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Abstract We present a conceptually and computationally
lightweight method for the design and iterative learning of
fast maneuvers for quadrocopters. We use first-principles,
reduced-order models and we do not require nor make an
attempt to follow a specific state trajectory—only the ini-
tial and the final states of the vehicle are taken into account.
We evaluate the adaptation scheme through experiments on
quadrocopters in the ETH Flying Machine Arena that per-
form multi-flips and other high-performance maneuvers.

Keywords Aerial robotics - Aerobatics - Learning - Policy
gradient

1 Introduction

Our goal is to create a method for performing fast adaptive
maneuvers for quadrocopters from loose maneuver defini-
tions that is straightforward to implement and to understand.
An example of some of the demonstrated results of the re-
sulting method is pictured in Fig. 1.

The growing ubiquity of small, robust, affordable and
highly dynamic micro aerial vehicles (MAVs) such as
quadrocopters in research labs has yielded impressive de-
monstrations of high-performance aerial motion control.
Small autonomous helicopters, quadrocopters and other
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Fig. 1 Composite time-lapse photo of a quadrocopter performing a
triple flip designed and learned using the described algorithm. The in-
dividual snapshots are offset horizontally for clarity—the vehicle re-
turns to the original spot in the actual maneuver. The maximum com-
manded turn rate is 1800°/s. The complete hover-to-hover maneuver
takes 1.6 seconds

aerial vehicles have gone a long way from the hover-
ing regime and are now able to perform various impres-
sive high-performance maneuvers (Mellinger et al. 2010;
Ritz et al. 2011) and acrobatics (Abbeel et al. 2010;
Gillula et al. 2009; Lupashin and D’Andrea 2011; Gerig
2008).

Extreme aerobatic maneuvers provide for stunning and
readily accessible demonstrations of MAV capabilities and
are a great motivator for improving our understanding of
MAV flight and control. Existing demonstrations rely on
combinations of careful tuning, empirical system identifi-
cation, and adaptation/learning to enable the vehicle to per-
form the motion accurately and reliably. As a result many of
the methods are quite complex, algorithmically and compu-
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tationally. A key difficulty is the non-existence of accurate
analytical models for many flight regimes of helicopters and
other aerial vehicles.

There have been efforts to precisely model and charac-
terize rotary-wing flight in high-performance regimes for
quadrocopters such as by Hoffmann et al. (2011), preceded
by decades of theoretical and applied research on full-scale
helicopters. As a result there exist various models special-
ized for certain conditions such as hover, certain axial mo-
tions, autorotation, and translational movement with con-
stant velocity. As an added complication, it has been shown
that many accepted theoretical or empirical models for full-
sized helicopters break down for smaller vehicles as the as-
sociated Reynolds numbers are on the order of 104 to 105,
which is different by orders of magnitude from full-sized
rotorcraft (Leishman 2006).

Yet high-performance maneuvers such as aerobatics are
analogous to quick, fast tasks performed by living things that
are critical to everyday function. For example, as humans we
need to be able to quickly grasp and manipulate objects, or
to reflexively react to threats and sudden surprises without
waiting for high-level feedback. Flying vehicles will need
similar skills to survive in real environments, making fast,
dynamic flight not just impressive but useful and even nec-
essary. By developing robust algorithms for aerobatics we
are also developing methodologies for performing motions
vital to the success of typical MAVs in future real-world ap-
plications.

We look to human motor control for parallels. Motor mo-
tion learning is commonly split into two components: struc-
tural and parametric learning (Wolpert and Flanagan 2010).
Structural learning involves learning the general outline of a
problem such as which muscle groups to use or the general
form of a motion, while parametric learning is episodic and
attempts to use given knowledge about the problem structure
combined with trials to improve performance. For example,
performing an already known tennis serve with a different
racket is a parametric learning task, while learning to make a
serve for the first time is a structure learning task (Wolpert et
al. 2001). During parametric motion learning we intuitively
focus on adjusting just a few “parameters”, which we can
often identify semi-explicitly. We attempt to loosely follow
and exploit the structural-parametric split in motion learning
by providing a priori explicit structural motion information,
by selecting intuitive parameters to adjust, and by using an
automated method for the parametric learning.

This work presents both a methodology and a specific al-
gorithm for designing parameterized high-performance ma-
neuvers for quadrocopters along with a scheme for itera-
tively improving the performance of these motions from ex-
periments. A high-level overview of this method is pictured
in Fig. 2.

The method presented in this work has been applied suc-
cessfully to several maneuvers such as flips and near-time
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Fig. 2 Overview of the described motion design and iterative adap-
tation method. p represents the parameters to be adapted, C is a
first-order correction matrix, y is a correction step size, and e is a
vector of error measurements. (/) The user defines a motion in terms
of initial and desired final states and a parameterized input function.
(2) A first-principles continuous-time model is used to find nominal
parameters p° and C. (3) The motion is performed on the physical ve-
hicle, (4) the error is measured and (5) a correction is applied to the
parameters. The process is then repeated

optimal translation. Lupashin et al. (2010) first described
this method in 2D for adaptive flips; Lupashin and D’ Andrea
(2011) expanded on it by controlling all of the degrees
of freedom and introducing another maneuver. In Ritz et
al. (2011) we also demonstrated how the method was ap-
plied for a completely different motion to enable near-time-
optimal benchmarking on physical flying vehicles.

This work further expands on the details of the adaptation
method used in these experiments and discusses experiences
in using it both as a tool to enable performance of novel
aerobatic maneuvers and as a way to bring theoretical results
into the physical world.

We attempt to keep the presented methodology as gen-
eral as possible; we believe that it can be readily applied to a
variety of problems outside of quadrocopter aerobatics. The
method leaves the freedom to select any variables as errors
or as parameters, and input trajectories can be defined at dif-
ferent levels: accelerations, velocities, reference positions,
and so on.

