lc + j3

a4 = −(2m1 + 3m2)l2a/4 + j2

a5 = −m1l
2
a/4 + j1

b1 = (3m1/2 + 2m2 + m3)lag

b2 = (m1 + 3m2/2 + m3)lag

b3 = m3lcg

b4 = −(m1 + m2/2)lag

b5 = −m1lag/2

The geometric condition (3) for the swing leg to touch
the ground then becomes

r(q) = −θ2
1 −

{
θ1 + θ̂2(γ, φ)

}2

+
{

θ1 +
4∑

i=2

θ̂i(γ, φ)
}2

+
{

θ1 +
5∑

i=2

θ̂i(γ, φ)
}2

= 0 (12)

By considering that θ̂2(γ, φ) = θ̂5(γ, φ) = 0 at the foot
contact and θ̂3(γ, φ) = θ̂4(γ, φ) during walking, (12)
yields

r(q) = 8θ̂3(γ, φ)
{

θ1 + θ̂3(γ, φ)
}

= 0 (13)

Since θ̂3(γ, φ) = 0 indicates that the torso and femurs
are aligned, we ignore this equation and use

r(q) = θ1 + θ̂3(γ, φ) = 0 (14)

From the angular momentum conservation, the rela-
tionship for angular velocities just before and just after
foot contact is given by

θ̇+
1 = θ̇−1 − 1

α1

5∑
i=2

αi

{ ˙̂
θi(γ+, φ+) − ˙̂

θi(γ−, φ−)
}

(15)

Therefore, we obtain the relationship of the states just
before and just after foot contact from the first row of
(4), (15), and (9) as follows:

q+ = h(q−)

=

⎡
⎢⎢⎢⎣

θ−1 +
∑5

i=2 θ̂i(γ−, φ−)

θ̇−1 − 1
α1

∑5
i=2 αi

{ ˙̂
θi(γ−, φ−−π)− ˙̂

θi(γ−, φ−)
}

γ−

φ− − π

⎤
⎥⎥⎥⎦

(16)

Based on these equations, the approximate periodic
solutions become

θ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(k2 + k3){cosh(λΔ) sinh(λt)/ sinh(λτ)
− sinh(λ(t − τ))/ sinh(λτ)}
+(s + k1) cos φ0 sinh(λ(t − τ

2 ))/ sinh(λ τ
2 )

+k1 cos φ(t) + k2 cos α{φ(t) − φ0} + k3

for 0 ≤ t ≤ t0
−(k2 + k3){cosh(λΔ) sinh(λt)/ sinh(λτ)
− sinh(λ(t − τ))/ sinh(λτ) − cosh(λ(t − t0))}
+(s + k1) cos φ0 sinh(λ(t − τ

2 ))/ sinh(λ τ
2 )

+k1 cos φ(t) for t0 ≤ t ≤ τ

γ(t) = s for 0 ≤ t ≤ τ

φ(t) = ωτ + φ0 for 0 ≤ t ≤ τ (17)

where t = 0 is the time just after foot contact, t = t0(=
2π
αω ≤ τ) is the time when the swing leg stretches the
knee joint, t = τ(= π/ω) is the time just before the
next foot contact, and

λ =
√

β1/α1

Δ = τ − t0

k1 = −β3 + β4 + (α3 + α4)ω2

β1 + α1ω2
s

k2 =
β5 + α2α5ω

2

β1 + α2α1ω2
βs

k3 = −β5

β1
βs

φ0 = sin−1 λ(k2 + k3) sinh(λt0/2) cosh(λΔ/2)
{k1 + s(α3 + α4)/α1}ω cosh(λτ/2)
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Note that solution θ1(t) satisfies the continuities of the
angle and angular velocity at t = t0. Using these solu-
tions, approximate periodic solutions for the horizontal
λx and vertical λy ground reaction forces are given as

λx = {m3lc + (m1 + 3m2 + 2m3)la}θ̈1

+{m3lc − (3m1 + m2)la/2}¨̂θ3

−(3m1 + m2)la
¨̂
θ4/2 − m1la

¨̂
θ5/2

λy = {2(m1 + m2) + m3}g (18)

Figure 5 compares the approximate periodic solu-
tions and rigorous simulation results using the original
equations without incorporating assumptions AA1 and
AA2, where we used ω = 4.0 rad and the same values
for the other parameters, as in Section 2.5. Figures 5(a)
and (b) show angles θ1 · · · θ5 and oscillator states γ

and φ, where the approximate solutions establish re-
sults similar to those obtained through the numerical
simulations, verifying the validity of the approximate
analysis. Figure 5(c) shows the horizontal and verti-
cal reaction forces from the ground. Since the approx-
imate analysis is based on a linear analysis of angles,
the approximate solution for the vertical reaction force
becomes constant and induces a discrepancy between
the approximate solution and the rigorous simulation
result. The horizontal reaction force differs for the ap-
proximate solution and the simulation result from 0 to
0.2 s, as a result of the feedback control torque due
to the discrepancy between the joint angular velocities
and the desired states just after foot contact, as men-
tioned in Section 3.1. Figure 5(d) shows the ratio be-
tween the horizontal and vertical reaction forces, where
the maximum magnitude is 0.079. The simulation result
for the impulse at foot contact is |ξx/ξy| = 0.047. There-
fore, when the static friction coefficient of the ground
is larger than 0.079, the tip of the stance leg remains
constrained on the ground, and the model can establish
walking behavior.

3.3 Stability analysis using Poincaré map

In this section, we investigate the stability characteris-
tics of walking behavior. In particular, we examine local
stability using the obtained approximate periodic solu-
tions and a Poincaré map, where we use the state just
after foot contact as the state on the Poincaré section.
A Poincaré map is the return map from one point on
the Poincaré section to the next point on the Poincaré
section. Periodic behavior results in a fixed point on the
Poincaré section, and stability is determined from the
eigenvalues of the Jacobian matrix of the Poincaré map
around the fixed point. Periodic motion is asymptoti-
cally stable if all of the eigenvalues are inside the unit
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Fig. 5 Comparison between approximate solutions and simula-
tion results. (a) Angles, (b) oscillator states, and (c) ground re-
action forces. (d) Ratio between horizontal and vertical reaction
forces.

circle on the complex plane, i.e., all of the magnitudes
of the eigenvalues are less than 1.

