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Abstract This article presents a probabilistic algorithm
for representing and learning complex manipulation ac-

tivities performed by humans in everyday life. The work

builds on the multi-level Hierarchical Hidden Markov

Model (HHMM) framework which allows decomposi-

tion of longer-term complex manipulation activities into
layers of abstraction whereby the building blocks can

be represented by simpler action modules called ac-

tion primitives. This way, human task knowledge can

be synthesised in a compact, effective representation
suitable, for instance, to be subsequently transferred

to a robot for imitation. The main contribution is the

use of a robust framework capable of dealing with the

uncertainty or incomplete data, and the ability to rep-

resent behaviours at multiple levels of abstraction for
enhanced taks generalisation. Activity data from 3D

video sequencing of human manipulation of different

objects handled in everyday life is used for evaluation.

A comparison with a mixed generative-discriminative
hybrid model HHMM/SVM (Support Vector Machine)

is also presented to add rigour in highlighting the ben-

efit of the proposed approach against comparable state

of the art techniques.
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1 Introduction & Motivation

Human behaviours are inherently complex and extract-
ing a represention from raw sensory data is a challeng-

ing undertaking. One of the most desired objectives in

the field of human-robot interaction is to endow robots

with the capability of learning human activities through

simple observation - imitation learning being one of the
most common approaches explored (Schaal et al., 2003).

For the specific case of learning object grasping
and manipulation activities there has been a grow-

ing interest in expressing these as a combination of

Action Primitives (APs) (Krüger et al., 2010). Re-

search on human motion and other biological move-

ments postulates that movement behaviour consists of
simple APs: atomic movements that can be combined

and sequenced to form complex behaviours (Newt-

son et al., 1977), (Schaal et al., 2003),(Kulic et al.,

2011). For example, as shown in Figure 1 the activ-
ity of pouring water from a mug could be decomposed

into a sequence of actions that can be regarded as

atomic in that given the observed data these cannot be

decomposed further, e.g. approach-grasp-lift-tilt-untilt-

place back-release-retreat. Arguments raised in the field
of neuroscience (Rizzolatti et al., 2001) reinforces the

concept that human actions are composed of APs in

a similar way to human speech, where utterances of

words are broken down into phonemes. Hence the use of
a grammar based on APs appears an attractive propo-

sition to represent activities, in that they allow for a

“symbolic” description of more complex actions. This
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Fig. 1 Activity of Pouring water from mug subdivided into action primitives. Each image depicts the output of hand-object
tracking algorithm.

is also in accordance with the concept, in a humanoid

robotic context, that the process of recognising human

tasks may be regarded as understanding sequential hu-
man behaviours which, in turn, consists of interpreting

a sequence of action primitives (Jenkins and Mataric,

2004). Along with the advantage of a top-down ap-

proach (complex activities decomposed into APs), the

framework also enables a bottom-up approach whereby
APs can be shared to construct different activities - an

attractive proposition e.g. for robotic arms to be able

to generalise their learning from human teachings.

2 Proposition

In this paper we exploit a temporal probabilistic net-
work embodied in a Hierarchical Hidden Markov Model

(HHMM), and show how it can be used for learning

and representing object grasping and manipulation ac-

tivities. Given the inherent level of uncertainty, noise,
and ambiguity in the sensor signals used to perceive hu-

man tasks, modelling human manipulative actions in a

deterministic manner is a challenging premise. Thus,

stochastic or probabilistic models are commonly em-

ployed.
The proposed model builds upon alphabets of APs

which are combined to describe complex human activ-

ities. The hierarchical nature of the framework allows

decomposition of a typical activity into different lev-
els of action representation. Moreover, the algorithm is

robust to uncertain or incomplete data to infer user’s

long-term intent. In the manipulative space hereby pre-

sented APs are learned and inferred by observing hand-

object interactions and their motion in the Cartesian

space, whereas the higher level activities are inferred
by learning the time-sequence of APs. The framework

proves to be a strong tool for learning and synthesiz-

ing complex activities as it enables the robot to not

only learn activities through imitation, but also to re-

produce the learned activities by combining APs in dif-
ferent sequences to perform higher level activities. To

this end, for the robot to efficiently imitate or perform

tasks similar to those performed by their human coun-

terpart, the string of APs generated by decomposing
activities are such that they can map directly across to

actions (i.e movements of the arm), which a robot can

then perform sequentially to complete a “human-like”

activity. For instance a humanoid robot would learn to

pour water with the right arm, as taught by a right-
handed human teacher, but would be able to generalise

these movements to perform a similar action with the

left arm, or as part of a similar activity such as adding

ingredients during cooking.

