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Abstract This article presents a 3D odometry algo-
rithm for statically stable walking robots that only uses
proprioceptive data delivered by joint angle and joint
torque sensors embedded within the legs. The algorithm
intrinsically handles each kind of emerging statically
stable gait and is independent of predefined gait pat-
terns. Additionally, the algorithm can be equally ap-
plied to stiff robots as well as to robots with compli-
ant joints. Based on the proprioceptive information a 6
degrees of freedom (DOF) pose estimate is calculated
in three steps. First, point clouds, represented by the
foot positions with respect to the body frame at two
consecutive time steps, are matched and provide a 6
DOF estimate for the relative body motion. The ob-
tained relative motion estimates are summed up over
time giving a 6 DOF pose estimate with respect to the
start frame. Second, joint torque measurement based
pitch and roll angle estimates are determined. Finally
in a third step, these estimates are used to stabilize the
orientation angles calculated in the first step by data
fusion employing an error state Kalman filter. The algo-
rithm is implemented and tested on the DLR Crawler,
an actively compliant six-legged walking robot. For this
specific robot, experimental data is provided and the
performance is evaluated in flat terrain and on gravel, at
different joint stiffness settings and for various emerging
gaits. Based on this data, problems associated with the
odometry of statically stable walking robots are iden-
tified and discussed. Further, some results for crossing
slopes and edges in a complete 3D scenario are pre-
sented.
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1 Introduction

As the technology progresses, heterogeneous groups of
mobile robots operating at different levels of autonomy
will be deployed in future terrestrial search and res-
cue missions as well as extra-terrestrial planetary ex-
ploration scenarios. Within these groups, legged robots
with their high mobility and intrinsic manipulation ca-
pability are very well suited to serve as the rough ter-
rain specialists for short range tasks. Their areas of op-
eration involve environments such as debris cluttered
urban terrain, natural and artificial caves, craters and
canyons. To fulfill their tasks, the robots must be able to
navigate autonomously. Usually, for the anticipated sce-
narios, no or incomplete a priori information, like maps
or known landmarks, is available. Further, absolute ref-
erence as provided by GPS or an external magnetic
field might be unavailable or extremely noisy. Thus, the
robots cannot rely on these and must be able to acquire
all necessary information about their state and their en-
vironment by themselves. For this purpose the robots
must use all available data provided by their onboard
sensors to the maximum extent. Since a robust pose
estimate is crucial for autonomous navigation without
reliable external reference, the robots need to optimally
combine different means of ego-motion estimation. Of-
ten, inertial measurement unit (IMU) data and visual
odometry are fused to provide these motion estimates.
Using dead reckoning, i.e. the summation of motion in-
crements over time, the robots keep track of their 6
degrees of freedom (DOF) poses with respect to a local
frame. Usually, IMU position estimates are subject to
strong drift and visual odometry is strongly dependent
on the visual conditions. Thus, a 6 DOF leg odome-
try is a very useful additional source of information to
enhance the robustness of the overall pose estimate.



In this article, we present such a leg odometry algo-
rithm for statically stable walking robots, which in most
cases are four-, six- or eight-legged. The algorithm pro-
vides a complete 6 DOF pose estimate which is solely
based on proprioceptive joint angle and joint torque
sensors embedded within the legs. This pose estimate
is calculated by a three stage algorithm in order to ex-
ploit all the information delivered by the joint sensors.
Herein, the first stage provides a 6 DOF relative motion
estimate of the robot based on the kinematic configu-
rations of its feet at two consecutive time steps. Sum-
ming up the relative motion increments results in a 6
DOF pose estimate with respect to a local start frame.
Since this estimate is subject to a drift of the orien-
tation angles, the second stage of the algorithm deter-
mines absolute pitch and roll angle estimates based on
joint torque measurements. These absolute angle esti-
mates are fused in the third stage with the pitch and
roll angles of the first stage using an error state Kalman
filter. Thus, only using the proprioceptive sensors em-
bedded within the legs, a complete 6 DOF “pose sen-
sor” is obtained that is independent of any IMU or ex-
teroceptive sensor. The use of joint torque based pitch
and roll angle estimates is usually not the first choice
since most walking robots provide IMU based orienta-
tion data. Nevertheless, our intention is to present and
analyze an alternative method that is based on leg sen-
sors only and thus provides redundancy and robustness
with respect to possible IMU failure. The presented al-
gorithm is implemented and tested on a specific plat-
form, the actively compliant, six-legged DLR Crawler
shown in Fig. 1. As is true for all methods based on
relative measurements, each leg odometry remains sub-
ject to some drift and thus is only useful within certain
temporal and spatial bounds. Nevertheless, as robust
pose estimation in real world navigation scenarios re-
quires multiple means of pose measurement, leg odome-
try constitutes one possible source. As shown in [1] and
[2], the leg odometry presented in this article is part of
the visual navigation framework of the DLR Crawler.
Herein, leg odometry as well as visual odometry are
aiding sensors in an IMU based fusion scheme for ro-
bust pose estimation. The self-contained leg odometry
provides redundancy and strongly enhances the robust-
ness of the navigation in unknown terrain with respect
to severe visual disturbances.

The article proceeds as follows. In section 2 we give a
brief overview of the related literature. Section 3 intro-
duces the method and presents the three stages of our
algorithm. In section 4 experimental results are given
for the DLR Crawler and the effects of different sub-
strates, walking velocities and joint stiffness settings are

Fig. 1 The DLR Crawler within the gravel testbed

evaluated for this specific platform. Finally, we conclude
our work in section 5.

2 Related Literature

In wheeled robotics it is common practice to calcu-
late an odometry based on wheel encoder readings and
steering angles. Usually, wheel odometry returns a pla-
nar position as well as the heading angle of the vehicle.
Only very few wheeled robots allow the calculation of
an additional vertical motion estimate based on their
kinematics. One example is the Shrimp robot developed
at EPFL [3]. On this robot an advanced bogie concept
provides the necessary information for the vertical mo-
tion estimate. Nevertheless, the pitch and roll angles,
like on other wheeled robots, have to be estimated by
use of an IMU.

