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Abstract

Complex artifacts are designed today from well specified and well mod-
eled components. But most often, the models of these components cannot
be composed into a global functional model of the artifact. A significant ob-
servation, modeling and identification effort is required to get such a global
model, which is needed in order to better understand, control and improve
the designed artifact.

Robotics provides a good illustration of this need. Autonomous robots
are able to achieve more and more complex tasks, relying on more advanced
sensori-motor functions. To better understand their behavior and improve
their performance, it becomes necessary but more difficult to characterize
and to model, at the global level, how robots behave in a given environment.
Low-level models of sensors, actuators and controllers cannot be easily com-
bined into a behavior model. Sometimes high level models operators used
for planning are also available, but generally they are too coarse to represent
the actual robot behavior.

We propose here a general framework for learning from observation data
the behavior model of a robot when performing a given task. The behavior is
modeled as a Dynamic Bayesian Network, a convenient stochastic structured
representations. We show how such a probabilistic model can be learned
and how it can be used to improve, on line, the robot behavior with respect
to a specific environment and user preferences. Framework and algorithms
are detailed; they are substantiated by experimental results for autonomous
navigation tasks.
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1 Introduction

Nowadays, complex artifacts are designed from well specified and formally mod-
eled components. But most often, the models of these components have been
developed independently and often in different representations. They cannot be
composed into a global functional model of the artifact. Consider for example
the internet (how the topology, the routing mechanisms and the infrastructure of
the network are designed and controlled for a better quality of service), or a com-
plex multi-core processor (how its paging and caching mechanisms are efficiently
exploited by a compiler): here and in other similar examples a significant observa-
tion, modeling and identification effort is required to get a global functional model
in order to better understand, control, improve the use and eventually the design of
the artifact.

Robotics provides an excellent illustration for this composationnality problem
and for the need of global functional models. Autonomous robots are able to
achieve more and more complex tasks, relying on more advanced sensori-motor
functions. To better understand their behavior, to use them and improve their per-
formance, it becomes necessary but more difficult to characterize and model at
the global level how a robot behaves in a given environment. Low-level models
of sensors, actuators and controllers cannot be easily composed into global mod-
els. Sometimes high level models such as precondition–effects operators used for
planning are available, but generally they are too coarse to accurately represent the
actual robot behavior.

Consider for example the autonomous navigation task, well mastered by most
mobile robots. Models of low-level sensori-motor functions, such as error models
of range sensors, are often available. Algorithms for map building, obstacle avoid-
ance, path planning, or non-linear motor response to speed references, are modeled
at design time. But these models are not easy to combine into a global description
of what is going on during a navigation within a specific environment. It is hard to
model globally how the navigation task is performed. But such a model is needed
in order to predict how the robot behaves in different environments, how the actual
task is progressing, what are its chance of success, its resource consumption and
time to completion, etc. As a side effect (even if it’s not its main purpose), an ex-
plicit model can also be used to improve the robot performance and to better adapt
it to a specific environment.

Adequate approaches for addressing these motivations depend on the purpose
of the model to be learned. For example, the purpose of synthesizing black-box
controllers, fine tuned for some environment and task, has been widely studied.
Reinforcement learning methods [62, 56] have, in particular, been successfully
demonstrated for synthesizing controllers of complex motions and maneuvers for
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humanoid robots [2, 49] and autonomous helicopters [9]. Our objective is to syn-
thesize an explicit and predictive model of the already available controller of the
robot. We first want to understand, through this model, what the robot is doing,
and, as a follow-up goal, to eventually improve the performance of the robot by
running, in a predictive way, the learned model. To put our purpose in a figura-
tive way: we are not in the position of the robot designer, but in the position of the
owner of a new robot, who wants to understand what his robot can do, and, it if has
some built-in adaptive capabilities, how to make the best use of it, for his specific
environment and preferences.

In classical reinforcement learning techniques where the goal is to synthesize
a controller, one learns state utilities and best actions. Learning an explicit model
of the system may or may not be needed, e.g. to take into account temporal differ-
ence utilities, and eventually to guide exploration (as discussed in section 6.4). In
our approach, we first focus on learning the model of the behavior, as given by the
implemented controller, without taking into account rewards or costs. In a second
step we exploit the learned model, in order to optimize the parameters of the con-
troller for the specifics of the environment and user preferences. These two steps
are akin respectively to (i) learning probabilistic models, in our case learning the
model of a dynamic system with partial observability, and (ii) reinforcement learn-
ing, understood in broad sense of the set of techniques for improving the behavior
from environment feedback, in our case learning the controller parameters.

We chose to describe the behavior of the robot as a discrete dynamic system
represented with a stochastic transition graph. Hidden Markov Models (HMM)
and Dynamic Bayes Networks (DBN) are example of such a representation for
which learning techniques have been developed.

The Hidden Markov Models (HMM) have been explored in [22] for the precise
motivations we are addressing here. In this article, the authors have shown that
large HMM models of a robot behavior with dozen of hidden states can be learned
with affordable computational cost from real navigation data. However, the HMM
approach suffers from several limitations, computationally, since the HMM state
space is flat and does not take into account available causal knowledge between
state variables, and functionally since the learned model, a stochastic automata,
cannot be easily used directly to improve the robot behavior.

This paper develops a novel approach relying on Dynamic Bayes Networks
(DBN). The DBN representation significantly extends upon the HMM one since
it introduces a state space structured into controllable parameters, environment
variables, robot state variables and mission variables, with explicit causal links
between these variables, within each state and from state to state. Furthermore,
the DBN approach allows to improve the behavior of the robot using the learned
model. The contributions proposed here are the following:
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• a methodology for representing the behavior of a robot into a structured DBN
model, divided into observable, controllable and hidden components, and the
causal links between these components,

• original algorithms to learn such DBN models from real-world data with a par-
ticle filtering approach to handle the combinatorial explosion,

• algorithms to efficiently improve the robot behavior into using the learned DBN
models along with a Dynamic Decision Network (DDN) approach,

• experiments with an autonomous navigation task that demonstrates significant
improvements in the success rate of the modeled task.

We experimented with a robotics platform called Rackham, an iRobot B21R
tour robot (figure 1(b)), using a complex navigation procedure called ND (Near-
ness Diagram navigation) [41]. A schematic view of this navigation procedure can
be seen on figure 1(a). A laser range finder gives a set of points representing obsta-
cles in front of the robot. These points are used by the “aspect” module to build a
local map around the robot. ND uses the current position of the robot to compute
the local goal in the robot’s coordinate system. Then with this local goal and the
map around the robot, depending on an estimate of the position of obstacles around
the robot, it chooses a navigation strategy. Several strategies are available to ND,
handling different situations, like open area, obstacle on the left, on the right, on
both sides, very close obstacles. After choosing a strategy, ND repeatedly com-
putes a speed reference depending on the precise map around the robot, in order
to move towards the goal while avoiding obstacles. This navigation procedure has
been developed at LAAS and in other laboratories, and by various people. As a re-
sult, it has become robust and efficient. Yet, it has reached such a complexity, that
nobody is really able to explain and predict what’s going on during a navigation.
Furthermore, ND has a number of parameters which can be hand tuned to modify
the navigation. Understanding how these parameters change the behavior, and how
one can automatically modify them purposefully with respect to the environment
is one of the problems addressed successfully here.

