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Abstract We study the problem of feature-based map

merging in robot networks. Along its operation, each

robot observes the environment and builds and main-

tains a local map. Simultaneously, each robot commu-

nicates and computes the global map of the environ-

ment. The communication between the robots is range-

limited. Our contributions are the proposal and careful

study of the properties of an algorithm that considers

separately robot poses and features positions, and that

reaches consensus on the latest global map using the

map increments between the previous and the current

time steps. We give proofs of unbiasedness and con-

sistency of this global map for all the robots, at each

iteration. Our algorithm is fully distributed and does

not rely on any particular communication topology. Un-

der mild connectivity conditions on the communication
graph, our merging algorithm asymptotically converges
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1 Introduction

Perception has a great importance in robotics. The avail-

ability of a local map allows each robot to make local

decisions for, e.g., local navigation or collision avoid-

ance. Teams of cooperative robots often need mech-

anisms for merging their locally acquired information

and building a global representation of the environ-

ment. This global map can then be used by the robot

team to make global decisions, such as cooperative ex-
ploration, or task assignment. As robots operate, they

re-observe and improve features estimates, and they in-

troduce new features in their local maps. The latest

global map must be properly adapted to reflect this

new information. The problem of dynamic map merg-

ing consists of correctly building the global map and

updating it according to the newly acquired data.

An important challenge in multi-robot systems con-

sists of the proper management of communications. Each

robot has a limited communication range, and can only

exchange data with its nearby team members, its neigh-

bors. Several multi-robot algorithms have been proposed

that take these restrictions into account, e.g., [16] for

pursuit-evasion, or [19] for distributed transferable be-

lief models. Besides, since the robots move, the set of

neighbors change with time. Thus, multi-robot strate-

gies must be specifically designed for coping with switch-

ing network topologies. In this paper we investigate

the problem of dynamic map merging under limited

communication and switching topologies, in which each
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robot can only exchange data with its neighbors. Each

robot builds a local map of the environment using its

own measurements. Robots fuse their local maps and

build a global map by applying distributed consensus

filters on the information matrices and vectors of the lo-

cal maps [10,57]. Robots do not introduce information

from the global map into their local maps; thus, lo-

cal maps between different robots remain independent.

After a certain time, the local maps of the robots con-

tain more precise estimates of features, as well as newly

discovered features. Robots compute the information

increments between their current local maps, and the

latest fused ones. Then, they run distributed consen-

sus filters on these information increments to keep the

global map up to date.

In our previous approach to the dynamic map merg-

ing problem [4], we used consensus algorithms [18, 36]

that allowed the latest global map to be weighted with

a forgetting factor, as the current global map was com-

puted by the robots. This approach has two limitations:

first, robots have to be synchronized, i.e., they must

initiate every new map merging phase in a coordinated

way; and in second place, the method was designed for

graphs which remained fixed during a specific merging

phase. Here we propose a method that does not suffer

from these limitations. Each robot decides on its own if

it propagates to the network its most recent map ver-

sion, or if it continues merging the previous one. Thus,

a robot may wait until there are enough differences rel-

ative to its previous local map, or until the latest fea-

tures detected have been estimated with a certain ac-

curacy. Besides, the proposed scheme benefits from the

fact that the space-time fusion algorithm [57] is proved

to converge under a wider variety of communication

topologies; in particular, if the set of communication

graphs that occur infinitely often is jointly connected.

It includes, e.g., topologies that totally switch at every

step, or sequences of disconnected graphs. A prelimi-

nary version of this work appears in [7]. Here we make

a deep study of the properties of our maps, and of the

memory and communication costs. Our main contri-

butions are: (i) the proposal of an algorithm to reach

consensus on the latest global map, using the map in-

crements between the previous and the current time

steps; (ii) the analysis of the properties of the robots

estimates; in particular, we perform a novel and careful

study of the consistency of the global map estimated

by each robot at each step; and (iii) the study of the

accuracy and consistency of the estimated maps with

Monte–Carlo simulations.

