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Abstract

Vertebrates are able to quickly adapt to new environ-
ments in a very robust, seemingly effortless way. To
explain both this adaptivity and robustness, a very
promising perspective in neurosciences is the mod-
ular approach to movement generation: Movements
results from combinations of a finite set of stable
motor primitives organized at the spinal level. In this
article we apply this concept of modular generation of
movements to the control of robots with a high number
of degrees of freedom, an issue that is challenging
notably because planning complex, multidimensional
trajectories in time-varying environments is a laborious
and costly process. We thus propose to decrease the
complexity of the planning phase through the use
of a combination of discrete and rhythmic motor
primitives, leading to the decoupling of the planning
phase (i.e. the choice of behavior) and the actual
trajectory generation. Such implementation eases the
control of, and the switch between, different behaviors
by reducing the dimensionality of the high-level
commands. Moreover, since the motor primitives are
generated by dynamical systems, the trajectories can be
smoothly modulated, either by high-level commands
to change the current behavior or by sensory feedback
information to adapt to environmental constraints. In
order to show the generality of our approach, we apply
the framework to interactive drumming and infant
crawling in a humanoid robot. These experiments
illustrate the simplicity of the control architecture in
terms of planning, the integration of different types

∗This work was supported by the European Commission’s Cog-
nition Unit, projects RobotCub and AMARSi. S.G. is funded bya
IST-EPFL grant.

of feedback (vision and contact) and the capacity of
autonomously switching between different behaviors
(crawling and simple reaching).

This article was originally published in the
journal Autonomous Robots. The final pub-
lication is available at www.springerlink.com:
http://www.springerlink.com/content/607205212j9l4062

1 Introduction

Controlling robots with multiple degrees of freedom
(DOFs) for autonomous tasks is still an open and chal-
lenging issue, notably because planning complex, mul-
tidimensional trajectories in time-varying environments
is a laborious and costly process. In previous work
(Gay et al.(2010); Degallier et al.(2008, 2007, 2006);
Righetti and Ijspeert(2008, 2006a)), we have presented
a control framework where the planning and the gen-
eration of movements are decoupled, i.e., the planning
consists in defining the key characteristics of the de-
sired movement (e.g., the target position for reaching),
the actual trajectory generation relying on low-level at-
tractor dynamics. This approach drastically reduces the
dimensionality of the planning problem, making it par-
ticularly appropriate for robots with multiple DOFs, and
we have applied it to the control of humanoid robots for
diverse tasks such as drumming, crawling and reaching.
In the present contribution, we review this work and fill
it out with a more detailed presentation of the dynam-
ical system on which the architecture is based, empha-
sizing the properties that make this system particularly
well-suited for robotic applications.

In order to design our architecture, we took inspira-
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tion from the motor system of vertebrates, notably be-
cause animals are capable not only of performing highly
complex tasks in a robust way but also of rapidly adapt-
ing to changes or uncertainties in the environment. In-
terestingly, the planning of movements and the actual
generation of trajectories are most likely decoupled in
vertebrates [e.g.,Grillner (2006), Bizzi et al. (2008)].
The actual spatio-temporal sequence of activation of the
muscles is produced at the spinal level through neu-
ral networks calledcentral pattern generators (CPGs)1.
These CPGs are activated by simple, non-patterned con-
trol signals from the brain and that are modulated by
sensory feedback. Thus, only the key parameters of the
movement seem to be needed from the brain for a task
to be completed2. In terms of control of robots, the idea
behind the concept of CPGs is that movements are pro-
duced by so-called pattern generators, that have open
parameters (the control signals) but whose dynamics are
predefined, the output of such a generator being called
a motor primitive. For instance, for reaching, the tar-
get of the movement is open, but features such as, e.g.,
the velocity and the acceleration profiles are encoded in
the pattern generator and are thus fixed. As a result,
the planning phase for a reaching movement consist
only in specifying the final desired position, the whole
trajectory being then computed by the pattern genera-
tor. Consequently, a CPG-based approach to movement
generation reduces the dimensionality of the planning
problem: instead of computing whole trajectories, only
the key parameters of the movement need to be speci-
fied. In addition, the trajectories generated by the pat-
tern generators (the motor primitives) can be modulated
by sensory feedback in order to adapt the trajectories to
partially unknown environments.

To model these motor primitives, we used dynamical
systems with appropriately chosen attractor properties.
We define apattern generator as the system of equa-
tions that generates the trajectories and amotor primi-
tive as the solution of this system. The dynamical sys-
tem approach to understand movement coordination has
been initiated by scientists such as Schoener, Kelso and
Turvey (and others) [see, e.g.Turvey(1990), Schoener
(1990); Schoener and Kelso(1988)]. Basically, the idea
is to bring to light collective variables that can describe

1Note here that we follow definition of CPGs ofGrillner (2006)
that includes both the generation of discrete and rhythmic movements

2If the existence of CPGs in non-primate vertebrates is generally
well accepted nowadays, the generalization to humans is still an open
debate, indeed, influences from higher cortical areas and from sensory
pathways are difficult to isolate [e.g.,Capaday(2002)]

coordination patterns, and the modeling of such pat-
terns by dynamical systems depending on such collec-
tive variables (Schoener(1990)). Schoener and Kelso
(1988) have shown the importance of notions such as
stability and phase transition in movement generation.
The gaits observed during provides a typical example
of such phenomenon: only a discrete number of sta-
ble states (the gaits) exists and a collective variable (the
frequency) induces transitions between these states at
critical points.
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(b) Motor-primitive approach

Figure 1: Motor primitives for control . (a) In the tradi-
tional approach, ahigh-level planner computes the trajecto-
ries needed to achieve the task according to the feedback in-
formation. In redundant systems, the desired trajectory isusu-
ally found using optimization given a certain performance cri-
terion. When the environment changes, inducing a modifica-
tion of the feedback signal, the control trajectories need to be
computed again.(b) A low-level planner based on CPGs. The
generation of the trajectories is now divided into two steps:
the definition of the control parameters of the motor primi-
tives and the generation of the motor primitives by the CPGs.
Optimization has to be done on a small set of trajectories. In
addition to the main feedback loop, a local feedback loop can
be added for rapid modulations of trajectories without requir-
ing replanning. This local loop allows for fast on-line adapta-
tion of trajectories.

In terms of control, advantages of an approach based
on motor primitives over traditional control approaches
can be summarized as follows. In traditional ap-
proaches, there are usually two different processes: a
high-level planner that computes the desired trajecto-
ries and alow-level controller (e.g., a PID controller)
that transforms the desired trajectories into motor com-
mands (see Fig.1). The idea behind the concept of
motor primitives is to add alow-level planner to the
system that is composed of a set of trajectories with
predefined dynamics. In terms of robotic control, the
motor primitives can thus be seen as template trajecto-
ries in which a priori knowledge about the movements
to be performed are embedded and that can be modu-
lated according to feedback information. The advantage
of using these primitives is threefold. First, they ease
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the planning problem by reducing the workspace of the
robot to the control parameters of the motor primitives.
Second, they provide the system with fast, local feed-
back loops for on line trajectory generation. It allows
to rapidly correct desired trajectories according to time-
varying perturbations or environmental changes with-
out the need to replan the whole motor plan explicitly.
Finally, different degrees of freedom can be coupled to-
gether to ensure inherent synchronization and coordi-
nated behaviors. In other terms, motor primitives pro-
vide an effective, dynamic way to embed a priori knowl-
edge about the task into the low-level planning sys-
tem, as, for instance, arm synchronization for bi-manual
tasks or trajectories with bell-shaped velocity profile for
reaching movements. They thus provide a fundamental
tool to develop efficient, fast architectures for the gen-
eration of movements, particularly in the case of robots
with many degrees of freedom and meant to evolve in
time-varying environments, such as humanoids.

Discrete and rhythmic movements are commonly
considered separately in motor control theory and,
mathematically speaking, different types of parameters
are needed to characterize the movements. Several au-
thors have studied the interaction of discrete and rhyth-
mic movements, sometimes reaching different conclu-
sions, as we reviewed inDegallier and Ijspeert(2010).
In this article, we consider discrete and rhythmic move-
ments as two basic types of movements that can be com-
bined to generate hybrid trajectories. The general con-
trol schema that we are proposing here is depicted on
Figure2: the CPGs generate trajectories according to
the control parameters specified by the planning system,
the whole architecture being influenced by feedback in-
formation coming from the robot. Note that this concept
is not limited to control in the joint space and can easily
be extended to operational space control for instance
(see e.g.Khatib (1980)). In our CPG, we model all
movements through the combination of a discrete and a
rhythmic motor primitives, both produced by a unique
dynamical system, that we call aunit pattern generator
(UPG). More precisely, movements are modeled as os-
cillatory movements around time-varying offset. Purely
discrete movements can be obtained by setting the am-
plitude of the oscillations to zero and purely rhythmic
ones by setting a constant offset.

The control of robotic devices using motor prim-
itives modeled by dynamical systems has often
been addressed in the literature, with applications to
learning by demonstration – the so-called dynam-
ical motor primitives (DMP) – [e.g.,Ijspeert et al.

CENTRAL PATTERN 

GENERATORS
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PARAMETERS

TRAJECTORIES

SENSORY 

FEEDBACK

PLANNING

UPG

UPG UPG

UPG

Figure 2:Schema of the control architecture. A cen-
tral pattern generator is seen here as a network of dy-
namical systems that allows for the generation of com-
plex output trajectories given simple, non patterned in-
puts. The output of the system can be further modulated
by sensory information.In the dash line box: The dis-
crete and the rhythmic systems are combined together
to form a unit pattern generator (UPG) that is respon-
sible for the control of one degree of freedom (DOF).
The UPGs of each DOF are then coupled together in a
network, the central pattern generator (CPG, in green),
in order to generate a coordinated behavior between the
DOFs. Note that while the (open-loop) dynamics of the
UPG is always the same, the CPG depends on the struc-
ture of the robot and on the task to be accomplished.
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(2003), Gribovskaya and Billard(2008), Pastor et al.
(2009), Kober and Peters (2010)], rehabilitation
(Ronsse et al.(2010)), locomotion [e.g.,Kimura et al.
(2007), Maufroy et al. (2008)] and modular robotics
[e.g., Cui et al. (2010), Sproewitz et al. (2010)]
for instance. Here our focus is the generation of
trajectories given simple, explicit high-level com-
mands, as for instance inMaufroy et al. (2008) for
locomotion and Bullock and Grossberg(1988) and
Hersch and Billard(2008) for reaching. The novelty
here is that we address the generation of both discrete
and rhythmic movements through the same system,
a subject that as received little attention so far, as we
reviewed in Degallier and Ijspeert(2010). Indeed,
to the best of our knowledge, two main models for
the simultaneous production of both discrete and
rhythmic movements have been presented before,
namely the models byDe Rugy and Sternad(2003)
and by Schaal et al.(2000), and they have never
been applied to robotic control. The model presented
by De Rugy and Sternad(2003), later extended to
bi-manual tasks byRonsse et al.(2009), is aimed at
reproducing the key observations of the combination
of discrete and rhythmic movements. It is based on a
Matsuoka oscillator (Matsuoka(1985)) modeling the
output of two coupled neurons, this output being trans-
formed into a desired trajectory through the equation of
the dynamics of the joint.Schaal et al.(2000) proposed
a rather complex system composed of two different
motor primitives with many parameters, that allows for
the reproduction of signals recorded in the brain, the
drawback being that all these parameters need to be
tuned precisely. Here our main focus is robotics (rather
than the reproduction of observations made in humans)
and our goal is thereby the design of a simple model
with few, explicit control parameters corresponding
to main characteristics of the movement (that is, the
discrete target, the frequency and the amplitude).
Note that Schoener(1990) introduced a system for
the control of discrete movements, these movements
being modeled as truncated rhythmic movements.
More precisely, in this model, the qualitative solutions
of a basic system are modulated by a supervising
system according to the task specifications: postures
are modeled as fixed points and movements by a
Hopf oscillator. Discrete movements correspond to
approximatively half of the limit cycle and the timing
of the bifurcations (i.e., the qualitative change of the
solutions to movements to posture) is controlled by
the supervising layer according to the distance to the