For completeness, the proposed HHMM framework

is also compared with a HHMM/SVM hybrid model,

motivated by the exceptional performance of discrimi-
native models in general in relevant state-of-the-art lit-

erature. Generative-discriminative hybrid frameworks

have been successfully explored by the research com-

munity in areas such as automatic speech recognition,
facial/gesture expression and more (Abou-Moustafa

et al., 2004). The HHMM/SVM hybrid framework uses

the strong kernel projection characteristics of the SVM
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classifier, which are then combined with the HHMM

model to exploit temporal relationships. Results high-

light not only the inherent superior generalization capa-

bilities of the proposed technique, but also their practi-

cality given their unsupervised nature, and better suit-
ability for novelty detection so as to be able to incor-

porate new relevant data into the models.

3 Related Work

Probabilistic models have been used extensively by

the AI community in particular to represent complex

systems with prominent uncertainty (Jensen, 1996).

These models have found its applicability in the field
of robotics given their inherent ability to handle sen-

sor noise and data ambiguity, thus capturing both spa-

tial and temporal variability in their movements and

perception of their surroundings. Models such as Hid-

den Markov Model (HMM), Dynamic Bayesian Net-
work (DBN) and HHMM are popular techniques used

for human motion modelling and a wide variety of

other applications. The list includes aviation monitor-

ing (Heinze, 2003), sign language and gesture mod-
elling (Iba et al., 2005), assistive robotics (Patel et al.,

2012), skills transfer (Dillmann et al., 1999), robot as-

sisted surgery (Kragic et al., 2005) and many more.

Learning by imitation is an approach that has

been used by roboticists for bootstrapping learning of
robot activities based on human observation, a rele-

vant context for this work. Preliminary work done by

Ijspreet and his colleagues used a Control Policy (CPs)

based approach to represent complex dynamical sys-
tems based on human movements (Ijspeert et al., 2002).

These CPs, which represent various human like move-

ment plans, are derived based on ease of representa-

tion, compactness, robustness against changes in the

dynamic environment, re-usability and overall simplic-
ity in learning different human movement trajectories.

This Dynamic Motion Primitive (DMP) based frame-

work was later on illustrated in a number of application

related to humanoid robotics which involved planning,
movement recognition, perception-action coupling, imi-

tation and general reinforcement learning (Schaal et al.,

2004). Khansari-Zadeh and Billard (Khansari-Zadeh

and Billard, 2010) proposed the Stable Estimator of

Dynamical Systems (SEDS), a method for learning the
parameters of a time invariant dynamical system to

ensure that all motions closely follow the demonstra-

tions while ultimately reaching and stopping at the

target. The activities learned by the SEDS were sim-
ple tasks such as moving an object from point-to-point.

Dindo and Schillaci (Dindo and Schillaci, 2010) pro-

posed a Growing Hierarchical Dynamic Bayesian Net-

work (GHDBN) to recognise the skills being observed

and to reproduce them by exploiting the generative

characteristics of the model. The model learned and

reproduced three actions i.e. dislocate, approach and

hit. Pastor et. al. (Pastor et al., 2009) used a Dynamic
Movement Primitive (DMP) framework in which the

recorded movement were represented using non-linear

differential equations. The movement library consisted

of actions such as grasping, placing and releasing. Ak-
soy et. al. used a Semantic Event Chain (SEC) based

approach to represent the relations between objects and

hand at decisive time points during a manipulation ac-

tivity Aksoy et al. (2011). The time points defined using

SEC were descriptive for distinguishing different ma-
nipulation activity. In their recent work, Nemec and

Ude (Nemec and Ude, 2012) also used a DMP based

system to represent primitive movements. The DMP

library used in their experiment consisted of activi-
ties like reaching, pouring, wiping, shaking, cutting and

power grasps.

Kruger et. al. proposed a Parametric Hidden

Markov Model (PHMM) to represent various action

primitives (Krüger et al., 2010). The framework was
trained in an unsupervised manner and synthesized

movement trajectories as a function of their desired ef-

fect on the object (e.g. approach, grasp, push forward,

push side, move side, rotate, remove). Song et. al. used
structure learning to exploit the dependencies between

hand and object to generate the structure of a Bayesian

Network (BN) (Song et al., 2011a), (Song et al., 2011b).

The evolved structure was used to predict the activity

performed by the user based on the type of action, and
the object being manipulated. However, the prediction

of these activities was done based on grasp instances,

and did not exploit features from the entire trajectory

as followed by the arm to perform a given activity.