The remaining of this paper is organized as fol-

lows. Section 2 discusses several state-of-the-art related

methods. Section 3 formally describes the dynamic map

merging problem. Section 4 presents our dynamic map

merging algorithm and discusses its properties. Sec-

tion 5 evaluates the performance of the method, and

Section 6 states the conclusions.

2 Related Work

Many multi-robot map merging solutions assume cen-

tralized schemes, all-to-all communication, or broad-

casting methods. Examples include [23] for particle fil-

ters, [56] for multi-robot submaps, and [55] for graph

maps of laser scans; similar schemes could be applied

for many existing submapping methods [44]. The main

limitation of these works is that they cannot easily cope

with limited communications, switching topologies, or

link failures.

Alternatively, distributed estimation methods [1,12,

20, 28, 39, 41, 42, 53] could be used for computing the

global merged map. These approaches consider a linear

system without input, which evolves in a way that is

known by all the robots. Robots use this knowledge to

locally predict the new system state. Then, each robot

takes observations on its own, which are combined clas-

sically in Information Filter form (IF), and they are

used to update the estimated system state. Measure-

ments can be combined through exact sums of IF data,

or through distributed consensus filters. Exact sums of

IF data produce estimates equivalent to the centralized

system ones, provided that the network is complete [39].

General networks require additional mechanisms to en-

sure that robots do not sum the same piece of data

more than once (problems of cyclic updates / double

counting information), such as the channel filter [20,53]

for networks with a tree structure. The covariance in-

tersection method [28] produces consistent but highly

conservative estimates in general networks.

More recent distributed estimation approaches [1,

12, 41, 42] use distributed consensus filters to average

the IF measurements, which automatically avoids prob-

lems of double counting information. However, these

methods suffer from the delayed data problem, that

takes place when the nodes execute the state predic-

tion without having incorporated all the measurements

taken at the current step, giving rise to disagreement

in the robot estimates [11]. An interesting solution is

given in [42] but its convergence is proved only in the

absence of observation and system noises. In the algo-

rithm proposed in [12], authors prove that the nodes’

estimates are consistent, although these estimates have

disagreement, i.e., that the global maps computed by

different robots are not exactly the same. Other algo-

rithms have been proposed that require the previous of-

fline computation of the gains and weights [1]. Despite
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the many advances in distributed estimation, these ap-

proaches are still limited to linear systems without in-

puts, and where the evolution of the system is known

by all the robots. Their applicability to map merging

scenarios is not straightforward, since the system mod-

els are in general nonlinear, the evolution of the system

is not necessarily known by the robots, and often the

robot odometry is introduced in the system as an input.

Besides, map merging scenarios require data association

methods for establishing correspondences between the

data observed by the robots. The previous methods,

however, assume that the relationship between the raw

data acquired by the different sensors is known by all

the sensor network.

Recently, an interesting method which allows for

nonlinear systems with inputs, has been proposed in [33].

Here each robot records its own measurements and odom-

etry, as well as the observations and odometry from any

other robot it encounters. When a robot is sure it has

obtained all the measurements and odometry from all

the other robots up to some time instant, it can build

an estimate equivalent to the centralized one. The main

drawback of this approach is that robots must main-

tain an unbounded amount of memory, which depends

on the time between robot meetings. Moreover, if a sin-

gle robot fails or leaves the network, the whole system

fails. Other interesting approach that allows the robots

to measure both the landmarks positions as well as their

own odometry, is given by [13]. Each robot has a sin-

gle representation of the environment that combines its

own data and the measurements of its neighbors, being

this representation consistent. The main limitation of

this work is that the measured information does not go

beyond the neighborhood level. Thus, each robot has a

better map than as if it was acting on its own. However,

it does not have knowledge about the features observed

by robots in farther places of the network.

Most of the previous methods have in common that

they combine the data acquired by the different robots

in the form of raw measurements, and that the local

estimate of each robot contains information from the

other robots, i.e., local estimates are not independent.