target. This system has been applied to the autonomous
control of robots in navigation tasks several times
[see, e.g.,Steinhage and Bergener(1998), Tuma et al.
(2009)] and to reaching tasks inSchoener and Santos
(2001). To the best of our knowledge, this system has
never been applied to the generation of both discrete
and rhythmic tasks for robotic applications, although
the system could be easily extended to generate se-
quences of discrete and rhythmic movements. Here we
take a different approach where discrete and rhythmic
movements are considered as two separated types of
movements that can be coupled to produce hybrid
movements.

In this article, we first present in details the modeling
of the CPGs (Section2); we then illustrate the capacity
of the system to easily switch between behaviors on the
fly and the possibility of integrating different types of
feedback through two applications, drumming (Section
4) and crawling (Section5). The iCub robot, as well
as the preexisting software that was used, are briefly
presented in Section3.

2 Presentation of the architecture

We present here the precise implementation of the
CPGs. As illustrated on Figure2, all trajectories (for
each joint) are generated through a unique set of dif-
ferential equations (the UPG) and which is designed
to produce complex movements modeled as periodic
movements around time-varying offsets. Each UPG can
be divided into two subsystems: the discrete and the
rhythmic one. The first subsystem is responsible for
the generation of short-term, goal directed features of
the movement and the second subsystem for periodic
features of the movements such as the amplitude and
frequency of the pattern. The dynamics of the different
DOFs can then be embedded in a larger network (the
CPG) by coupling them together to ensure coordinated
and synchronized behaviors. We present the discrete
and the rhythmic systems separately in Subsection2.1
and2.2 respectively and we discuss their combination
in Subsection2.3. We then present how to couple the
different systems to create a CPG (Subsection2.4).

2.1 Discrete System

To generate discrete movements, we use a set of
differential equations based on the VITE (Vector
IntegrationTo Endpoint) model originally developed
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(b) Bell-shaped velocity profile
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(c) Resistance against perturbations
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(d) Adaptivity to changing environment

Figure 3: Discrete System.See text for discussion. The system was integrated using theEuler method with a
time step oft = 0.001 s. Here the gain in Eq.3 is set toB = 10. (a) Top panel: Different trajectories converging
to same target positionγi = 2 with different initial positions:y = 1 (black, plain line),y = 3 (red, dash line) and
y = −1 (blue, dash dotted line).Bottom panel: Corresponding velocity profiles (same color/line type.).(b) Top
panel: Two types of activation commandhi: in black, plain line a step response (hi = 1 at the time of activation
t = 0.5 s, 0 before) and in red, dotted line a monotonically increasing activation (corresponding to the output of
Eq.1). Bottom panel: Resulting velocity profiles with the constant activation (black, plain thick line) and with
the increasing activation (red, dotted thick line) and the corresponding trajectories (same color/line type but thin
lines) converging to the targetγi = 2. (c) Top panel: The normal trajectory (in red, dash line) is modified (in black,
plain line) due to a perturbation where the DOF is kept in a constant position (y = cst, in-between the vertical
lines) fromt = 0.5 to t = 1.5, but eventually converges to the targetγi = 5 (in blue).Bottom panel: In this case,
the perturbation is similar to a ”force” exerted on the DOF (dy

dt =−1, in-between the vertical lines) fromt = 1.8 to
t = 3.0 (same color code/line types as in the top panel).(d) Top panel: The target positionγi (in red, dash dotted
line) is changed fromγi =−1 to γi = 1 before convergence. In black, plain line is the resulting trajectory.Bottom
panel: The time varying target positionγi(t) is here given by a sine signal (same color code as in the top panel).
Note that hereB = 50 to illustrate the fast convergence to the target.
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by Bullock and Grossberg(1988) to simulate planned
and passive arm movements. The target of the trajec-
tory is encoded through adifference vector that repre-
sents the difference between the desired position of the
DOF (γi) and its actual position (yi). The speed of the
movement is controlled by the so-called activityv that is
proportional the difference vector (yi − γi). Such an im-
plementation allows for a coordinated control of several
DOFs, as the time of convergence to the target is inde-
pendent of the length of the trajectory, that is all DOFs
will attain their target position simultaneously even if
the distances to be covered by the joints are different
(see Figure3(a)). We slightly modified the original sys-
tem byBullock and Grossberg(1988) to ensure that the
initial speed of a movement is zero and that the velocity
profile is bell-shaped. More precisely, for each degree
of freedomi, a goal directed movement towards a target
positionγi can be generated through the following set
of equations:

ḣi = 1− hi (1)

ẏi = vi (2)

v̇i = −1
4

B2h2
i (yi − γi)−Bhivi (3)

whereyi is the output of the system,vi andhi are auxil-
iary variables andB is a constant that controls the time
of convergence of the system3. The system is critically
damped so that the outputyi of Eqs2 and3 converges
asymptotically and monotonically to the targetγi with
a speed of convergence controlled byB. Eq 1, that we
call thego command, is used to ensure that the velocity
profile is bell-shaped and, in particular, that the initial
speed is null (as illustrated on Figure3(b)). hi is re-
set to zero at the onset of each movement (a movement
is considered to be new when the target is significantly
larger than the previous one (0.1 rad in our case)). This
system is relatively simple in the sense that the only pa-
rameter to select is the rate of convergenceB, and the
trajectory is fully determined by simply specifying one
control parameter: the targetγi of the movement.

3Throughout this article, Greek letters will denotecontrol param-
eters, lower-case Latin lettersvariables and capital Latin letterscon-
stant values.

Stability and analytical solution

To ensure the stability of the system, we can analyze the
eigenvalues of its Jacobian, that is

JD =





−1 0 0
0 0 1

−0.5B2hi(yi − γi) −0.25B2h2
i −Bhi





Thus, for any point of the state space(hi,yi,vi), we have
det(JD−λ I) = (−1−λ )(λ +0.5Bhi)

2, and henceλ0 =
−1 andλ1 = λ2 = −0.5Bhi. For the go command, we
have:

h(t) = 1− e−t+t0.

wheret0 is the time of initiation of the movement, as
we seth(t0) = 0 in our case. Hence 0≤ hi ≤ 1 and
B > 0 and thus, since all the eigenvalues are negative,
the general system is stable on the state space given by
[0,1]×R×R. The two eigenvalues of the system given
by Eqs.2-3 are equal and real and hence the system
is critically damped. Thus, if we considerhi = 1, the
solution is given by

y(t) = γ +Cye−
B
2 t +Cvte

− B
2 t

whereCy andCv are constant that depends on the initial
conditionsy(0) andv(0).

Properties of the discrete system

We now present some features of the system – illus-
trated in Figure3 – that will be useful for the application
to robotics.

Globally attractive fixed point
The fixed pointγi is globally attractive, which
means that the trajectory will asymptotically
converge to this point for any initial condition, as
illustrated in Figure3(a)). Moreover, as mentioned
above, for any initial condition, all trajectories
converge to the targetγi at the same time, as the
speed is proportional to the remaining distance
to be covered, as can be observed on Figure3(a).
Such a feature is interesting because all the DOFs
move in a synchronized way, the drawback being
that the speed of the movement is not directly
controlled (unlessB is changed).

Bell-shaped velocity profile
The auxiliary variablehi modifies the velocity
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profile of the system to make it bell-shaped. More
specifically, it is used to ensure that the velocity
is null at the onset of the movement to avoid high
peaks of accelerations. The effect of the chosen
activation compared to a simple step response
(as in the original VITE model) is illustrated
on Figure3(b). Note that the auxiliary variable
hi must be reset to zero at each onset of a new
movement.

Resistance against perturbations
Thanks to the global attractiveness of the fixed
point, even if a perturbation occurs during or after
the transient – as illustrated on Figure3(c) – the
trajectory will eventually converge to the target
position. Note that the duration of the perturbation
does not influence the trajectory after since the
system is autonomous. This feature is interesting
because it can be used to modify the trajectory
according to sensory information: for instance,
if the DOF is stuck in a given position due to a
obstacle for instance, the dynamics of the system
can be temporarily modified so that the desired
trajectory matches the actual environmental
condition by using a perturbation similar to the
one shown in Figure3(c) (top panel). Similarly,
a repulsive force can be applied to avoid contact
with a obstacle (Figure3(c), bottom panel)

Adaptivity to changing environment
Figure3(d) illustrates the ability of the system to
smoothly adapt to changes of the target positionγi.
In the top panel, it is shown that if the target posi-
tion is suddenly changed (if for instance the object
that has to be reached is suddenly moved, or if the
target object changes), the trajectory is smoothly
modulated to converge to the new target position.
The bottom panel of Fig.3(d) depicts the case
where the target positionγi is constantly changed.
In this case the system is constantly updated so that
it reproduces the trajectory of the moving target
with a time delay that depends on the gainB. In
order to deal with a constantly changing target po-
sition, the activity commandhi is reset only when
the difference between the new target and the pre-
vious one is big enough (the threshold was set to
0.1 rad in our case). For instance, in the drumming
application (see Section4), a visual feedback loop

constantly updates the target angles of the limb ac-
cording to the actual position of the (possibly mov-
ing) drum pads.