In the remaining of the article we first detail in section 2 the modeling prob-
lem addressed, explaining how the observation space and the state space can be
obtained from sensor data and from navigation variables and how to structure the
DBN model. The learning algorithms are presented and analyzed in section 3. We
then present how the learned model can be used as DDNs to improve the robot
navigation performance (section 4). Section 5 details the experimental results ob-
tained. A discussion of these results conclude the paper (section 6).
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Figure 1: Rackham (RWI B21R) : a museum guide robot

2 Modeling a robot behavior

2.1 Formal problem statement

A global behavior model of a robot achieving a task in some partially known en-
vironment is an abstraction of the full rendition of the robot complex interaction
with the environment into some useful description that easily allows to explain the
past states, to predict future possible states knowing the past, and to update the
prediction with respect to new observations. A simple representation would model
the behavior as a stochastic transition graph λ = (S,E, τ, δ,Θ) where:

• S is a finite set of states, st ∈ S is the state at time t; s1:t is the trajectory between
time 1 and t;

• E is the finite set of possible observations, et is the observation at timestep t, e1:t
the sequence of observations (the evidence);

• δ is the state transition function: δ[st|st−1, et−1] is the conditional probability of
st giving the past state and observation in the first order Markov assumption;

• Θ is the observation function: Θ[et|st, et−1] is the conditional probability of et
giving the current state and past observation;

• τ is the a-priori probability distribution of the initial state.

Acquiring a model λ allows to explain past behavior, i.e. to find the most prob-
able trajectory s1:t knowing the observation sequence e1:t (the Viterbi algorithm),
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to predict future possible states st+k of the robot knowing the past trajectory s1:t ,
and to update the prediction st+1 with respect to the observation et (i.e., filtering
algorithm).

The approach used here is an extension of stochastic transition graphs to the
more structured representation offered by Dynamic Bayes Nets (DBN). Instead of
two flats sets (hidden states S and measurable observations E from which hidden
states are inferred), DBNs rely on a collection of state variables, some hidden and
some measurable, and an explicit causal structure between these variables. More
formally, the model is λ = (X, G, τ, γ) where:

• X = {X1, . . . , Xn} is a set of series of random variables, Xi
t being the state

variable Xi at time t, Xi
t = xit is the value of that variable, xit ∈ Di, a finite

range of Xi;
• Y ⊂ X is the subset of state variables that are observable, Yt are observable state

variables at time t, and Y1:t are observable state variables from 1 to t;
• G = (X, U) is a DAG whose nodes correspond to the state variables, edges in U

are:

(i) restricted to either variables within the same timestep or between two con-
secutive steps, giving the first order Markov assumption, and

(ii) are identical over all timesteps, i.e., either (Xi
t , X

j
t ) is an edge ∀t or is not

an edge for any value of t, and similarly for (Xi
t , X

j
t+1);

• γ(Xi
t) = P (Xi

t |πit) is the conditional probability distribution of state variable
Xi
t giving its parent variables;

• πit is the set of parent variables ofXi
t in G, these variables are either in timesteps

t or t− 1;
• τ is the a-priori probability distribution of the state variables at timestep 1.

We are assuming that X is a DBN with respect to G, that is the joint probability
density function is such that:

P (X) =
∏
i,t

γ(Xi
t)

In summary, the learning problem addressed here is defined as the following:
from a collection of raw data acquired by the robot during a training phase

(a) define a meaningful finite set of state variables X,
(b) structure the state variables into a causal graph G,
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(c) find a “good” conditional probability distributions γ that best fit the training data.

We are proposing a methodology for addressing manually steps (a) and (b), and
algorithms for solving step (c) as an optimization problem. The usual optimization
criterion in probabilistic modeling is to find a function γ that gives a high level to
the probability of observing the training data. This is known as the likelihood of
the observation: L(Y) = P (Y|λ). The learning problem is formally defined as an
optimization problem with respect to γ, the only free functional parameter when X
and G are given :

(̂γ) = argmax
(γ)

P (Y|λ = (X, G, τ, γ)) (1)

2.2 Defining the set of observable state variable

In this section we briefly explain the methodology used for defining Y, the set of
observable state variables. We first have to refine sensor data into a set of features,
then to further abstract away these features into a set of observation variables over
finite ranges. A similar approach leads to the definition of the state variables for
the robot configuration. In both cases, the state variables are defined and chosen
manually. Although we will be using automated clustering techniques for these
variables, this methodology relies mostly on engineering steps and requires a good
knowledge of the robot.

Raw sensor data must be pre-processed by filtering, aggregation and fusion
techniques. We relied on standard signal processing techniques, such as the sliding
window method (used in [22]). Selection and filtering is done by defining a set of
functions which refine the raw data into higher level interesting features. Defin-
ing these functions is highly dependent on the system to model, and on the priori
knowledge of what information will be interesting in order to recognize the current
state of the system. In most cases, state variables result from average values over
the window. In some cases a function like the maximum over the window is more
relevant, e.g., for the acceleration state variable since we are using a particular PID
motion controller.

Clustering algorithms are needed in order to obtain a finite number of observa-
tion symbols and state symbols. In our case, we need unsupervised clustering, that
is, we are not able to feed the algorithm with some well-clustered examples, be-
cause we do not know what might be good clusters for the whole model to behave
correctly. We also need some control on the size of the ranges of state variables
in order to limit the size of the model and make the learning algorithms tractable.
Simple well-known algorithms like k-means [28] provide good results for cluster-
ing the range of a single variable. Other possible techniques include ε-means [14]
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and affinity propagation [23]. We can also cite Kohonen self-organizing maps [33]
that give good results (as in [22]) for clustering a multidimensional space.

Finally, a selection problem of the set of observable state variables is at hand.
As illustrated below, we relied on the following general principles:

• Use all control parameters offered by the task itself, since control parameters are
supposed to have a large influence (if not, they are generally assigned to some
value and hidden from the user).

• Use a large amount of a-priori knowledge to build meaningful variables that
summarize low-level sensor data. In our example, we need to refine the points
and segments detected by the laser range finder in high level variables that reflect
relative position to the closest obstacle, or global cluttering.

• Add few relevant variables until the model is too large for the complexity of
learning algorithms.

Instantiation: observation and state variables for a navigation task

This approach has been implemented into our Rackham robot. The monitoring of
raw data is done at a frequency of 2.5 Hertz. The scalar raw data are clustered
using k-means clustering [28] in order to obtain a few clusters.

For our navigation task, the control parameters are the following:

• the two size growing parameters of the robot: path planning techniques grow
obstacles by the size of the robot; a second parameter is a larger security area
where there should be as few obstacles as possible;

• the maximum linear and angular speeds allowed;
• a linearity factor between the two speeds given by the motion generator con-

troller: the linear and angular speeds are mutually constrained by a polynomial
function that influences the type of trajectory produced.

The state variables describing the environment are the following:

• the estimated cluttering of the environment, defined as a weighted sum of dis-
tances to nearest obstacles around the robot (the weight is heavier in front of the
robot, lighter on its sides);

• the angle of the nearest obstacle, which is the difference between the current
heading of the robot and the heading leading to the nearest obstacle;

• the distance to the nearest obstacle;
• the total number of segments in the perceived scene;
• the number of valleys or possibles ways found for reaching the goal.
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The state variables describing the current robot configuration are

• the current linear and angular speeds of the robot (v and w);
• the robot current linear and angular accelerations (∆v and ∆w);

Finally, we need a few state variables to describe the mission achievement sta-
tus:

• the variation of the distance to the goal (estimated as an euclidean distance);
• the ratio of the mission achieved so far in the navigation;
• mission status in begin, end, fail and normal;
• the current navigation strategy being used (see [41] for a description of the

different navigation strategies available and how a adequate one is repeatedly
selected for the current navigation situation);

• the perceived human adequacy of the behavior: how aggressive or how slow
and boring the robot is perceived by the human user.