In contrast to their wheeled counterparts, legged
robots usually provide enough proprioceptive data from
sensors embedded within their legs to calculate a com-
plete 6 DOF pose estimate. However, due to the me-
chanical complexity, the high number of degrees of free-
dom and the high variety and variability of gaits, the
problem is much harder. Only very few tested leg odom-
etry examples returning a full 6 DOF pose are known
to us. Each of those does rely on additional IMU data
to either stabilize the results or to compensate for a
missing degree of freedom of the pose due to kinematic
constraints. The detailed work on the robot RHex [4,
5] is one of the few examples presented in literature.
The robot consists of six equal, passively compliant,
single degree of freedom legs and uses its hip joint en-
coder readings and leg deformation measurements to
estimate its pose. Due to its kinematic configuration
no yaw angle can be calculated by the basic odometry
and the data needs to be fused with IMU readings to
return a full 6 DOF pose estimate. One great advantage
of this approach is that it also covers the flight phases



occurring during dynamic running. Another example of
a leg odometry is an algorithm that was developed for
the hexapod Ambler [6] and that was also implemented
on the hexapod Lauron [7,8]. In this approach, the sup-
porting legs are used to determine a rigid body trans-
formation for the robot with respect to the world frame.
The algorithm assumes an ideal no slip ground contact
and finds a minimum error transformation mapping the
positions of the supporting feet at the current time step
with respect to the body frame onto the stored positions
of the supporting feet with respect to the world frame.
After the minimizing transformation is found, the po-
sitions of the supporting feet in world coordinates are
recalculated and updated if they changed. This is the
case after a step but should not happen for legs in sup-
port according to the ideal no slip condition. In order
to reduce the disturbing effect of slipping legs, individ-
ual leg weights are introduced for the transformation
calculation. For Lauron these are obtained by a fuzzy
reasoning based contact evaluation. The used leg odom-
etry approach has problems with drifting pitch angle
and height estimates. To improve the results the Am-
bler odometry discards the tilt angles and replaces them
by inclinometer readings. To achieve improved results
for Lauron, its odometry estimates are fused with IMU
and magnetic compass based orientation data. As there
is some performance data available for Ambler walking
forward, unfortunately there is no detailed data pub-
lished for Lauron. Two recent examples for the use of
leg odometry with dynamic quadrupeds are presented
by [9] and [10]. In the first article Reinstein et al. ob-
tain a full pose estimate by fusing a velocity estimate
based on leg odometry with data of an inertial naviga-
tion system using an Extended Kalman Filter. In the
second article, Ma et al. published an approach to im-
prove the navigation robustness of the robot BigDog
and its successor project LS3 by multi-sensor data fu-
sion using leg odometry [10].

Considering the computation of the relative body
motion based on the location of the feet, our algorithm
shows similarities to the approaches used for the robots
Ambler and Lauron. The main difference is that our
algorithm only employs proprioceptive sensors embed-
ded within the legs to obtain a complete 6 DOF pose
estimate that incorporates absolute pitch and roll infor-
mation. This is achieved by stabilizing the joint angle
based orientation estimates with joint torque measure-
ment based absolute pitch and roll angles using an er-
ror state Kalman filter. Further, it is important that
our method can be applied to stiff and compliant stat-
ically stable walking robots and is able to handle any
statically stable emerging gait. Additionally, we iden-
tify error sources and introduce tuning parameters to

attenuate their effects. Compared to most of the previ-
ous work, the algorithm has been extensively tested and
its performance is documented for the DLR Crawler
walking on different ground substrates, at different joint
stiffness settings as well as at different walking veloci-
ties and thus various emerging gait configurations.

3 Method

The basic idea of the presented 6 DOF leg odometry
borrows from computer vision. It tries to estimate the
change of the robot pose by finding a minimizing trans-
formation between two point clouds which are repre-
sented by the positions of the supporting feet at two
consecutive time steps. The algorithm requires at least
three feet in contact and the assumption of rigid point
clouds implies a no slip condition. To reduce errors
caused by drifting orientation angles, absolute pitch
and roll angles derived from joint torque measurements
are fused with the joint angle based orientation esti-
mates using an error state Kalman filter. Single slipping
legs are detected and in case of a high sampling rate,
the related measurements are discarded without strong
influence on the pose estimate. Further, the method
can handle any statically stable emerging gait and can
be adapted to different ground substrates and differ-
ent joint stiffness settings by some tuning parameters
as documented for the DLR Crawler in section 4. The
use of joint torque sensors for pose estimation seems
to be an additional hardware effort that needs to be
justified. The main reason for using such sensors in
walking robots stems from a control perspective. Joint
torque sensors allow the use of advanced active com-
pliance control algorithms with underlying joint torque
control loops and thus support a smooth and robust
locomotion in rough terrain. Several recent examples of
walking robots exist that employ joint torque sensors
in addition to commonly used joint encoders [11], [12].

3.1 First Stage: Joint Angle Based 6 DOF Pose
Estimate

For a statically stable walking robot, as for example
the DLR Crawler, a change of position and orientation
is calculated using two consecutive stance feet config-
urations with respect to the body frame. The result-
ing relative motions of the robot body are summed
up over time, yielding the pose of the robot with re-
spect to the world frame. Herein, the world frame is
based on the robot body frame at the start position
that was aligned with the gravity vector along the z-
axis. The body frame is defined as follows. The pos-



Fig. 2 Foot contacts and their centroids for two consecutive
time steps with respect to the body frame

itive x-direction points from the back to the front of
the robot and the positive z-direction points upwards
from its bottom to its top. The positive y-direction com-
pletes a right hand system and the origin is placed at
the center of the robot body. All rotations follow the
xyz convention with yaw angle « defined about the z-
axis, pitch angle 8 about the y-axis and roll angle
about the x-axis.

In case of the DLR Crawler all calculations are per-
formed at the high rate of 1 kHz, which allows discard-
ing single relative motions in case of the detection of ex-
cessive slip. For statically stable walking robots, three
or more legs will be in ground contact. Having more
than three feet in stance results in an over-constraint
problem and the odometry needs to account for this.
Due to small errors in the kinematics and the rolling
ground contacts of the feet, it is unlikely that the point
clouds perfectly match. Thus, a rigid body transforma-
tion with the rotation matrix Rqqo and the transla-
tion vector Pt,q, has to be found that minimizes the
matching error. The detailed approach to solve this
problem including the complete derivation was initially
presented in a computer vision paper by Haralick [13].
Following, only the necessary equations are given for
the purpose of completeness. The algorithm aims to
minimize €, which is the sum of squared errors of the
rigid body transformation augmented by constraints
f (A, Rogo) that enforce an orthogonal rotation matrix,
RoiRE, =L
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Herein, the vectors °p;;—1 and p;, are the positions
of a foot at two consecutive time steps with respect to
the body frame b. These foot positions are calculated
from joint angle measurements using forward kinemat-
ics. The parameter n is the number of legs of the robot,
which is usually 4, 6 or 8. The parameters w; are weights
that are 1 if a foot is in a valid contact state or 0 oth-
erwise. A valid contact state means that the foot has
contact at both time steps and does not slip severely.
The vector A consists of Lagrange multipliers for the
six constraints.