Some additional remarks

Although we setB to a constant value here, it can also
be used as a control parameter: as mentioned earlier, the
value ofB defines the duration of the discrete movement
(independently of the distance to be covered), as illus-
trated on Fig.3(d), upper panel. For instance,B can be
tuned to reflect the so-called Fitts Law (Fitts (1954)):
the duration of simple reaching movement depends on
the difficulty of the task, this difficulty being measured
as the ratio between the distance to the target and the
width of the target.B can thus be defined to be inversely
proportional to the relationship defined by Fitts (smaller
values ofB leading to longer movements in time). In
addition, since it has been shown byKelso et al.(1979)
that, in bimanual tasks, movements of different difficul-
ties tend to have the same duration (that is, the duration
of the more difficult movement), it can be postulated
that the control commandB is shared by the two arms.
The benefit of using a commonB is twofold: it reduces
the number of control parameters needed and coordi-
nation between the two arms is inherent to the system.

It is important to note that, if a perturbation occurs,
the trajectory will eventually converge to the desired
target (thanks to the global attractiveness of the tar-
get). Now, evidence exist in motor control that ani-
mals tend to resume to the initial plan after perturba-
tions [e.g.,Bizzi et al.(1984); Won and Hogan(1995)].
A system where the trajectory is a sort of moving fixed
point could be implemented and, in this case, if a per-
turbation occurs, the trajectory will converge to the po-
sition where it should be at a given time according to the
initial plan. However, an attractive trajectory may cause
dangerous behavior of the robot due to the (explicit or
implicit) reference to time. Indeed, if a long term per-
turbation occurs, the system will converge back to the
position initially planned with an uncontrolled speed.
In our case, the trajectory after the perturbation is not
affected by the duration of the perturbation, which mo-
tivates our choice since we focus on robotics application
rather than on motor control modeling.
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(c) Modulation of amplitude
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(d) Modulation of frequency

Figure 4:Rhythmic System.See text for discussion. The system was integrated using Euler method with a time
step oft = 0.001 s. The gain in Eqs.5 and6 is set toA = 5, and the gain in Eq.4 is set toC = 20. The noise
ε is distributed normally with mean 0 and standard deviation 1. (a) Top panel: Different trajectories converging
to same limit cycle of amplitude

√
2. with different initial positions:x = 0, z = 0 (black),x = 2, z = 2(red) and

x = −2, z = 0 (blue). Bottom panel: The same trajectories in the phase plane-xz (same color).(b) Top panel:
The normal trajectory (black) is modified (red) due to a perturbation where the DOF is kept in a constant position
(x = cst) fromt = 0.5 to t = 1.5 and fromt = 1.8 to t = 3. Bottom panel: The same trajectories in the phase plane-
xz (same color).(c) Top panel: The initial trajectory (black) is modulated through the parameterm (in blue±√

m)
resulting in changes in amplitude (red). Att = 1, m is set to a negative value (-5), leading to a Hopf bifurcation:
the limit cycle becomes a fixed point system. Att = 2, m is set to 4 and the reverse bifurcation occurs.Bottom
panel: The same trajectories in the phase plane-xz (same color).(d) Top panel: Modulation of the parameterωi:
at t = 0s,ωi = 2π , att = 2s,ωi = 3π , att = 4s,ωi = 2π , att = 6s,ωi = π and att = 8s,ωi = 2π (the black vertical
lines denote times whereωi is changed).Bottom panel: The original signal (red, plain line) is entrained by a
signalF(t) = sin(4π) (black, dotted line) with a gain equals to 10, i.e. ˙x = ...+10F, from t = 2.5s to t = 8s.
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2.2 Rhythmic system

For the rhythmic system, we use a modified Hopf os-
cillator. Indeed, such an oscillator has many interesting
properties, among which: (i) it has a unique periodic
solution that is globally stable, (ii) this solution can be
found analytically and is a perfect sine, and (iii) the fre-
quency and the amplitude are explicit parameters. The
system can be written as:

ṁi = C (µi −mi) (4)

ẋi =
A
|µi|

(

mi − r2
i

)

xi −ωizi + n (5)

żi =
A
|µi|

(

mi − r2
i

)

zi +ωixi + n (6)

wherexi is the output of the system,zi andmi auxiliary

variables,ri =
√

x2
i + z2

i , A andC are constant control-
ling the rate of convergence andn is a noise signal dis-
tributed normally (n~N (0,1)) added to avoid unstable
solutions. The first term of the right-hand side of Eqs.5
and 6 ensures a constant amplitude while the second
term induces the oscillatory behavior. Whenµi > 0,
Eqs.5 and6 describe an Hopf oscillator whose solution
xi is a sine of amplitude

√µi and frequencyωi. A Hopf
bifurcation occurs whenµi < 0 leading to a system with
a globally attractive fixed point at (0,0). Note that Eq.4
was added to the canonical system to ensure that the
output trajectory is smooth even when bifurcations oc-
cur.

Stability and analytical solution

To analyze the system, we rewrite the oscillator in polar
coordinates(r,θ )4 for x andz:

ṁ = C(µ −m) (7)

ṙ =
A
|µ |

(

m− r2)r (8)

θ̇ = ω (9)

with r ∈ R+ andθ ∈ R. In this way the radius and the
phase dynamics are decoupled. The solutions of Eqs.7
and9 are straightforward:

m(t) = µ − (µ −M0)e
−Ct (10)

θ (t) = ωt +Θ0 (11)

4We do not follow here the convention stated before (see Foot-
note3) according to which Greek letters denotes control parameters,
since the Greek letterθ is commonly used to denote the variable cor-
responding to the phase.

whereM0 = m(0) andΘ0 = θ (0). It can easily be seen
thatµ is a stable fixed point. The phaseθ is increasing
at a constant rate. It is said to be neutrally stable, i.e.,
perturbations will not be forgotten, but will also not in-
crease. Eq.8 bifurcates depending on the value ofµ (as
m will eventually converge toµ), indeed forµ ≤ 0 the
system has a unique solutionr = 0, while for m > 0,
it has two solutions,r = 0 andr = µ , as illustrated on
Fig. 5.

μ
1/2

0
μ>0

μ=0

μ<0

r

r
.

Figure 5:Hopf bifurcation . Depending on the value of
µ , the solutions of system change qualitatively. Ifµ >
0 (in blue in the figure), the system has two solutions
r = 0 andr =

√µ. In this case, and as indicated by the
arrows that shows the direction of trajectories,r = 0 is a
“repeller” andr =

√µ an attractor. However, forµ = 0
(in red) andµ < 0 there is only one solution left (r = 0)
and it is attractive.

If we consider thatm(t) = µ > 0, we can solve the
system for the non-zero solution by using the fact that
Eq.8 is a Bernoulli equation. We obtain:

r(t) =

√

µ

1+ µCre
− 2A

|µ | (µt)
(12)

whereCr is a constant depending on the initial condi-
tions.

Properties of the rhythmic system

We now present some features of the system – illus-
trated in Figure4 – that will be useful for the application
to robotics.

Attractive limit cycle
As illustrated on Figure4(a), all trajectories will
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eventually converge to the limit cycle for any
initial conditions. Indeed, the system has two
solutions, a stable limit cycle (a circle centered
at the origin and of radius

√µi) and an unstable
fixed point at(0,0). Thus, thanks to the noise
(n) added in the equation, the system will even-
tually converge to the oscillatory solution even if
initially at the unstable fixed point. However, as
illustrated in Figure4(a), the convergence might
be slower in that case (black, plain line) than for
any other initial condition (blue, dashed and red,
dotted-dashed lines). Note that the noise averages
out over the duration of the movement, since it
randomly affects velocity at each time step of
integration.

Resistance against perturbations
Thanks to the attraction of the limit cycle, even if
a short-time perturbation occurs, the system will
resume to the limit cycle afterwards, as depicted
on Figure4(b). Similarly to the discrete case, this
feature can be used to modulate the dynamics of
the system according to feedback information.

Modulation of amplitude and Hopf bifurcation
The amplitude of the oscillation is directly con-
trolled by the parameterµi, more precisely, the
amplitude is equal to

√µi (when µi > 0). Such
feature allows us to very easily, and smoothly,
modulate the system behavior according to the
desired trajectory output, as illustrated in Fig-
ure 4(c). As mentioned before, different types
of solutions exist depending on the value ofµi.
In Figure 4(c), Hopf bifurcations occur att = 1
andt = 2. Thanks to the addition of Eq.4, both
transition are smooth. Note that without the
addition of noise, the transition from the fixed
point solution to the limit cycle can be very slow,
as the fixed point remains a solution (even if
unstable) after the bifurcation.

Modulation of frequency
Similarly to the amplitude, the frequency can
be modulated directly through parameterωi, as
shown in Figure4(d), top panel. Note that a pe-
riodic perturbation, if strong enough, can induce
entrainment, i.e. the overall frequency of the os-
cillator will synchronize to the one of the external

signal, as can be seen on Figure4(d), bottom panel.
We will see in Subsection2.4that entrainment be-
tween oscillators can be used to couple them to-
gether.

In certain application, as for instance locomo-
tion, it is desirable to have a independent control
of the duration of the ascending phase (stance)
and the descending phase (swing). Indeed, it
is well known that in animal locomotion change
of the overall speed are achieved by changing
the duration of the stance phase, the duration
of the swing phase being almost constant. In
Righetti and Ijspeert(2006a), the term for fre-
quencyωi was modified to reflect this behavior,
more precisely,

ωi =
ωswing

e−Dzi +1
+

ωstance

eDzi +1
(13)

whereD is a constant parameter controlling the
duration of the switch between the two phases.
The frequency is now a function of two vari-
ables,ωswing and ωstance, that explicitly and in-
dependently control the swing and stance dura-
tions. Note that whenωswing = ωstance, we obtain
the same output as before. Fig.2.2 illustrates the
modulation of the original sine (in red) with a four
times longer or four times shorter stance (in blue
and in black respectively). The overall frequency
of the system (and thus the speed of the robot)
can be modulated by changing the duration of the
stance only.

Some additional remarks

Note that in this system the phase is neutrally stable
(perturbations neither decay nor grow), which means
that perturbations may cause permanent phase shifts of
the signal. In particular, the phase of a signal before and
after a Hopf bifurcation can be different. The neutral
stability of the phase avoids backwards movements on
the limit cycle after perturbations, while ensuring that
it will not diverge. In addition, as will be seen in Sub-
section2.4, the phase difference between two signals
can be controlled by coupling them if needed (as, for
instance, to control the gaits in locomotion).