We introduced this last variable because we empirically noticed that some nav-
igation settings led the robot to move too fast or too close to humans in some
situations, while other settings led to a too slow and cautious motion. None of the-
ses settings is superior in all situations and for all kind of interactions with respect
to the success of the mission. Furthermore, these settings lead to quite subjective
appreciations. Hence we introduced this variable that is not issued from measures
but from the user’s appreciation: its values are given by the user during the training
phase.1

normal;
The ranges of theses variables are discretized into clusters of 3 to 6 values.

The number of different possible observations and states is more than 15 × 109.
This indicates that even with a very large number of runs, all possible observations
will never be seen, leading to many non-informative transition probabilities into
the DBN. We will show later how to deal with such a sparse DBN for decision
making.

We now show how we can structure this flat set of variables into a causal graph.

2.3 Structuring state and observation variables into a causal graph

The structure of the model λ whose parameters we will learn later is shown on fig-
ure 4, where vertexes are state variables, shaded vertexes are hidden state variables,
and edges are causal links corresponding to conditional probability dependency.

1 On may imagine that a new robot is delivered with standard settings to the house or work
environment of its user who trains it to its liking and the specifics of the environment.
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We explain in this section how we obtained this particular structure from the set of
variables described in the previous section.

Grouping variables into functional sets

First, we structure the state variables into 4 sets depending on their high-level “na-
ture”:

1. The first set contains all control parameters. They have a direct influence on
the behavior, but are not influenced in any way in the model. Their values will be
changed and fine tuned as a result of the learned model and optimization procedure.
These parameters are: the size growing parameters, the maximum speeds and the
linearity factor.

2. The second set contains environment variables. They have a direct influence
on the behavior of the robot; they are subject to some changes that we need to
model. More precisely, we need to model the effects of the surrounding environ-
ment on the behavior of the robot, as well as the effects of the behavior of the robot
on its environment (the environment itself does not change, but the perception of
the environment by the robot does; we could talk about subjective environment
here). These environment variables are the cluttering, the angle of nearest obsta-
cle, the distance to nearest obstacle, the number of segments and the number of
valleys.

3. The third set contains information about the observed robot configuration
itself: its linear and angular accelerations, and its linear and angular speeds.

4. The fourth set contains information about the mission that the robot is doing:
the variation of the distance to the goal, the achieved ratio of the navigation, the
current strategy, the mission status, and the human adequacy.

This structuring of state variables is very useful for the definition of causal
links. All variables within a set have the same functional role. Hence all variables
within a set will have the same set of causal links to the other sets of variables. Let
us now explain what links are needed between these sets. On figure 2 are shown
four “functional” causal links between the different sets.

• The first one, fig. 2(a) shows the influence of the environment variables on the
other sets: the environment causes changes in both the robot state variables and
in the mission variables. Both timesteps t and t + 1 have an influence because
we do not know what influences the most: the value of the environment variable,
or the change of value.

• The parameters have a similar influence on both the mission and robot state
variables, as shown on figure 2(b). Here again, both timesteps have an influence,
meaning that both value and value change can be taken into account into the
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(a) Environment (b) Navigation

(c) State variables (d) Dynamics

Figure 2: Global causal structure

model.
• We want to model the dynamic evolution of every set but the parameters; this

gives the causal links shown on figure 2(c). In this case, we do not connect every
variable from the outgoing set to the incoming set, but only one variable to itself
at the next timestep.

• Finally, since the environment variables describe the environment as perceived
by the robot, the robot state variables have an influence on the environment
variables, as shown on figure 2(d).
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Introducing hidden state variables

Whereas our causal links between sets of variables seem reasonable, we face one
major problem trying to deal with this model as-is: it is too large to be stored into
main memory, thus cannot be used on-line (and of course may not be learned on-
line either). So we need to reduce the complexity of the model, that is to reduce
the number of incoming links for the variables. One solution to tackle down the
complexity is to introduce hidden variables and let the learning algorithm deduce
the values, and thus implicitly the correlation by itself. In [3], the author explain
how hidden variables can give a more compact representation, and in [17], we can
see how this point is further refined.

In our case, we do not try to add hidden variables automatically (as shown
in [6]), but instead we rely a priori knowledge about where such variables can be
useful. As variables in a given set have the same high-level functionality, there are
likely to be correlated. We introduce an unobservable variable in order to compress
the information of the environment, which is very likely to be highly correlated.
This is shown on figure 3(a). In the same idea, we introduce another variable
that represents an abstraction of the state of the robot and its mission, as shown
on figure 3(b). Altogether with figures shown on fig. 2, this gives the model of
figure 4.

(a) H0: Environment (b) H1: Robot and Mission

Figure 3: Introducing hidden state variables to reduce the complexity
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Figure 4: General view of the model to learn
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3 Learning transitions probabilities

We focus here on the quantization part of the learning problem, i.e. giving X,G
and τ find γ such that:

(̂γ) = argmax
(γ)

P (Y|λ = (X, G, τ, γ))

There are several original contributions in this section. The main one is a for-
malization of the Expectation-Maximization algorithm for dynamic bayesian net-
works. While this algorithm has been previously used for DBNs [7, 71], we could
not find any complete formalization nor pseudo-code. Furthermore, the approxi-
mation scheme and the scaling procedure needed for any practical use of EM were
not really explained in the available literature. We have introduced a particle filter-
ing approach in order to scale up the procedure. We believe that our approximation
scheme is different from previous particle-filter approaches (for instance in [34]).

We first present a particle filtering technique we developed to reduce the com-
plexity of the probabilistic inference. We then explain the basic expectation and
maximization steps and detail the learning algorithm.

3.1 The correlated inference problem

In order to deduce a variable value, information about its parents is needed. Pre-
cisely, the joint probability over all instances of the parents πit of variable Xi

t is
needed. Consider the simplified example in figure 5. In this case, we want to de-
duce the value of the speed of a robot at timestep t depending on two variables,
obstacle ∈ {yes;no} and acceleration ∈ {+;−}.

Figure 5: Example of intractable DBN

In order to compute a probability distribution over values of speed variable,
joint probability over variables accelerationt and obstaclet is needed. But in order
to compute this probability, joint probability over accelerationt−1 and obstaclet−1
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is also needed, and so on. In the worst case, memorizing or re-computing the joint
probability over all variables instances for all timestep is needed for exact infer-
ence. To reduce the complexity, we have to use an approximate inference.

A widely-used method for approximate inference is particle filtering [27]. It
is based on discrete sampling (monte-carlo) of probability distributions, and on re-
sampling this samples taking new observations into account in order to keep a good
estimate. Each sample is called a particle and can be seen as a hypothesis on the
possible values of a variable.