Taking the partial derivative of e with respect to
the translation vector “t,q, and setting it equal to zero
results into the following equation.
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The terms *p; and ’p;_; can be considered as the
centroids of the contact point clouds at two consecu-
tive time steps as depicted in Fig. 2. Inserting ’toqo
into (1) leaves € as a function of the elements of the
rotation matrix and the Lagrange multipliers A. Tak-
ing now the partial derivative of € with respect to each
element of the rotation matrix, setting it equal to zero,
[m]gxy, = 033, and rearranging terms results
into the following equation.

ART, +RO, A=B (3)

odo

Herein, A is a symmetric matrix consisting of the
six Lagrange multipliers and A as well as B are defined
as follows.

n
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Multiplying (3) with Roqo from the left leaves an
equation with symmetric left and right hand sides since
A and A are symmetric matrices.

RodoB RodoAR
= (RodoB)

odo + A
(9)



Thus, a singular value decomposition of B into the
orthogonal matrices U and V and the diagonal matrix
D allows the calculation of Ryqo, which can be verified

by inserting (10) and (11) into (9).
B =UDV” (10)
Rodo = VU” (11)

One important property of the solution for Rq, is
that the rotation matrix is only valid if its determi-
nant is positive. If this is not true, the last column of
the matrix V has to be multiplied by -1 to deliver a
valid result. Inserting Roqo into (2) gives the relative
translation of the robot. By propagating the relative
rotation and translation the pose of the robot can be
determined with respect to the world frame, i.e. relative
to the gravity aligned frame at the start point of the
robot.

In order to reduce errors accumulated over time leg
slip should be detected and, if possible, the slipping leg
should be discarded from the calculations. To assess
the severity of the point cloud deformation due to slip,
the quadratic error of the rigid body transformation for
two consecutive time steps is calculated. If this error is
higher than an acceptable threshold, the algorithm will
try to identify the leg causing the strongest distortion.
For this purpose, the relative distance of each leg in
contact to each other stance leg is calculated and com-
pared to the distances of the previous time step. If more
than three legs are in contact, the leg with the largest
change of distance to all other legs in contact is removed
from the calculation by setting its weight equal to zero.
In most cases this approach reduces the squared error
of the transformation below the accepted threshold. If
it does not suffice or only three legs are in contact, the
remaining error will be compared to a second threshold
and the rotation and translation during this time inter-
val are either neglected or accepted. If many odometry
calculations are neglected the odometry is invalidated.
Nevertheless, slippage of the complete robot on a slope
or on icy ground cannot be detected by this approach
and remains a problem to be solved.

3.2 Second Stage: Joint Torque Measurement Based
Pitch and Roll Angle Estimates

Due to the relatively slow velocity of statically sta-
ble walking robots (which is for the DLR Crawler on
average below 10cm/s), the main load measured by
the joint torque sensors is assumed to originate from
the gravitational force acting on the respective robot.
Following the assumption of quasi-static behavior, the
ground contact forces f; are calculated for each leg,

t = 1...n, based on the joint torques 7; and the leg
Jacobian J; using the well known static relation.

£, =37 7, (13)

Summing up the leg contact forces f; yields the total
ground contact force on the robot, f, that is assumed
to be mainly caused by gravity. Thus, the force vector
given with respect to the body frame allows the calcu-
lation of the pitch angle B.s and the roll angle 7,5 of
the robot.

Yabs = atan2(fya fz) (14)
Babs = atan2(*f:c7 fy Sin(’)/abs) + f2 COS(’Vabs)) (15)

3.3 Third Stage: Error State Kalman Filter Based
Data Fusion

To improve the overall pose estimate, the joint angle
based pitch and roll angle estimates of the first stage are
fused with the joint torque measurement based pitch
and roll angle estimates of the second stage using an
error state Kalman filter in a feedback configuration as
shown in Fig. 3. The fusion process realizes that the
fast components of the joint angle based pitch and roll
angle estimates are combined with the slow components
of the joint torque based pitch and roll angle estimates.
Thus, it removes the angle drift induced in the first
stage of the algorithm and the ground impact related
peaks of its second stage. It needs to be mentioned
that the result is not anymore optimal in the sense of
Kalman filter theory since in both stages the joint an-
gle measurements are part of the calculations. Thus,
the measurements are not anymore independent. Nev-
ertheless, the drift error of the first stage results from
the calculation of the transformation rather than from
the joint angles themselves while the errors in the sec-
ond stage originate in ground impacts measured by the
joint torque sensors. For this reason the correlation of
errors is expected to be small. Thus, the filter is a good
method to combine both sources of information and to
extract absolute pitch and roll angles using leg sensors
only. The advantage of the error state formulation of
the Kalman filter is that it does not require a complex
motion model of the robot since it only estimates the er-
ror of the states but not the states themselves. Further,
due to the feedback formulation the error is corrected at
each step and the assumption of a perfect correction al-
lows to simplify the prediction stage of the filter. In the
following, the general equations for a Kalman filter as
given in [14] are reduced to the error state formulation.
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Fig. 3 Signal flow diagram for the complete joint torque
aided 6 DOF odometry implemented on the DLR Crawler

The first part of the filter is the prediction or time
update step. Herein, A%; = [ABcor; AYeor]T represents
the rotation angle error estimates and Az; = [A3, Ay]T
the rotation angle error measurements, which are de-
rived later in this section following the Kalman filter
description.

A% = AyAx 1 =0 (16)
P, = AP, AT +Q, (17)

In this first stage of the filter, equation (16) presents
an error propagation model, where the terms Ax; and
Ax;_1 are the predicted error estimate at time ¢ and
the corrected error estimate at time ¢ — 1 respectively.
Due to the feedback formulation of the filter the error
estimate is predicted to be zero. The process matrix
A, is set to be a 2 by 2 identity matrix, A; = Isxo.
Equation (17) gives the predicted estimate of the error
covariance matrix P, based on the previous estimate of
the error covariance matrix P;_; and the process noise
covariance matrix Q.