Our work suggests the use of a HHMM to bet-
ter exploit temporal constraints for grasp and manip-

ulation activities. The HHMM theoretical framework

hereby proposed has been applied in several applica-

tion areas. Nguyen et. al. (Nguyen et al., 2005) used a
HHMM framework to model and recognise complex hu-

man activities. The model exploited both the natural

hierarchical decomposition and shared semantics em-

bedded in the movement trajectories. The activities in-

ferred were based on location semantics. Kawanaka et.
al. (Kawanaka et al., 2005) used a HHMM model for

recognising human activities as a series of actions from

image sequences. Each target activity had its own indi-

vidual model which were clubbed as sub-model within
the HHMM framework. In the area of ubiquitous com-

puting, Liao (Liao, 2006) used a HHMM framework to

infer user’s mode of transportation, destination location
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Fig. 2 Example of a three level HHMM model where solid arcs represent horizontal transitions between states, and dashed
arcs represent vertical transitions, i.e., connections between sub-HMMs. Double-ringed states represents end states (at least
one per sub-HMM), where control flow is returned to the parent (calling) state. Each node at level 3 emits a single state based
on the distribution over the observation space.

and predict both short and long term movements. The

framework was also able to infer if the user was deviat-
ing from his normal activities as an indication to pro-

vide guidance cues. In work related to assistive robotic

walkers (Patel et al., 2012), a HHMM framework was

deployed to infer navigational and non-navigational in-

tentions of a walker user. The hierarchical nature of the
framework allowed learning of typical activities of daily

living such as stand up or going to kitchen.

HMM-SVM hybrid models have also been widely

used in areas such as automatic speech recognition (Sta-

dermann and Rigoll, 2004), tele-operation (Castellani

et al., 2004) or modelling of facial action temporal dy-
namics (Valstar and Pantic, 2007). Stadermann used a

SVM/HMM hybrid model for speech recognition which

combines the strong classification capabilities of SVM

with the time varying modelling capability of HMM
model (Stadermann and Rigoll, 2004). Valster and Pan-

tic also exploited the capabilities of SVM/HMM hybrid

model for facial action recognition. In this application

the SVM classified the distinction between the tempo-

ral (facial expression) phases at a single point in time
which were then combined over a time period by the

HMM model to predict the temporal dynamics (Val-

star and Pantic, 2007). A similar technique was used

by Castellani and colleagues for analysing and segment-
ing various tele-operation activities (Castellani et al.,

2004). In all these approaches the strong characteris-

tics of SVM to handle non-linear data through ker-

nel induced feature maps was exploited to discriminate

segments, which were in turn utilised by the HMM to
model the temporal relationship between data points.

Our work proposes the use of a probabilistic frame-

work capable of representing an entire grasping and ma-

nipulation task by decomposing it into clusters of APs.

The approach is novel in that firstly, the entire activity

sequence is clustered into a pool of different APs and
secondly, the unified probabilistic framework exploits

spatial relationships to learn both, APs and time de-

pendent relationship between them, to accurately pre-

dict the complex manipulation activities at the highest

level of abstraction. Clustering activities into different
APs becomes an important criteria as the time taken by

any user to perform a given activity will vary (even for

the same user), which implies a high variability in users

remaining within a given (action primitive) state. For
that, the use of hierarchical models with specific condi-

tions to model the end of sub-processes is an important

proposition. Considering a unique user state at each

time instance makes it computationally intractable as

the state space would grow unbounded.

4 Hierarchical Hidden Markov Model

(HHMM)

The proposed HHMM framework is capable of structur-

ing stochastic processes at multiple levels. The HHMM
is an extension of the traditional HMM model, designed

to model domains with hierarchical structure includ-

ing such with dependencies at multiple length/time

scales (Fine et al., 1998). In a HHMM, the states of

the stochastic automaton can emit single observations
or strings of observations. Those that emit single ob-

servations are called “production states”, and those

that emit strings are termed “abstract states” (Mur-

phy, 2002).

The example shown in Figure 2 provides an intuitive

description of the process. The states at the highest

level correspond to the abstract states, are themselves
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Fig. 3 HDBN representation of the HHMM Model used to infer action primitives and long term user activities using hand
and object features (described in Table 2)

governed by sub-HHMMs, entering into statesQ2. Since

a state at level 2 is abstract, it enters its child HMM

via its subsequence states Q3. The horizontal transi-

tion in each child HMM (at level 3) emits unique state

w.r.t the observations perceived by the model and is
hence referred to as production state. Once the sub-

HMM reaches the end state, the control is returned to

the higher level, from wherever the sub-HMM sequence

was called from. This is done recursively till the time the
control is returned to the highest abstract state (level

1). The abstract state can transit to the next possi-

ble state only after all the sub-HMM at lower level are

terminated (Murphy, 2002).

The hierarchical nature allows decomposition of the

problem at different levels of abstraction thereby fa-

cilitating exploration (long term planning/activities)
and exploitation (short term planning/action primi-

tives) within the same framework. In the paradigm of

learning long term task/activities from APs, the high-

level activities call the more refined low-level activities

according to some distribution. A low-level activity will
in turn call another lower-level activity, and this pro-

cess continues until the most primitive possible activity

is performed. When the lower level activity terminates -

in some state - the parent behaviour may also terminate
as long as the current state is in the set of destination

states of the parent node.