2.3 Unit pattern generator

In order to develop a low-level planner that can gener-
ate both discrete and rhythmic movements, we superim-

10



0 2 4 6 8

−4
−2

0
2

Time [s]

P
ar

am
et

er
s

0 2 4 6 8
−4

−2

0

2

4

Time [s]

P
os

iti
on

(a) Switching between types of movements

0 1 2 3 4
−5

0

5

10

Time [s]

P
os

iti
on

−2 0 2 4 6

−2

−1

0

1

2

x

z

(b) Three types of movements

Figure 7:Unit pattern generator. See text for discussion. We usedB = 10, A = 5, C = 20, ωi = 4π and Euler
integration (time stept = 0.001).(a) Top panel: The control parameters: in red, dash line, the amplitude, inblue,
dash-dotted line, the target of the movement.Bottom panel: In black, plain line is the trajectory corresponding
to the control commands of the top panel, in red, dash line, the movements resulting when no discrete movement
is elicited (γi = 0) and in blue, dash-dotted line, when the rhythmic movementis switched off (µi = −5). (b)
Top panel A purely discrete movement in blue, dash-dotted line, a purely rhythmic one in red, dash line, and the
combination of both in black, plain line.Bottom panel: The corresponding trajectories in the phase plan (same
color/line code).
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Figure 6: Modulation of stance duration. In all the
trajectories, the general frequency is fixed toω = 4π
and we modulate the duty factor of the walking cy-
cle, defined asd = Tstance/(Tstance+Tswing) if Ti = 1/ωi

for i=swing, stance. The swing period is then com-
puted according to the stance period and the overall pe-
riod (i.e. Tswing = 2T −Tstance). For the red trajectory,
ωswing = ωstanceand the resulting trajectory is a sym-
metric sine (duty factord = 0.5), for the blue curve,
ωstance= 2.5π and d = 0.8, i.e. the stance lasts four
times longer than the swing, and for the black curve
ωstance= 10π andd = 0.2, i.e the stance last four times
shorter than the swing. Heref = 100,b = 10, a = 5,
ωi = 4π and the matlab functionrandn to generate the
noise, the time step of integration being set to 0.001.
The behavioral results of the change of the stance dura-
tion is illustrated by the Online Resource Movie 7.

pose the dynamics of the two systems presented before
in order to obtain a limit cycle that can be moved in the
x-direction (as depicted of Figure7(b), bottom panel),
i.e., the discrete movement is applied as a translation
of the rhythmic one. This is obtained by embedding the
discrete movement outputyi as an offset of the rhythmic

outputxi, that is

ḣi = 1− hi (14)

ẏi = vi (15)

v̇i = −1
4

B2h2
i (yi − γi)−Bhivi (16)

ṁi = C (µi −mi) (17)

ẋi =
A
|µi|

(

mi − r2
i

)

(xi − yi)−ωizi + ε (18)

żi =
A
|µi|

(

mi − r2
i

)

zi +ωi (xi − yi)+ ε (19)

where xi is the output of the system and nowri =
√

(xi − yi)2+ z2
i . Whenµi > 0, Eqs.5 and6 describe

a Hopf oscillator whose solutionxi is a periodic signal
of amplitude

√µi and frequencyωi with an offset given
by γi. A Hopf bifurcation occurs whenµi < 0 leading to
a system with a globally attractive fixed point at (γi,0).
The set of equations Eqs.15-19 is aunit pattern gener-
ator, that is the minimal set of equations controlling one
degree of freedom, while Eq.14 can be shared by sev-
eral DOFs to ensure synchronized discrete movements.

γi µi ωi

D non constant negative any
R constant positive non zero

D+R non constant positive non zero

Table 1:Types of movements. This table summarizes
the influence of the control parameters on the type of
the movement. Here D = purely discrete, R = purely
rhythmic, D+R = a combination of rhythmic and dis-
crete movements.

Figure7(a)(black line) depicts the qualitative behav-
ior of the system depending on parametersµi and γi:
the system can switch between purely discrete move-
ments (fromt ≈ 1s to t ≈ 2s), purely rhythmic move-
ments (fromt ≈ 2s tot ≈ 5s), and combinations of both
(from t ≈ 6s tot ≈ 7s), the control parameters being ex-
tremely simple as it can be seen from the top panel. Dis-
crete movements are simply elicited by specifying the
target positionγi (blue, dash-dotted line), while rhyth-
mic movements are controlled through the specification
of the parameterµi (red, dash line), which is the square
of the amplitude of the output movements. Table1 sum-
marizes the control parameters and the induced types of
behaviors.

The control of each degree of freedom is thus
defined by a set of 6 equations (one of which – Eq.14
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– can be make common to all the DOFs to ensure a
synchronized onset for the discrete movements), 3
internal constant parameters (A, B andC) and 3 control
parameters (γi, µi andωi). This implementation is thus
extremely economic, as the targetγi (the amplitudeµi

and the frequencyωi ) are the minimal information
needed to characterize a discrete (rhythmic) movement.
Note that, as mentioned above, the parameterB can be
used as a control parameter to modulate the speed of
the discrete component of the movement, but is kept
constant in all the applications presented here.

Some examples of feedback loops

We present here two possible ways of integrating feed-
back into the system that will be later used in the appli-
cations to drumming and crawling. Feedback loops can
be designed as control policies in case of specific pertur-
bations of the system. For instance, if a collision occurs,
the system should react in a compliant way to absorb the
shock, but also a strategy should be implemented to de-
fine a new trajectory that is consistent with the task to
be performed. An implementation of such behavior is
shown in the first example. The second example illus-
trates how a parameter can be controlled according to
the feedback information. More precisely, we use the
load information to control the phase of locomotion ac-
cording to a simple rule: when a limb supports weight,
it means that it should be in the stance phase, and in the
swing phase otherwise.

Contact feedback

First, we present a feedback loop designed so that
the robot stops its movement in the current po-
sition when the discrepancy between the desired
and the actual position increases [seeIjspeert et al.
(2002) for a first implementation]. The system
of equations for the UPGs is simply modified in
the following way: an attractor with a high gain
(Ex = 1000 in our case) is added to the system
to stop the movement in its current position ˆxi (in
Eq. 20) if the difference between the actual posi-
tion x̂i and the desired positionxi is large, i.e. we
have

ẋ =
A
|µi|

(mi − r2
i )(xi − yi)−ωzi +Ex(x̂i − xi);(20)

(21)

where ˆxi is the current position of jointi when
the feedback is received andEx is a constant con-
trolling the gain of the feedback. Note that when
xi = x̂i the feedback term vanishes and the system
is equivalent to the open loop one. In application,
as small differences may occur, e.g., due to time
delay, a error thresholdε can be defined to avoid
the activation of the signal in undesired cases (e.g.,
by using an expression such as max(0, |x̂i − xi|− ε
instead of the raw error).
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Figure 8:Contact feedback. In blue, dash-dotted line
is the obstacle (or joint limit), in red, dotted line the tra-
jectory defined by control parameters (high-level feed-
back planner) and in black, plain line CPGs trajectory
modulated by the feedback.Upper panel: A constant
obstacle located at -2 rad prevents the DOF to follow
the desired trajectory, creating a difference between the
actual and the desired position. The fxied

Such a feedback term can be useful in different
situations, as illustrated on Fig.8. The top panel
simulates a situation where an obstacle (denoted
by the blue line) prevents the DOF to follow
the initially planned trajectory (red, dotted line).
In this case, the trajectory is modulated by the
feedback to adapt to this constraint (black, plain
line). In other words, the trajectory defined by the
high-level planner (red, dotted line) is modified
at the CPGs level (black, plain line) to adapt to
the environmental constraints (blue, dash-dotted
line). Note that reaching a joint limit will induce
a similar behavior. The bottom panel illustrates a
similar situation with a moving obstacle, or several
obstacles located in different positions. This latter
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situation is the one that we will encounter in the
drumming application.

Phase-dependent feedback

The second feedback loop that we present here has
been developed byRighetti and Ijspeert(2008):
it consists in a phase-dependent sensory feed-
back that is used to increase locomotion stabil-
ity on uneven terrains. It is inspired from mam-
malian locomotion where local sensory informa-
tion such as load sensing on the extremities of
a limb has an important role in the modulation
of the onset of swing and stance phases [see
Frigon and Rossignol(2006) for a review]. The
dynamics of the oscillator and thus the policy gen-
eration is modified on line according to load sens-
ing on the end effectors (hands and knees of the
robot), more precisely, a feedback term is added to
Eq6 to modulate the transitions as follows

żi = ...+







−sign(zi)F fast transitions
−ω(xi − yi)(+couplings) stop transition
0 normal

(22)
where F (= 10 in our case) controls the speed of
the transition. Fig.9 shows the activation of the
feedback depending on the phase of the limb and
the resulting modification of the phase space of the
oscillator. As long as a limb supports the body
weight the transition from stance to swing phase
for this limb is delayed. A faster transition occurs
in the case of early limb unloading. In the case of
swing to stance transition, a analogous behavior is
implemented: transition is delayed as long as the
limb does not touch the ground and is triggered in
case of an early contact with the ground.

These feedback loops use only local information to
change the control policies locally and as such is a first
layer of adaptation in unpredicted environments. In
other words, it provides a way to act locally on the tra-
jectories for fast adaptation under environmental con-
straints without requiring a modulation of the motor
plan. Such feedback pathways serve as an example to
show the flexibility and versatility of the proposed ar-
chitecture for on line trajectory generation.

u = 0 u =±F u =−ω(xi −yi)

(a) Phase Plan
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(b) Trajectories

Figure 9:Feedback strategy for the independent con-
trol of the swing and stance duration. (a) Modulation
of the phase plan by the feedbackLeft panel: normal
phase plan of the the Hopf oscillator.Middle panel:
Strategy for accelerating the transitions. The speed is
increased byF (=10 in our case).Right panel: Strategy
for slowing down transitions. The system is stopped
by canceling the oscillatory terms.(b) Corresponding
trajectories.Top panel: Trajectories in the phase plan
corresponding the strategies in (a):normal (black),fast
transition (red), stop transition (blue). Middle panel:
Stop transition. Decelerated trajectory (blue, dash dot-
ted line) compared to unperturbed trajectory (black,
plain line) in time domain.Bottom panel: Fast tran-
sition. Accelerated trajectory (red, dash line) compared
to unperturbed trajectory (black, plain line) in time do-
main.
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Figure 10: Effects on the onset of a discrete movement on the phase of an ongoing rhythmic movement.
This figure shows the impact of the discrete movement on the rhythmic one depending on the time of onset of the
former relatively to the phase of the latter. The effect is shown for two extreme value of the set of parameters (B,
ω). It can be seen from the figure that the discrete movement affects the rhythmic one in any cases, even if for
the case (10, 3Hz) the influence is restricted to a small interval of values.Top panels: In green is the unperturbed
rhythmic signal that is used as a reference to compute the phase shift. We show 11 trajectories corresponding to 11
different discrete onsets equally spaced over one period ofthe rhythmic movement. Trajectories in blue indicates
when the two dynamics are cooperating (i.e., same directions of velocity), the reverse being indicated by red
lines (i.e. opposite directions of velocity). The black line indicate the border case (null velocity for the rhythmic
movement). Vertical lines show the time of onset of the movements. Bottom panels: Histograms showing the
distribution of the phase shifts for 100 trajectories with their onset being equally distributed during the phase of
the movement. A phase shift of zero meaning no perturbation.Again, it can be seen that, while in the left case,
there is no influence for more than 70% of the trajectories, inthe right case there is an influence for more than
80% of them.