The second part of the filter is the correction or
measurement update step. Here the Kalman gain ma-
trix K; is calculated based on the predicted estimate
of the process error covariance matrix P, , the matrix
H = I,4- relating the measured errors Az; and the
error state estimates Ax; as well as the measurement
noise covariance matrix Q,,. Depending on the covari-
ance matrices, the Kalman gain matrix adjusts the in-
fluence on the corrected error estimate either towards
the predicted error estimate or towards the measure-
ment. The last part of the correction step is the update
of the estimated error covariance matrix P;.

K, =P,H'(HP,H" +Q,,)! (18)
A)A(t = KtAZt (]‘9)
P, =(I-KH)P; (20)

For the odometry all calculations involving rotation
matrices and Euler angles follow the xyz convention and
all rotation matrices are calculated as shown below with
yaw angle «, pitch angle 3, roll angle v, ¢ representing
a cosine and s representing a sine.

R =R, Ry,
[ca —sa 0 cB sBsy sfBey
=|sa ca 0] - 0 cy —svy
10 0 1 —sf cfBsy cfBey (21)

[cacf casBsy — sacy casBey + sasy
= | sacf sasfsy + cacy sasfey — casy
L —sp cfsy cfey

In order to fuse the orientation angles provided by
the odometry and the pitch and roll angles based on the
joint torque measurements an orientation angle error
vector is calculated based on the predicted rotation ma-
trix ’R; and the measured rotation matrix Rgymeas,¢-
Here, the matrix 'R, is based on the corrected ro-
tation matrix ;’R¢_; of the previous time step relat-
ing the body frame b and the world frame w and the
matrix Rodo,+ representing the incremental rotation in-
between the last two consecutive time steps calculated
by the first stage of the odometry algorithm.

s Ry =y Rim1Rodo (22)

Since the joint torque measurements allow no yaw
angle estimate, R g ymeas,t Only consists of pitch and roll
terms. The predicted rotation matrix ;’R; is separated
into a rotation matrix R, , representing the yaw com-
ponent and a rotation matrix ng representing the
pitch and roll components. Only REW is used in the
fusion process and is related to R gymeas,: by the follow-
ing equation.

Ra=Rj , R} (23)

Bymeas,t

Herein, Ra = [ra (i j)l3x3 is a matrix that repre-
sents the pitch and roll rotation error measurement and
Az, = [AB, Ay]T can be calculated as follows.

AB = arcsin(—rA’(g,l)) (24)
Ay = atan2(ra (2,1),7A,(1,1)) (25)

Applying both steps of the Kalman filter and using
A%y = [ABeors Aveor)T to calculate a corrected rotation
error matrix R cor, the corrected rotation matrix of
the current time step j’R; can be calculated.

w _ — T —
b R: = Ra,t : RA,Cor ‘R

By,t (26)

Using the above matrix, the position of the walking
robot (the DLR Crawler in our case) with respect to
the world frame “pcrawler,s can be updated based on



the relative position change ’t,q, computed by the first
stage of our algorithm.

b
prrawler,t = prrawler,tfl + ;;URt : todo (27)

The measurement noise covariance matrix Q,, is
significantly larger than the process noise covariance
matrix Q. The final settings have to be found by man-
ual filter tuning and are further discussed in the follow-
ing section.

4 Experiments

In this section we present test results for the complete
6 DOF leg odometry algorithm using the six-legged
DLR Crawler as experimental platform. The test runs
were performed on flat lab floor as well as in our gravel
testbed, a 2m x 2m box filled with gravel 10 to 15cm
high. First for completeness, we briefly describe the
DLR Crawler. Next, we give an example of the perfor-
mance of each single stage of the odometry algorithm to
illustrate the necessity of data fusion. Then we discuss
further sources of errors and present three parameters
that are used to attenuate those effects and to adjust
the odometry algorithm for different conditions. Follow-
ing, we evaluate the performance for forward walking
and turning on two different substrates, at two different
joint stiffness settings and two different desired walking
velocities. Further, we present some results for walking
along rectangular paths and for walking uphill. Dur-
ing all of the test runs the robot was steered manually
and ground truth measurements were recorded using
an A.R.T. tracking system. Here, a target body was at-
tached to the DLR Crawler that was tracked with four
infrared cameras to obtain ground truth data of the 6
DOF pose with an average accuracy of 0.5 mm for the
translational degrees of freedom and 0.12° for the ori-
entation angles.

4.1 The DLR Crawler

As mentioned above and shown in Fig. 1, our experi-
mental platform is the DLR Crawler [15], a six-legged,
actively compliant walking robot that is based on the
fingers of DLR Hand II [16]. It was built to serve as a
laboratory testbed for the development of control, gait
and navigation algorithms. In a common configuration,
the Crawler stands 90 mm high and its feet span an area
of 350 mm x 380 mm. Each of the legs has four joints, of
which the distal two are coupled resulting in three ac-
tive degrees of freedom. Further, each leg hosts a large
set of proprioceptive sensors that enable active compli-
ance control as well as the odometry calculations. These

sensors are motor side Hall sensors for commutation
and relative joint position measurement, link side po-
tentiometers for absolute joint position reference, link
side joint torque sensors and a 6 DOF force-torque sen-
sor within the foot. The implemented active joint com-
pliance control emulates a virtual spring-damper sys-
tem within each joint, which is enforced by an under-
lying torque control loop. This allows active stiffening
or softening of the legs by control and thus to increase
the robustness with respect to the terrain. In addition
to the proprioceptive sensors within the legs, the robot
is equipped with a stereo camera head for visual odom-
etry, obstacle avoidance and terrain assessment, and an
inertial measurement unit. Since the robot is designed
as a testbed it uses an external power supply and exter-
nal computing to avoid resource restrictions. The main
gait algorithm [17] of the DLR Crawler is biologically
inspired and employs results from research on stick in-
sects [18]. Due to leg coordination mechanisms acting
in-between neighboring legs, the gait emerges accord-
ing to the robot state, the desired walking speed and
the desired direction instead of following a fixed pat-
tern. This gait coordination is combined with reflexes
that each leg is able to activate. One of the reflexes is
an elevator reflex that is triggered by collisions during
the swing phase of a leg. It results in retracting and
raising the leg in order to overcome the encountered
obstacle. Another reflex is the stretch reflex that en-
forces ground contact by extending the leg if it does
not find ground contact at the end of the swing phase
or looses ground contact during the stance phase. The
flexible gait coordination in combination with those re-
flexes allows the robot to overcome obstacles within the
walking height reactively without planning. Neverthe-
less, due to its flexibility and its temporal variations the
gait algorithm requires the leg odometry to account for
permanently changing contact situations with at least
3 and up to 6 legs in ground contact.