4.1 Representation

A HHMM framework can be formally represented as

a Hierarchical Dynamic Bayesian Network (H-DBN) as
shown in Figure 3. Its structure comprises of three types

of nodes, Qd
t
, Ot, F

d
t
where d is the depth of the hierar-

chy (d = 2 in our case). Edges between nodes represent

their dependencies on each other. The detail of each

node is specified as follows:

– Qd
t
represents the state of the system at time t and

level d. Note that at any given time the system will

be probabilistically represented by the state belief

at all levels, and so will be the user goal state at the
top level.

– As the true state of the user is hidden, ob-

servation nodes Ot are required that provide

user/environment information. These are modelled
either as a mixture of Gaussian (µ,Σ) or as discrete

P (Ot|Q
d
t
) node.

– F d
t
is the terminating state which specifies the nat-

ural completion of a sub-HMM and returns the con-

trol back to the higher level/parent states.

Given the parameters (Qd
t , Ot, F

d
t ), the H-DBN de-

fines the joint distribution over the set of variables that

represents the evolution of the stochastic process over

time. These distributions are in the form of prior distri-

butions (initial probabilities), the transition probabili-

ties and the observation probabilities. The prior and
the transition probabilities are defined at every level

(d). Once defined these probabilities are further opti-

mised from data using the Expectation-Maximisation

(EM) algorithm.

4.2 Prior Model

The prior provides the initial probabilities of the most

likely initial state of the user. The initial probabilities

at both the levels are defined by

P (Q2

1
) = π2(j)

P (Q1

1
) = π1

k(j) (1)
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where π2 represent the initial probabilities at level

2 and π1

k
represents the same at level 1, given the state

at level 2 is k.

4.3 Transition Model

Each node in the HHMM represents a conditional prob-
ability distribution (CPD) or table (CPT). The state of

the highest level (level 2 in Figure 3) at time t, depends

upon the previous state at the same level and the ter-

mination flag at time t− 1. Probabilities at the highest

level are defined by:

P (Q2

t
= j|Q2

t−1
= i, F 2

t−1
= f) =

{

A2(i, j) if F 2

t−1
= 0

π2(j) if F 2

t−1
= 1

(2)

Similarly, the states at the intermediate level (level

1 in Figure 3) at time t, depends upon the previous

state at the same level and the termination flag at time

step t− 1 and the state at the higher level in the same
time step t, the probabilities of which are defined as,

P (Q1

t = j|Q1

t−1
= i, F 2

t−1
= f,Q2

t = k) =

{

A1

k
(i, j) if F 2

t−1
= 0

π1

k
(j) if F 2

t−1
= 1

(3)

In (2), A2 represents the transition probabilities

from state i to j at level 2 whereas in (3), A1

k
corre-

sponds to transition probabilities at level 1 given the

state at level 2 is k.

4.4 Termination Model

The termination state F at time t depends upon the

level 2 state and level 1 state in the same time step t.

The distribution of the termination state is defined as:

P (F 2

t
= 1|Q2

t
= k,Q1

t
= i) = A2

k
(i, end) (4)

4.5 Observation Model

The observation model signifies the probability of a spe-

cific observation conditioned on a discrete hidden state.
For our application, observations are modelled as both

Gaussian and discrete. The CPDs for Gaussian and dis-

crete nodes are given by:

P (Ot|Q
1

t
= i) = N(µi, Σi)

P (Ot|Q
1

t = i) = C(i) (5)

4.6 Learning and Inference

Different techniques can be used for learning the

HHMM model, both supervised and unsupervised. Ex-

pectation Maximisation (EM) (Blimes, 1998) and its

variants are some of the most popular statistical tech-

niques used for unsupervised learning. In realistic cir-
cumstances it is difficult to obtain labelled data, hence

an unsupervised mode of learning is preferable. We used

EM for learning the model and maximum likelihood es-

timator to predict user activities. The EM algorithm it-
erates between an Expectation step (E-step) and Max-

imization step (M-step). In each E-Step it estimates

the expectations (distributions) over the latent vari-

ables using the observations along with the conditional

probability density (CPD) of the model. Then in the
M-step the model parameters (i.e. the CPDs) are up-

dated using the expectations of the hidden variables

obtained in the E-step. Each iteration would continue

to improve the estimates of the hidden variables and
will eventually converge to a local optimum.