Here, we derive the Jacobian matrix of the Poincaré
map using the obtained periodic solutions. Since walk-
ing motion is governed by continuous and discrete equa-
tions, the Jacobian matrix is affected by such a hybrid
structure. By following the derivation given by Cole-
man et al. [13], Jacobian matrix J can be calculated as
the product of the three matrices induced by the distur-
bances in the discrete changes due to the foot contact,
the change in its timing, and the evolved perturbations
during the continuous equation. From the obtained pe-
riodic solutions, Jacobian matrix J is given by (see
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Appendix C)

J =

⎡
⎢⎢⎣

J11 J12 � J14

J21 J22 � J24

0 0 e−2κωs2τ 0
J41 J42 � J44

⎤
⎥⎥⎦ (19)

where � does not influence the calculation of eigenval-
ues,

J1i = J4is sin φ0 i = 1, 2, 4

J21 = −{θ̈∗1(τ) + B24ω} cosh(λτ)/D0 + λ sinh(λτ)

J22 = −{θ̈∗1(τ) + B24ω} sinh(λτ)/(λD0) + cosh(λτ)

J24 = −{cosh(λτ) + 1}{[θ̈∗1(τ) + B24ω]ε6 sin φ0/D0

−ε6ω cos φ0 − ε7} − sinh(λτ){[θ̈∗1(τ) + B24ω]

×(ε6ω cos φ0 + ε7)/(λD0) − ε6λ sin φ0}
−{cosh(λΔ) + 1}ε7 + sinh(λΔ){θ̈∗1(τ) + B24ω}
×ε7/(λD0) − {θ̈∗1(τ)s sin φ0 − B24θ̇

∗
1(τ)}/D0

J41 = −ω cosh(λτ)/D0, J42 = −ω sinh(λτ)/(λD0)

J44 = −ω{ε6[(cosh(λτ) + 1) sin φ0 + sinh(λτ)ω cos φ0/λ]

+ε7[sinh(λτ) − sinh(λΔ)]/λ}/D0 + θ̇∗1(τ)/D0

and ()∗ is the periodic solution obtained using (17).
Note that we calculate Jacobian matrix J by incorpo-
rating all perturbations for the state variables without
confining them to the Poincaré section.

Matrix J has four eigenvalues Λ1 · · ·Λ4. One of these
eigenvalues is Λ1 = 0, which reflects the eigenvalue for
which the eigenvector is perpendicular to the Poincaré
section. In other words, δθ1+cosφ∗(0)δγ−γ∗(0) sin φ∗(0)δφ =
0, where δz is the perturbation of state z. The second
of these eigenvalues is Λ2 = e−2κωs2τ (< 1). The other
eigenvalues, Λ3,4, are calculated as follows:

Λ2 − (J22 + J44 + s sin φ0J41)Λ + J22J44 − J24J42

−s sinφ0(J21J42 − J22J41) = 0 (20)

These calculated eigenvalues indicate that when
maxi=3,4 |Λi| < 1, periodic walking is asymptotically
stable; otherwise it is unstable.

The calculated eigenvalues explain the stability of
the walking behavior. In the following, we investigate
the effects of the knee motion, the torso, and the loco-
motion speed on walking stability.

3.3.1 Effects of knee motion

As described in Section 2.4, the knee motion during the
swing phase produces clearance to prevent the swing leg
from scraping the ground. In addition to this geometric
role, we examine the dynamic effects of the knee motion
on walking stability with parameter β to change the
knee amplitude. For the other parameters, we use the
values described in Section 2.5.

Figure 6(a) shows the maximum eigenvalue between
Λ3 and Λ4 for knee amplitude β and locomotor fre-
quency ω, where the light gray area is the unstable re-
gion (maxi=3,4 |Λi| > 1) and the dark gray area is calcu-
lated by numerical simulations, in which the swing leg
scrapes the ground because the knee motion is small.
Note that, in the dark gray area, we calculate the eigen-
values by ignoring the foot scrapes and that, since Λ2 =
e−2κωs2τ is 0.012, the maximum eigenvalue of Jacobian
matrix J is determined from Λ3 and Λ4. The bold and
dotted lines are the stability boundaries of the approx-
imate analysis and the rigorous simulation results, re-
spectively, which establish similar results and verify the
validity of the stability analysis. This figure indicates
that the increased locomotion speed decreases the maxi-
mum eigenvalue and that a threshold exists for the loco-
motion speed to stabilize walking behavior. In addition,
the increased knee amplitude decreases the maximum
eigenvalue, although it is approximately constant in the
stability region. That is, the increased locomotion speed
and knee amplitude increase walking stability. When
we use β = 0, there is no knee motion and the walking
behavior resembles a compass model. The maximum
eigenvalue is larger than or equal to 1, and the model
cannot achieve sufficient stability, as obtained in [4].

This analysis reveals that knee motion contributes
to the generation of walking behavior not only by pro-
ducing clearance to prevent the swing leg from scraping
the ground but also by increasing stability due to its
dynamic effects.

3.3.2 Effects of the torso

Next, we investigate the effects of the torso. We retained
total mass 2(m1 + m2) + m3 and changed the mass
ratio m3/{2(m1 + m2)}. Thus, when this mass ratio
increases, the mass ratio of the torso increases. For the
moments of inertia, we used j1 = 0.2m1/3.0 kgm2, j2 =
0.4m2/6.0 kgm2, and j3 = 1.4m3/20 kgm2.