This work is organized as follows: We begin by reviewing
and relating the proposed method to other published results
in Sect. 2. In Sects. 3—5 we describe the overall algorithm.
In Sect. 6 we introduce the quadrotor flying vehicles used
for these maneuvers and the first-principles models for ve-
hicle dynamics and the onboard controllers. We then intro-
duce some maneuver design and parameter reduction tools
specific to quadrocopters in Sect. 7. In Sect. 8 we apply the
method to performing fast flips, first in a simplified 2D man-
ner and then for learning errors in all degrees of freedom.
In Sect. 9 we show how the algorithm was used to enable the
transport of near-time-optimal maneuvers from simulation
to physical vehicles. In Sect. 10 we briefly describe the ex-
perimental platform and show experimental results. Finally,
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we address limitations and present an outlook and conclud-
ing remarks in Sect. 11.

2 Related work

High-performance rotary-wing aerobatic flight has been ex-
plored by several research groups using indoor and outdoor
helicopters and quadrocopters. Since it is not tractable to
predict many of the effects governing high-performance he-
licopter or quadrocopter flight, learning and adaptation algo-
rithms are typically used to achieve the desired performance
without excessive empirical modeling.

Abbeel et al. (2010) demonstrated how a nominal aer-
obatic trajectory can be extracted from several demonstra-
tions by a human pilot. The same demonstrations are also
used to construct families of locally accurate models that
enable feedback control throughout the aerobatic maneuver.
This is a sophisticated approach with great flexibility and
wide applicability, necessarily requiring good understand-
ing of the underlying mathematics and the various process-
ing parameters. At the core of this approach is a critical de-
pendency on being able to performing a maneuver manually
before a trajectory and a controller is able to be synthesized
to repeat the motion. In this work we take a different path
of explicitly avoiding prior demonstrations, as we wish to
demonstrate a more loosely-defined maneuver but at speeds
that require precision timing that exceeds human capabili-
ties.

Another family of approaches are commonly classified
as Iterative Learning Control (ILC). Purwin and D’ Andrea
(2011) demonstrated such an approach for learning fast
translation for a larger-scale quadrocopter. This is done by
first calculating a nominal trajectory and a nominal dis-
cretized input trajectory. The vehicle then attempts to per-
form the motion and the input trajectory is adjusted by a
numerical optimization that uses a nominal first-principles
model. This approach has the advantage that an exact nomi-
nal trajectory can be specified and if it is physically feasible,
and the initial attempt is close enough, the vehicle should
end up learning to follow that exact trajectory. New motions
can be learned by extension by slowly changing the refer-
ence trajectory while repeating the learning process.

The method described in this work is an almost perfectly
polar opposite to ILC methods: we are not able to control the
exact learned trajectory and leave it up to the physical vehi-
cle to “find” the real state trajectory to perform a given ma-
neuver. This provides an alternative learning scheme where
we avoid having to weigh errors over the trajectory or to per-
form complex correction steps. ILC provides a very strong
tool for precisely following a predetermined trajectory; this
method can be used to actually find such “nominal” trajec-
tories for flight regimes where modeling or simulation fails.

Note that while the nominal trajectory is unspecified, the
maneuver designer is still asked to provide other a priori
knowledge including the form of the input trajectory and an
initial guess for the values being learned.

An approach related to the one described in this work
was taken for performing aggressive quadrocopter maneu-
vers by Mellinger et al. (2010). Specific maneuvers were
split up into component stages and intuitive gradient-like
correction laws were implemented to improve performance.
The method presented here is similar in structure with the
main difference that numerical methods are used to find both
nominal parameters and to calculate gradients.

Other recent related work includes provably-safe back-
flips by Gillula et al. (2009) and auto-generated outdoor aer-
obatic helicopter shows by Gerig (2008). In both cases the
maneuvers were shown outdoors and were not sensitive to
the exact repeatability and accuracy required for maneuvers
in an indoor space.

3 Method overview

The method takes the following form, split into offline
preparation steps performed once and an iterative online ex-
periment/correction step that is performed repeatedly:

Step 1: offline: define maneuver

(a) Define maneuver as a desired initial state and a desired
final state. The entire state vector may not be relevant
here: for example, lateral errors (y, y, etc.) could be ig-
nored if a maneuver is formulated in the (x,z) plane.

(b) Pick reference level (acceleration, angular rates, etc.)
and define a parameterized control reference trajectory
from intuitive analysis of maneuver structure. Consider
the most basic actions that need to be performed to com-
plete the maneuver, and the core variables that parame-
terized these actions.

(c) Optionally use algebraic constraints and tools such as
time-optimal control to create algebraic links between
parameters and to reduce the final count of free parame-
ters.

Step 2: offline: find nominal motion and correction matrix

(a) Use a reduced-order model combined with an initial
guess of the parameters pé and a numeric solver to find
nominal parameters p° and trajectory.

(b) Calculate Jacobian about nominal parameter set. Calcu-
late correction matrix C such that C is a right inverse
of J.

@ Springer



92

Auton Robot (2012) 33:89-102

Step 3: online: adaptation through experiments

(a) Use parameterized input function to generate input tra-
jectory from current parameter set p'.

(b) Run experiment and observe the error e’ between the
actual and the desired final state.

(c) Apply correction: p't! =p’ — y Ce'.

(d) If parameter constraints violated, temporarily reduce
correction until new parameter set is allowable.

(e) Modify step size y if desired. For experiments in this
work, ¥ =max(1/i,0.1) where i starts at 1.

(f) Repeat Step 3.

4 Defining maneuvers and finding nominal parameters

We define a maneuver as an initial state, a desired final state,
and a parameterized control function to be used for the du-
ration of the maneuver. The parameterized control function
represents a family of input functions that contain one or
more specific input trajectories that will, on average, drive
the system from the initial state to the desired final state. An
analogous task in human motor learning could be: the initial
state of a basketball being in the hands of a player, the de-
sired final state of the ball going through the hoop, and the
general idea of the form of the solution: bending the elbows,
accelerating the ball, and releasing it.