5 Problem Specific HHMM Framework

The HHMM framework used to test our proposition is

shown in Figure 3. User state/activities are inferred at

the top level whereas the intermediate level represents

the APs (shown in Figure 3) while the lowest level cor-
responds to the features of object-hand interaction in

the Cartesian space. In everyday life a single object can

be used to perform many activities (e.g. a mug can be

used for drinking, pouring or handing it over to another
person), hence it is difficult to predict the user activity

when he/she is approaching to grasp the object, but

it becomes more apparent after the object has been

grasped. Similarly, after accomplishing the desired ac-

tivity, the action of retreating the hand after releasing
the object cannot be described as part of the activity

sequence. Hence such action primitives, e.g. approach-

ing to grasp an object (APPRH), and retreating after

the object is released (RETRT) are not defined as a
part of any long term activity listed in Table 1, but are

described as APs independent of any activity. In our

framework, such independent APs are inferred at both

levels of hierarchy. To better illustrate this concept, con-

sider the example in Figure 1. The user first approaches
to grasp the mug, which has the same AP defined at

both levels. This means that the specific activity can-

not be inferred without the object being grasped. Once

the object is grasped, the activity can be inferred based
on the type of grasp and the object. Hence, the HHMM

model will infer activities at the higher level (2) and the

action primitives at the lower level (1). After releasing
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Activities Abbrev. Description
Pour POUR Activity of pouring from a mug or bottle
Handover HNDOVR Activity of handing over an object to another person
Tool Use (Hammer) TLUSE Hammering a nail
Spray SPRAY Spraying from a spray bottle
Dish Wash DSHWSH Loading an object like a mug in a dishwasher
Drink DRINK Drink from a mug or bottle
Shift SHIFT Shift object for a one location to another
Sprinkle Salt SPRINKLE Sprinkle salt using a salt sprinkler

Table 1 Users’ everyday activities

the object the AP of retreating being independent from

any activity sequence will be thus inferred at both lev-
els.

At the observation level, features are extracted using
a hand-object tracking algorithm (details are given in

Section 6). It represents the interaction between the

hand and object and its movement in Cartesian space.

6 Data Acquisition

In order to validate our proposed approach, we col-

lected data using an RGB-D kinect sensor while the
human subject demonstrated the grasping and manip-

ulation activities. The parameters that describe the

configuration of the users’ hand and the configuration

of the object while performing the activities need to

be extracted from the 3D video stream data. The ex-
tracted features which involves the interaction between

the hand and object should be such that they can be

mapped to the motion of a robotic arm for activity syn-

thesis/imitation. In order to extract such information
we combined the methods presented in (Oikonomidis

et al., 2011b) and (Oikonomidis et al., 2011a) towards

a system that can track both the hand and object while

they are interacting (in Cartesian space). Tracking of

the hand is performed using the technique described
in (Oikonomidis et al., 2011a), which optimizes the ob-

jective function that quantifies the discrepancy between

a hypothesis over the scene state and the actual ob-

servations. The tracking algorithm also accommodated
the tracking of the object and its motion in Cartesian

space. At each new frame a new tracking optimization

is performed that is initialized in the vicinity of the

solution for the previous frame. The reference 3D coor-

dinate system is conveniently defined to reside on the
demonstration table seen in Figure 1), which becomes a

chess-board calibration pattern. All objects used in the

manipulative activities were painted blue, as per Fig-

ure 4, so as to rely upon a single, uniform appearance
model for tracking, thus facilitating the overall set-up.

To initialise the hand and object position we

employed a similar technique to the one specified
in (Oikonomidis et al., 2011b), (Oikonomidis et al.,

2011a) and (Papazov and Burschka, 2011). To success-

fully track the hand, the tracking algorithm expects the

Fig. 4 Objects used to perform manipulation activities

hand to be at a given initial position in the space. To ini-

tialise the pose of the object, we integrated the tracking

algorithm with the RGB-D based registration method
used by Papazov (Papazov and Burschka, 2011).

The features extracted in the experimental results

to validate the proposed work are listed in Table 2.
They consist of the 3D motion (translation and rota-

tion) of the hand and the object being manipulated.

The features in the data also include a selection of the

rotational joint movements of three of the fingers, in-
dex, middle and ring. The derived trajectory provided

information about the motion of the hand and object,

whereas the rotational motion (yaw, pan, tilt) added

information about their corresponding orientation in

space. Furthermore, the movement of the finger joints
provided details about the grasping of the objects. All

these data features were utilised to predict the APs at

the lower level.