15



Some additional remarks

Concerning the interaction between the two subsys-
tems, the key parameters of the trajectory – the target,
the frequency and the amplitude – are not affected in a
permanent way (although very small transient perturba-
tions may occur) but the phase of the rhythmic move-
ment can be perturbed (as it is neutrally stable). Sys-
tematic tests show that for most choices of parameters
B andω , the phase of the rhythmic signal will change
after a discrete movement. This difference depends on
the phase of the signal at the onset of the discrete move-
ment as shown on Fig.10. Similarly, the time of onset
of a rhythmic movement during a discrete one will have
an influence on the phase (in the same way as different
initial conditions influence the phase), as illustrated on
Fig. 11. As mentioned earlier, this phenomenon can be
overcome by coupling the system to a reference signal
whenever it is needed in practical applications, as will
be discussed in the next section.

2.4 Central pattern generator

In order to obtain a coordinated behavior between sev-
eral DOFs, their UPGs can be coupled in a network
to obtain coordinated behaviors. Such networks, that
we call central pattern generators (CPGs), ensure fixed
time relationships between the different rhythmic out-
puts (i.e. phase-locking), a feature which is particularly
convenient for generating different gaits for locomotion
for instance, as illustrated on Figure12.

The coupling of a DOFi with other DOFs (j’s) is
done by extending Eqs.18and19 in the following way

ẋi = ...+Σ j 6=iK
x
i j(cos(θi j)(x j − y j)− sin(θi j)z j)(23)

żi = ...+Σ j 6=iK
z
i j(sin(θi j)(x j − y j)+ cos(θi j)z j)(24)

where theθi js control the phase difference between

DOF i and j and theKx/z
i j ’s are the constant gains of

the coupling, i.e. the rate of convergence to a stable
solution.

CPGs design
Thanks to the couplings, a network with fixed
relationships between the different elements can
be designed. Fig.12 depicts CPGs corresponding
to the following gaits: trot, pace, (asymmetric)
bound and walk, and the corresponding trajecto-
ries. As shown by Table2, the matrix ofθi j ’s is
skew-symmetric with a null diagonal. Note that,
to ensure convergence to the desired phase shifts,
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Figure 11:Effects on the onset of a rhythmic move-
ment during a discrete one on the phase.Depending
on the time of onset of the rhythmic movement during
a discrete movement (denoted by the vertical red lines),
the phase shift between the purely rhythmic movement
(in black) and the hybrid one (in blue) are different.
This can be explained by the fact that the initial con-
ditions at the time of onset of the rhythmic movement
(that define the phase) will be different.
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Figure 12:CPGs applied to Gait Generation. See text for discussion. LF = left forelimb, RF = right forelimb,

LH = left hind-limb and RH = right hind-limb. HereKx/z
i j = 8, ∀i, j and we usedB = 10, A = 5, ωi = 4π . The

system was integrated using Euler method with a time step oft = 0.001 s. (a-d) Schemes of the phase shifts
for the different gaits (left) and the corresponding trajectories (with same color) (right). Cells/trajectories of the
same color/line type means that they are in phase. Note that for each arrow, the angleθ attached is the angle
corresponding to the full, black arrow, whereas the angle corresponding to the white arrow should be taken as the
opposite (−θ ) to ensure coherence. For a more explicit specification of the angles, please refer to Table2.
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Figure 13: Transition between different couplings.
See text for discussion. HereKx/y

i j = 5, ∀i, j and we
usedB=10,A=5,ωi = 4π . The system was integrated
using Euler method with a time step oft = 0.001. (a)
Scheme of the different CPGs configurations and(b)
the corresponding trajectories. The modification hap-
pen att = 2.15s andt = 4.25s and are denoted by verti-
cal black lines.

the CPG network should be designed in a coherent
way, in the sense that the sum of every phase
differences along a closed path must be a multiple
of 2π (for the obvious reason that a cell should be
in phase with itself).

Smooth on line modulation
In addition, the phase relationships between the
different elements of the CPG can be modified
on line as illustrated on Fig.13. Note that the
time required to converge to the new solution
depends on the parametersKx

i j andKz
i j . Similarly,

if a short-term perturbation occurs, the system
will resume to the desired phase-shift relationship
afterwards.

The system that we have developed is general enough

to be applied to various tasks, as will be presented in
Section 4 and5. First, we briefly present the hardware
and software setup that we used as well as the physics
simulator.

3 Hardware and Software

Before presenting the actual application of the archi-
tecture, we briefly present here the RobotCub project
and the iCub robot, as well as the main software tools
that were used in our implementation of drumming and
crawling.

3.1 RobotCub

RobotCub is a 5 year-long EU-funded project that
ended in January 2010. Its goals were twofold: first,
to develop a humanoid robot – the iCub – of the
size of a 3.5 years old infant, and second, to use this
platform to study cognition and its development (see
Tsagarakis et al.(2007) for instance). All the software
developed during this project for the iCub robot, and
notably the code for crawling and drumming that will
be presented below, is open source. The software is
based on the open source library YARP developed by
Fitzpatrick et al.(2008) to support software develop-
ment and integration in robotics.

Hardware The robot has 53 degrees of freedom
(DOFs): 6 for each leg, 16 for each arm (among which
9 for each hand), 3 for the torso and 6 for the head.
Most of the DOFs axes and their names are depicted on
Figure14. From now on, we will refer to the joints by
their names as they appear on this figure.

iCub Software The iCub software architecture is
based on YARP, an inter-process communication layer,
which enables complete abstraction of the communica-
tion protocol between different software modules. Each
module streams its output data through YARP ports,
and these building blocks can be interconnected regard-
less of their physical location on the network (same
computer, Ethernet network, etc.). iCub capabilities are
thus implemented as a set of modules that can be easily
connected together through YARP ports.

The software for the iCub comes with a set of kine-
matics libraries called iKin, developed by U. Pattacini.
It allows forward and inverse kinematics computa-
tions on any subchain of the iCub degrees of freedom.
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Trot LF RF LH RH
LF 0 π π 0
RF −π 0 0 π
LH −π 0 0 0
RH 0 −π 0 0

Pace LF RF LH RH
LF 0 π 0 π
RF −π 0 −π 0
LH 0 π 0 π
RH −π 0 −π 0

Bound LF RF LH RH
LF 0 0 π − ε π + ε
RF 0 0 π − ε π + ε
LH −π + ε −π + ε 0 −2ε
RH −π − ε −π − ε 2ε 0

Walk LF RF LH RH
LF 0 π −π/2 π/2
RF −π 0 π/2 π/2
LH π/2 −π/2 0 π
RH −π/2 −π/2 −π 0

Table 2:Angles needed for different gaits. These tables summarize the angles required to generated the different
gaits presented on Figure12. See text for discussion. LF = left forelimb, RF = right forelimb, LH = left hind-limb
and RH = right hind-limb.ε is an open parameter that controls the phase shift between the two hind legs in the
bound gait.

0 torso pitch
1 torso roll
2 torso yaw
3 neck pitch
4 neck roll
5 neck yaw
6 shoulder pitch
7 shoulder roll
8 shoulder yaw
9 elbow

10 wrist prosup
11 wrist pitch
12 wrist yaw
13 hip pitch
14 hip roll
15 hip yaw
16 knee
17 ankle pitch
18 ankle roll

Figure 14:Structure of the iCub. Schematic of the dofs of the iCub (excluding the dofs of the hands and eyes).

The forward kinematics library uses standard Denavit-
Hartenberg convention to enable the projection of a po-
sition to the reference frame of any part of the robot. It
can be used for instance to project the position of an ob-
ject in the camera reference frame to the root reference
frame of the robot, or to check for internal collisions.
The inverse kinematics library uses the IPOPT library
(Wächter and Biegler(2006)) to solve the non-linear in-
verse kinematics problem withN DOFs under the set of
constraints defined by the limits of each joint. A maxi-
mum error as well as a maximum number of iterations
of the optimization algorithm can be set for a compro-
mise between precision and computational complexity.

3.2 Webots

WebotsTM (Michel (2004)) is a simulator based on the
Open Dynamics Engine (ODE) library for simulating
rigid body dynamics. A model of the iCub was devel-
oped according to the Denavit-Hartenberg parameters
of the real iCub as well as the joints limits and maxi-
mum torque of the motors. A YARP interface similar
to the iCub robot interface was also developed, so that

the same YARP modules can be used on the simulator
and on the real robot without any modification. This
interface is freely available on the RobotCub website.

3.3 ARToolKitPlus

ARToolKitPlus (Wagner and Schmalstieg(2007)) is a
marker-based 3D vision tracker. It allows for detection
and tracking of specific black and white markers and
computes the full transformation matrix of the marker
in the camera frame. This tracker uses only one camera
and is widely used for its robustness to changes of light-
ning. We use this tracker together with the iKin library
to compute the 3D position of markers and project it to
the root reference frame of the robot. The capability
of the tracker to compute the orientation of the markers
can be used to set an offset in 3D between the position
of the marker and the actual position of the object.In the
drumming application for instance, the actual position
of the center of each drum is then computed according
to a predefined 3D offset between the marker and the
drum. The position of each drum is then projected to
the root reference frame of the robot, the default frame
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of reference for all kinematics computations. For each
drum, the corresponding target positions for each DOFs
(γi) of the closest arm of the robot are computed using
and extended version of the default inverse kinematics
solver provided by iKin. We modified the solver to in-
clude the drumming stick as an additional link in the
iCub arm chain so that the tip of the stick reaches the
center of the drum. Note that since we are using an op-
timization algorithm we are not sure to converge to a
solution and thus the maximal error was set to 5 cm to
ensure that suitable angles could be find rapidly enough.

4 Drumming

Drumming is a challenging application as it requires co-
ordination between the limbs, precise timing and the
robust on line modulation of the parameters – with-
out raising the question of balance, as the robot is
fixed to metallic structure in our case. Drumming
has been implemented on robots several times before,
to study agent-object interaction (Williamson (1999)),
learning from demonstration (Ijspeert et al.(2002)) or
human-robot interaction (Kose-Bagci et al.(2010)) for
instance. Here we focus mainly on the adaptability and
robustness of the implementation: trajectories are mod-
ulated on line both by high level commands and by
feedback information.