More formally, we desire to drive a physical system from
an initial state to a desired final state x* using an input func-
tion of the form U(¢, p), parameterized in terms of some
parameters p. To simplify the discussion, assume that the
given problem is possible: that is, there is one or more ideal
parameter set p* that will drive the system sufficiently close
to x* for the maneuver to be deemed successful; the objec-
tive is to find this parameter set without knowing all of the
details of the physical system dynamics. In addition, assume
the initial state of the system to be exactly the desired ini-
tial state of the maneuver, which for the examples described
later in this work is fixed hover.

We start by constructing a nominal first-principles model
like the one described in Sect. 6. We then come up with an
initial guess for the parameters, p$. Later in the work we will
use gross algebraic approximations to calculate this initial
parameter guess.

We refer to the final state of the nominal system after exe-
cuting a parameterized maneuver starting from the nominal
initial state as @ (p, §), where p is the parameter set used,
and S represents the physical constants that correspond to
the nominal system model. If we push the nominal model
from the initial state to the end of the maneuver we observe
an error between the desired final state x* and the actual
simulated final state @ (p, §). The nominal parameter set p°
is a parameter set such that @ (p®, §) = x*.
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Fig. 3 Procedure for finding the nominal parameter set p® from the
initial parameter guess p8. We use a standard numerical integrator that
is able to solve the systems of ordinary differential equations describ-
ing the nominal dynamics of the system

As shown in Fig. 3, given a well-behaved parameterized
input function U(¢, p) and a sufficiently close initial param-
eter guess p8, we use a numerical solver to find the nominal
parameter set p°. This provides a nominal form of the ma-
neuver that we now wish to translate to a similar motion with
a physical vehicle.

Typically there are more parameters than there are final
state errors, leading to an under-defined problem and pos-
sibly poor convergence. We use various tools such as op-
timal control to link and eliminate some free parameters,
see Sect. 7.

4.1 Parameter selection

A good choice of variables to include in the parameter set
p is critical for the adaptation to succeed. In this work
the selected variables are stage durations and control effort
magnitudes—these provide a core set of intuitive “sliders”
that control a given input trajectory. Note that the parame-
ter set may also contain more exotic variables such as ini-
tial/final state elements (Lupashin and D’ Andrea 2011).

The methodology for parameter choice corresponds to
formulating policies for policy gradient problems and is out-
side the scope of this work. It is also highly problem depen-
dent; for the maneuver described in this work, we found the
following heuristics useful:

— Each parameter should be linked, to first-order, to at least
one measured error variable that is not strongly affected
by another parameter.

— The preferred choice for parameters is switch-times or du-
rations. Durations, instead of switch times, work best as
this formulation guarantees a fixed switch event ordering.

— In addition, control effort parameters that have direct, lin-
ear effect on one or more measured outcome variables.



Auton Robot (2012) 33:89-102

93

— Distilling the maneuver to the most concise form helps
guarantee that the chosen parameters and errors have clear
meaning.

4.2 Parameter constraints

In many cases the parameters are constrained: for example,
a time duration parameter is usually constrained to be non-
negative, or a thrust parameter should be within the absolute
minimum/maximum physical limits. To keep the method de-
scription concise, the correction step in the following section
does not explicitly take parameter constraints into account.

In practice, parameter constraints are taken into account
by applying the following strategy: at each iteration, if a con-
straint is violated after correction, scale down the correction
applied to the current parameter set (see Sect. 5) until the
new parameter set is once again valid.

This is a simplistic method of dealing with parameter
constraints which, in our experience, works well in prac-
tice: disturbances and noise usually result in only transient
parameter saturations, if any. A consistent parameter satura-
tion typically means that the maneuver is poorly formulated
or is not feasible on the physical system in the given form.

5 Iterative improvement strategy

While the true model of the system is not known, we use the
fact that a first-principles model provides the correct over-
all direction for maneuver-specific corrective action. This
is similar to the work described in Kolter and Ng (2009),
where it was found that signs alone can provide enough use-
ful information in a gradient matrix to succeed in learning a
variety of policy gradient problems.

The optimization of the parameter set using the first-
principles model results in an initial parameter set p°. If
the solver succeeded then this parameter set allows the first-
principles simulated vehicle to perform the required maneu-
ver, ending exactly in the desired final state x*.

Given a set of parameters p and system constants s, let
x = @(p, s) be the final state of either the nominal system
(s = 8) or the physical system (s = §) after it is driven with
p via the parameterized input function as described before.
Here § is the nominal model of the actual physical constants
S. It may not be known how many elements S actually has, if
it is indeed finite, but the major, first-principles effects in §
are properly reflected by S.

Assume that @ (p, s) is well-behaved in the neighborhood
of the parameter search. In particular, assume that to first
order,

o a0 o, 02@%8 o de@’d)
?(p.s)=2(p".8)+ ™ (p—p°)+ o (5—8
M

Here @ (p°,§) is actually x*, since that is how we se-
lected p°. Using the nominal model we can also readily cal-
culate the nominal Jacobian J relating change in parameters
to change in the nominal final state:

_ao(°.8)

J ’

2

In practice, we use a numerical finite-difference method
to find J, though more efficient methods exist. We assume
that J is full row rank, meaning that all of the errors can be
corrected for using the given parameters.

Let p’ and x' denote the parameter set at iteration i and
the resulting final state of the physical system after perform-
ing the maneuver. From (1),

x =x*+J(p' —p’) +d 3)

where d captures modeling error and is unknown. Let ¢ =
x' — x* be the error.
We use the following correction strategy:

prl=p —yCe @)

where C is a right matrix inverse of J.
The error then evolves as follows:

et =J(p' —yCe —p°) +d 5)
—J(p'—p’) +d—ye 6)
= (1 —yp)e 0

which converges to 0 for 0 < y < 1.