4.2 Individual Behavior of the First and Second Stage
of the Odometry Algorithm; Drift and Error Sources

To give an example of the performance of the first stage
of the leg odometry algorithm, Fig. 4 shows the path
of the robot estimated by this stage in comparison to
the data obtained by the ground truth measurement
system (GTMS). As can be seen the path of the robot
estimated by this first, purely kinematics based stage is
strongly bent. This behavior is mainly attributed to the
interaction of the odometry calculation and the active
compliance resulting in an angular drift that is shown
in the “forward walking” marked region of Fig. 5. This
drift of the pitch or roll angle depends on the direction
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odometry algorithm, the data fusion and the ground truth
measurement system; top: projection on the xy-plane; bot-
tom: projection on the xz-plane

of motion and strongly affects the absolute pose esti-
mate. For forward or backward walking the pitch angle
is affected while sideways walking leads to a drift of the
roll angle. For pure turning this disturbing behavior
was not observed. To explain the behavior, the case of
forward walking is considered. Here, after touch down
a front leg moves towards the center of gravity (COG)
of the robot. During this motion the loading of the leg
increases and causes its height to decrease due to the
active compliance. Opposite to this behavior the load-
ing of a hind leg decreases over the course of its stance
motion since it moves away from the robot COG. Thus,
the leg extends depending on the stiffness setting. To
each calculation of the incremental pose change this
behavior appears to be a tilting motion that increases
the pitch angle, summing up to the strong angular drift
apparent in Fig. 5. Having built up a large pitch angle
each turning motion, i.e. increase or decrease of the yaw
angle, transfers the pitch to a roll angle which can also
be seen in the plots.

Another error is caused by the initial contact phase
of the legs, especially during the execution of the stretch
reflex while walking on uneven ground. The source of
this error is that the algorithm considers larger parts
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Fig. 5 Walking a rectangular path on flat ground - compar-
ison of pitch and roll angle estimates provided by the first
and second stage of the odometry algorithm, the data fusion
and the ground truth measurement system; top: pitch angle
estimates; bottom: roll angle estimates

of the downward motion at the beginning of the stance
phase than of the upward motion at the end of the
stance phase, where the leg quickly looses contact. The
downward motion of a leg caused by the stretch reflex
has an effect on the translation estimation and appears
to the algorithm as upward motion of the robot body.
In order to attenuate this behavior, the ground contact
has to be detected properly. For this purpose contact
thresholds are introduced that can be adjusted and in-
fluence the pose estimate depending on walking speed
and terrain, which is discussed in further detail in the
following subsection on parameter tuning.

The error caused by the stretch reflexes appears ran-
domly depending on the distribution of height differ-
ences of the ground. The error due to the compliance
is somehow systematic, but depends on many param-
eters like joint stiffness, walking velocity and ground
properties. For this reason an error prediction and cor-
rection without further sources of information is infea-
sible. Thus, an absolute source for the pitch and roll
angles is needed to correct the odometry data. As in-
troduced in section 3.2, the joint torque measurements
provide enough data to estimate the gravity vector with
respect to the body frame.
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To give an example for the performance of the sec-
ond stage of the odometry algorithm, Fig. 6 shows joint
torque measurement based pitch angle estimates for the
DLR Crawler. The upper figure refers to the Crawler
standing on a slowly tilting board. It shows that the
pitch angle estimate has an offset and does not closely
track the pitch angle. The lower figure shows the pitch
angle of the Crawler estimated for walking uphill on
a slope. It clearly shows that the ground impacts dur-
ing walking cause force peaks that are translated to
large false peaks within the pitch angle estimates. It also
shows that for walking uphill the pitch angle estimate
of the first stage of the algorithm as presented in sec-
tion 3.1 is dominated by the compliance induced drift.
Nevertheless, standing on the tilting board or walking
uphill, the data contains information about the inclina-
tion of the robot. Thus, the joint torque sensors emu-
late an inclination sensor even though it is not a very
accurate one. Since the joint torque based pitch and
roll angle estimates are very noisy but free of drift and
the joint angle based estimates include little noise but
strong drift components, they are very well suited to be
fused by a Kalman filter as presented in the previous
section. The improvements gained by this fusion pro-

cess with respect to each single stage become apparent
in Fig. 4, Fig. 5 and Fig. 6. As can be seen, the large
position errors caused by the compliance induced pitch
angle drift are completely removed by fusion with the
joint torque based absolute pitch and roll angles. The
remaining position error mainly originates in a small
yaw angle drift during forward walking and slight un-
derestimation of the yaw angle during turning. Due to
a missing absolute reference for the yaw angle this error
cannot be removed.

4.3 Tuning Parameters

The algorithm provides three parameters that are ad-
justed in order to increase the accuracy and to ac-
count for different conditions. These parameters are
two torque thresholds used for contact detection in the
first stage of the algorithm and the process noise co-
variance matrix of the error state Kalman filter in the
third stage.

The first torque threshold is active during the swing
phase of the leg and detects the initial contact that
marks the onset of the stance phase. The second thresh-
old becomes active once the stance is established. It is
used to monitor if the leg looses contact during stance
and to detect the onset of the next swing phase once
the leg lifts. In all cases the first threshold is higher
than the second and helps to discard the error-prone ini-
tial contact and loading phase of a leg that has strong
influence on errors of the z-coordinate and especially
the yaw angle. Thus, the first threshold is used to re-
duce the error of the yaw estimate while the second is
mainly used to reduce the error of the estimate of the
z-coordinate. During the experiments we found two dis-
tinct values for the first threshold that are independent
of terrain or stiffness setting and are only influenced by
the walking speed. Here, the first constant value was
used for slow walking dominated by emerging pentapod
or tetrapod gaits. The threshold had to be increased to
the second constant value for fast walking with domi-
nating tripod gaits. This is actually obvious since the
leg load is higher during the tripod. We found that the
second torque threshold is independent of the stiffness
but needs to be adjusted for each terrain and once the
gait changes from tetrapod to tripod.