It is worth noting that the primary goal in this work

is the representation of human grasping and manipula-

tion so that these behaviours can effectively be learned

from a human teacher and ultimately transferred to a
robot arm. Kinematic models and DOFs between a hu-

man arm and a robotic manipulator differ, thus the

paths followed by both in exercising a manipulation ac-

tivity will diverge. However, for a capable anthropo-
morphic arm the interactions between a robotic arm

Table 2 Hand and object features used by the HHMM
framework

Feature Dim. Description
hndMot 3 Hand motion in Cartesian space
hndOri 4 Hand orientation (quaternion)

fgrJnt0 P 1 Pitch of knuckle joint for index, ring & middle finger
fgrJnt0 Y 1 Yaw of knuckle joint for index, ring & middle finger
fgrJnt1 P 1 Pitch of first finger joint for index, ring & middle finger
fgrJnt2 P 1 Pitch of second finger joint for index, ring & middle finger
objMot 3 Object motion in Cartesian space
objOri 4 Object orientation (quaternion)
Obcl 6 Object class



8 Mitesh Patel et al.

Fig. 5 Time taken by each action primitive (APs) to perform the activity of shifting objects. Note that the time taken for
shifting the same object and the time spend within each AP varies between same and different objects

and the objects in their surroundings (e.g. grasping the

object with a particular pose in order to accomplish
the desired activity) will be of similar nature - subject

of course to their differing kinematic arrangements. As

such, the APs learned by the robot (GRTOP, TILT

etc.) and the sequences needed to accomplish a given
task are directly transferable to any grasping manipu-

lator of sufficient dexterity.

7 Results

To test the proposed methodology, we used a selection

of everyday objects from different classes. We inten-

tionally selected objects that can be used in the con-

text of more than one activity, e.g. a mug and a bottle
which can be used both for drinking and pouring. We

selected the six objects depicted in Figure 4 to perform

the activities listed in Table 1. Data was collected with

a single user, who repeated the same activity 4 times

Action Primitive Abbrev. Description
Approach APPRH Approach to grasp objects in a given space
Approach with twisted hand APTWH Approach to grasp objects with inverted hand
Retreat RETRT Retreat hand into original position
Putback PUTBK Place back the grasped object
Grasp from top GRTOP Grasp object from top
Grasp from handle GRHDL Grasp object from handle (if any)
Grasp from middle GRMID Grasp object from middle
Grasp from tool use end GRTUE Grasp object from tool use end
Lift object LIFT Lift grasped object
Tilt object TILT Tilt grasped object
Un-tilt object UNTLT Un-tilt grasped object
Lower object (tool) LWRTL Lower object for usage
Raise object (tool) RAITL Raise object for usage
Move object towards You MVTOU Move object towards you
Release RELSE Release the grasped object
Grasp from bottom GRBOT Grasp object from bottom
Invert object INVRT Invert the grasped object by 180 degrees
Press and release trigger PERLTGR Press and release trigger of spray bottle
Shake salt sprinkler SHAKE Shake salt sprinkler to sprinkle salt

Table 3 Action Primitives to perform various activities

to capture variations which might occur in perform-

ing the same activity. The user was asked to perform
each activity such that it resembles natural execution.

The video and depth data was collected at a rate of 30

frames per second. The motion of hand and object was

extracted off-line using the hand-object tracking algo-
rithm described in Section 6. The output of the tracking

algorithm provided data of hand and object motion in

the Cartesian space and its orientation. The tracker also

extracted the features for each finger joint. Activities
were decomposed into a total of 19 interpretable APs

based on visual inspection, and are collected in Table 3.

It is important to emphasize that each AP represents

a feature set that consists of a cluster of continuous,

time-varying trajectories and not a single instance.

Due to the time variation in performing different
activities, the time spent in executing each AP will vary.

That would be the case even if its the same activity that

is being repeated over and over again. To illustrate this,

Figure 5 shows an example of the time taken to perform
the activity of SHIFT which involves shifting different

objects from one location to other. It can be noted how

the time taken for each AP in a given activity varies

even if it is repeated on the same object. For example,

when comparing the activity of shifting a bottle (as
shown in Figure 5), BOTTLE 1 took significantly less

time than the other three times (BOTTLE 2, BOTTLE

3, BOTTLE 4 ). This variation in the activity directly

effects the time taken to undertake each AP.

The HHMM model (shown in Figure 3) was trained
and tested using the hand and object motion data cap-

tured described in Section 6. The data set was manu-

ally labelled for both APs and long term activities for
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Fig. 6 Activities inference accuracy by HHMM and HHMM/SVM Hybrid Models

Fig. 7 APs inference accuracy by HHMM and HHMM/SVM Hybrid Models

cross validating the inference accuracy. We divided the

data set into two equal halves for training and testing

purposes. We used the BNT toolbox (Murphy, 2002)

to learn and infer APs and long term activities using

the proposed HHMM model. Expectation Maximisa-
tion (EM) was used to learning APs and high level ac-

tivities where as Maximum Likelihood Estimator was

used for inference. The features used by the HHMM

framework and its corresponding dimension size are

listed in Table 2.