The step size y provides a tuning parameter for the over-
all learning algorithm. A high y should converge faster, but
is more susceptible to unrepeatable effects.

In the experiments described later in this work, we use a
mixed strategy: y' = max(1/i,0.1), with i beginning at 1,
which provides a balance between fast adaptation in the be-
ginning and slow, consistent and noise-resistant adaptation
in the long run.

6 Quadrocopters

The maneuvers were implemented and tested on quadro-
copters in the Flying Machine Arena. These vehicles are
based on the Ascending Technologies Hummingbird plat-
form described in Gurdan et al. (2007), with the wireless
communication and central onboard electronics completely
replaced by custom-built modules.

The parameter definition and adaptation methodology de-
scribed previously is not quadrocopter—or aerial vehicle—
specific. Quadrocopters were chosen for the experiments be-
cause of their agility, robustness and mechanical simplicity.

@ Springer



94

Auton Robot (2012) 33:89-102

Fig. 4 Global and local coordinate systems, propeller directions, and motor numbering used in this work. For reference, an actual vehicle is shown

in hover

At the same time, quadrotor vehicles are perfect as a testing
platform for learning algorithms since their dynamics are
difficult to model accurately in high-speed flight regimes.

The vehicles used accept four inputs: three body rates p,
g, 7 and a mass-normalized collective thrust command f.
These inputs are provided either from a wireless data link
when flying in full-feedback mode or by an onboard com-
mand generator when executing an open-loop maneuver.
The onboard feedback loop runs at 800 Hz including the
command generator, allowing for more precise time granu-
larity than when using commands from the offboard com-
puters (70 Hz). Further details about the experimental setup
used in this work are provided in Sect. 10.

An onboard proportional controller uses onboard rate gy-
ros and the given p,q,7 commands to calculate desired
torques, which are in turn translated to desired differential
thrusts by using a nominal vehicle inertia matrix and thrust
drag factors. The differential thrusts and the collective thrust
are combined by addition to produce desired motor speed
commands, which individual motor controllers attempt to
follow. The relevant coordinate systems and physical vari-
ables are depicted in Fig. 4.

In the following subsections we describe a first-principles,
continuous-time model that approximates both the dynam-
ics of the quadrocopter and the behavior of the onboard
controllers. Neither time, the inputs, nor the states are dis-
cretized, which permits the use of generic finite-difference
gradient approximation and numerical optimization routines
as required by our method.

6.1 Vehicle dynamics

The model used to generate nominal maneuver parameters
and correction matrix and to design the onboard controller is
a reduced-order first-principles rigid body dynamics model.
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Translational motion in the global frame is given by

% 07 To
5o |=R|0|-]0 ®)

where R is the rotation matrix from the body frame to the
global reference frame and g is acceleration due to gravity.

R evolves according to the basic definitions of angular
body velocities @ = (p, g, r) (Hughes 1986):

) 0 —-r g¢g
R=R|r 0 —p )
-q p 0

Special care must be taken when performing numerical in-
tegration for R to remain a valid rotation matrix.

The body rates as well as 7, evolve according to basic
kinematics (see, for example, Michael et al. 2010), driven
by the current motor thrusts f1_4:

p 1(fr— fa)

lo=1|q|= I(f3— f1) — o X lo (10)
7 k(fi—fat+ f3—fo)

=1+ o+ f3+ fa)/m (11)

where I is the inertia matrix of the vehicle (assumed diago-
nal in this work), / is the vehicle center to rotor distance, « is
an experimentally determined constant and m is the mass of
the vehicle. The values of these and other parameters used
in this work are listed in Table 1.

We model each motor as a first-order system with con-
straints fiin < fi < fimax- From experiments we have found
that the motors are quicker to produce more thrust (spin-
ning up) than producing less thrust (spinning down). We
use sensorless brushless motors and Ascending Technolo-
gies speed-control motor controllers which do not perform
active braking, likely leading to this asymmetry:

fi=Pi(fi— 1) (12)
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Table 1 Quadrocopter model parameter values

Description Value
m vehicle mass 0.468 kg
l motor-center length 0.17 m
L, Ly inertia about xp, yp (est.) 0.0023 kg m?2
1. inertia about z; (est.) 0.0046 kg m?
Prup thrust increase speed (est.) 805!
P.n thrust decrease speed (est.) 60 s~!
fmin min rotor thrust 0.08 N
fmax max rotor thrust 28N
B reduced min collective accel. 3.92 m/s?
B reduced max collective accel. 21.58 m/s?
K thrust-to-drag constant (est.) 0.016 m
Py, Py angular rate feedback gain (p, q) 100 s~!
P, angular rate feedback gain (r) 105~}

where f, is the desired thrust command from the onboard
feedback controller as explained in the following section and
Py = Py,p when f, > fi and Py = Py gy, otherwise.

For purposes of defining final attitude errors in the fol-
lowing sections we use a Z-Y—X Euler attitude parame-
terization ¢, 0, ¥, which can be extracted from R (Diebel
2006):

) atan2(rp3, r33) ryy ri2 ri3
0| = —asin(ri3) |, R=|rm1 rn rms3
v atan2(ri2, r11) 3y 13 ra3
(13)

6.2 Onboard feedback controller

The purpose of the onboard controller is to cancel some of
the unmodeled or unpredictable effects by doing high-rate
feedback on angular body rates using the rate gyros. It con-
sists of three separate proportional controllers for each of
the body axes that calculate desired angular accelerations
dap,dg, a, from current gyro readings p, g, r and desired an-
gular rates p, g, F:

&p:Pp(ﬁ_p)v (14)
Elq:Pq(é_Q)v (15)
El,.:Pr(f—r) (16)

where P, 4, are proportional gains.
These desired angular accelerations are then converted to
individual motors commands by inverting (10):

fi=(f +iir/k = 2fig/D/4, (17)
fo=(f = fir/kc +2f1,/1/4, (18)

reserved for
f feedback and
coll ..
uncertainties

0 Im(ﬁ—é)

ALy

Fig. 5 Interaction of quadrocopter acceleration inputs due to con-
straints and sample two-input control input envelope, used for a
quadrocopter performing a flip in roll. The control envelope pictured
on the right assumes that f| = f3 = (f2 + f4)/2. The green area is the
reduced control envelope used in this work for the multi-flip maneuver

o= +iir/c+2fig/D/4, (19)
Jo=(f =i/ =272,/ 1) /4 (20)
where f is a collective thrust command, and (fip, fig, fir)

are desired moments that are calculated from desired angu-
lar accelerations (d, dy, a,) and the current body rates w:

'EL[’ él’
fg |=1]a, | +T"'eoxIo 1)
llr glr

7 Tools for maneuver design

We have found several well-known tools and concepts from
control theory to be useful for both creating new maneu-
vers and for selecting parameters for applying the described
method to learn or adapt existing maneuvers.

7.1 Time-optimal control

For this method to work effectively we need to select as few
parameters to be changed as possible while maintaining in-
tuitiveness and enough freedom for the maneuver to adapt.
We found concepts from time-optimal control such as bang-
bang control very useful in this regard.

We first consider the interaction of inputs due to satura-
tion and the resulting feasible control envelope of the ve-
hicle. The control envelope may be defined at several lev-
els. Since there is an onboard controller following angu-
lar rate commands, we choose to consider angular accel-
erations, which are subject to linear saturation constraints
between each other and the feasible collective acceleration
of the vehicle, as shown in the left part of Fig. 5.

For bang-bang control inputs, shown in the past to be
very close to time-optimal (Purwin and D’ Andrea 2011), we
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wish all of the control inputs to lie on the edges of the fea-
sible control envelope. At the same time, the onboard feed-
back controllers need some reserved control effort to work,
and there may be significant modeling inaccuracies, so we
choose to reduce the control envelope by some margin. For
a bang-bang control strategy all control inputs should then
lie on the edges of this reduced control envelope.

In the examples included in this work, we use bang-bang
control to reduce the number of free parameters when de-
signing the multi-flip maneuver in Sect. 8. To simplify dis-
cussion we now focus on a quadrocopter operating in the
vertical Y—Z plane. The resulting control envelope is pic-
tured in the right part of Fig. 5.

We can derive the coupling between angular acceleration
and collective acceleration constraints by inspecting the in-
terplay of the constraints of the underlying motor thrusts.
Simplifying (10) by focusing on f> and f4 by setting f| =
f3 = (f2 + f1)/2 and assuming that I has no off-diagonal
terms and ignoring the higher order effects,

Zp =2(f2+ fa)/m, (22)
p=1(f2— fa)/Lx (23)

If we introduce reduced-envelope minimum and maxi-
mum mass-normalized motor thrusts 8 and § such that

4 fimin <mp <4f; < mpB <4 fnax (24)

and wish to use only bang-bang commands, the collective
acceleration is now a function of the angular acceleration:

Feottnigh =mB — 2|ap(t)|Lix /1 (25)
Feoltlow =mp + 2|, (1) |Li /1 (26)
|a, ()| <Im(B — B)/41:« (27)

and vice versa:

. 1 (mB—B) |, m@B+p)
a, ()] = E(T —|f- TD (28)
B=f=<B (29)

Time-optimal control has also been used in sophisticated
ways to find nominal near-time-optimal trajectories for ma-
neuvers such as fast translation (Ritz et al. 2011). Due to
the extremes involved these maneuvers typically do not per-
form well in the physical world in their nominal form, but
are perfect as a starting point for an adaptive parameterized
maneuver, as discussed in Sect. 9.

7.2 Hidden system states

The true model of the vehicle is considered unknown in this
paper; furthermore, even the number of states in the model is
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unknown. For example, one could easily imagine including
thousands of variables in the model state to accurately simu-
late blade bending or the airflow around the vehicle during a
fast motion to get more accurate dynamic thrust predictions.

In order to have better experimental repeatability and to
have the learned maneuver be closer to the desired outcome,
it is important to add ramps to transition from aerobatic con-
trol to the more tame, typically linear controller that takes
over once the vehicle completes the maneuver. We use a
fixed-duration ramp-down for thrust to hover in all cases
and a fixed-duration ramp-down for angle rate commands
when the maneuver is defined in terms of angular rates and
not accelerations. The ramp-down is simply an envelope
constraining the appropriate input to approach the nominal
hover value as the maneuver nears its end.

‘We found that including these ramp-downs in the maneu-
vers vastly improves the visual quality of the motion while
having only minimal effect on the initial iterations or the
learning. Note that the ramp-downs are included in the ma-
neuver profile throughout all simulated/nominal and experi-
mental runs.

8 Sample application: multi-flips

Aerobatics typically require pushing a vehicle to its physical
limits to reliably perform an awe-inspiring maneuver. Au-
tonomous aerial vehicles have been shown effectively mim-
icking the performance of expert human pilots (Hoffmann
et al. 2011; Gerig 2008), but we may also seek to perform
arbitrary new maneuvers that we can conceptualize but not
demonstrate, such as flips at very high rates.

To demonstrate the proposed method, we wish to perform
a fast multi-flip from hover and ending in hover. The vehicle
should fly up, rotate N times around one of its axes, and
come back down, ending in the same spot in a static hover
state. We do not have a demonstration of this maneuver and
we do not have a trajectory to follow.

This experiment is described in detail in Lupashin et al.
(2010) with extensions in Lupashin and D’ Andrea (2011),
so we provide a shorter treatment here. The maneuver is de-
fined by fixed user-defined parameters ¢y and cp,,,. that set
the number of flips to be performed and the maximum an-
gular rate to follow, respectively.