Figure 6(b) shows the maximum eigenvalue between
Λ3 and Λ4 for the mass ratio and locomotor frequency
ω, where the light gray area is the unstable region (maxi=3,4 |Λi| >

1). The bold and dotted lines are the stability bound-
aries of the approximate analysis and the rigorous sim-
ulation results, respectively, which also establish similar
results and verify the validity of the stability analysis.
This figure reveals that increased locomotion speed de-
creases the maximum eigenvalue and that a threshold
exists for the locomotion speed. Although the increased
mass ratio of the torso increases the stable region, it also
increases the maximum eigenvalue in the stable region.
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Fig. 6 Maximum eigenvalue between Λ3 and Λ4. The light gray
area is the unstable region, and, in the dark gray area, the swing
leg scrapes during walking. The bold and dotted lines indicate
the stability boundaries of the approximate analysis and rigorous
simulation results, respectively. (a) Effects of knee motion and

locomotion speed. (b) Effects of the mass ratio of the torso and
the locomotion speed.

4 Stability improvement by phase resetting

In the previous section, we investigated the stability
characteristics of walking behavior driven by an inter-
nal oscillator, where we generated joint motions using
the rhythmic behavior of the oscillator states. Since the
oscillator did not modulate its own behavior by sensory
information, the walking behavior was open-loop. How-
ever, the walking behavior should be generated through
the dynamic interactions among the robot, the oscilla-
tor, and the environment. Therefore, in this section, we
improve the walking behavior by incorporating a phase
resetting mechanism using foot-contact information.

4.1 Phase resetting

As mentioned in Section 2.4, the RG network in CPGs
creates the basic rhythm, and the PF network produces
the patterns of signals from the rhythm information

from the RG network to be delivered to the motoneu-
rons. The RG network modulates the basic rhythm by
producing phase shift and rhythm resetting affected by
sensory afferents and perturbations. Since the PF net-
work produces signal patterns based on the rhythm in-
formation from the RG network, such modulation of
the basic rhythm affects signal generation in the PF
network. Such phase and rhythm modulation plays an
important role in generating adaptive walking behavior.
Yamasaki et al. [61] and Aoi et al. [8, 9] simulated hu-
man bipedal walking and examined robustness against
force disturbances. They prepared joint angles or motor
commands encoded by the oscillator phase, and mod-
ulated the joint motions or motor commands by reset-
ting the oscillator phase when disturbed. Their sim-
ulation illustrates that such phase resetting prevents
falling against postural disturbances induced by per-
turbations and increases stability.

In robotics research, a number of studies have demon-
strated the advantage of phase resetting to achieve sta-
ble walking using biped robots [2,3,6,40,41]. In partic-
ular, phase reset followed by foot contact is effective,
resulting in smooth transition from the swing to stance
phases. Therefore, in the following section, we incor-
porate such a phase resetting mechanism using foot-
contact information.

4.2 Phase resetting model

Just after foot contact, we reset the oscillator phase to
φ0, obtained by numerical simulations and approximate
analysis, as follows:

φ+ = φ0 (21)

Accompanied by this phase resetting, we modulated the
oscillator amplitude to avoid inducing discrete changes
in the desired joint angles by

γ+ = −γ− cos φ−/ cosφ+ (22)

Therefore, among the governing equations in Section 2,
only (9) changes.

4.3 Stability characteristics

In this section, we examine the stability characteristics
of walking behavior by incorporating phase resetting.
As in Section 3, we analyze the stability characteristics
based on an approximate analysis using the same as-
sumptions and then verify the obtained results through
rigorous numerical simulations.
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Due to (21) and (22), only (16) in the approximate
equations in Section 3.2 changes to

q+ = h̃(q−)

=

⎡
⎢⎢⎢⎣

θ−1 +
∑5

i=2 θ̂i(γ−, φ−)

θ̇−1 − 1
α1

∑5
i=2 αi

{ ˙̂
θi(γ−, φ−−π)− ˙̂

θi(γ−, φ−)
}

−γ− cos φ−/ cos φ0

φ0

⎤
⎥⎥⎥⎦

(23)

Since this change does not influence the approximate
solutions, we achieve the same solutions as (17).

In order to investigate the stability characteristics,
we derive the Jacobian matrix in the manner described
in Section 3.3. Jacobian matrix J̃ with phase resetting
is given by (see Appendix C)

J̃ =

⎡
⎢⎢⎣

J̃11 J̃12 J̃13 �

J̃21 J̃22 J̃23 �

J̃31 J̃32 J̃33 �

0 0 0 0

⎤
⎥⎥⎦ (24)

where � does not influence the calculation of the eigen-
values,

J̃1i = J1i i = 1, 2

J̃13 = (sω sin φ0/D0−1)cosφ0e
−2κωs2τ −sω sinφ0E13/D0

J̃21 = −{θ̈∗1(τ) + B̃24ω} cosh(λτ)/D0 + λ sinh(λτ)

J̃22 = −{θ̈∗1(τ) + B̃24ω} sinh(λτ)/(λD0) + cosh(λτ)

J̃23 = −{θ̈∗1(τ) + B̃24ω}E13/D0 + E23

+{[θ̈∗1(τ) + B̃24ω] cos φ0/D0 + B̃23}e−2κωs2τ

J̃3i = −J̃1i/ cosφ0 i = 1, 2, 3

Matrix J̃ has four eigenvalues Λ̃1 · · · Λ̃4. Two of
these eigenvalues are zero, that is, Λ̃1,2 = 0, and the
other two, Λ̃3,4, are calculated as follows:

Λ̃2 − (J̃22 + J̃33 − cos φ0J̃31)Λ̃ + J̃22J̃33 − J̃23J̃32

+ cosφ0(J̃21J̃32 − J̃22J̃31) = 0 (25)

Therefore, when maxi=3,4 |Λ̃i| < 1, periodic walking is
asymptotically stable; otherwise it is unstable.