Alternatively, information can be processed in the form

of local maps, and these local maps can be kept inde-

pendent by avoiding the introduction of global infor-

mation into them; this is what we propose here, and

it is also the approach followed in [14]. This strategy

has the benefit that each robot can produce meaning-

ful representations of the environment, which allows for

several high level data association methods [6, 14]. Not

introducing global data in the local maps, has the effect

of keeping the local maps of different robots indepen-

dent. Thus, consensus filters can be used without suffer-

ing from the previously mentioned problems of delayed

data, and double counting information. An advantage

of our approach is the natural robustness that results

from its distributed implementation.

The consensus filters literature is greatly wide. A

review of the most relevant results can be found in [46]

and the references therein. Many recent works consider

specific variations of the consensus problem to cope

with communication delays [49], or stochastic commu-

nication noises [34]. Most of the works in distributed

consensus address the static case, i.e., consensus is achieved

on a value that depends on the initial conditions of

the system. Fewer works [10, 18, 43, 45, 48, 57, 59] con-

sider the dynamic case, where nodes measure a variable

along time, and the goal is to track the average of this

variable. In map merging scenarios, dynamic consen-

sus strategies are more appealing, since the local maps

of the robots will change, and it would be desirable

to track the global merged map. Several dynamic con-

sensus methods [18,43,45,48] consider continuous-time

systems, and thus they are better suited for systems

based on the observation of the states of the neigh-

bors, instead of on communicating the states (in our

case, the maps). [59] uses discrete-time communication,

but it considers that nodes measure a local continuous

physical process. On the other hand, [10, 57] track the

average of inputs that change in a discrete-time way, us-

ing discrete-time communications. Thus, they are bet-

ter suited to the problem of map merging, where the

local maps are modified at discrete time instances.

In this paper, we discuss distributed sensor fusion

methods which are intended for independent observa-

tions acquired by several sensors along time. Instead

of observations, we use the information increments of

the local maps, i.e., the differences between the local

maps at steps k and k + 1, expressed in Information

Filter form, as inputs to the algorithm. As we discuss,

the convergence and unbiased mean properties of the

original algorithm remain valid regardless of this mod-

ification. An important property that any estimation

method should have is consistency [13, 24–26], i.e., if

the estimates at the robots are not overconfident. In

this paper, we perform a novel and thorough study of

the global map estimated by each robot and each step

and prove that they are consistent.

3 Problem Description

We let n be the number of robots. Indices i, j refer to

robots, G to the global map, and A to averaged infor-

mation matrices and vectors. We use k, k′ ∈ N for time

steps. Constants szr and szf represent the size of re-
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spectively a robot pose and a feature position1. We let

I be the identity matrix, and 0 be a n× n matrix with

all its elements equal to zero (if a subindex n1×n2 ap-

pears, this specifies their dimensions). Given a matrix

W , [W ]ij denotes its (i, j) entry. W � V (�) indicates

that matrix W −V is positive- (negative-) semidefinite.

We consider a team of n ∈ N robots exploring an

unknown environment. There are m ∈ N different static

features in the environment and we let x ∈ RM be the

vector with their true positions, with M = m szf. Up

to the time step k, the latest map of each robot i con-

tains estimates x̂k
i ∈ RMk

i of the positions of the mk
i ≤

m features observed by robot i, where Mk
i = mk

i szf,

with associated covariance matrix Σk
i ∈ RMk

i×M
k
i . Let

Hk
i ∈ {0, 1}M

k
i×M be the observation matrix that re-

lates the elements in x and x̂k
i ; then, the local map of

each robot i contains a partial observation of x,

x̂k
i = Hk

i x + vk
i , E[vk

i ] = 0, E[vk
i (vk

i )T ] = Σk
i , (1)

where vk
i is a zero mean noise with covariance matrix

Σk
i . Up to the time step k, the latest map of each robot

i contains as well estimates r̂ki ∈ RRk
i of rki of the poses2

of robot i, where Rk
i = rki szr, with associated covari-

ance matrix Rk
i ∈ RRk

i×R
k
i . Let rki ∈ RRk

i be the true

values for these rki poses of robot i up to step k, then

r̂ki = rki + wk
i , E[wk

i (wk
i )T ] = Rk

i ,

E[wk
i ] = 0, E[wk

i (vk
i )T ] = Sk

i , (2)