In this application, a user can define in real time the
score that the robot is playing through a graphical user
interface (GUI). The robot is playing on an electronic
drum set, with two drum pads for each arms and two
pedals for the legs. More precisely, the user can de-
cide if the limb is idle or not, on which drum the limb
is hitting (for the arms), the general frequency and the
phase differences between the four limbs. The archi-
tecture is robust enough so that any user can play with
the interface in a way that is secure for the robot. This
demonstration was shown in CogSys 2008 in Karlsruhe
and Automatica 2008 in Munich and ran during several
hours. Note that the implementation is not platform de-
pendent and that a similar application, although with
predefined scores, has been implemented before on the
Hoap2 robot (seeDegallier et al.(2006) for details).

The whole system is modulated by two feedback sig-
nals, that are contact detection between the limbs and
the drums (on the real robot) and visual tracking of the
drums (in simulation for now). More precisely, contact
detection is used to stop the robot in its current posi-

tion when encountering an obstacle to safely handle the
collision, and the drums are visually tracked so that the
trajectories of the limbs can be adapted autonomously
to their actual position. A synthetic version of this sec-
tion, excluding the visual feedback, was presented at the
BIOROB conference in 2008 (Degallier et al.(2008)).
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CPG
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Graphical User Interface for Score

CONSTRAINTS

TASK SPECIFICATION

WHOLE-BODY CPG FEEDBACK

Contact

Feedback

ROBOT

Vision

tracker

Figure 15:Implementation of the drumming behav-
ior . This implementation is designed so that any user
can interact with the robot to make it play a score of
his/her choice through a simple graphical user interface.
Visual feedback is added to the system so that the robot
can detect the drums through ARToolKItPlus markers
and autonomously adapt its movement to their position.
Finally, a feedback to deal with collisions between the
arms of the robot and the drums is added for security
reasons. Five parts are controlled, namely the head, the
left arm, the right arm, the left leg and the right leg.
Green arrows denote couplings.

Software implementation. The implementation, de-
picted on Figure15, consists of four main blocks:

(i) Task specification: a graphical interface (GUI)
that allows a user to define the behavior (i.e. the
score) of the robot on line.

(ii) Whole-body CPG: the network is composed of
a CPG for each of the four limbs and the head;
each of them are coupled to a clock that is used
as an absolute referential of time (similarly to a
metronome in music).
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(iii) Constraints: the control commands need to be
adapted to the actual environment and state of the
system; this is done through two subsystems:

(a) Timing: The phase of the different CPGs is
monitored to know when a new note of the
score should be played and thus to gate the
update of the control commands of the CPGs

(b) IK: Thanks to the visual feedback, the Carte-
sian position of the drums, indicated by
markers, are transformed into target joint
angles through the inverse kinematics algo-
rithm iKin (see Section3).

(iv) Feedback: the information from the robot is used
to modulate the trajectories; it consists in two sub-
systems

(a) Contact feedback: The movement is tem-
porarily stopped when a collision with an ob-
stacle is detected.

(b) Visual tracker: Vision is used to track and
update the Cartesian position of the drums.

These blocks will be presented more in details in the
following. The set up for drumming can be seen on
Figure16: the robot is fixed to a metallic structure by
the hips and plays on an electronic drum set. The four
limbs together with the head are controlled. We control
actively four joints for each limb (the shoulder pitch,
roll and yaw and the elbow for the arms, and the hips
pitch, roll and yaw and the knee for the legs) and the
six DOFs of the head (neck and eyes). The sticks are
grasped by the hands which remain closed afterwards.
The pedals are placed so that the robot can easily reach
them when its legs are stretched.

Design of the whole-body CPG. All the DOFs are
controlled by the unit pattern generator defined in Sec-
tion 2.3. Only two joints per limb are oscillating: the
shoulder pitch and the elbow for the arms and the hip
pitch and the knee for the legs, the other DOFs output
being always purely discrete. The neck yaw is also os-
cillating. The network is illustrated on Figure15: all
the limbs CPGs are unilaterally coupled to the clock, as
well as the head. Note that the coupling is unilateral so
that the limbs do not affect the clock. The coupling pa-
rameters were set toKx

i j = Ky
i j = 2. This value was cho-

sen as it allows for a rapid convergence to the desired
state (less than half a cycle) with a limited acceleration.

Task specification and Constraints. A graphical in-
terface (based on the open source library Qt3) was de-
veloped to ease the control of the robot. The open pa-
rameters are the following:

• for each arm: ID of the target drum or idle, phase
shift relatively to the clock

• for each leg: drumming or idle, phase shift rela-
tively to the clock

• for the head: idle or scanning (to locate drums) or
looking at one of the drums

• for the whole system: the frequency

The user can modify the score at any time, however
the parameters of the CPG are changed only when it
is safe for the robot, that is during the period where
the limb moves away from the drums. An intermedi-
ate module (the ”constraints” block on the figure) is re-
sponsible to monitor the phase of each limb and to send
the new commands during the secure phase. The fre-
quency, the amplitude and the phase shifts can be sent
to the CPGs without transformation, while the drums ID
are mapped to target joint angles (for each controlled
DOF of the limb) defined relatively to the position of
the drums. These target joint angles can be either pre-
defined or determined through a visual tracker system
combined with an inverse kinematics algorithm, as will
be discussed below.

Figure 17 illustrates the trajectories obtained for
drumming in open loop on the iCub robot. It can be
seen that they are modulated through simple parame-
ters, that are the target, the amplitude and the frequency
for one UPG (top figure) and the phase shift between
the DOFs for the CPG (bottom figure). The vertical
lines on the figure indicate the time at which the CPG
of the limb receives the new commands; it can be seen
that the trajectories converge rapidly – in less than a cy-
cle – to the new desired solutions. Figure17(a)shows
the possible modulations of the UPG for one DOF (the
left shoulder pitch): the target, the oscillations (on and
off) and the frequency, and Figure17(b) the control of
the differences between the two hip pitches.

Visual feedback. A visual tracker based on AR-
ToolKitPlus (see Section3.3) combined with the kine-
matic library iKin ((see Section3.1) is used to obtain the
(possibly time-varying) positions of the different drums
(for the arms). More precisely, the different drum pads
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Figure 16:Snapshots of the iCub drumming(Automatica fair, Munich, 2008). The robot is playing with both his arms and legs, the
score being defined on line by a user through a graphical interface. Note that the robot is kept in a upright posture througha metallic structure.
Movie available as an Online Resource, Movie 1.
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Figure 17:Drumming trajectories . The blue vertical lines indicate when the new control commands are received
by the limb CPG.(a) Simple commands sent to the UPG of the left shoulder pitch result in drumming trajectories.
Top panel: Control commands: the target (in red), the amplitude (in black) and the frequency (in green).Bottom
panel: Resulting desired and actual trajectories (in black and redrespectively).(b) A simple parameter allows
for the modulation of the phase shift of the right hip pitch relatively to the left hip pitch1.Top panel: Control
command for the phase shifts.Bottom panel: Resulting trajectories: In black the left hip pitch and in red the right
one.
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are tagged with ARToolKit markers. Once a mark is
detected, the inverse kinematics algorithm iKin is used
to compute suitable target joints angle to reach the pad.
The target angles are stored by the controller and up-
dated whenever a significant displacement of the drum
pad is detected. Thanks to this feedback, the robot can
autonomously adapt to any new configuration of the
drums and to modifications of this configuration. Fig.18
shows snapshots of the robot drumming (in simulation)
while the drum pads are moved.

Contact Feedback. A feedback policy term was in-
troduced to safely, and smoothly, handle collisions with
the drums. We used the the feedback term introduced in
Section2, Eq.20. We postulate than when a collision
occurs, it means that the drum pad has been hit earlier
than expected (due to imprecision of the visual feed-
back for instance). The desired behavior for the robot
is thus the following: we want the robot to stay in the
current position for a while and to resume to the desired
trajectory when the new beat starts. Such feedback sim-
ulates compliance on the robot and controls the way that
the system resumes to the desired trajectory.

Figure19 illustrates the effect of the feedback in a
real application where the robot is drumming with a
relatively high frequency (1 Hz). It can be seen that
the efficiency of the feedback is related to the speed at
the time of impact: the higher the speed, the longer it
takes for the system to stabilize to the fixed point. Thus
the feedback will be more efficient if the impact occurs
near the peaks of amplitude (middle case on the figure).
However, even when a collision occurs close to the peak
of velocity (right case) the feedback successfully stabi-
lizes the arm in its current position. Figure20 shows
snapshots of the robot adapting its trajectory to differ-
ent positions of the drum pad. Note that the detection of
a collision is made through the electronic drum set (as
no feedback from the robot was available at the time),
i.e. every time a collision is detected by the set, a mes-
sage was sent to the controller indicating which drum
had been hit.

5 Infant crawling

Crawling is the first stage of locomotion in infants; it
allows them to explore their environments and to move
towards persons or objects of interest. This behavior
was implemented on the iCub in simulation and partly
on the real robot; we developed a controller that allows

Figure 19: Contact feedback. Right shoulder pitch
trajectories while drumming. The colored areas cor-
respond to the interval of time where the feedback is
active, the plain line to the desired trajectory and the
dashed one to the actual trajectory. The horizontal thick
lines denote the approximated position of the drums.
First the robot is in a rest position, then att ≈ 5s, it
starts drumming. During the first cycle, no contact with
the drums occur, then, att ≈ 1.2s, a collision is detected
by the drum set and the arm is stopped in its current
position. At t ≈ 1.7s, the normal trajectory being safe
again, the feedback is removed and the arm start moving
again. For the next two cycles, the drum pad is moved
in different positions. It can be seen that the feedback is
more efficient near the peak of amplitude (middle case),
where the velocity is smaller. Snapshots of the behav-
ior of the system with contact feedback is depicted in
Fig.20.

for modulations of the locomotion, such as changes of
speed and steering, and integrates both contact and vi-
sual feedback. Contact feedback is used to trigger tran-
sitions between swing and stance according to load in-
formation in order to increase locomotion stability; vi-
sual feedback is used to detect obstacles and objects of
interest, and more precisely to create a map of the en-
vironment surrounding the robot. Simple reaching for
marks on the ground based on vision has also been im-
plemented, providing a demonstration of superimposi-
tion and switch between discrete and rhythmic tasks.
Finally, a high-level planner algorithm based on po-
tential fields was combined with the CPG to obtain an
autonomous, infant-like behavior where the robot, at-
tracted by an object of interest, moves towards it while
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Figure 18: Simulation of drumming with moving drums. The target angles corresponding to the different drums are
updated continuously so that the robot can adapt its trajectories to their actual position. Here the robot beats alternatively the
two drum pads corresponding to each arms. Every new beat the position of one of the drums is changed. Movie available as
an Online Resource, Movie 3. The frames were taken at regularintervals (0.45 s).

Figure 20:Snapshots of the robot drumming with contact feedback. The drum pad is moved while the robot
is drumming (between first and second snaphsots). The movement of the arm is adapted to the new situation: it is
stopped as soon as it touches the drum pad. Note that the drum pad could not e held in this position without the
feedback, as the robot is controlled in position, with a highgear motors. Movie available as an Online Resource,
Movie 2.

avoiding obstacles, and finally reaches for it (in simula-
tion only, for now). Steady-state crawling and reaching
have been implemented on the real robot iCub.