Figure 6: Particle filtering principle

The principle is illustrated on figure 6, where the system state is described with
the two previous variables. Thus the four possible states are (accel.+, obstacle),
(accel.+, obstacle), (accel.−, obstacle), (accel.−, obstacle). For example, the
initial distribution shown on the left tells us that there are 3 chances out of 7 to be
in state (accel.+, obstacle). In the first phase, named propagation, each particle
is updated through the stochastic transition model of the system independently of
the others. In the second phase, every particle pi is given a weight which is the
probability of having the observation knowing that the state is the one described by
pi (in the figure, having the observation being in (accel−, obstacle) is much more
probable than being in (accel−, obstacle) than in (accel.+, obstacle)). Finally the
re-sampling phase does probabilistic sampling over weighted particles in order to
maintain a high number of particles on the most probable hypothesis. This permits
a more accurate estimate. Formally we denote:

• rit: the ith particle, a vector of possible values for each state variable at timestep
t (every rit is one possible instance of Xt);

• wit: the weight of particle i at time t;
• R(w1, ..., wN ): a random function that gives values from 1 to N proportionally

to w1, ..., wN .

γ is the conditional probability function of the model previously defined. The three
steps done at every timestep t for every particle i are:
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• propagating: rit ← γ(rit−1)

• weighting: wit = P (Yt|rit)

• re-sampling: rit ← r
R(w1

t ,...,w
M
t )

t

3.2 Probabilistic dependence quantization

The main difficulty with statistical learning of such models is that some variables
are hidden. If all variables were observable, all the work would be to count every
transition instance in the training set, then normalize these counts in order to obtain
probabilities. But as some state variables are hidden, we have to estimate the hid-
den part of the needed information. The basis for this estimate is a model having
the same structure. Thus, the algorithm iterates as a local search with two different
phases as shown on algorithm 1. While the maximizing part of the algorithm is
straightforward, the expectation part needs more attention.

Algorithm 1: General Expectation-Maximization principle

while P (Y1:T |λ) increases do1

using λ, compute expected probability distributions upon hidden2

variables;
update λ accordingly to expected statistics in order to maximize3

P (Y1:T |λ);
end4

What is needed is to compute every transition probability to a variable from
its parents at every timestep. In order to do that, let us define, in addition to the
notations introduced in the definition of λ = (X, G, τ, γ)) the following notations

• ϕi(Yt) = P (Yt|Xi
t , π

i
t) the joint probability distribution of the observable state

variables Yt given the values of another state variableXi
t in the same time period

t and of the parents variables πit of Xi
t ;

• According to the context, πit denotes either the set of parent variables of Xi
t or

the tuple of values of these variables, i.e., πit = (Xj
t = xjt , . . . , X

k
t−1 = xkt−1)

for all parents of Xi, some of them being in the previous time period.
• Whenever needed, will make explicit the value of a state variable for which the

conditional probability is computed, i.e., γ(xit) for the value Xi
t = xit.

In order to learn the model, that is to compute the conditional distributions
γ, using an Expectation- Maximization algorithm, we apply a forward-backward
message passing scheme as used for hidden Markov models learning [52].

16



The forward message is defined for a state variable as: α(Xi
t) = P (Y, Xi

t |λ);
for its parents as: α(πit) = P (Y, πit|λ). The forward message for one variable can
be deduced from the one of its parents using:

α(Xi
t) =

∑
πi
t

α(πit)γ(Xi
t)ϕ

i(Yt) (2)

The sum is over all πit tuples.
We now have to deduce the forward message for an instance of the parents

variables knowing the individual forward messages. If the parents were perfectly
independent, we could use :

α(πit) =
∏

Xk
t ∈πi

t

α(Xk
t ) (3)

But as we are modeling dependencies between variables, we know that every
instances of values of parents do not have the same probability, and we denote this
belief:

B(πit) = P (πit|Y1:t, λ) (4)

Thus we have:
α(πit) = [

∏
Xk

t ∈πi
t

α(Xk
t )]B(πit) (5)

To compute the α values for all variables, we simply apply these two equa-
tions recursively from timestep 1 to T , in the right order of causality (i.e. using
the direction of causal links from parents to children). But as we have seen on
section 3.1, variables may be strongly correlated depending on the structure of the
model, and assuming complete independence between them would lead to a very
poor approximation. Luckily, the forward message is related to the classic infer-
ence problem so we can approximate the value of B(πit) using a particle filtering
technique. While computing α from time 1 to T , we maintain a particle filter and
we deduce an approximate of the corresponding probabilities of seeing each πit,
simply by marginalizing and normalizing where needed.

The backward message is defined for a state variable as:

β(Xi
t) = P (Yt+1:T |Xi

t)

This probability is computed recursively backward from time T to 1. For a given
timestep t, we need to consider every value of every children variable Xk of vari-
able Xi (noted as Xk ∈ Ch(Xi)), and all tuples of values of the parents of this
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variable Xk that contain a value Xi = xi. We then take the average of the proba-
bility to see the observation sequence on every possible trajectory, times the corre-
sponding transition probability and the current observation probability:

β(Xi
t) =

∑
Xk

t ∈Ch(Xi)

∑
π̃k
t

∑
xk∈Dk

β(Xk
t )γ(xkt )ϕ

i(Yt)

|Dk|Cπk

(6)

where the second sum is over π̃kt all tuples of πkt containing the value Xi
t = xit;

Dk is the range of Xk; Cπk
t

= |{πkt : (Xi
t = xit) ∈ πk}| the number of tuples of

the parents Xk
t that contain the value Xi

t = xit.
When all αs and βs are computed, we obtain simply:

γ(Xi
t) =

α(πit)γ(Xi)ϕi(Yt)β(Xi
t)

ϕ(Y1:T |λ)
(7)

from which we can update the model with (K is a normalizing factor):

γ(Xi)←
∑

t γ(Xi
t)

K
(8)

The entire algorithm is shown on algorithm 2.
Every update of the model has a complexity of O(R×N2M+1×T 2), where R

is the number of variables, N is the maximum number of value per variable, M is
the maximum number of parents for a variable and T is the number of observations.
Because the probabilities of seeing the observation decreases exponentially to zero,
a scaling factor must be applied in order to implement the algorithm, as for the
classic algorithm for HMMs. The scaling factor is dependent on every variable
and every timestep. The scaled mechanism insert steps as shown on algorithm 3.

4 Using the learned model to improve the behavior

One of the motivations for learning an explicit model of a particular robot behavior
using DBN is to use it to better control the robot. Indeed, the DBN is a predictive
model which can be used to compute the various outcomes according to various
hypothesis and parameters values, and then to choose the one which best fits the
current goal. The main idea is to use the DBN as a DDN (dynamic decision net-
work), where some variables are control variables (i.e. in our example, the one
which parametrizes the controller: robot width, security distance, maximum angu-
lar and linear speeds, linearity factor) while the general state and human adequacy
variables are reward/cost variables.
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Algorithm 2: Expectation-Maximization for general models

while ϕ(Y1:T |λ) increases do1

// expectation phase
for t = 0 to T do2

forall πi do3

compute B(πit) knowing B(πjt−1), ∀j and Yt, using particle4

filtering;
end5

forall Xi, respecting causality direction do6

compute every α(πit) using eq. 5;7

compute α(Xi
t) knowing α(πit) using eq. 2;8

end9

end10

for t = T to t = 0 do11

forall Xi, in inverse causality order do12

compute β(Xi
t) using eq. 6;13

end14

end15

// maximization phase
forall Xi, πi do16

forall t do17

compute γ(Xi
t) using eq.7;18

end19

γ(Xi)←
∑

t γ(Xi
t) (8);20

end21

compute ϕ(Y1:T |λ);22

end23

Algorithm 3: Scaling mechanism patch

// add the following steps between lines 2 and 2
scalei,t =

∑
Xi α(Xi

t) ;1

forall Xi do α(Xi
t)←

α(Xi
t)

scalei,t
;2

// add the following step between lines 2 and 2

forall Xi do β(Xi
t)←

β(Xi
t)

scalei,t
;3
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The learned model is formally a dynamic Bayesian network. In order to use
this DBN for decision making, we can use the DDN formalism [70], as it is very
close. There are two main differences with respect to DBN:

1. in a DDN some transitions are labeled with cost or rewards;

2. in a DDN some variables are said controllable and algorithms for decision
making give values to this controllable variable in order to maximize utility.