Figures 7(a) and (b) show the maximum eigenvalue
between Λ̃3 and Λ̃4 for knee amplitude β and locomotor
frequency ω and for the mass ratio of the torso and lo-
comotor frequency ω, respectively, where the light gray
area indicates the unstable region (maxi=3,4 |Λ̃i| > 1)
and the dark gray area is the area calculated by nu-
merical simulations, where the swing leg scrapes the
ground, because the knee motion is small. The bold
and dotted lines are the stability boundaries of the ap-
proximate analysis and rigorous simulation results, re-
spectively, which achieve similar results and verify the
validity of this analysis. Compared to Figs. 6(a) and
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Fig. 7 Maximum eigenvalue between Λ̃3 and Λ̃4. The light gray
area indicates the unstable region, and dark gray area indicates
the area in which the swing leg scrapes during walking. The bold
and dotted lines indicate the stability boundaries of the approx-
imate analysis and the rigorous simulation results, respectively.
(a) Knee amplitude and locomotion speed. (b) Mass ration of the
torso and locomotion speed.

(b), which do not incorporate phase resetting, the sta-
bility structure is greatly changed. Although the stable
regions for parameters exhibit almost no change, the
maximum eigenvalue decreases, which verifies the sta-
bility improvement due to the modulation of oscillator
states based on phase resetting using foot-contact in-
formation, as in [6].

4.4 Optimization

Walking behavior is generated through the interactions
among the robot dynamics, the oscillator dynamics, and
the environment. Although such interactions are cru-
cial, there is no guiding principle for designing these
interactions. As described above, the proposed model
produced the interactions by the modulation of the os-
cillator phase due to phase resetting using foot-contact
information, which played an important role in produc-
ing stable walking, as investigated in the previous sec-
tion. When the oscillator phase is reset, the oscillator
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amplitude is also modulated as describe in (22). The
amplitude follows its dynamics (7) and asymptotically
approaches a stable value, s, which modifies the robot
motion and results in stability improvement. As shown
in (7), gain parameter κ represents the strength of the
interactions. Therefore, determining this parameter is
important in order to adequately exploit the interac-
tions to generate stable walking.

Figure 8 shows the maximum eigenvalue between Λ̃3

and Λ̃4 for gain parameter κ, where we used ω = 4.0 rad
and the other parameters are as shown in Section 2.5.
The maximum eigenvalue is minimized at κ = 74, indi-
cating that we can obtain optimal interactions from the
viewpoint of stability. When we used κ = 0, there is no
such interaction and the maximum eigenvalue becomes
1, which reflects that the model cannot achieve suffi-
cient stability. Figure 9 shows the behavior of angular
velocity θ̇+

1 of the posture angle just after foot contact
with and without phase resetting using the optimal gain
obtained by numerical simulations by adding a distur-
bance, which demonstrates that the rate of convergence
increases using phase resetting and optimal gain.

5 Discussion

5.1 Locomotion control using an oscillator

In the present paper, we investigated the stability char-
acteristics of the walking behavior of a five-link planar
biped robot. We used an internal oscillator that has
a stable limit cycle and generated joint motions using
the oscillator states. Although the robot does not re-
quire any actuators or sensors to directly control and
monitor postural motion (absolute orientation of the
robot), stable walking is achieved depending on param-
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Fig. 9 Behavior of angular velocity θ̇+
1 of the posture angle just

after foot contact, for the case of the addition of a disturbance

eters such as walking speed, knee amplitude, and dis-
tribution of mass. Furthermore, we used foot-contact
information that intermittently occurs during walking
and modulated the oscillator states based on the infor-
mation using phase resetting, which improved walking
stability. Although limit cycle oscillators, such as the
van der Pol oscillator, have been used to control biped
robots [17, 18, 32, 64], the obtained results show that
walking behavior is improved through the interactions
among the robot dynamics, the oscillator dynamics, and
the environment.

In previous studies, we used an actual biped robot
without actuators and sensors to directly control the
postural behavior and developed its locomotion con-
troller using oscillators as in the present study [2,3]. We
generated desired joint motions using oscillator phases
and modulated them based on phase resetting using
foot-contact information, which achieved adaptive walk-
ing behaviors. As mentioned above, although many re-
searchers created sophisticated biped robots and con-
trol systems, most generated robot motions based on
criteria such as zero moment point [56], which requires
accurate modeling of both the robot and the environ-
ment and complicated computations. However, the pro-
posed controller does not need such modeling or calcu-
lations and its control scheme is simple. The present
paper follows the approach of our previous studies and
demonstrates the advantages of a control system using
oscillators.

5.2 Contraction of state variables

In the present study, we created desired joint motions
by oscillator states and controlled joints using PD feed-
back control. Since we used high-gain feedback gains,
we assumed that the joints achieved the desired states
in the approximate analysis, resulting in the descrip-
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tion of joint states by the oscillator states. Therefore,
we can only describe walking behavior by the postu-
ral motion (absolute orientation of the robot) and the
oscillator states. Since the oscillator originally has a
stable limit cycle, the stability depends on the pos-
tural behavior that is driven by periodic motions of
the joints, gravitational force, and foot contact events.
Depending on the walking speed, knee amplitude, and
distribution of mass, the relationship among their dy-
namic contributions changes, which influences the sta-
bility characteristics. Although high-gain feedback con-
trol and oscillator-driven walking behavior result in such
contraction of the state variables, when we use a much
larger value for feedback gains, the maximum feedback
torque also becomes large, which affects the ground re-
action force, and the ratio between the horizontal and
vertical components increases. Therefore, we must care-
fully treat the feedback gains.

Regarding the stabilization of planar biped robots,
Grizzle et al. [24] and Westervelt et al. [57] used three-
and five-link biped models without actuators on the
feet to directly control the postural movement (abso-
lute orientation of the robot). However, they did con-
sider robots that could directly monitor the postural
behavior. They successfully established stable bipedal
walking by incorporating finite-time stabilizing feed-
back control and zero dynamics and contracting robot
states based on the postural state. In the present pa-
per, the robot was not aware of its postural movements,
which makes it more difficult to create stable walking,
and postural behavior was determined through dynam-
ics affected by the joint motions described by the oscil-
lator states. Therefore, we dealt with the posture and
oscillator states separately.