Note that this section is partly based on work pub-
lished before in conference articles, notably a previ-
ous implementation of crawling based on infant data
analysis (Righetti and Ijspeert(2006a)) and a study
of the combination of discrete and rhythmic move-
ments for switching between crawling and reaching
(Degallier et al.(2007)). The contact feedback policy
was presented inRighetti and Ijspeert(2008) and the
high-level planner algorithm inGay et al.(2010). A
synthetic version of this section, excluding visual feed-
back, reaching and the high-level planning, was pre-
sented inDegallier et al.(2008).

Software Implementation. The implementation, de-
picted on Fig.21, consists of four main blocks:

(i) High-level planner: A path avoiding the obsta-
cles and reaching points of interest is determined
through an algorithm based on potential fields.

(ii) Whole-body CPG: the network consist of a CPG

for each of the four limbs and the head and torso;
the four limbs are coupled together to obtain a trot
gait.

(iii) Task manager: a module that sends the parame-
ters according to the task to be performed, that are
here:

(a) Crawling: The manager sends the parame-
ters corresponding to crawling, with the turn-
ing angle and the speed of locomotion as
open parameters.

(b) Reaching (IK): When the robot is close
enough to a target, it stops and reaches for
it; the joint angles for the reaching arm being
provided by the iKin library.

(iv) Feedback: the information from the robot is used
to modulate the trajectories; it consists in two sub-
systems

(a) Contact feedback: The load information is
used to control the transition of each limb be-
tween swing and stance.
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Figure 21:Implementation of the crawling behavior.
This implementation is designed so that the robot can
autonomously evolve in a (time-varying) environment
containing obstacles and target objects. It can be seen
from the figure that the CPG output is modulated both
by high-level and feedback commands. The high-level
commands can be either triggered manually by the user
(not depicted on the figure) or through visual feedback
for reaching (if the robot is close enough to a target
object) or for steering the robot to avoid obstacles and
move towards target object according to a path-planning
algorithm based on potential fields. Obstacles and tar-
gets are indicated by ARToolKitPlus markers. There is
also a local feedback based on force sensors that mod-
ulates the behavior of the robot according to the ground
contact information. Six parts are controlled, namely
the head, the torso, the left arm, the right arm, the left
leg and the right leg. Green arrows denote the couplings
between the different parts.

(b) Visual tracker: Vision is used to detect ob-
stacles and objects of interest, indicated by
predefined markers.

In this application, both arms and legs are controlled
as well as the head and the torso. For each arm and
leg, we actively control 4 DOFs, that are the shoulders
pitch, roll and yaw and the elbows for the arms and the
hips pitch, roll and yaw and the knee for the legs; the six
degrees of freedom of the head and the three of the torso
are also controlled. We thus actively control 22 DOFs.
The remaining DOFs are set in particular position at the
beginning of the task and remain fixed at that position
afterwards.

CPG design and choice of parameters. The design
of the low-level planner is based on observations on
the crawling of human infants (?Righetti and Ijspeert
(2006a)). While infants can have various locomotion
strategies prior to walking, most of them crawl on hands
and knees using a gait that is close to a walking trot. The
crawling gait has a duty factor higher than 50 % (i.e.
the duration of the stance phase is longer than half of a
step cycle). The duration of stance is highly correlated
with speed of locomotion while the duration of swing
remains constant, as is generally observed in quadruped
mammals.

The expression for the frequency (Eq.13) is used
to enable independent control of the swing and stance
duration. To ensure the trot gait, the oscillators of
shoulders and hips pitch joints are coupled according to
Eqs.23 and 24 with theKx

i js set to 0 and theKz
i js to 1.

Theθi j are chosen as described for the trot in Section2,
Table2.

Concerning the joints other that the hips/shoulders
pitches, they are controlled in the following way. The
shoulder roll, the elbow and the hip roll are kept in a
fixed position during the stance and move proportion-
ally to the speed of the shoulder pitch joint during swing
to ensure that the knees and the hands are lifted enough
to avoid collision with the ground. Here we set

γi = Fiz j

For the arms,j denotes the shoulder pitch joint andi the
shoulder roll or the elbow joint. For the legsj denotes
the hip pitch joints andi the hip roll. TheFi’s are con-
stant values chosen by hand. Fig.22shows snapshots of
the robot crawling with the parameters of Table3 with
a duty factor of 50% (ωstance= ωswing= 0.3).

Steering. To make the robot turn, the strategy that we
used is to set the torso roll angle to a non-zero value
and to modulate the amplitude of the different limbs ac-
cording to the new posture of the body. More precisely,
the amplitudes of the inner pitch angles (i.e. the pitch
angles of the arm and the leg on the side to which the
robot is turning) will be smaller and the outer angles
larger to compensate the fact that the outer side has to
cover a larger distance than the inner one. Once the am-
plitude of the legs is deduced, we deduce the ones of
the arms according to the closed kinematic chain con-
straints. Fig.23shows snapshots of the robot turning in
simulation.
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Figure 22:Snapshots of the robot crawling. Steady state crawling, withωstance= ωswing = 0.3. Note that the
hands are protected by wrist sport pads because of their fragility and the knees are also covered by sport pads as
they are extremely slippery due to their shape and material.The robot turns its head while walking to enhance the
detection of the visual markers. Movie available as an Online Resource, Movie 4.

left arm γ µ right arm γ µ left leg γ µ right leg γ µ
shoulder pitch -1.20 0.09 shoulder pitch -1.20 0.09 hip pitch 1.40 0.10 hip pitch 1.40 0.10
shoulder roll 0.35 -5.00 shoulder roll 0.35 -5.00 hip roll 0.40 -5.00 hip roll 0.40 -5.00
shoulder yaw 0.26 -5.00 shoulder yaw 0.26 -5.00 hip yaw 0.00 -5.00 hip yaw 0.00 -5.00
elbow 0.50 -5.00 elbow 0.50 -5.00 knee -2.00 -5.00 knee -2.00 -5.00

Table 3:Parameters for crawling. Only the shoulder and the hip pitches are oscillating, and the amplitude of
the shoulder is determined by the amplitude of the legs due tophysical constraints (i.e. the horizontal distance
covered by the hand during one step has to be equal to the one covered by the knee when the robot goes forward).
The position of the shoulder roll and the elbow, and of the hiproll, is fixed during the stance but is modulated
during swing to avoid contact with the ground. The resultingtrajectories can be seen on Fig.24.

Figure 23:The iCub turning . Superimposed snapshots
of the robot turning with a torso angle of 0.5 radians.
Movie available as Online Resource, Movie 6.

Switching between crawling and reaching. When
the robot is close enough to a target object to reach it,
the task manager sends commands to stop crawling and
go to a rest position that is defined by the parameters
γi in Table 3, with all the oscillations “switched off”
thanks to the Hopf bifurcation (µi < 0). Once in this po-
sition, the robot is controlled so that it first lifts the arm
that is going to reach for the object and then reaches
it, as illustrated by the snapshots on Fig.25. The in-
termediate position (with the reaching arm lifted) has

Figure 25:Snapshots of the robot reaching a mark.
When the robot is close enough to a target object (here
the marker on the ground), it stops crawling and goes
back to the position defined by the discrete target (g
in Tab. 3). Then it lifts the hand that is going to do
the reaching movement (second snaphsot). Finally it
reaches for the target (third and fourth snapshots). Note
that here the robot does not touch the ground as the
maximal error tolerated was set to a high value (5cm).
Typical reaching trajectories are depicted on Fig.24.
Movie available as an Online Resource, Movie 5.

been added to avoid contact with the ground during the
reaching movement. The object to be reached is indi-
cated with a ARToolKitPlus marker and the target angle
positions of the reaching arm are given by the inverse
kinematics algorithm iKin mentioned above, while the
other limbs stay in the same position. Note that as the
mark is on the ground, the range of reachable positions
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Figure 24:Trajectories of the (real) iCub crawling and reaching for the right arm and the left leg. Att ≈ 13s,
the robot starts crawling. Att ≈ 64s the robot autonomously switch from the crawling behavior tothe rest position
because it is close enough to a mark to reach it. It goes to an intermediate position (in which the reaching arm
– the right one here – is lifted above the ground) for 10s and then it reaches the mark on the ground (att ≈ 74s)
until it is asked to crawl again (t ≈ 78s): it first resumes to the rest position and start crawlingagain after a
while (at t ≈ 82s). Plain lines indicate the actual trajectories and dotted lines the desired ones, the tracking of
the robot being quite good in general.Top panel: Trajectories of the four actively controlled DOFs of the right
arm: shoulder pitch (blue), shoulder roll (green), shoulder yaw (red) and elbow (black).a: Trajectories of the four
controlled DOFs of the right arm, from top panel to bottom one: the shoulder pitch, the shoulder roll, the shoulder
yaw and the elbow.b Two DOFs of the left leg: the hip pitch (top panel) and the hip roll (bottom panel). Note that
the hip yaw and the knee are kept in a constant position and arenot shown here. Note that Figs.22 and25 show
snapshots of the robot crawling and reaching respectively.Movie available as an Online Resource, Movie 5.
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for the arm is quite limited and thus the tolerated error
for the inverse kinematics was set to a relatively high
value (5cm). Trajectories of the iCub crawling, going
to the rest position, reaching for a mark and crawling
again are depicted on Fig.24.

Contact feedback. We use the phase-dependent
sensory feedback terms presented in Section2 to
increase locomotion stability on uneven terrains
(Righetti and Ijspeert(2008)). The dynamics of the
oscillator and thus the policy generation is modified
on line according to load sensing on the end effec-
tors (hands and knees of the robot). This feedback
loop was tested in simulation inRighetti and Ijspeert
(2008). Locomotion stability was improved on vari-
ous terrains such as slopes. Fig.26 gives an illustra-
tion of the effect of feedback on the locomotion be-
havior. The detailed analysis of the feedback behavior,
which is out of the scope of this paper, can be found in
Righetti and Ijspeert(2008); ?.

High-level path planning. A high level planner
based on potential fields has been developed in
Gay et al.(2010) to illustrate how our low-level plan-
ner can be used in a simple navigation task in a fully
autonomous way. A representation map of the different
positions of the obstacles and targets, acquired through
a vision multi-object tracking module based on AR-
ToolKitPlus (see Section3.3), is turned into a poten-
tial field where obstacles and targets are represented by
respectively positive and negative potentials (?). Note
that the standard implementation of the potential fields
was slightly modified to deal with multiple targets: the
closer the robot is to a target, the more attractive it is
[seeGay et al.(2010)]. The trajectory is then given by
the gradient of the surface.