The conditional transition probabilities can be used “as-is” to define transition
probabilities in a dynamic decision network. So we can simply add utilities on
some transitions, or on some values of some variables2 for the first point. For the
second point, we want to underline the fact that there is no difference between a
Bayesian variable and a controllable one. Giving a set of controllable variables
only informs the decision making algorithm which variable values it is allowed to
change.

A DDN defines a “factored partially observable Markov decision process” (f-
POMDP [54]) and many algorithms have been developed to compute near-optimal
policies for such problems [64, 50, 57, 51]; but these approaches remains computa-
tionally expensive and are not always useful depending on the optimality criterion
tied to the application.

4.1 Costs, rewards, optimality and horizon issues

Optimizing the behavior of a robot is far from a generic decision-making problem
for several reasons:

• There is no simple “best-behavior” criterion. We first would like to reduce the
number of failures cases, while reducing the energy or time needed to complete
a task and make the robot behavior appear safe and friendly to users. While
giving costs and rewards to failure and success is straightforward, we can also
try to make difference between successful behaviors by giving smaller rewards
to quick and safe behaviors, and smaller costs to slow and dangerous ones. This
secondary criterion is clearly application-dependent3.

• Another point is that because the size of the observation and state spaces is
too large, the learned conditional probabilities are not very precise. Hence the
behavior optimization process should be in accordance with the quality of the
model.
2so that every transition that lead to this value gets the cost/reward
3Do we prefer the robot to be quick or to be friendly? That’s a matter of taste. . .
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• A third difference between classical decision making and our optimization prob-
lem is that there are very few dead-ends, meaning that in most cases there will
be a decision that leads to success. The only case of a dead end would be if the
robot is too close to an obstacle, and any decision would lead to a collision.

The corresponding dynamic decision network is shown in figure 7, where squares
represent controllable variables, and diamonds variables whose some values give
rewards or costs.

In order to optimize the behavior, we want to ensure it is a good behavior at
any moment, in a pro-active way, relaxing the need for exact optimality. We claim
that:

• A (non-optimal) good behavior can be achieved efficiently as sliding-horizon
decision-making, where the decisions do not result from a complete policy, but
are recomputed over a short horizon.

• This approach is robust even if the model is approximate.
• The structure of DBNs is well-adapted to do this.

4.2 Proposed algorithm

We propose here an efficient algorithm that exploits the structure of the model and
the approximate inference mechanism described in section 3.1.

The key idea is to maintain a belief state over all variables of the network, and
to project this belief state in the future in order to estimate the expected utility for
every decision. The algorithm is shown on algorithm 4.

Algorithm 4: General scheme for quick decision making

sample current belief state;1

forall possible decision do2

infer particles until some time criterion knowing decision;3

collect and memorize expected utility;4

end5

choose best utility;6

The belief state is continuously approximated as a particle filter, and so re-
sampling it, in order to decrease computational time, comes very easily. Then for
every decision (which are in our models instances of controllable variables) this
new particle filter is inferred without weighting and re-sampling, because future
observations are not available. The particles can be propagated until some time
limit (that should be greater than the date of the next decision). What seems to be
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Figure 7: Dynamic Decision Network for optimization of robot behavior
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a good time limit is the “death” of the particle, meaning that the particle reaches a
final state of the whole system. This should avoid traps in the model where good
utilities may lead to complete failure. The utility are simply collected by looking
at transitions taken by the particle, and adding corresponding utilities. In our case,
we call this algorithm fairly often, around every second. More often would be a
waste of resources, because due to the dynamics of the whole system, the global
configuration of the robot into its environment does not change more often than
that.

4.3 Exploration versus exploitation in a structured space

In our implementation, we further qualified transition probabilities with a confi-
dence factor in order to improve the decision algorithm. Indeed, when the data
training set is too sparse and does not cover enough the possible observation set,
many transitions in the DBN model are quantified by the learning algorithm but do
not correspond to informative probabilities. Consequently, we qualified the tran-
sition probabilities with the number of time each transition is updated during the
learning phase. The decision-making algorithm collects both utilities and confi-
dence factors and uses these confidence factors to focus the search on decisions
whose particles went through well learned transition and not through non informa-
tive transitions.

This leads to a decision-making procedure along two criteria: Confidence and
Utility. Relying on arbitrary weights for these criteria or even seeking a Pareto-
like dominant decision did not seem appropriate in our setting. Instead, we divided
possible decisions into several classes ordered by confidence level:

• if we have a class of high confidence, we discard all other classes and proceed
as described earlier, i.e., choose decision that maximizes utility;

• when we do not have a high enough confidence class, several strategies are possi-
ble. For our experiments, we choose to avoid as much as possible failure states,
choosing confidence as primary criterion, and utility as second, but long-term
strategies may prefer to choose low confidence classes in order to be able to
complete training set and improve future decisions.

Another way to understand why this mechanism is needed is through the no-
tion of generalization. If we had a flat representation of the state space, using
explicit states, this confidence measure would not be needed, as the evaluation of
the utility would rely (during the Monte Carlo simulation) “real” states. But in our
representation, when we infer particles to estimate expected rewards, we also take
into account states that have not been necessarily encountered in training data, and
eventually may not be possible at all.
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While this may seem a drawback of the factored representation, it is in fact
a small price for the significant benefit of the DBN representation that allows a
direct generalization of value of states to neighbors. In real-world settings, since
it is not possible to meet in training data every state a large number of times, one
has to generalize observed rewards to neighboring states. In [39], the authors show
two possible algorithms, known as the structural credit assignment problem aiming
at explicitly generalizing the knowledge about rewards and costs. One is based on
feature distance, the other is based on automated clustering of states. In our setting,
the structural assignment is done implicitly through the structured representation,
and every state transition implying the right variable (state component) transition
will lead to the reward associated to this variable transition. But the generalization
may be too strong, or over optimistic, and the confidence mechanism allows to
weight this generalization, by giving explicitly the number of times the transition
was really encountered. If it is zero (or low), then we know that the estimated
reward value given by the algorithm is based mostly on generalized values, not on
real values. On the contrary, if the confidence is high, then the estimation does not
come from generalization of knowledge.

5 Empirical Evaluation

For the learning phase, we run over 120 navigation experiments of the robot into
different environments, for a total of several hundred meters of motion into clut-
tered environments, with people around the robot. Navigations can take up to sev-
eral minutes, and thus the robot may encounter very different types of environment
within the same run, like narrow passages (corridor) then open area (empty room)
or cluttered area (crowded for instance). Thus what we are looking for are not a
parameter set for a given run but reactive change of parameters depending on the
current environment in order to achieve good behavior. During the learning phase,
we randomly choose the control parameters at random frequencies.

In order to characterize the run in a more fine-grained way than failure or suc-
cess at the end, the operator was asked to give his perceived value of the human
adequacy variable (ranging into good, aggressive, and shy). He also has a fail but-
ton to stop navigations before dangerous failure (e.g. collisions). Furthermore, a
navigation timeout was automatically detected when the robot did not move during
a given amount of time, and the fail value was given to the general state variable.