5.3 Relationship with passive dynamic walking

Passive dynamic walking is a common walking model
in which a robot walks down a shallow slope using only
the energy of gravity [39]. The robot requires no actua-
tors or sensors and has self-stability as an inherent dy-
namic characteristic [20]. Using such characteristics, a
number of studies have established efficient and natural
walking behaviors [10, 15, 21, 34]. The walking behavior
of passive dynamic walking depends heavily on inertia
and gravity forces. Body motion relative to the stance
foot appears as an inverted pendulum, and the swing
leg resembles a swinging pendulum. The foot contact
event changes the roles of the legs and starts at the
next step, and stable walking is generated through in-
teraction between the robot mechanical system and the
ground. On the other hand, the swing leg of the pro-
posed model is driven primarily by an oscillator that has

inherent frequency, which enables the walking speed to
be changed. The oscillator receives foot-contact infor-
mation and modulates walking behavior. The proposed
model establishes stable walking through interaction
among the robot mechanical system, the oscillator, and
the ground.

5.4 Advanced control scheme

We used only one oscillator, which forced the right and
left legs to be out of phase. Although this produced sta-
ble walking behavior and the stability was improved due
to phase resetting, further investigation of the adaptive
functions was not possible due to the coordination be-
tween the legs. Since such coordination plays an impor-
tant role in generating adaptive walking behavior [3],
we must investigate and clarify this mechanism in fu-
ture studies.

In order to investigate the effects of the interactions
among the robot, the oscillators, and the environment
in the generation of locomotion of biped robots, we did
not explicitly incorporate the posture control to main-
tain the pitch of the torso vertical using such sensors
as a gyro sensor and a ground reaction force sensor.
Therefore, the stability was limited. However, the ob-
tained stable walking reveals that the designed joint
motions create adequate postural motion and that the
modulation of the oscillator states using phase reset-
ting contributes to improved stability. In order to fur-
ther increase the stability, we must incorporate ade-
quate posture control in the future. Furthermore, al-
though we fixed the value for the oscillator phase to
be reset, appropriate determination of the reset value,
which changes the periodic motion, will improve the
stability characteristics [6].

In locomotion control using oscillators, interactions
among the robot, the oscillators, and the environment
are crucial. The proposed model generated these in-
teractions through phase resetting, and we examined
parameter optimization to adequately exploit these in-
teractions. Although designing such interactions is diffi-
cult, more advanced and sophisticated interactions will
create adaptive functions.

6 Conclusion

In the present paper, we investigated the stability char-
acteristics of the walking behavior of a five-link planar
biped robot driven by an internal oscillator. The robot
achieved stable walking depending on parameters that
revealed the contributions of the knee motion and the
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torso to walking stability. We verified the stability im-
provement due to the modulation of oscillator states
based on phase resetting using foot-contact informa-
tion. Furthermore, we investigated the parameter opti-
mization in order to adequately exploit the interactions
among the robot dynamics, the oscillator dynamics, and
the environment in achieving adaptive walking. These
results illustrate the advantages and usefulness of loco-
motion control using oscillators.

A Equations for the biped robot model

In this appendix, we show the governing equations for the biped
robot model. First, we derive the equation of motion for gener-
alized state variables that includes the position of the tip of the
stance leg relative to the ground.

To derive the equation, we introduce the following distance
vectors: r1 = [ 0 la ]T, r2 = [ 0 la ]T, r3 = [ 0 0 ]T, r4 = [ 0 −la ]T,
r5 = [ 0 −la ]T, wi = ri/2 (i = 1, 2, 4, 5), and w3 = [ 0 lc ]T, where
ri is the distance vector between joints and wi is the distance
vector from a joint to a center of mass. Using the Lagrangian
equation, the equation of motion for generalized state variable
q̄T = [ x y θ1 θ2 θ3 θ4 θ5 ] ∈ �7 is derived as

K̄(q̄)¨̄q + c̄(q̄, ˙̄q) + ν̄(q̄) = ū(q̄, ˙̄q) + λ̄ (26)

where x and y are the horizontal and vertical positions of the tip
of the stance leg, respectively, K̄(q̄) ∈ �7×7 is the inertia matrix,
c̄(q̄, ˙̄q) ∈ �7 is the nonlinear term, ν̄(q̄) ∈ �7 is the gravity term,
ū(q̄, ˙̄q) ∈ �

7 is the input torque term, and λ̄ ∈ �
7 is the ground

reaction force term (impulsive force term at foot contact). Inertia
matrix K̄(q̄) is given as

K̄(q̄) = HT{L(q̄)TML(q̄) + J}H (27)

where

H =

�
�����

I2×2

1
...

. . .

1 · · · 1

�
����� ∈ �7×7

L(q̄) = L1(q̄) + L2 ∈ �10×7

L1(q̄) =

�
����

R1,0(q̄) o
R2,0(q̄) R2,1(q̄)r̃1 o

..

.
..
.

. . .
. . .

R5,0(q̄) R5,1(q̄)r̃1 · · · R5,4(q̄)r̃4 o

�
����

L2 =

�
���

w̃1

O10×2

. . .

w̃5

�
���

M = diag[ m1 m1 m2 m2 m3 m3 m2 m2 m1 m1 ] ∈ �10×10

J = diag[ 0 0 j1 j2 j3 j2 j1 ] ∈ �7×7

Here, In×n ∈ �n×n is a unit matrix, Om×n ∈ �m×n and o ∈
�2×1 are zero matrices, and Ri,j(q̄) ∈ �2×2 (i, j = 0, . . . , 5, i > j)
is a rotation matrix given as

Ri,j(q̄) =

�
cos θi,j(q̄) sin θi,j(q̄)
− sin θi,j(q̄) cos θi,j(q̄)

�
i, j = 0, . . . , 5, i > j

where

θi,j(q̄) =
i	

k=j+1

θk

and for z = [ z1 z2 ]T, z̃ is expressed as z̃ = [−z2 z1 ]T. Note
that K̄(q̄) ˙̄q is a vector denoting the generalized momentum of
this system. Nonlinear term c̄(q̄, ˙̄q) becomes

c̄(q̄, ˙̄q) = K̄t(q̄, ˙̄q) ˙̄q + V (q̄, ˙̄q)p(q̄, ˙̄q) (28)

where

K̄t(q̄, ˙̄q) = ˙̄K(q̄)

V (q̄, ˙̄q) =

�
�����

O2×10

ṽT
1 (q̄, ˙̄q)

. . .