The relevant state elements, initial and desired final state
are as follows:

x=(y,,2.2,0), (30)
x(0) = (0,0,0,0,0), 31)
x*=(0,0,0,0,27cy) (32)

For this maneuver we define the reference trajectory in
the form of three angular accelerations a, (1), dq (1), 4 (t)



Auton Robot (2012) 33:89-102

97

P mp3
mpo

mg

mB start stop

accelerate coast recover
rotate

rotate

tat >
p A <§ §> <§ >< >< > <§ §>
Cpmax
/ \ time
0 >
6 P7

T/
Ps p

g o: ~ - s >
Ps
—_ — —_
P1 y I po ! 1 P4

L) Ty

Fig. 6 Parameterized input function used for the 2D (and, with the
lower parts, 3D) adaptive hover-to-hover multiflips. The red dots in
the diamonds show where approximately, the roll and collective thrust
inputs lie on the boundary of the reduced control envelope for each
stage. The 3D adaptive motion parameters ps_g refer to the areas of the
marked triangles, with pg referring to the sum of the areas of the two
triangles (i.e. the total yaw angle correction applied during maneuver)

and a collective thrust f (t). Since the onboard controller
follows angular rates and not angular accelerations, we sim-
ply integrate the angular accelerations from 0 to calculate
the reference body rate commands.

We split the maneuver into five stages: accelerate, start
rotate, coast, stop rotate, and recover. Each stage is defined
by a duration, a constant angular acceleration command,
and a constant collective thrust command. Using constraints
on the end conditions, the assumption that we will reach
the coast phase, and the requirement to always send com-
mands lying on the edge of the reduced control envelope
from Sect. 7.1, we can reduce this maneuver to being fully
described by five parameters. This is perfect since, in the 2D
case, the error vector has five members: (y, y, z, z, 0), lead-
ing to a square correction matrix and a well-behaved prob-
lem.

The parameterized input function used for the 2D and 3D
adaptive multi-flips is pictured in Fig. 6.

For the 2D case, we set 4, = a, = 0. Parameters p1, p2
and pq are defined as the durations of the accelerate, coast,
and recover stages, respectively. Parameters po and p3 are
mass-normalized collective thrust commands during the ac-
celerate and recover stages. The roll acceleration and col-

lective thrust commands are:

—ml(B —Po) /ALxx

start rotate  ml(B — B) /4Ly

coast 0 (33)
—ml(B = B)/4cx

ml(B — p3) /4L,

f(t) _ {coast mp 34)

accelerate

ap(t) =
StOp rotate

recover

otherwise m? —2la, )L /1

The other missing variables can be solved for alge-
braically:

T2 = (cpmax - pl&p,accelemte)/&p,smrtRotate» (35)

T4 = (cpmax + P4fl p,stopRotate)/ &p,stopRotate (36)
8.1 Initial parameter guess

The initial parameter guess p® given to the numeric solver
to find the nominal parameter set p° is quite important for
this maneuver since it may result in finding the wrong min-
ima, such as a double flip instead of a desired triple flip. We
make a conservative estimate that about 90 % of the thrust
should be used for vertical acceleration during accelerate
and recover stages and use back-of-the-envelope algebraic
analysis to calculate p8 (see Lupashin et al. 2010, for more
details):

P =p5 =098, (37)
g +Ts+Ty)
pi=pf="—F—. (38)
2p0
2me Cp
pg — N _ Pmax (39)

€ pmax Qp, startRotate

8.2 Extension to 3D

After running the 2D adaptive maneuver we found that for
all but perfectly-calibrated, perfectly-balanced new vehicles,
the other degrees of freedom would drift significantly during
the maneuver. We extend the maneuver by first considering
a more inclusive initial and desired final state definition:

x:(y,)'),z,i,O,x,)'c,qﬁ,lﬁ), (40)
x(0)=1(0,0,0,0,0,0,0,0,0), 41
x*=1(0,0,0,0,27cy,0,0,0,0) 42)

The other degrees of freedom are controlled by learning
cumulative angular offsets during the various “up-facing”
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parts of the maneuver. For this we define helper functions:
A sgn((2ts +14)/2 — 1)
2
A
Asgn((ts +1.)/2 —1)
2
A

Fi(A, t5,10) =

; (43)

]FZ(A’IS9tAvte): (44)

We note that we have four new members in the error vec-
tor e. The lateral inputs are then defined using four parame-
ters as follows:

accelerate [ (ps, 0, p1)

i (0) start rotate  Fy(pe, p1, T2) (45)
a =
q stop rotate  Fy(p7, p1+712+p2, Ts)

otherwise O,

accelerate  F2(ps, 0, pi+p4, p1)
Fo(ps, tend—P4, P1+P4, tend)  (46)
otherwise 0

ay(t) = { recover

where to,q =p1 + T2 + p2 + T4 + ps.

To extend p#, we simply observe that nominally no cor-
rective lateral action should be required, so the initial param-
eter guess for the new parameters is 0.

9 Sample application: translation motion
benchmarking

In Ritz et al. (2011), Pontryagin’s minimum principle was
used to numerically compute time-optimal maneuvers for
quadrocopters moving from hover at one point to another.
The numerical method was applied to horizontal transla-
tion, vertical translation, and arbitrary hover-to-hover ver-
tical plane movement. Together these motions provide a
time benchmark for a large class of common quadrocopter
motions—a useful tool for evaluating any existing or future
controllers.