Typically, spending too much time in a shy state lead to a timeout failure, while
too much time in the aggressive state lead to an emergency stop (and also a fail
value to the general state variable). The idea behind this experimental protocol was
to make a difference between the aggressive and shy states, that may be wanted in
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some cases, and the failure states, which are always bad. For instance, in order to
achieve a very efficient behavior in terms of average speed, it may be good to allow
very aggressive behavior for a long time, changing parameters only if a collision is
expected.

The total number of values collected for each variable is about 7,000. Still, this
covers a very small part of the observation space (about 15 × 109). The learning
of the DBN takes several minutes per iteration of EM. The learned DBN stabilizes
after less than 10 iterations. All algorithms are implemented on-board.

5.1 The learned model

To evaluate the quality of the learned DBN, we repeatedly divided our experimental
data into (n − 1) sets of training data and one set of test data. This was done n
times, each set being used once as test data. We repeatedly trained the DBN on
the (n − 1) training data, and compared the predictions using the learned model
with the test data. For each test data, we used the learned DBN to predict at each
timestep the next state, and we compared the predicted state to the actual one.

We compared our results to a simple “same-as-before” predictor, which pre-
dicts that the values of variables do not change. For a low dynamics, this ap-
parently coarse predictor gives apparently acceptable average prediction values.
This is mainly due to the fact that most often variables change one at a time (be-
cause they are loosely correlated), so all other variables are well predicted with this
“same-as-before” assumption. The evaluation results are shown in table 1, where
the first column is the variable name, the second the score of the “same-as-before”
predictor, the third the percentage of correct predictions by the DBN and the last
one the difference between the DBN prediction score and the “same-as-before”
predictor. The upper part gives the predictions for the five environment variables,
while the lower part lists the four robot configuration variables and the five mission
state variables.

Considering these last variables, which are consequence of the navigation al-
gorithm, we can see large improvement for the five robot configuration variables,
and a smaller one for the four mission variables. This is mainly due to the fact
that the “same-as-before” predictor is already very good for the four last variables.
This is easily explainable because of the dynamic of the system: if the environment
and speed chosen change often, this is not the case for the percentage of mission
accomplished: it changes only 3 times during a whole run. The same phenomenon
occurs for the general behavior: it has almost all the time the normal value. The
adequacy to human also has most of the time the okay value, and finally the strategy
chosen also does not change often, because it is almost independent of the distance
to obstacles.
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variable same-as-before dbn improvement
cluttering 66.6 75.9 9.3

angle of nearest obstacle 58.7 72.8 14.1
distance to nearest obstacle 67.8 76.3 8.5

number of segments 58.0 66.7 8.7
number of valleys 59.7 66.2 6.5

v 55.4 80.3 24.9
ω 61.9 81.5 19.6

∆v 55.6 81.8 26.2
∆ω 49.7 75.5 25.8

∆ distance to goal 64.4 85.4 21.0
% mission achieved 81.3 89.9 8.6

mission status 84.3 91.6 7.3
navigation strategy 70.2 83.9 10.7
human adequacy 74.4 85.3 10.9

Table 1: Table of well-guessed one-step predictions (%)

For the purpose of improving the robot behavior on the basis of the learned
model, we are mainly interested in having good predictions for the mission state
variables (as opposed to environment variables). The prediction results for all robot
and mission state variables, but of the angular acceleration, are higher than 80 per-
cent, with a quite good average result. This confirms that the behavior of the navi-
gation task is reasonably well modeled and that the learned model can be effective
in improving the robot behavior. We notice that even for the environment variables
the learned DBN performs better than “same-as-before” predictor. This is due to
the use of the previous speed references that lead the robot away from the nearest
obstacle.

5.2 Defining different behaviors

Two behavior modes are available for this robot. The first one relies on static pa-
rameters that have been finely hand-tuned over weeks of experimentation in order
to have a safe enough navigation to use the robot into a museum [1], with human
beings around. The second mode is the one we used to collect the training set,
i.e. setting parameters randomly, as briefly described at beginning of section 5:
sets of parameters are chosen randomly (using uniform distribution) upon all pos-
sible sets at a random frequency. More precisely, parameters are changed every n
seconds, n is a uniform random variable taking variables between 2 and 10 sec-
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behavior random hand-tuned efficient friendly mixed
success (%) 40 98 98 90 98
av. time (s) 74.5 32.3 25.4 30.0 30.0

stdd. time (s) 23.0 1.1 2.6 6.5 5.4

Table 2: Behavior results

onds; n is changed every time a parameter set is chosen (thus is not the same over
a given run). The static hand-tuned parameter set behaves very well in dynamic
environment (with many humans) and seldom fails in some static over-constrained
environments. The randomly chosen parameter set fails quite often, as shown in
the results below (See Table 2).

As explained in section 4 we consider the learned model as a dynamic decision
network. For most applications, we will seek an efficient behavior, that minimizes
the average navigation time, to finish the task as quickly as possible. In order to do
this, we need to map rewards into the dynamic decision network accordingly. One
solution would be to put a reward on high levels of instantaneous speed, hoping
that it will lead to lowering average time taken. But in order to ensure not to
fail, we would have to also put a reward on the success value of the general state
variable. The precise value given to both these rewards would certainly have an
influence on the behavior that would be hard to predict in advance. Furthermore, it
not sure that giving rewards to instantaneous speed would lead to lowering the total
navigation time, because it may lead to “almost dead-ends” situations (very close
to obstacles) in which a very low speed is needed for a safe avoidance trajectory,
whereas going slower may give it more time to change its sight and navigate further
from obstacles4. In order to deal with this problem, we decided to give a reward
to the success value. We further introduced a discount factor that gives higher
weights to immediate rewards. This mechanism is similar to the one used for
computing infinite-horizon policies in Markov decision processes. Thus, we use
the learned model, augmented with reward on the success variable as defining a
dynamic decision network; instead of extracting a static exhaustive policy from
it, we apply algorithm described in section 4.2 in order to optimize the controller
parameters. The final controller is not learned in the proper sense, but is improved
with the learned model.

While the first behavior is efficient, we noticed that it is not really human-
friendly: the robot takes high accelerations and passes close to obstacles and per-
sons, which can be quite unpleasant. The solution is then to use the human ade-

4in our robotic setup, sight change is quite slow, and real speed reference given to the motors is a
function of the maximum speed (the controllable variable) and distance to obstacles
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quacy variable, that captures subjective feeling of the behavior of the robot, giving
utility to good value and costs to aggressive and shy values (this last value is used
when the robot has a too slow, boring and over cautious behavior). We could also
give costs to low values of distance to nearest obstacle and high values of lin-
ear acceleration, but the adequacy variable, while subjective, also covers these
cases. In the same vein, rewards could be given to high speeds in order to ensure
efficiency, and cost to high accelerations in order to ensure smoothness of the tra-
jectory5. In the experiments, we again used the algorithm from section 4.2 to tune
the controller using the DDN defined with our learned DBN; we gave the same
rewards to success values and to good values of human friendliness variable (and
the opposite reward for aggressive value of friendliness).