ṽT
5 (q̄, ˙̄q)

�
����� ∈ �7×10

[ vT
1 (q̄, ˙̄q) . . . vT

5 (q̄, ˙̄q) ]T = L1(q̄)H ˙̄q ∈ �10

p(q̄, ˙̄q) = B(q̄)TML(q̄)H ˙̄q ∈ �10

B(q̄) =

�
����

I
R2,1(q̄) I

...
. . .

. . .

R5,1(q̄) · · · R5,4(q̄) I

�
���� ∈ �10×10

Gravity term ν̄(q̄) becomes equivalent to

ν̄(q̄) = HTL(q̄)TMF (q̄)g0 (29)

where

F (q̄) =

�
���

R1,0(q̄)
...

R5,0(q̄)

�
��� ∈ �10×2

gT
0 = [ 0 − g ]

Input torque term ū(q̄, ˙̄q) is expressed as

ū(q̄, ˙̄q) = −P (q̄ − q̂) − D( ˙̄q − ˙̂q) (30)

where

P = diag[ 0 0 0 κ2 · · · κ5 ] ∈ �7×7

D = diag[ 0 0 0 σ2 · · · σ5 ] ∈ �7×7

and where q̂ and ˙̂q are the desired states of q̄ and ˙̄q, respectively,
and κi and σi (i = 2, . . . , 5) are gain constants.

During the swing phase, the tip of the stance leg is con-
strained on the ground. Therefore, we can set x = 0 and y = 0.
Using Lagrange’s undetermined multiplier, components of ground
reaction force λx and λy (λ̄ = [ λx λy 0 . . . 0 ]T) are calculated
from the first and second rows of (26). The equations of motion
for state variables θi (i = 1, . . . , 5) are obtained from the other
rows of (26), which equals (1).

When the swing leg touches the ground, an impulsive force
acts on the leg tip. As described in Section 2.3, this results in dis-
continuous changes in the angular velocities. Following the deriva-

tion in [24] and assumptions FA1 through FA3 of the foot contact
model described in Section 2.3, we integrate the equation of mo-
tion (26) from the start to the end of the double-supported phase
to derive the relationship of the angular velocities. By consider-
ing the switching of the legs between swing and stance, velocity
q̇+ immediately after foot contact is given as

q̇+ = S̄c



I7×7 − K̄−1ĒT
c

�
ĒcK̄−1ĒT

c

�−1
Ēc



˙̄q
−

= Q̄(q̄−) ˙̄q− (31)

where K̄ = K̄(q̄−), Ēc = Ēc(q̄−), and

Ēc(q̄) =
�
I2×2 R1,0(q̄)Tr̃1 . . . R5,0(q̄)Tr̃5

�
H ∈ �2×7

S̄c =
�
O5×2 Sc

�
∈ �5×7
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Impulse ξ of this foot contact is given by

ξ = −
�
ĒcK̄−1ĒT

c

�−1
Ēc ˙̄q−

= X̄(q̄−) ˙̄q− (32)

Note that, since the tip of the stance leg is constrained on the
ground just before foot contact, x− = 0, y− = 0, ẋ− = 0, and
ẏ− = 0. Therefore, we obtain (5) and (6), where

Q(q−) = Q̄(q̄−)

�
O2×5

I5×5

�
, X(q−) = X̄(q̄−)

�
O2×5

I5×5

�
(33)

B Angular momentum around the tip of the
legs

In this appendix, we show the angular momentum around the tips
of the legs, where the tip of the stance leg is constrained on the
ground and x = y = 0. First, let K̄(q̄) ˙̄q = [ 
x(q̄, ˙̄q) 
y(q̄, ˙̄q) 
1(q̄, ˙̄q) · · · 
5(q̄, ˙̄q) ]T

and p(q̄, ˙̄q) = [ px(q̄, ˙̄q) py(q̄, ˙̄q) p1(q̄, ˙̄q) · · · p5(q̄, ˙̄q) ]T. Angular mo-
mentum 
sw(q̄, ˙̄q) around the tip of the swing leg is then given
as


sw(q̄, ˙̄q) = 
1(q̄, ˙̄q) − r̃sw(q̄)Tp1(q̄, ˙̄q) (34)

where

rsw(q̄) = r1 +
5	

i=2

Ri,1(q̄)Tri

In contrast, angular momentum 
st(q̄, ˙̄q) around the tip of the
stance leg becomes


st(q̄, ˙̄q) = 
1(q̄, ˙̄q) (35)

C Derivation of the Jacobian matrix of the
Poincaré map

In this appendix, we derive the Jacobian matrix of a Poincaré
map based on an approximate analysis to investigate local stabil-
ity (for a detailed derivation, see [4,6,13], for example). Note that
the derivation is performed by incorporating all of the perturba-
tions for the state variables without confining these perturbations
in the Poincaré section.