The APs were inferred with an overall accuracy of

72% at the intermediate level (level 1) of the HHMM

model whereas the long term activities was inferred
with 86% accuracy (at the higher level). The inference

accuracy to predict each AP and the high level activities

are graphically depicted in Figure 7 and 6 respectively.
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(a) Activities inferred by HHMM Model (b) APs inferred by HHMM Model

Fig. 8 Confusion matrix of inferring activities at the high level and APs at the intermediate level by HHMM model

Most of the APs were inferred with an accuracy
higher than 72%. APs such as putback (PUTBK),

tilt (TILT), un-tilt (UNTLT), grasp object from mid-

dle (GRMID) and lift (LIFT) are inferred with an

accuracy lower than 70%. PUTBK is often confused
with LIFT (can be seen in Figure 8(b)), this is due

to the high level of confusion in the data, since both

actions follow almost the same trajectory in the Carte-

sian space. A very high level of confusion is observed

between action states TILT and UNTLT. This is not
surprising as in the continuous space both these actions

are performed one after another, and hence the frame-

work is unable to clearly discriminate between them.

Lastly, high level of confusion exists between the state
of grasping the object of middle and bottom due to

unavailability of relevant information such as distance

offset between the center of object and grasping points.

At a higher level, apart from the activity of POUR

and DRINK, all other activities were inferred with
fairly high accuracy (refer to confusion matrix in Fig-

ure 8(a)). Confusion occurs between these two activities

as there is minimal difference in the sequence of APs

followed to perform both drinking and pouring.

8 Comparison with HHMM/SVM Hybrid

Model

We also compared the accuracy of the HHMM model

with that of a hybrid HHMM/SVM model. HMM/SVM

hybrid model has been successfully used in a number

of application (Bishop and Lasserre, 2007) (Castellani
et al., 2004) (Valstar and Pantic, 2007) (Stadermann

and Rigoll, 2004), where the excellent discrimination

performance of SVM complements the temporal mod-

elling properties of HMM to provide a higher inference
accuracy. In this work, a SVM was used to predict the

APs at a single time instance which are then combined

in a temporal space within the HHMM model to predict

high level activities. The HHMM/SVM hybrid model
used for comparison is shown in Figure 9. To make the

comparison fair, we used a Hierarchical HMM frame-

work instead of a flat HMM model so that the self

transition and inter state transition characteristics at
level 1 remains the same for both the models. The high

level activities were inferred at level 2 with an over-

all inference accuracy of 95% (see Figure 6). The APs

were inferred with an overall accuracy of 97% at level 1

(see Figure 7), which corresponds to a direct mapping
of the APs classified by the SVM model. The confu-

sion matrix of high level activities and APs inferred by

the HHMM/SVM hybrid model are depicted in Fig-

ure 10(a) and 10(b) respectively.
Most of the APs are inferred with around the same

accuracies with both HHMM and HHMM/SVM hybrid

model except for PUTBK, GRMID, LIFT, TILT,

ULTILT . The HHMM model is less able to discrim-

inate between these classes as described in Section 7.
However, SVM is able to predict these APs with high

accuracy which is not surprising as SVM possess strong

capability to discriminate between these classes with

minimal difference in observation. The HHMM/SVM
hybrid model outperforms HHMM model in inferring

the high level activities given the strong classification of

APs by the SVM classifier as compared to the HHMM

model.

9 Discussion

The HHMM/SVM hybrid model appears an overall
stronger inference engine, yet that is somewhat mis-

leading when put into the correct context, and the au-

thors advocate for the benefits that a HHMM model

exhibit over a HHMM/SVM hybrid model when the
appropriate criteria to model real-life complex manip-

ulation tasks are taken into consideration, as described

next.
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Fig. 9 HHMM/SVM Hybrid Model used to infer action primitives and long term user activity using different hand and object
features. The SVM classifier at the lower level classifies action primitives using hand and object features which are then used
by the HHMM framework to predict the long term activities.

(a) Activities inferred by HHMM/SVM Model (b) APs classified by HHMM/SVM Model

Fig. 10 Confusion matrix of inferring activities at the high level and APs at the intermediate level by HHMM/SVM hybrid
model

9.1 Missing Data

One of the challenges in dealing with real-time appli-

cation such as ours, is dealing with missing data. Data
can be missing or inexact due to various factors such as

erroneous/faulty instrument/sensor measuring, missing

attributes from one or more sensor. The discriminative

nature of the SVM classifier, makes it less capable of

handling missing data. On the contrary, HHMM being
a generative model is more able of learning in the pres-

ence of missing values, and often performs better when

training set sizes are small (Raina et al., 2004). This

is mainly due to the EM learning methodology which
optimizes the model over the whole dimensionality, and

thus models all the relationships between the variables

in a more equal manner (Le and Bengio, 2002).

In order to emulate a case of missing data and

smaller training data set, we conducted experiment

by randomly removing data samples from the train-

ing data. We divided the entire data set into two equal

half for training and testing as we did for the HHMM
experiments specified in Section 7. The training data

set was down sized further by randomly sampling data

at a frequency of 1/2 Hz, 1 Hz, 3 Hz, 5 Hz & 7 Hz.