Based on the observed behavior, we found that these two behaviors (efficient
and human-friendly) may be mixed, but if their respective rewards are on the same
scale, we have a multi-criterion decision problem, with several equilibria depend-
ing on the precise values given to the rewards. in the bad cases, the algorithm may
for instance choose a parameter set that collects rewards having good human ade-
quacy during several decision cycles then fails. To prevent this, reward for success
has to be incommensurately higher than reward for correct human adequacy. This
leads to implicit priority classes: the controller first chooses successful behaviors,
and among these, the most human friendly ones. We set the reward associated to
success to 106 (counted only once at the end of the trajectory) and the rewards as-
sociated with friendliness to 1 for good and −1 to aggressive and shy values that
can be encountered only hundreds to a few thousands times during a navigation. In
this way, we simulate a two-level decision process using only simple summation
of rewards.

The precise values given to rewards have not been tuned at all, they just ensure
the conditions explained above. Table 2 shows success rates and average time for a
given navigation task for the 5 different behaviors. As expected, the two last ones
show a more subjective, yet easily perceivable, friendly behavior.

One can notice that the hand-tuned behavior achieves very high success rate,
and a good average time, compared to a random parameter affectation. But the
efficient behavior achieves the same ratio, with a much better average time. This
is mainly due to the fact that the hand-tuned parameters are static, given at the
beginning of the mission, while our system adapt these parameters depending on
the environment. While the hand tuned parameters ensure safety of the robot on
every situation (cases of failure are when the robot gets stuck, not into collisions),
our system allows a much more flexible adaptivity.

5this is reflected by the way the variables are built: speeds are measured as average speeds over a
time window, whereas accelerations are a maximum value over the same time window
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The friendly behavior shows worse performance, but had a much more pleasant
behavior for the surrounding people. We were not able to quantify this precisely
because our evaluation is subjective: measures would have requires statistical polls
over a significant set of human observers. However, it was clear that most unpleas-
ant motions of the robots were totally avoided. Indeed the efficient behavior showed
many high accelerations and decelerations, specially close to obstacle, which make
people uncomfortable for themselves and for the robot (more subjective observa-
tions are detailed on next section). The lower success rate is again not due to
collisions, but to too cautious behaviors, in which the robot gets stuck because the
set of parameters does not allow it to pass close to people. The “mixed” behavior
showed a very good trade-off between the two previous behaviors.

5.3 Analysis

We would like to emphasize that without using the DBN structure presented in sec-
tion 2.3, particularly without combining the environment variables into one hidden
variable, the model would not even fit in the computer memory. Using what may
appear as a complex causality structure allows us to easily handle several variables.
That is because our model captures the influence of all environment and control
variables (current and previous timesteps) over every consequence variable while
automatically finding correlations through hidden variables. Without hidden vari-
ables, we would have too large probabilistic tables for the consequence variables,
since the size of a table of a variable is exponential in the number of its parents.

The results of the controller were obtained on about 30 navigations. Clearly
the subjective values of the variable human adequacy has an influence on the
obtained behavior. In our training set, the operator introduced a bias by giving
a good value for human adequacy very early when the robot accelerated out of
a cluttered zone. This is mainly due to the fact that the environment was highly
cluttered in our experimental setup, leading to very slow behavior of the robot when
avoiding obstacles; the operator wanted the robot to accelerate as soon as possible.
In our evaluation experiments, this behavior was clearly noticeable, while hard to
measure precisely. The behavior of the robot somewhat reflected the impatience of
the operator.

In summary, our experimental assessment clearly demonstrates that the explicit
probabilistic models learned have good predictive capabilities. They can be used to
fine-tune the robot behavior and adapt it to the subjective view of its users. These
learned models allow to understand the robot behavior and better interact with it.
They also endow it with adaptation capabilities that increase its robustness and
simplify its development. Without such adaptation capabilities, good parameters
typically require months of manual fine-tuning in various environments. Our mod-
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els can do this automatically in a better way while increasing robustness to the
variability of the environment and accommodation to users.

6 Discussion

As stated earlier, our objective here is twofold: (i) learn an explicit and predictive
model of the robot behavior observed as a dynamic system, using its already avail-
able controller in a particular environment, and (ii) optimize the controller param-
eters for the specifics of the environment and user preferences. These objectives
fits broadly into the following areas of machine learning techniques:

• learning probabilistic models, in our case of a dynamic system with partial ob-
servability, and

• reinforcement learning, understood in the broad sense of the set of techniques
for learning actions, in our case the controller parameters, from environment
feedback.

In the remaining of this section we will discuss successively our positioning with
respect to the state of the art for these two objectives, then we will cover the issue of
learning the structure of the probabilistic model, relevant for the first point, and the
issue of active exploration while learning, which is relevant for the two objectives

6.1 Learning probabilistic models of a dynamic system

Learning the model of a dynamic system as a stochastic automata is a widely used
approach. Many applications such as speech recognition are based on the HMM
framework [52] that uses a flat set of states. This is a good solution when the
state space can be given in advance. In some cases, using the same set for the
observation space and the state space is also possible; this allows to use the state
transitions to filter noisy sensor data.

The definition of a meaningful state space for modeling the behavior of an
autonomous robot is however a tricky issue. An interesting approach has been de-
veloped in [22]. In this article, the authors define an a-priori a set of behaviors, such
as “task in progress”, or “task stuck”. The set of states is obtained automatically
using the training data that are qualitatively hand-labeled by an external observer
with these a-priory defined behaviors. The process is further refined by clique ex-
traction technique. This is clearly a way to define the state space and to introduce
structure into the HMM framework. Typically, the HMM learning algorithms do
not allow taking this structure into account.

In the general case, the state space does not need to be a flat set. It can be
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structured, for example through a set of state variables. The influences between
state variables are quantified from part of the state to others. This approach is know
as factored models. It has been used in factored Markov decision processes [4,
5], and in dynamic Bayesian networks [11, 44]. While factored representations
allow for expressing dependency relations between parts of the state space, the
learning algorithms are not always able to easily take advantage of and learn these
dependency relations. Several works have been done on automatic learning of state
space structure, as we will see in section 6.3.

Other approaches address the problem of building stochastic models from ex-
perimental data. In [36], the authors learn human activities models and in [59] the
emphasis is first, on building a stochastic model, then on using classic decision-
making algorithm. Our approach tries to be more generic and to closely integrate
the decision making and the learning algorithm itself.

A number of authors have been exploring a slightly different kind of relation-
ships than conditional probabilities for building stochastic automata. These models
are part of graphical models, but are not Bayesian models. They are Conditional
Random Fields (CRF), introduced in [35, 66], and extended to dynamic systems
in [60]. These families of models lead to simpler algorithms for inference and
learning because they need less normalizations (both for learning and inference).
That is, the correlations between linked variables are expressed with a set of po-
tential functions that cannot be considered as joint probabilities until normaliza-
tion. The main advantage is that these models allow to express more complex
relationships (like higher order Markov dependency) while remaining tractable.
The drawback is that one does not have direct access to conditional probabilities.
Recent successful work using this kind of model includes [37].