First, the relationship between the states just before and after
foot contact (16) yields

B = ∂qh(q∗(τ))

=

�
���

1 0 −2 cos φ0 2s sin φ0

0 1 B23 B24

0 0 1 0
0 0 0 1

�
��� (36)

where ∂q = ∂
∂q

and

B23 = 2ω(α3 + α4)(2κs2 cos φ0 + sin φ0)/α1

B24 = sω{2(α3 + α4) cos φ0 − α5α2β}/α1

Second, the geometric condition for foot contact (14) yields

D = I4×4 − q̇∗(τ)∂qr(q∗(τ))T

∂qr(q∗(τ))T q̇∗(τ)

=
1

D0

�
���

sω sinφ0 0 θ̇∗1(τ) cos φ0 −θ̇∗1(τ)s sin φ0

−θ̈∗1(τ) D0 θ̈∗1(τ) cos φ0 −θ̈∗1(τ)s sin φ0

0 0 D0 0

−ω 0 ω cos φ0 θ̇∗1(τ)

�
���

(37)

where

θ̇∗1(τ) = −(k2 + k3)λ{cosh(λt0) − 1}/ sinh(λτ) + k1ω sin φ0

+(s + k1)λ cos φ0 cosh(λτ/2)/ sinh(λτ/2)

θ̈∗1(τ) = {sλ2 + k1(λ
2 + ω2)} cos φ0

D0 = θ̇∗1(τ) + sω sinφ0

Third, by integrating the following equation from t = 0 to t = τ

δq̇(t) = ∂qf(q∗(t))δq(t) (38)

where δq is the perturbation, we obtain

E =

�
���

cosh(λτ) sinh(λτ)/λ E13 E14

λ cosh(λτ) cosh(λτ) E23 E24

0 0 e−2κωs2τ 0
0 0 0 1

�
��� (39)

where

E13 = {cosh(λτ) + e−2κωs2τ − 2κωs2 sinh(λτ)/λ}(ε1η1 + ε2η2)

− sinh(λτ)ω(ε1η2−ε2η1)/λ+{cosh(λτ)−cosh(λΔ)e−2κωs2t0

−2κωs2[sinh(λτ)−sinh(λΔ)e−2κωs2t0 ]/λ}(ε3d1+ε4d2+ε5)

−{sinh(λτ) − sinh(λΔ)e−2κωs2t0}αω(ε3d2 − ε4d1)/λ

E23 = {λ sinh(λτ) − 2κωs2[e−2κωs2τ + cosh(λτ)]}(ε1η1 + ε2η2)

−{cosh(λτ) + e−2κωs2τ}ω(ε1η2 − ε2η1)

+{λ[sinh(λτ) − sinh(λΔ)e−2κωs2t0 ] − 2κωs2[cosh(λτ)

− cosh(λΔ)e−2κωs2t0 ]}(ε3d1 + ε4d2 + ε5)

−{cosh(λτ) − cosh(λΔ)e−2κωs2t0}αω(ε3d2 − ε4d1)

E14 = ε6{[cosh(λτ) + 1] sin φ0 + sinh(λτ)ω cos φ0/λ}
+ε7{sinh(λτ) − sinh(λΔ)}/λ

E24 = ε6{λ sinh(λτ) sin φ0 + [cosh(λτ) + 1]ω cos φ0}
+ε7{cosh(λτ) − cosh(λΔ)}

ε1 = {ω2(α3 + α4)(4κ2s4 − 1) − (β3 + β4)}/{α1(c21 + c22)}
ε2 = (α3 + α4)4κω2s2/{α1(c21 + c22)}
ε3 = β{−α5ω2(4κ2s4 − α2) + β5}/{α1(d2

1 + d2
2)}

ε4 = −4βα5κω2s2α/{α1(d2
1 + d2

2)}
ε5 = β(4α5κ2ω2s4 − β5)/{α1(4κ2ω2s4 − λ2)}
ε6 = −s{(α3 + α4)ω2 + β3 + β4}/{α1(ω2 + λ2)}
ε7 = sα2ωβ(α5α2ω2 + β5)/{α1(ω2 + λ2)}
η1 = c1 cos φ0 − c2 sinφ0, η2 = c1 sinφ0 + c2 cos φ0

c1 = 4κ2ω2s4 − ω2 − λ2, c2 = 4κω2s2

d1 = 4κ2ω2s4 − α2ω2 − λ2, d2 = 4κω2s2α

From matrices B, D, and E, Jacobian matrix J of the Poincaré
map is obtained by J = BDE, which is equivalent (19).

When we incorporate phase resetting, matrix B becomes B̃,
which is given as

B̃ = ∂qh̃(q∗(τ))

=

�
���

1 0 −2 cos φ0 2s sin φ0

0 1 B̃23 B̃24

0 0 1 −s tanφ0

0 0 0 0

�
��� (40)

where

B̃23 = B23

B̃24 = −sω(α3 + α4)(2κs2 sinφ0 + sin φ0 tanφ0 − cos φ0)/α1

In this case, Jacobian matrix J̃ of the Poincaré map is calculated
by J̃ = B̃DE, resulting in (24).



16

Acknowledgements This paper is supported in part by a Grant-
in-Aid for Creative Scientific Research No. 19GS0208 from the
Japanese Ministry of Education, Culture, Sports, Science and

Technology.

References

1. R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler,

H.B. Brown Jr., D. McMordie, U. Saranli, R. Full, and
D.E. Koditschek, RHex: A biologically inspired hexapod run-
ner, Auton. Robots, 11(3):207–213, 2001.

2. S. Aoi and K. Tsuchiya, Locomotion control of a biped robot
using nonlinear oscillators, Auton. Robots, 19(3):219–232,
2005.

3. S. Aoi and K. Tsuchiya, Adaptive behavior in turning of an
oscillator-driven biped robot, Auton. Robots, 23(1):37–57, 2007.

4. S. Aoi and K. Tsuchiya, Self-stability of a simple walking
model driven by a rhythmic signal, Nonlinear Dyn., 48(1-2):1–
16, 2007.

5. S. Aoi and K. Tsuchiya, Bifurcation and chaos of a simple
walking model driven by a rhythmic signal, Int. J. Non-Linear
Mech., 41(3): 438–446, 2006.

6. S. Aoi and K. Tsuchiya, Stability analysis of a simple walking
model driven by an oscillator with a phase reset using sensory
feedback, IEEE Trans. Robotics, 22(2):391–397, 2006.

7. S. Aoi, H. Sasaki, and K. Tsuchiya, A multilegged modular
robot that meanders: Investigation of turning maneuvers using
its inherent dynamic characteristics, SIAM J. Appl. Dyn. Syst.,
6(2):348-377, 2007.