where wk
i is a zero mean noise with covariance matrix

Rk
i , and Sk

i ∈ RRk
i×M

k
i is the cross-covariance between

the estimates of the features’ positions x̂k
i and the robot

poses r̂ki in eqs. (1), (2). In this paper, we do not discuss

the exploration strategies or the Simultaneous Localiza-

tion and Map Building (SLAM) algorithms for obtain-

ing the local maps; any method capable of producing

stochastic maps as in eqs. (1), (2) can be used. Note

that the linear model in eq. (1) refers to the fact that

the local maps are an estimate of the features positions;

the observation model associated to the sensor used to

build the local maps does not need to be linear.

If at step k the information from the n robots was

available, e.g., at a central agent, then the global map

containing the estimate r̂kG,1, . . . , r̂
k
G,n of the set of poses

of each robot rk1 , . . . , r
k
n up to step k, as well as the es-

timate x̂k
G of the positions of the static features x could

1 e.g., szr = 3 for planar robot poses (position (x, y) and
orientation θ); szf = 2 or szf = 3 for respectively 2D or 3D
environments.
2 e.g., only the last pose (rki = 1), the full robot trajectory,

or a subset of the trajectory.

be obtained. The local map of each robot i at step k is

a partial observation of these elements (eqs. (1), (2)),

[
r̂ki
x̂k
i

]
=

[
Lk
i 0

0 Hk
i

]
rk1
...

rkn
x

+

[
ŵk

i

v̂k
i

]
,

where Lk
i = [0 . . .0, IRk

i
, 0 . . .0]. (3)

We assume that the noises are independent for differ-

ent robots i 6= j and all k, k′ ∈ N, since every robot

has constructed the map based on its own observa-

tions, i.e., E[wk
i (wk′

j )T ] = 0, E[vk
i (vk′

j )T ] = 0, and

E[wk
i (vk′

j )T ] = 0. Note that since the local map of a

robot i at step k is an evolution of its map at any previ-

ous step k′ < k, then the noises wk
i ,v

k
i , and the noises

wk′

i ,v
k′

i are not independent.

Let Y k
i ∈ RMk

G×M
k
G , yk

i ∈ RMk
G be the information

matrix and vector of the local map at robot i and step

k in IF form, for i ∈ {1, . . . , n}, where Mk
G = Rk

1 +

· · ·+Rk
n +M,

Y k
i =

[
Lk
i 0

0 Hk
i

]T [
Rk

i Sk
i

(Sk
i )T Σk

i

]−1 [
Lk
i 0

0 Hk
i

]
,

yk
i =

[
Lk
i 0

0 Hk
i

]T [
Rk

i Sk
i

(Sk
i )T Σk

i

]−1 [
r̂ki
x̂k
i

]
. (4)

The mean vector of the global map containing the es-

timate r̂kG,1, . . . , r̂
k
G,n of the set of poses of each robot

rk1 , . . . , r
k
n up to step k, as well as the estimate x̂k

G of

the positions of the static features x is given by,

((r̂kG,1)T , . . . , (r̂kG,n)T , (x̂k
G)T )T = (

n∑
i=1

Y k
i )−1

n∑
i=1

yk
i ,

(5)

where term (
∑n

i=1 Y
k
i )−1 is its associated covariance

matrix. Merging the maps in IF form is a common prac-

tice [50] since the operation is additive, commutative,

and associative.

Note that the global map in eq. (5) is different from

the one that would be obtained by a centralized multi-

robot SLAM, since the local maps in eq. (4) do not

include measurements from the other robots. Eq. (5)

computes the minimum-variance unbiased estimate of

rk1 , . . . , r
k
n,x given the local maps (the maximum-likelihood

estimate if the local maps are Gaussian), whereas cen-

tralized multi-robot SLAM methods estimate rk1 , . . . , r
k
n,x

given the measurements and control inputs. Thus, the

accuracy of the global map in eq. (5) depends on the

precision of the local maps. The unbiased mean and

consistency properties of the global map depend on the

local maps having unbiased mean and being consistent.
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Since we do not include measurements from the other

robots, the local maps of different robots remain inde-

pendent and can be fused by the addition of the infor-

mation matrices and vectors as in eq. (5).