The last tuning parameter, the process noise co-
variance matrix, is used to remove the remaining z-
coordinate drift. The measurement noise covariance ma-
trix is kept equal for all settings and the process noise
covariance matrix is assumed to change depending on
the gait, the stiffness setting and the terrain. We found
that for walking on gravel the values were smaller than



for walking on the lab floor. Considering the fixed mea-
surement noise covariance matrix, this means that for
walking on gravel the joint torque based pitch and roll
estimates are less trusted. Further, the process noise
covariance values are smaller for slow walking on gravel
than for fast walking on gravel and did not change when
the stiffness changed. For walking on lab floor the values
had to be increased once the gait changed from tetra-
pod to tripod and also had to be increased once the
stiffness was increased. Altogether, there is no single
set of parameters that is valid for all combinations of
gait, terrain and joint stiffness. Nevertheless, different
parameter sets can be identified and stored depending
on the combination of the dominating gait, the stiffness
setting and the terrain. This identification is currently
done manually but in future will be done automatically
by calibrating the leg odometry on a new terrain type
with respect to the IMU and visual odometry derived
pose estimates. Each time a change of dominating gait
or stiffness is initiated or a change of terrain is detected
by visual cues or a change of reflex activation behavior,
the filter can be automatically adapted by loading the
appropriate parameter set.

4.4 Forward Walking

This set of experiments was conducted to evaluate the
performance of the complete odometry and its associ-
ated errors under varying conditions. For this purpose
we commanded the robot to walk forward at a certain
velocity and measured the absolute translation and ori-
entation errors when the ground truth measurement
system (GTMS) indicated 0.5m, 1m and 1.5m travel
in the x-direction of the local start frame that has been
defined in section 3.1. We commanded the robot to walk
forward at two different desired velocities, at which dif-
ferent gaits emerge, 3 cm/s to enforce mainly a tetrapod
gait and 6cm/s to generate mainly a tripod gait. For
each velocity setting runs at two different stiffness val-
ues were recorded - a medium joint stiffness setting and
a stiff configuration with doubled joint stiffness values.
Further, each velocity-stiffness configuration was tested
on laboratory floor as well as in the gravel testbed re-
sulting in 8 different test conditions. For each of these
8 conditions 10 separate runs were recorded and ana-
lyzed.

Fig. 7 displays the pose estimates for good exem-
plary runs at 3cm/s on lab floor and at 6cm/s on
gravel. As can be seen in the graphs the actual walk-
ing velocity is in both cases lower than the commanded
which is attributed to the medium joint stiffness set-
ting and the resulting reduced joint trajectory tracking
accuracy. After walking a comparable distance of 1.5m
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in the x-direction of the local start frame measured by
the GTMS, the absolute Cartesian position errors are
1.74 cm for the run at 3 cm/s on lab floor and 3.21 cm for
the run at 6 cm/s on gravel. The absolute Cartesian po-
sition errors at this distance with respect to the Carte-
sian path length are 0.82% and 1.39 % respectively. In
both cases the dominant source of the Cartesian posi-
tion errors is a drift of the yaw angle estimate. Addition-
ally, the baselines of the z-coordinate estimates show
deviations from the baselines of the GTMS data. Nev-
ertheless, the oscillations around the baselines closely
represent the observed z-coordinate variations that re-
sult from the change of stance configurations. The base-
line deviations are caused by a combination of small
remaining influences from the stretch reflex and the
compliance induced z-coordinate drift as well as inac-
curacies in the pitch angle estimate. It can be seen that
the pitch and roll angle estimates show offsets, which
appear due to horizontal propulsion forces, that have
been assumed to be negligible at low speeds.

Table 1 displays the means and standard deviations
of the errors observed during the forward walking ex-
periments. The computed errors for each single run are
the Cartesian position errors in the x, y and z-direction
with respect to the start frame, the absolute Carte-
sian position error with respect to the traveled path
length and the root mean square (rms) errors of the
yaw, pitch and roll angles all measured after 0.5 m, 1 m
and 1.5m travel in the x-direction of the start frame.
As can be seen, the odometry algorithm underestimates
the distance traveled in the x-direction for all trials on
lab floor. On the contrary, it overestimates the traveled
distance on gravel due to increased leg slip that is par-
tially mistaken for forward body motion. In almost all
cases the lateral motion in the y-direction is overesti-
mated which is strongest on gravel and mainly caused
by larger yaw angle errors. In all cases the yaw angle
rms error increases with distance indicating a yaw angle
drift. Pitch and roll angle rms errors show in most cases
constant values independent of the traveled distance.
Only on lab floor the pitch angle shows a slight drift
but with errors being smaller than the ones for gravel.
The z-coordinate estimates show the largest errors for
slow walks on gravel. Considering the absolute Carte-
sian position error with respect to the path length, Ap,
the smallest error on gravel is obtained with a tripod
gait and medium joint stiffness settings, while on lab
floor a tetrapod gait and medium joint stiffness is best.
Nevertheless, with the right torque thresholds and pro-
cess covariance matrices all configurations show com-
parable results. As expected the estimation errors are
smaller on lab floor where Ap is within 1 % to 3 % while
on gravel it mainly lies in a range of 2% to 6 %.
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Table 1 Error behavior of the complete Crawler odometry (with fusion of first and second stage) for forward walking: Aver-
age Cartesian position errors (Ax,Ay,Az) and average orientation rms errors (Acwms,ABrms,Avrms) at different combinations
of ground substrate, desired forward velocity and joint stiffness at 50 cm, 100 cm and 150 cm distance to the start point with
respect to the x-direction of the start frame (10 experimental runs for each combination); Ap is the absolute Cartesian
position error with respect to the traveled Cartesian path length