The nominal maneuver computation uses the following
constants: the maximum angular rate of the vehicle ¢, and
the minimum and maximum limits for the collective thrust
command f . For the motion benchmarking maneuvers in
this work, ¢p,,,. = 10 rad/s. The thrust limits used for the
adaptive maneuver are from the reduced envelope described
in Sect. 7, reduced even further to allow the vehicle to follow
steps in the desired angular rate:

m(B+0.058 —p)) < f <m(B+0.05(8 — B)) (47)

Due to the time-optimality criterion, the maneuvers result in
bang-bang inputs with occasional singular arcs. The maneu-
vers are defined in terms of collective thrust and an angu-
lar rate, both of which are assumed by the benchmarking
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Fig. 7 The parameterized input trajectory for a diagonal translation
maneuver from (0, 0) to (5, 5). The resulting nominal and learned tra-
jectories can be seen in Fig. 12. Counter-intuitively, the quadrocopter
actually flips over during the maneuver to achieve the fast maneuver
completion time

method to switch instantaneously to the commanded val-
ues. The real vehicle is not able to physically follow such
commands, and the extreme velocities and input switches
result in significant aerodynamic and other unmodeled ef-
fects dominating the resulting motion. Because of this, the
maneuvers resulted in large errors in trying to reach a target
point (see Fig. 12 for an example).

The motion benchmarking algorithm takes a desired
(v, z) coordinate pair as an input and produces as output
a nominal vehicle and input trajectory. The input trajectory
is in the form of bang-bang style switches with occasional
singular arcs. For example, for a translation maneuver from
(0,0) to (5,5), the nominal input trajectory predicted by
the motion benchmarking algorithm is something similar
to Fig. 7, with a single switch in collective thrust and four
switches in angular rates (the ramp-downs were added to the
motion when transferring it to the physical vehicle).

For different translations the number of switches and
the type of singular arcs varies, but we always selected the
switch times as the parameters to be learned—for the (5, 5)
diagonal translational motion, the parameters are pictured
in Fig. 7.

Since the motion benchmarking model uses a very sim-
ple, instantaneous angle-rate model, the nominal switch
times then form the initial parameter guess pé. We then use
the usual procedure to find p® and the correction matrix C.

For the translational maneuvers there are usually more
switch times than error states, so we arbitrarily used a least-
squares style pseudo-inverse of J to find the correction ma-
trix:

c=J' )" 48)
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The rest of the algorithm was applied as usual. Several
translation maneuvers were learned; in this work we show
results for (5,5) diagonal translation. Please see Ritz et al.
(2011) for further learned results.

10 Experiments
10.1 The testbed

The algorithm was implemented in the ETH Flying Ma-
chine Arena (FMA), a dedicated testbed for motion control
research. More information about the FMA can be found
in Lupashin et al. (2010) and at the FMA website;! we pro-
vide a brief overview here of the relevant details.

At the top level, the FMA is organized similarly to the
MIT Raven testbed (How et al. 2008). It uses an 8-camera
motion capture system, running at 200 Hz and providing
mm- and degree- accurate position and rotation measure-
ments for any appropriately calibrated rigid bodies. In this
work, the motion capture system enables the vehicle to set
up in the initial state and provides final state error measure-
ments so that the maneuvers can be improved.

Several off-the-shelf computers serve as development
and offboard computation platforms for the FMA. They re-
ceive the motion capture data, run various estimation algo-
rithms to filter the data, and run standard controllers that
enable flight with full sensor feedback. Note that the full
closed-loop communication latency of the FMA, from ob-
serving a marker on a vehicle to the vehicle receiving wire-
less commands relating to that observation, is between 20
and 50 ms. This provides a pragmatic reason to use the de-
scribed methodology to learn fast maneuvers such as flips:
like for fast human motions such as flips in gymnastics or
ball hits in tennis, full sensory feedback is too late (or the
time delay variance too great) to be of direct use during
the maneuver. For example, a flip at 1800°/s would end up
around 80 degrees off-center if done in full feedback.

There are two ways to communicate with the quadro-
copters: an 802.11b system for bidirectional communica-
tion such as diagnostics and onboard sensor feedback and
parameter read/writes and a unidirectional broadcast FHSS
2.4 GHz system for sending commands to the vehicle. The
latter is used to trigger the maneuver. Commands are sent at
70 Hz with a typical drop rate of 5 %.

10.2 Maneuver implementation

The maneuvers are stored onboard the quadrocopter as
piecewise functions, represented as a list of switches. Each

'www.FlyingMachineArena.org.
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Fig. 8 The process for a single iteration of learning a flip (the same
exact process is used for any other maneuvers). The middle arrows
represent commands sent from the offboard computers (left side) to the
vehicle (right side). Some details such as the vehicle acknowledging
receiving a new maneuver definition are omitted for clarity

switch consists of a switch time, a switch type (for exam-
ple, commanded roll rate p), and a value. This allows for a
great variety of possible functions that can be sampled at low
computational cost and at the full onboard control rate. Us-
ing commands generated onboard during the maneuvers al-
lows for much better granularity and repeatability than with
the standard wireless command interface that suffers from
dropouts, variable time delays, and low time resolution.

We call the program running offboard, managing the
learning process and also flying the vehicle between trials
the supervisor. The supervisor nominally runs standard cas-
caded PD controllers to bring the vehicle to the starting po-
sition.

The steps involved in performing a single iteration ma-
neuver learning are depicted in Fig. 8. For each iteration, the
parameterized maneuver input function is used to translate
the current parameter set into a piecewise onboard reference
functions, sent to the quadrocopter by the supervisor before
the maneuver is triggered. A single “trigger” command is
then sent over the command link to trigger the maneuver
and the offboard controller begins to collect state data. The
time delay between the trigger command and the quadro-
copter can be measured so the supervisor is able to estimate
accurately when the maneuver finishes, if the trigger is re-
ceived.

At that point the supervisor stops collecting state data,
commands the vehicle to hover and return to the starting po-
sition, and attempts to accurately determine the final state
error for that iteration of the maneuver.