Now consider the next time step k+ 1. Robots have

kept on exploring and some of the robot maps have

changed. We denote Ti the time steps at which robot i

propagates its latest map to the network, i.e., if robot i

decides it wants to initiate the propagation of its latest

map, then k + 1 ∈ Ti; otherwise, k + 1 /∈ Ti and robot

i keeps on merging the previous map. We let di be the

degree of a robot i, containing the total number of times

its local map changes (the cardinality of Ti), and d be

the degree of the team,

di = |Ti|, d = d1 + · · ·+ dn. (6)

In this paper we consider that the number of times

robots propagate the changes of their local maps d is

finite. These changes give rise to a different global map

(eq. (5)) and robots must update their estimates to re-

act to this change.

Problem 1 (Dynamic Map Merging) We consider

n ∈ N robots exploring and acquiring local maps at

some time steps k as in eqs. (1), (2). The communica-

tion is range-limited and two robots can exchange data

only if they are close enough. We let Gk = (V, Ek) be the

undirected communication graph at step k. The nodes

are the robots, V = {1, . . . , n}. If robots i, j can commu-

nicate then there is an edge between them, (i, j) ∈ Ek.

The set of neighbors N k
i of robot i at step k is

N k
i = {j | (i, j) ∈ Ek, j 6= i}.

The goal is the design of distributed algorithms so that

each robot i ∈ V computes and tracks the global map

in eq. (5), and the blocks in the main diagonal of its

covariance matrix, based on local interactions with its

neighbors N k
i . ut

4 Dynamic Map Merging Algorithm

The space-time diffusion methods have been previously

used under independent observations of static variables

[57]. In our map merging scenario, the map features x

are static but the robot poses rki vary with time k. Be-

sides, the local map of a robot i at step k is an evolution

of its local map at previous steps k′ < k. Thus, the local

maps Y k
i , yk

i (eq. (4)) are not independent and this has

to be taken into account, because otherwise the same

information would be considered several times. For the

previous reasons, we propose to use space-time diffu-

sion ideas using as inputs the information increments

associated to the feature estimates instead of the maps

Y k
i , yk

i .

We first pay attention to eq. (5). Using classical ma-

trix block-wise inversion rules [22, Chap.0.7], the global

estimates x̂k
G of the positions of the static features x

in eq. (5), and its associated block Σk
G
.
= E[x̂k

G(x̂k
G)T ]

within the covariance matrix (
∑n

i=1 Y
k
i )−1 are given by

x̂k
G = (IkG)−1 ikG, Σk

G = (IkG)−1, (7)

where IkG ∈ RM×M, ikG ∈ RM are the information ma-

trix and vector of the estimates of the features’ posi-

tions x in the global map at step k in IF form,

IkG =

n∑
i=1

Iki , ikG =

n∑
i=1

iki , (8)

and Iki ∈ RM×M and iki ∈ RM are the information

matrix and vector of the local estimates x̂k
i of the fea-

tures’ positions x in the local map (eq. (1)) at robot

i ∈ {1, . . . , n} and step k in IF form,

Iki = (Hk
i )T (Σk

i )−1Hk
i , iki = (Hk

i )T (Σk
i )−1x̂k

i . (9)

The global estimates r̂kG,i of the set of poses rki of

each robot i up to step k in eq. (5), and its associ-

ated block Rk
G,ii

.
= E[r̂kG,i(r̂

k
G,i)

T ] within the covari-

ance matrix (
∑n

i=1 Y
k
i )−1, can be obtained from x̂k

G,

Σk
G (eq. (7)) and from the local maps r̂ki , x̂k

i , Rk
i , Sk

i ,

Σk
i , Hk

i (eqs. (1), (2)) as follows:

r̂kG,i = r̂ki + Sk
i (Σk

i )−1(Hk
i x̂

k
G − x̂k

i ),

Rk
G,ii = Rk

i − Sk
i (Σk

i )−1(Sk
i )T

+ Sk
i (Σk

i )−1Hk
i Σ

k
G(Hk

i )T (Σk
i )−1(Sk

i )T . (10)

Here we are interested (Problem 1) in computing the

blocks in the main diagonal of the covariance matrix

(
∑n

i=1 Y
k
i )−1. The expressions for the off-diagonal terms

can be found e.g., in our recent work [5].