8. S. Aoi, N. Ogihara, Y. Sugimoto, and K. Tsuchiya, Simulating
adaptive human bipedal locomotion based on phase resetting

using foot-contact information, Adv. Robot., 22(15):1697-1713,
2008.

9. S. Aoi, N. Ogihara, T. Funato, Y. Sugimoto, and K. Tsuchiya,
Evaluating functional roles of phase resetting in generation
of adaptive human bipedal walking with a physiologically
based model of the spinal pattern generator, Biol. Cybern.,
102(5):373-387, 2010.

10. F. Asano and M. Yamakita, Virtual gravity and coupling con-
trol for robotic gait synthesis, IEEE Trans. Syst., Man, Cybern.
Part A, 31(6):737–745, 2001.

11. R.E. Burke, A.M. Degtyarenko, and E.S. Simon, Patterns of
locomotor drive to motoneurons and last-order interneurons:
Clues to the structure of the CPG, J. Neurophysiol., 86:447-
462, 2001.

12. J.G. Cham, J.K. Karpick, and M.R. Cutkosky, Stride period
adaptation of a biomimetic running hexapod, Int. J. Robotics
Res., 23(2):141–153, 2004.

13. M. Coleman, A. Chatterjee, and A. Ruina, Motions of a rim-
less spoked wheel: A simple three-dimensional system with im-
pacts, Dynam. Stabil. Syst., 12(3):139–160, 1997.

14. J.J. Collins and I.N. Stewart, Coupled nonlinear oscillators
and the symmetries of animal gaits, J. Nonlinear Sci., 3:349–
392, 1993.

15. S.H. Collins, A.L. Ruina, R. Tedrake, and M. Wisse, Effi-
cient bipedal robots based on passive-dynamic walkers, Science,
307:1082–1085, 2005.

16. G. Courtine and M. Schieppati, Human walking along a
curved path. II. Gait features and EMG patterns, Eur. J. Neu-
rosci., 18(1):191–205, 2003.

17. A.C. de Pina Filho, M.S. Dutra, L.S.C. Raptopoulos, Mod-
eling of a bipedal robot using mutually coupled Rayleigh oscil-
lators, Biol. Cybern., 92:1–7, 2005.

18. M.S. Dutra, A.C. de Pina Filho, and V.F. Romano, Modeling
of a bipedal locomotor using coupled nonlinear oscillators of
Van der Pol, Biol. Cybern., 88:286–292, 2003.

19. Y. Fukuoka, H. Kimura, and A. Cohen, Adaptive dynamic
walking of a quadruped robot on irregular terrain based on bi-
ological concepts, Int. J. Robotics Res., 22(3-4):187–202, 2003.

20. M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman,
The simplest walking model: Stability, complexity, and scaling,
ASME J. Biomech. Eng., 120(2):281–288, 1998.

21. A. Goswami, B. Espiau, and A. Keramane, Limit cycles in
a passive compass gait biped and passivity-mimicking control
laws, Auton. Robots, 4:273–286, 1997.

22. S. Grillner, Control of locomotion in bipeds, tetrapods and
fish, Handbook of Physiology, American Physiological Society,
Bethesda, MD, pp. 1179–1236, 1981.

23. S. Grillner, Neurobiological bases of rhythmic motor acts in
vertebrates, Science, 228:143–149, 1985.

24. J.W. Grizzle, G. Abba, and F. Plestan, Asymptotically sta-
ble walking for biped robots: Analysis via systems with impulse
effects, IEEE Trans. Autom. Control, 46(1):51–64, 2001.

25. K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, The de-
velopment of the Honda humanoid robot, In Proc. IEEE Int.
Conf. on Robot. Autom., pp. 1321–1326, 1998.

26. K. Hosoda, T. Takuma, A. Nakamoto, and S. Hayashi, Biped
robot design powered by antagonistic pneumatic actuators for
multi-modal locomotion, Robot. Auton. Syst., 56(1): 46–53,
2008.

27. A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen,
From swimming to walking with a salamander robot driven by
a spinal cord model, Science, 315:1416–1420, 2007.

28. A.J. Ijspeert, Central pattern generators for locomotion con-

trol in animals and robots: a review, Neural Netw., 21(4):642–
653, 2008.

29. S. Inagaki, H. Yuasa, and T. Arai, CPG model for au-
tonomous decentralized multi-legged robot system–generation
and transition of oscillation patterns and dynamics of oscil-
lators, Robot. Auton. Syst., 44(3-4):171–179, 2003.

30. K. Inoue, S. Ma, and C. Jin, Neural oscillator network-based
controller for meandering locomotion of snake-like robots, In
Proc. IEEE Int. Conf. on Robot. Autom., pp. 5064–5069, 2004.

31. K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa,
T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi, Humanoid
robot HRP-2, In Proc. IEEE Int. Conf. on Robot. Autom., pp.
1083–1090, 2004.

32. R. Katoh and M. Mori, Control method of biped loco-
motion giving asymptotic stability of trajectory, Automatica,
20(4):405–414, 1984.

33. H. Kimura, Y. Fukuoka, and A. Cohen, Adaptive dynamic
walking of a quadruped robot on natural ground based on bio-
logical concepts, Int. J. Robotics Res., 26(5):475–490, 2007.

34. A.D. Kuo, Energetics of actively powered locomotion using
the simplest walking model, ASME J. Biomech. Eng., 124:113–
120, 2002.

35. Y. Kuroki, M. Fujita, T. Ishida, K. Nagasaka, and J. Yam-
aguchi, A small biped entertainment robot exploring attractive
applications, In Proc. IEEE Int. Conf. on Robot. Autom., pp.
471–476, 2003.

36. M.A. Lewis and G.A. Bekey, Gait adaptation in a quadruped
robot, Auton. Robots, 12(3):301–312, 2002.

37. M.A. Lewis, R. Etienne-Cummings, M.J. Hartmann,
Z.R. Xu, and A.H. Cohen, An in silico central pattern gen-
erator: silicon oscillator, coupling, entrainment, and physical
computation, Biol. Cybern., 88:137–151, 2003.
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