Xtracking = 50 cm
Vdes Stiffness Ax in cm Ay in cm Az in cm Ap in % Adrms in © Afrms in © Avpmg in ©
mean (std) mean (std) mean (std) | mean (std) | mean (std) mean (std) mean (std)
Lab floor
3cm/s | medium | -1.15 (0.38) 0.06 (0.30) -0.18 (0.49) | 1.91 (0.44) | 0.55 (0.21)  0.33 (0.83)  2.28 (0.24)
3em/s | stiff | -1.49 (0.20)  0.61 (0.33) -0.13 (0.34) | 2.48 (0.29) | 0.46 (0.26)  1.40 (0.30)  0.99 (0.40)
6 cm/s | medium | -0.78 (0.45) 0.03 (0.52) -0.14 (0.15) | 1.6 (0.33) | 0.34 (0.18)  1.27 (0.1)  2.37 (0.17)
6cm/s | stiff | -0.48 (0.21) 0.14 (0.15)  -0.29 (0.26) | 1.03 (0.31) | 0.31 (0.04)  1.30 (0.19)  2.46 (0.15)
Gravel
3 cm/s | medium | 0.80 (2.28) 0.15 (2.48) 2.47 (0.89) 4.82 (2.28) 1.79 (1.39) 1.79 (0.67) 1.26 (0.39)
3 cm/s stiff 0.83 (1.70) 0.99 (1.65) 3.09 (1.82) 4.70 (2.18) 2.44 (1.02) 2.54 (0.80) 1.76 (0.81)
6 cm/s | medium | 0.87 (1.37) 1.84 (1.96) 0.04 (1.04) 3.86 (1.87) 2.12 (1.23) 2.45 (0.58) 2.02 (0.85)
6 cm/s stiff 0.07 (1.62) 1.00 (1.83) 0.29 (1.50) 3.59 (1.53) 2.01 (1.14) 2.16 (0.51) 2.60 (1.63)
Xtracking — 100 cm
Vdes Stiffness Ax in cm Ay in cm Az in cm Ap in % Adrms in © Afrms in © Avpms in ©
mean (std) mean (std) mean (std) | mean (std) | mean (std) mean (std) mean (std)
Lab floor
3cm/s | medium | -1.64 (0.59) 0.01 (0.55) -0.36 (1.08) | 1.47 (0.48) | 0.50 (0.22)  1.16 (0.31) _ 2.05 (0.18)
3em/s | stiff | -2.13 (0.49)  1.12 (1.15)  0.07 (0.74) | 2.00 (0.41) | 0.76 (0.23)  1.23 (0.29)  0.83 (0.31)
6 cm/s | medium | -1.77 (0.59) -0.08 (0.92) -0.08 (0.46) | 1.63 (0.23) | 0.38 (0.24)  1.38 (0.2)  2.32 (0.08)
6 cm/s | stiff | -1.34 (0.40) 0.69 (0.40) -0.46 (0.39) | 1.31 (0.33) | 0.39 (0.11)  1.50 (0.15)  2.16 (0.10)
Gravel
3cm/s | medium | 2.33 (2.90) 1.97 (5.17)  2.15 (1.79) | 3.79 (2.29) | 2.47 (1L.27) 2.31 (0.44)  1.6% (0.32)
3cem/s | stiff | 0.44 (2.22) 047 (2.89)  4.16 (3.10) | 3.37 (1.71) | 2.55 (1.42)  2.38 (0.28)  1.82 (0.54)
6 cm/s | medium | 0.71 (1.98)  2.26 (2.40) -0.25 (1.77) | 2.47 (1.25) | 2.29 (1.14)  2.63 (0.84)  2.27 (0.92)
6em/s | stiff | -0.58 (2.24)  3.39 (4.04) -0.17 (1.52) | 3.37 (2.00) | 2.82 (1.24)  2.33 (0.50)  2.80 (1.04)
Xtracking = 150 cm
Vdes Stiffness Ax in cm Ay in cm Az in cm Ap in % Adrms in °© Afrms in © Avpmg in ©
mean (std) mean (std) mean (std) | mean (std) | mean (std) mean (std) mean (std)
Lab floor
3cm/s | medium | -1.74 (0.85) 0.86 (1.22) -0.31 (1.73) | 1.30 (0.52) | 0.83 (0.36)  1.95 (0.58) _ 1.93 (0.20)
3em/s | stiff | -2.77 (0.89)  2.97 (2.18)  0.35 (1.24) | 2.24 (0.46) | 1.34 (0.54) 1.27 (0.32)  0.76 (0.23)
6 cm/s | medium | -2.69 (0.64) -0.3 (1.47)  0.32 (0.68) | 1.63 (0.24) | 0.5 (0.2)  1.63 (0.17)  2.31 (0.06)
6cm/s | stiff | -2.17 (0.45) 1.13 (0.86) -0.55 (0.41) | 1.37 (0.27) | 0.43 (0.17)  1.71 (0.09)  1.97 (0.07)
Gravel
3cm/s | medium | 3.88 (3.55) 1.08 (7.98) 2.57 (2.17) | 8.71 (1.79) | 3.13 (1.32)  2.42 (0.51)  1.88 (0.39)
3em/s | stiff | 1.32(3.43) 1.83 (5.57) 4.44 (4.46) | 3.26 (1.60) | 2.95 (1.52)  2.36 (0.43)  1.98 (0.41)
6 cm/s | medium | 2.81 (2.4) 253 (5.05) -0.57 (2.51) | 2.54 (1.69) | 2.51 (1.48)  2.59 (0.70)  2.30 (0.79)
6cm/s | stiff | 0.56 (2.79) 5.93 (6.20) -0.57 (2.15) | 3.58 (1.90) | 3.22 (1.23)  2.21 (0.43)  2.94 (0.73)
4.5 Turning are only adjusted for a change of substrate. Since the

As for forward walking, a set of experiments was con-
ducted to evaluate the performance of pure turning. To
visualize an average result, Fig. 8 shows an exemplary
yaw angle plot for a 90° right-left turn on gravel. The
tuning parameters were identified for gravel as well as
for lab floor and showed only very small dependence on
joint stiffness setting and turning velocity. Thus, they
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algorithm appears to be independent of velocity and
stiffness setting for turning, Table 2 only displays the
results for five trials of turning to the right on each sub-
strate at 10°/s and medium joint stiffness. The data
shows that the yaw angle estimate on lab floor experi-
ences a drift which amounts to 2° to 5° per 90° turn.
For gravel the error is smaller and shows no drift. The
Cartesian position errors are very small for turning and