More recently, a new non-parametric framework has shown promising results:
the Gaussian Processes framework [53]. Within this framework, it is possible to
have efficient filtering using a gaussian distribution over a space of gaussian prob-
ability laws, allowing to handle directly continuous variables. In [31], the authors
show how to do efficient state estimation with a batch learned gaussian process.
In [32], they extend this framework to learn gaussian processes with hidden vari-
ables that allow to filter sensor noise very efficiently. Gaussian processes repre-
sentation of the state is a very promising approach. However, it can be used only
for state estimation, it does not handle decision making. That is, some planning
mechanism has to be put on top of it somewhat artificially, eventually in the form
of a POMDP with external state estimation. An example of using a POMDP with
external filtering mechanism (not a Gaussian process) is described in [55].
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6.2 Optimizing the behavior through reinforcement learning

Reinforcement learning [62, 56] is one of the most popular and successful tech-
nique for synthesizing and improving a robot controller. It has been developed
in a wide spectrum of situations, from simple subsumption architectures [38] to
more complex robots [2, 49, 9] and tasks [68]. In a typical setting, the controller is
expressed as an MDP. Reinforcement learning algorithms, such as TD(λ) [61] or
Q-Learning [67], are used to estimate, explicitly or implicitly, the MDP parameters
and utility function as well as a fixed optimal control policy [62]. In more chang-
ing environments and tasks, the policy can be re-assessed at each decision step, e.g.
with dynamic programming techniques within a sliding horizon approach [42].

In order to further scale up MDP-based techniques, several authors have ex-
plored structured state spaces. For example, [19] considers a model of the world
structured into sequences of states for each observation; this allows to infer non
observable states in video recognition applications by assuming persistent and re-
liable observations. Relational Markov Decision Processes offer a more general
representation where the set of possible states of the world is described in first
order predicate calculus, with a closed world assumption; the set of feasible ac-
tions is also described in a relational form. Informally speaking, the representation
combines classical planning for the structure of the state space, with MDPs for the
non-deterministic action part. Relational reinforcement learning [15, 63] combines
induction logic techniques and reinforcement learning techniques. It still raises a
large number of open challenges [47].

Reinforcement learning however is not limited to learning MDP policies, in
flat or structured spaces. It can be useful in a variety of contexts, e.g., [20] argues
that reinforcement learning can be used to speed up inference in bayesian networks.
Moreover, reinforcement learning is often stated in the very wide framework where
an agent learns to improve its behavior by acting in the word and getting feedback
and rewards. In this general sense, the part of this paper described in section 4 is a
form a reinforcement learning, where the actions to be learned are the parameters of
the controller. As stated earlier, our DDN representation is a factored partially ob-
servable MDP, to which reinforcement learning algorithms inferring near-optimal
policies can be applied. The simpler and efficient algorithm we have developed
maintains for all network variables a belief state approximated as a particle filter,
and proceeds to a limited forward propagation to choose the actions (i.e., parameter
values) with maximum utilities. At the principal level and in a completely different
context, this technique can be compared to Monte Carlo localization algorithms
with particle filtering [21].
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6.3 Learning the structure of the state and observation spaces

Structure learning is an open issue and a very active field of research. The machine
learning community has recently come with very promising approaches (using re-
cent developments in information theory) like in [17]. The algorithms generalize
the expectation-maximization scheme in order to find an optimal structure while
escaping local maxima. However they involve a very high computational cost.

A promising approach is to use mixed-initiative structure discovery, relying
on human knowledge and automatic exploration. Purely automated techniques are
tied to some optimization criteria, while graphical models owe their popularity to
their more intuitive interpretation.

In approaches that rely on structured spaces, as in dynamic Bayesian networks,
finding a minimal structure that encodes variable independence is a problem in
itself. Work about learning Bayesian structure has long history. For only observ-
able variables, a first exact search family gives very expensive algorithms, even
for small structures [48, 58]. The K2 algorithm [10] acts as a local search in the
structure space using a scoring criterion taking into account the explanation power
of the network and its complexity. But this local search falls into multiple local
optima. A third family of algorithms uses a local search into the equivalence space
of networks [43, 45] in order to avoid falling in local optimum, but they are still
very complex.

When some variables are not observed, the problem is even more complex be-
cause an algorithm can also add or delete a variable, and not only causal links. The
algorithm has also to choose the arity of the hidden variable automatically. Auto-
matic methods use mathematical criterions that show a trade-off between complex-
ity of representation of the model itself and the accuracy of the prediction. Many
metrics have been widely used, [69] compares some of them.

A generic local search technique has been proposed in [24], and various heuris-
tics have been proposed to choose where to add hidden variables [18] and to choose
the right arity of hidden variables [16]. The information-theoretic measure of mu-
tual information is also very useful [25] to select where to add or delete causal
links. A very promising method, described in [17], combines a local search of
the structure, based on information-theoretic compression of the hidden variables
allowing to predict accurately the observable variables, with the quantitative up-
date of the transition model itself. This method allows to obtain a very efficient
structure while escaping local optima of the quantitative learning.

Recently, the notion of mixed-observability MDP has been introduced in [46].
In this framework, the internal state is decoupled between observable parts and
hidden ones; the structure proposed is close to ours. In this article, the authors
use the observable part to represent the belief space by pieces (this can be seen
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as discretizing the belief space using the discrete observable part), which allows
them to solve the POMDP more efficiently than with only one large belief space.
We preferred to develop a simple reactive approach for decision making due to the
low dynamics of our system; but this clearly seems to be an interesting alternate
direction.

6.4 Active exploration while learning

An important issue one has to consider when dealing with real-world applications
is that all models, and in particular learned models, are approximations that need to
be qualified. In our case, the size of the observation space is huge, while compared
to the size of training data. Thus in the general case, we permanently need to
improve our learning.

In section 4 we proposed a simple scheme to deal with unknown parts of the
model. Such a procedure may be further explored along with other approaches,
such as for example:

• the interesting techniques of [12] for assessing the uncertainty of the parameters
of a model, and [13] for evaluating the value of learning, and computing future
expected utilities;

• the algorithm E3 [30] that builds another model on top of the (PO)MDP to solve
while defining explicitly a set of known states, for which learning is not needed
anymore, and an unknown state that covers all states of the (PO)MDP where
learning still should be considered (this approach has been extended to factored
models in [29]); this algorithm, called Rmax [8] has been proposed to compute
an asymptotically optimal policy using the model build by E3;

• the approach of [26] to take the decision-making mechanism itself into account
in order to guess were learning is needed for the decision making to behave
better.

Interestingly, the EM algorithm family along with Monte Carlo sampling has
also been used in [65] for model-free reinforcement learning, in order to obtain
directly the policy without learning the model first. In [40], the authors use this
kind of technique to optimize motion of a robot in order to minimize uncertainty
of localization. They predict the information gain and the cost using the prior and
so dynamically solve the exploration/exploitation dilemma in the context of path
planning.
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7 Conclusion

Complex systems, such as autonomous robots, are built from components and sub-
systems whose interactions and inter-operations are seldom fully understood. To
better model and control the resulting systems, one need to learn their global be-
havior from observation data.

We proposed an approach based on probabilistic modeling using dynamic Baye-
sian and decision networks. The model relies on state variables that are either ob-
servable, hidden or controllable. As a result, we obtain a model which explains the
considered robot behavior, but which also allows us to use the learned model to
optimize the control parameters in order to improve its performance.

The proposed approach is generic and can be applied to a number of complex
robotic behaviors. We illustrated it with an indoor navigation task in an open envi-
ronment. We showed that the learned model explains the robot behavior with good
predictive capabilities and allows to fine tune the control parameter with better per-
formance than hand tuned parameters in terms of failure rate and elapsed time as
well as user acceptance.

The proposed approach is generic enough to be applied to other tasks than au-
tonomous navigation. The main difficulty remains to come up with the right DBN
structure, and to find the characteristics of the environment that have an influence
on the task. We now plan to use this approach to learn other robotic behaviors
(e.g. grasping, human interactions, etc) and study how different models can be
combined and jointly used.
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