The final state error is then multiplied by the correction
matrix C and by the step size y. The supervisor then checks
if the correction will violate parameter constraints; if it does,
the correction is scaled down until the constraints are not vi-
olated. The correction is applied, the maneuver is regener-
ated and reuploaded, and the process is repeated.
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(a) nominal (c) iteration 60

(b) iteration 1

-0.5 L

Fig. 9 Triple flips designed and learned using the described method.
Parameters: ¢y = 3, ¢p,,,, = 1800°/s. All trajectories shown sampled
at 100 Hz. The width of the triangles corresponds approximately to ac-
tual width of the vehicle. The figure shows: (a) The nominal trajectory.
(b) Vehicle executing the nominal maneuver (first iteration) before any
adaptation. (c¢) Vehicle executing learned maneuver after 60 iterations

For maximum time accuracy, exactly one trigger com-
mand is sent to the vehicle to trigger the maneuver. Af-
ter sending the trigger command the controller sends place-
holder open-loop hover commands that are ignored by the
vehicle if it executes the maneuver but keep the vehicle air-
borne in case it does not actually receive a trigger. A timeout
detects trigger failure conditions, in which case the process
is reset, no correction is applied, and the full iteration is at-
tempted again.

10.3 Flips

Figure 9 shows the Y-Z side view of triple, 1800°/s flips,
in the nominal form, before learning, and after a number of
iterations. Figure 10 shows the evolution of the maneuver
as the parameters are adapted from experiments. There are
strong unrepeatable effects, reflected as noise of the final
state errors. Note that the 3D adaptation learns a significant
offset in pg, compensating for significant unmodeled yaw
dynamics that occur during the flip.

Figure 11 shows a single 800°/s flip for comparison. Note
that the slower single flip is much more symmetrical than the
fast triple flip, showing how the various unmodeled effects
dominate the fast triple flip. Also, surprisingly, the vehicle,
after learning, needs less height than nominal for the single
flip, while it needs more height than nominal for the triple
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Fig. 10 Evolution of final state errors and parameters for a triple
1800°/s hover-to-hover 3D adaptive flip. This data was collected from
a single quadrocopter flight. Detailed side views of iterations 1 and 60
are shown in Fig. 9. Note that the parameters keep changing slightly
after an initial period of rapid adjustment. We believe that this is due to
subtle changes to system dynamics over time, such as propeller wear,
shifting battery characteristics, etc.
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Fig. 11 Nominal trajectory, first attempt, and iteration 17 for a 800°/s
single flip. Interestingly, in contrast to Fig. 9, the learned maneuver
takes less height relative to the nominal maneuver, even though the
design and adaptation method is identical for both maneuvers

flip. This was an unexpected result and shows the algorithm
being able to cope with a variety of different effects even
though the base maneuver description is the same and even
though the correction matrices for the two maneuvers are
very close.

10.4 Motion benchmarking

Figure 12 shows the result of applying the described adap-
tation method to a (0, 0) to (5,5) time-optimal translation
maneuver. The benchmarking algorithm predicts a duration
of 1.38 seconds, the nominal maneuver (p°) is 1.53 seconds
but on the physical system ends up about halfway away from
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Fig. 12 (a) Nominal trajectory, (b) initial attempt, and (c) iteration 25
of a near-time-optimal benchmark translational motion. The plots are
offset by 0.5 m for clarity. The blue circles mark the ideal final states.
The learned motion succeeds in getting close to the desired position
and takes 1.64 seconds versus the benchmarking algorithm nominal
prediction of 1.38 seconds

the target point, while the duration of the final adapted ma-
neuver is 1.64 seconds. The benchmarking algorithm pre-
dicts the shortest duration because of the assumption that ar-
bitrary angular rate jumps can be performed by the vehicle
without penalty. The nominal model is a more accurate rep-
resentation, leading to a longer time, but still ignores many
effects, leading to a different (in this case longer) physically
demonstrated maneuver duration.

The physical demonstration of the benchmarking motion
provides a grounding and a reference point for evaluating
the performance of other controllers.

11 Discussion and conclusion

The presented method has been shown to effectively learn to
compensate for unmodeled repeatable disturbances for fast,
high-performance quadrocopter maneuvers. To keep the ap-
proach as straightforward as possible, we have made vari-
ous assumptions such as the initial state being exactly the
nominal initial state, that non-systematic errors are mini-
mal, that parameter constraints do not affect convergence
for well-behaved maneuvers, and that the second-order ef-
fects of parameter change with respect to final state errors
are negligible.

These assumptions appear to hold for the demonstrated
maneuvers but it is worth reiterating that the proposed
method is described here as a quick, lightweight tool to try
when implementing a motion on a physical system. It may
not work in all cases, but it should be quick and easy enough
to try so that little is lost in the event that it does not converge
for a given motion.

More sophisticated methods can be used to make the
method more reliable. For example, the nominal model can

also be used to predict and to compensate for non-ideal ini-
tial conditions. In addition we can mix in feedback to com-
pensate for some of the non-systematic disturbances. A chal-
lenge going forward with this methodology will be to de-
velop these extensions, but in such a way that the algorithm
remains as straightforward and generic as possible.

We have also avoided using a more complex parameter
update methods. Learning the parameterized maneuvers can
be seen as estimating a set of static variables, each iteration
providing an observation. A Kalman filter with state con-
straints (Simon and Chia 2002) can be used, for example,
for this task, and it can readily take advantage of other read-
ily available information such as the relative noise levels on
the final variables.

This work focused on short-duration, high-performance,
time-optimal-inspired open-loop maneuvers as an applica-
tion of the proposed adaptation method. This algorithm can
also be readily applied to other types of maneuvers, as long
as one takes care to select few, intuitively strong parameters
to take full advantage of the directness of this approach.

To conclude, we have presented a methodology and
learning algorithm for designing parameterized open-loop
maneuvers and applied it to quadrocopters. We presented
some basic tools to help in designing the maneuver, reducing
the number of free parameters, and getting good results on
the physical system. As demonstrations we have presented
fast hover-to-hover multi-flips and how the method was ap-
plied to a theoretical numeric motion benchmarking project
to demonstrate fast translation on a physical quadrocopter.
The described method is simple and may not be the best
choice for all situations, but we hope that it can be a useful
tool for working with fast, difficult-to-model systems.
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