By generating random data sets using this method, the
information related to a given activity or AP lost by

down sampling can be regarded as representing miss-

ing/lost data. Note that the random sampling of data

is done such that there will be at least one sample which

represents an AP in any given activity sequence, so the
down sample rates are approximate. This is done so as

to maintain the representation of sequence of APs in
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Fig. 11 Comparison of inference accuracy of HHMM and
HHMM/SVM Hybrid Model when training the model with
varying amount of missing data

Fig. 12 Activities and APs inferred by the HHMM and
HHMM/SVM hybrid model when tested with unseen data

any given activity. Further, to quantitatively analyse

the impact of smaller and missing data on the perfor-

mance of HHMM and HHMM/SVM hybrid model, we

generated 10 random training data sets for each case,
i.e. 10 different data sets for 1/2 Hz, 1 Hz etc. Each of

the trained models was then tested with a single testing

data set which was sampled at 7 Hz. Note that samples

used for testing are separate, and do not overlap with

any of the training data sets.

Figure 11 plots the mean and variance of the infer-
ence accuracy of the two models. It can be seen how

the performance of both models decreases substantially

when the amount of missing data is around 97% of the

full training data at a sample rate of 1/2 Hz. The infer-

ence accuracy of the HHMM/SVM hybrid model grad-
ually increases as more training data becomes avail-

able. Conversely, the inference accuracy of the HHMM

model remains almost constant despite the model being

trained with varying amounts of training data. Hence
the HHMM model seems better suited to generalise

in the presence of missing data, as compared to the

HHMM/SVM hybrid model.

9.2 Testing with Unseen Activity Sequences

To further strengthen our advocacy of HHMM model

over HHMM/SVM hybrid models, we performed an ex-

periment where we trained both models with 3 of the

4 sequences for each activities, and tested it with the
unseen 4th sequence. For this experiment we used data

down sampled at 7 Hz, as the experiment in Section 9.1

showed no measurable improvement at the higher rate.

As can be seen in Figure 12, the HHMM model in-

fers the long term activities with and accuracy of 74%
whereas the HHMM/SVM hybrid model inference ac-

curacy floats around 51%. Similarly APs were inferred

with an accuracy of 63% by the HHMM model and 60%

by HHMM/SVM hybrid model. The HHMMmodel out-
performs the HHMM/SVM hybrid model in inferring

both the long term activities and APs, which further

validates the better generalisation characteristics of the

HHMM model.

9.3 Unsupervised Learning

Beyond the significant advantage of using HHMM mod-
els given their inherent generalization capabilities from

smaller data sets, their unsupervised learning nature

can not be under estimated. It significantly overcomes

the rather difficult and costly process of obtaining la-

belled data for training. Moreover, unsupervised learn-
ing also opens the door to incorporate online learn-

ing algorithms whereby novelty in the patterns of per-

forming an activity can be accomplished within the

HHMM framework, e.g. using online-EM (Cappé and
Moulines, 2009), a work currently under way. The mod-

ular nature of the HHMM framework thereby is better

equipped for real-time addition/deletion/modification

in the state space (Dindo and Schillaci, 2010), a less

attractive proposition using generative models such as
SVM where full re-training might be required.

10 Conclusions and Future Work

In this paper we have proposed a novel approach to in-

fer users’ manipulative activities using a HHMM prob-

abilistic model. The HHMM framework allows to flex-

ibly divide an activity into a hierarchy, where longer-
term activities are regarded as sequential combinations

of more primitive building actions, or APs. The frame-

work was tested on a set of manipulative sequences col-

lected for different objects used in everyday life. The
hierarchical framework proved to be a powerful tool to

divide activities both vertically for natural language de-

scription of different activities from APs, and horizon-
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tally where the continuous observations are clustered

into different APs.

We also compared the inference accuracies of the
HHMM model with a HHMM/SVM hybrid model,

which performs learning in a semi-supervised manner

and was in general able to infer more accurately at

both AP and higher activity level. The model takes
full advantage of the temporal characteristics of HHMM

model and strong discriminating capability of the SVM

classifier to infer APs and the related long term ac-

tivities. However, it was shown to be less able to gen-

eralise in the absence of rich datasets, a well-known
trade-off between generative and discriminative mod-

els. Current work is investigating development of on-

line adaptable systems within the HHMM framework.

Also, while in the existing work we used data features
extracted from the raw observation data to be tracked,

work is in progress to apply discretisation and feature

extraction techniques such as the Gaussian Process La-

tent Variable Model proposed in (Song et al., 2011b) to

enhance the inference accuracy of the APs. Finally, we
also plan to release the dataset to the research commu-

nity.
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