Table 2 Error behavior of the complete Crawler odometry (with fusion of first and second stage) for turning to the right:
Average translation rms errors (AXrms,AYrms,AZrms), average absolute yaw angle errors (A«) and average orientation
rms errors (Adrms,ABrms,AYrms) on lab floor and gravel at —30°, —60° and —90° (5 experimental runs for each ground

substrate);
Otracking 1 © | AXpms incm Ayrms in cm Azpys in cm Ao in ° Aarms in °© Afrms in © Aqpms in ©
mean (std) mean (std) mean (std) | mean (std) | mean (std) mean (std) mean (std)
Lab floor

30 0.22 (0.03) _ 0.10 (0.03) _ 0.14 (0.07) | 1.29 (0.37) | 0.92 (0.35) 1.05 (0.21)  1.47 (0.53)

-60 0.34 (0.04)  0.16 (0.04)  0.23 (0.10) | 2.48 (0.46) | 1.53 (0.31) 0.93 (0.11)  1.27 (0.37)

-90 0.37 (0.03)  0.31 (0.08)  0.31 (0.10) | 3.75 (0.51) | 2.22 (0.33)  0.97 (0.08)  1.22 (0.32)

Gravel

230 0.37 (0.25)  0.44 (0.27) _ 0.34 (0.26) | 0.73 (1.91) | 1.15 (0.86)  1.50 (0.36)  1.92 (0.43)

-60 0.48 (0.25)  0.65 (0.26)  0.52 (0.27) | 1.00 (2.15) | 1.33 (0.80) 1.31 (0.21)  2.07 (1.02)

-90 0.65 (0.36)  0.90 (0.35)  0.72 (0.39) | 0.90 (1.88) | 1.47 (0.92) 1.29 (0.18)  1.94 (0.90)
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Fig. 8 Yaw angle estimates for turning on gravel: yaw rate
= 10°/s, medium joint stiffness

the pitch and roll angle estimates show constant but
smaller errors than for forward walking. Turning to the
left shows similar error behavior and the performance
evaluation is omitted at this place.

4.6 Combined Motions

Next, we will give a few examples of combined motions.
Fig. 9 shows an average result for walking a rectangular
path on gravel. As can be seen, the absolute Cartesian
position error on gravel is larger than on lab floor as
shown in Fig. 4 above. In both cases the absolute Carte-
sian position error is mainly caused by errors of the yaw
angle estimate. On lab floor the estimated path opens
slightly outwards, which is a result of underestimating
the yaw angle during the turning motions while it is es-
timated quite accurately for the forward walking parts.
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Fig. 9 Walking a rectangular path on gravel - comparison of
position estimates provided by the first stage of the odometry
algorithm, the data fusion and the ground truth measurement
system; vqes = 6 cm/s, medium joint stiffness; top: projection
on the xy-plane; bottom: projection on the xz-plane
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Fig. 10 Crawler odometry position estimates for walking up-
hill (v4es = 6 cm/s, high joint stiffness) - a) DLR Crawler in
the test area; b) estimated and measured trajectories in xyz

The opposite happens on gravel where the rectangular
path is bent inwards. Here the yaw estimates for the
turning motions are quite accurate while the yaw an-
gle estimate experiences a drift for the forward walking
segments. In both cases the behavior is consistent with
the performance results obtained for forward walking
and turning. Even with the high number of steps the
robot takes walking a distance of several meters, the z-
coordinate estimate remains close to the GTMS value.

Finally, we show an average result for a path that
combines forward, upward and turning motions and in-
cludes a step as an additional challenge. In this case
the robot walks up a short 15° slope, moves sideways
and turns 90° on a plateau, crosses a 5 cm edge and
walks up a second 15° slope onto a second plateau as
depicted in Fig 10. Along its path the odometry algo-
rithm uses the torque thresholds and the process noise
covariance matrix identified for walking with a tripod
gait on lab floor and switches to the parameter set for
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walking with a tripod gait on gravel while crossing the
edge. This switch is initiated automatically by stronger
reflex activations and height differences within the legs
and improves the estimate during crossing the edge.
Again, the main source of the Cartesian position er-
ror is the yaw angle estimate that experiences a drift,
especially while walking along the slopes. The overall z-
coordinate estimate, Fig. 11, is quite good even though
it misses the onset of the upward motion and slightly
overestimates it in the following due to slip along the
slope. The pitch angle estimate detects the slopes and
closely represents the shaky motion during crossing the
edge. Apart from the edge, the pitch and roll angle es-
timates overestimate the shakiness of the motion along
the slopes and the plateaus. Nevertheless, in our opinion
the odometry results are very encouraging considering
that only leg proprioception is employed.

5 Conclusions and Future Work

In this paper we have presented a 6 DOF leg odome-
try algorithm for statically stable walking robots. The
strength of the algorithm is that it solely uses proprio-
ceptive sensors embedded within the legs and provides
absolute pitch and roll angle estimates based on joint
torque measurements. The algorithm is applicable to
stiff and compliant robots and does not rely on specific
gait patterns. Being generally applicable to four-, six-
or eight-legged robots, we implemented and successfully
tested the leg odometry on the six-legged DLR Crawler
as experimental platform. We performed numerous test
runs and presented performance measures for walking
at different joint stiffness settings, on different ground
substrates as well as with different emerging gaits in-
voked by the walking velocity command. Further, we
identified error sources and where possible removed or
attenuated their influence on the pose estimate using
heuristics. Herein, especially the torque thresholds for
ground contact detection show a strong influence on the
z-coordinate drift and yaw angle accuracy. Neverthe-
less, a remaining yaw angle drift is the main source of
endpoint errors. The algorithm further allows the iden-
tification of single slipping legs and the reduction of
their influence on the calculation. On the contrary, sit-
uations where the complete robot slips cannot be iden-
tified using leg sensors only. Additionally, we presented
an exemplary result for the successful use of the leg
odometry for motion estimation in full 3D scenarios.
Being subject to spatial and temporal bounds, our al-
gorithm is a very useful source of 6 DOF pose estimates
within a local environment. As part of a visual navi-
gation framework it is of great value since it provides

redundancy, complements the visual odometry and en-
hances the overall robustness of pose estimation.

In future work, we want to test our complete local
stereo vision based navigation framework including the
leg odometry in an outdoor environment with strongly
varying substrates, lighting situations and a crater with
various slopes ranging from 10° to 35°. Further, the per-
formance of the leg odometry will be evaluated for the
case of replacing the joint torque sensor based absolute
pitch and roll angle estimates in the second stage of the
algorithm by foot force sensor based ones.
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