The field of view of the robot was enhanced by cou-
pling the head oscillators with the rest of the body in
a way that the head and eyes of the robot perform an
oscillatory movement in phase with the crawling move-
ment to scan the environment. The positions of the
markers detected during one oscillation of the head and
eyes are translated in the root reference frame of the
robot using iKin (see Section3.1) and used to construct
a partial map of the direct surroundings of the robot.
This partial map is the only information available to the
robot to perform navigation. No external information
(full map of the environment, self localization ...) is
provided to the robot.

The command sent to the manager by the path plan-
ning module is to crawl with a certain desired angle
of rotation. This angle correspond to the torso roll an-
gle and is updated whenever it is required to follow the
path. If the reaching module is active (i.e. if the mod-
ule is launched), whenever the robot is close enough to
target marker (that is when the inverse kinematics mod-
ule can find a solution), the behavior will be switched to
reaching: the robot will stop crawling and all the steer-
ing commands will be ignored during the completion of
the reaching.

Figure 27: Snapshots of the robot moving towards tar-
get object (small, green boxes), while avoiding obsta-
cles (tall, red boxes). ARToolKit markers are used to
track the object, with different markers for targets and
obstacles. The information is sent to the path planning
algorithm that computes a suitable path based on po-
tential fields, this path is continuously updated. Movie
available as an Online Resource, Movie 9.

Experiments were performed in randomly generated
corridor-like environments with 10 goals and 15 obsta-
cles. The distance between two obstacles or goals was
constrained to be more than one meter so as to avoid
conglomerates of objects and impossible situations. Re-
sults were promising with the robot being able to reach
up to 9 goals out of 10, and avoid all obstacles. Fig27
shows an example of the robot evolving among obsta-
cles and targets [please refer toGay et al.(2010) for
more detailed results]. Note that since the robot is up-
dating its maps continuously, it can adapt to an environ-
ment with moving targets and obstacles. This simple
implementation allows us to reproduce the behavior of
an infant evolving in a complex and time-varying envi-
ronment: the robot moves towards target and reaching
for them while avoiding obstacles, in an autonomous
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(a) With Feedback

(b) Without Feedback

Figure 26: Clearing of a 10-degree slope with and without feedback. In both experiments, the robot was
initially at the same position and snapshots were taken at the same time intervals. With the feedback, the length
and duration of the steps are adapted to the terrain and it canbe seen that robot successfully goes through the
obstacle (top panel), while it fails to do it in open loop (bottom panel). Movie available as an Online Resource,
Movie 8.

way.

6 Discussion

We have presented here a control system that allows
for the generation of both discrete and rhythmic move-
ments based on the concept of motor primitives in bi-
ology. From a control point of view, this concept can
be translated as a set of basis functions with open pa-
rameters that can be combined to generate complex tra-
jectories. Thanks to these low-level motor primitives,
the architecture that was developed allows for an ex-
tremely simple high-level control of the tasks, in the
sense that the only parameters that need to be provided
to the CPGs are the goals of the tasks (rather than full
trajectories for instance). Such an approach is particu-
larly well-fitted for behavior composed of stereotyped
movements, such as locomotion and reaching for in-
stance: once the nominal trajectories have been chosen,
these can be easily adapted to the requirement of the
task (goal of the target movement), to some behavioral
choices (speed of locomotion, steering) or to environ-
mental constraints (contact, close loop chains). In ad-
dition, the implementation using attractor dynamics is
well-suited for feedback integration. The feedback can
be local and act directly on the CPGs (as for instance
the contact feedbacks for both drumming and crawling)

or require some high-level processing and have a be-
havioral effect (as the high-level planning in crawling).
Such strategies create a tight coupling between the con-
troller and the environment, making the whole archi-
tecture more robust to modeling imprecisions, pertur-
bations or time-varying environment. Note that the sys-
tematic design of feedback policies for trajectory gen-
erators is still an open, exciting research question.

In a first application to interactive drumming, we
have shown both the adaptivity and the robustness of the
architecture. Indeed, once the CPGs have been appro-
priately designed, the robot can perform any score – up
to the frequency upper limit imposed by the motors and
the control bandwidth – in a robust way; we were able
to run the demonstration for hours with random users
modulating the score that the robot was playing. In ad-
dition, thanks to the contact feedback, the interactions
with the drums were ensured to be safe for the robot for
any frequency. Finally, it has been shown that simple
visual tracking of objects permits the on line adaptation
of the movement of the robot to a changing environ-
ment.

As was illustrated in the application to crawling, the
usage of a unique dynamical system for both discrete
and rhythmic movements eases the switch between two
totally different behaviors (crawling and reaching in our
case): a unique term controlling the amplitude (µ in the
equations) allows for transiting between discrete and

29



rhythmic behaviors thanks to the Hopf bifurcation of
the system. In our example, we used intermediate posi-
tions to ensure that the constraints induced by the close
kinematics are fulfilled, but one could imagine to use
more sophisticated techniques to compute the desired
trajectory of the different limbs. The crawling behavior
can also be modulated on line, both by high-level com-
mands (speed and steering) or by feedback information
(stance/swing duration, steering to avoid obstacles and
reach target objects). In addition, a new implementation
with gain scheduling is under development, in order to
modulate on line the compliance of the robot according
to the needs of the task (e.g. by having a lower stiffness
during the swing than the stance).

One could argue that a major limitation of the ap-
proach is that the space of possible trajectories is lim-
ited by the chosen dynamics. It is not exactly true, as
it is possible to constantly update the discrete target of
the movement in order to obtain arbitrary movement
(as was illustrated on Fig.3(d), bottom panel), even
though this would be merely a sort of by-pass of the
motor primitives. This is analogous to automatic move-
ments and complex movements that follows a precise
kinematic plan. In addition, the dynamics of the mo-
tor primitives can be also modulated according to the
specific need of the task, as was done for instance for
crawling by changing the expression of the frequency to
have an independent control of the duration of the swing
and the stance (Righetti and Ijspeert(2006a)). How-
ever, designing a dynamical system which solution is
a predefined, desired trajectory is generally not an easy
task. An interesting approach to this issue is the use
of adaptive frequency oscillators (AFO) that is oscilla-
tors that can learn new frequencies through entrainment
(Righetti et al.(2006)). It can be used for frequency
analysis (Buchli et al.(2008)) andRighetti and Ijspeert
(2006b) used this approach to express a complex trajec-
tory into a sum of Hopf oscillators and successfully ap-
plied it to biped locomotion.Buchli and Ijspeert(2008)
used this technique to develop an adaptive locomotion
controller for compliant robots that can adapt to the
body properties of the robot but also to different types
of gaits.

Note that the system that we are presenting here
could be easily integrated to thedynamical sys-
tems approach to behavioral organization proposed by
Schoener et al.(1995). In this approach, both the high
and low-level planners are represented by dynamical
systems. Applications of this approach to robotics
include Steinhage and Bergener(1998), Tuma et al.

(2009) andSchoener and Santos(2001) for instance.
In this contribution, we have chosen to use a sys-

tem with simple attractors properties and to adapt the
trajectories to the requirements of the task if needed,
through feedback or time-varying control commands.
A different approach to movement generation using dy-
namical systems, often referred to as dynamical mo-
tor primitives (DMPs), allows for learning trajecto-
ries through human demonstration [e.g.,Ijspeert et al.
(2003), Gribovskaya and Billard(2008), Pastor et al.
(2009), Kober and Peters(2010), Ude et al. (2010)].
The encoded trajectories, either discrete or rhythmic
(but not both), can be modulated by feedback depend-
ing on the context of the tasks. The trajectories ob-
tained this way can be more complex and human-like
than the ones obtained with our system, but they are
task-specific and require learning.

A major improvement of the current approach would
be to use a model of the CPGs output combined with
optimization techniques to better define the parame-
ters of the CPGs. Indeed, it is important to note
that while we have made a minimal usage of model-
based techniques in the applications that we have pre-
sented, more complex task could be performed through
the combination of motor primitives and model-based
approach dealing with multiple constraints, as for
instance whole-body control approaches such as in
Sentis and Khatib(2005) or in the case of locomotion,
such asZico Kolter and Ng(2009), Kalakrishnan et al.
(2010) or Zucker et al. (2010) . Since our frame-
work simply generates desired policies, it could be eas-
ily integrated with modern torque control techniques,
in a similar way thatZico Kolter and Ng(2009) and
Zucker et al.(2010) used splines. The main advan-
tage of using differential equations over splines is that
external signals can be embedded into the dynamics
(e.g. for synchronization or to deal with perturba-
tions). In particular, we think that our approach, com-
bined with a high-level planning system, is particu-
larly well-suited for locomotion, as the same system
integrates the primitives needed for both rhythmic mo-
tion generation and posture control. Note that Kimura
and his group obtained excellent results for locomotion
based on CPGs and bio-inspired reflexes (Kimura et al.
(2007), Maufroy et al.(2008)), but here our goal is to
provide a more general approach to movement genera-
tion.

In this article, our main focus was robotic applica-
tion. However, another promising direction of research
would be the investigation of the basic principles of
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coordination in humans. Indeed, as first postulated
by Bernstein(1967), functional units (synergies) may
exist that constrain movements, thus reducing redun-
dancy. Uncovering such coordination structures would
not only be beneficial to the study of human motor con-
trol, but it could also be used to simplify robotic con-
trollers. For instance, it is known from motor control
experiments that the amplitude and the frequency of a
movement are linked; the pertinence of such dependen-
cies for robotic applications, in particular for locomo-
tion, could provide an interesting way to reduce the di-
mension of the control parameters.

7 Conclusion

The model that we have presented can be seen as a
simple trajectory generator for both discrete and rhyth-
mic movements that is easy to control and that can be
modulated on line according to new control commands
and/or feedback. Such a generator drastically reduces
the planning as only the key characteristics of the move-
ments need to be specified, namely the target of the
discrete movementsgi, and the amplitude

√

[µi]+ and
the frequencyωi of the rhythmic one. In addition, the
global attractiveness of the solutions ensures robustness
against perturbations, but also the capacity of the sys-
tem to adapt to changing environments through feed-
back information. It has been shown that it can be
efficiently used for diverse applications on real robots
such as drumming, crawling and reaching. The three
main advantages of the approach are that (i) the plan-
ning phase is simplified thanks to the motor primitives,
in the sense that the control commands that are required
are reduced to the key characteristics of the movement
(the target for discrete movements and the amplitude
and frequency for rhythmic movements), (ii) switching
between behaviors is made easier by the fact that the
same system can be used for all kind of tasks, either
discrete and rhythmic, and (iii) the dynamics of the mo-
tor primitives can be modulated by sensory feedback in
order to obtain an adaptive behaviors. In addition, this
method has a low computational cost and is well-fitted
for applications requiring fast control loops.
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