Thus, the original problem can be decomposed into

two parts: the estimation of the features’ positions (eqs.

(7)–(9)), which requires the robots to reach consensus

on the information matrices and vectors of the features’

positions (eq. (8)); and the estimation of the robot poses

(eq. (10)), that only requires information local to each

robot i, and the features estimates x̂k
G, Σk

G. We pro-

pose an algorithm that consists of keeping up-to-date

estimates of the features’ positions x̂k
G, Σk

G, using dy-

namic average consensus on the information increments

of the local information matrices associated to features’

positions Iki , iki in eq. (9). At each step k, each robot i

uses its most recent estimates of x̂k
G and Σk

G to obtain

the estimates of its robot poses r̂kG,i, R
k
G,ii (eq. (10))

and propagates this vector r̂kG,i and the main diagonal

elements of matrix Rk
G,ii to the remaining robots in the
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network. In the remaining of this section, we deeply

discuss the part concerning the consensus on the infor-

mation increments. We revise properties of convergence

and unbiased mean. We carry out a careful study to

show that the estimates are consistent.

For each robot i ∈ {1, . . . , n} we define the following

increment information matrix ∆k
i ∈ RM×M and vector

δki ∈ RM,

∆k
i = Iki − Ik−1i , δki = iki − ik−1i , for k ≥ 1,

∆k
i = Iki , δki = iki , for k = 0. (11)

Note that for all the robots such that k /∈ Ti, the in-

crement information matrices and vectors will be zero.

The associated features’ position estimates within the

global map at step k in eq. (8) can be expressed in terms

of the previous global estimate at step k − 1 and the

map increments at k as follows:

IkG = Ik−1G +

n∑
i=1

∆k
i , ikG = ik−1G +

n∑
i=1

δki . (12)

Equivalently, the estimates of the features’ positions in

the local map of each robot i at step k, and in the

global map at step k can be expressed in terms of the

map increments at all the previous steps k′ = 0, . . . , k,

Iki =

k∑
k′=0

∆k′

i , iki =

k∑
k′=0

δk
′

i ,

IkG =

n∑
i=1

k∑
k′=0

∆k′

i ikG =

n∑
i=1

k∑
k′=0

δk
′

i . (13)

Each robot i maintains an estimate of the aver-

aged information matrix ÎAi (k) ∈ RM×M and vector

îAi (k) ∈ RM, and of its degree di(k) containing the

number of times it has updated its local map; recall

that each robot i propagates the changes in its local

map at specific and locally decided time steps k ∈ Ti.
Robot i ∈ {1, . . . , n} initializes its variables with

di(−1) = 0, ÎAi (0) = 0, îAi (0) = 0, (14)

and updates them at all k ≥ 0 with the following algo-

rithm.

Algorithm 1 (Dynamic map merging - robot i,

iteration k)

(Measurement update:)

If k ∈ Ti, di(k) = di(k − 1) + 1,

ÎAi (k+) = (1− 1/di(k))ÎAi (k) +∆k
i /di(k),

îAi (k+) = (1− 1/di(k))̂iAi (k) + δki /di(k); (15)

otherwise, di(k) = di(k − 1),

ÎAi (k+) = ÎAi (k), îAi (k+) = îAi (k). (16)

(Spatial update:) If di(k) > 0,

ÎAi (k + 1) =
∑

j∈Nk
i ∪{i}

Wij(k)ÎAj (k+),

îAi (k + 1) =
∑

j∈Nk
i ∪{i}

Wij(k)̂iAj (k+), (17)

where the space-time weight matrix W(k) ∈ Rn×n is

Wii(k) = 1−
∑
j∈Nk

i

Wij(k), and for j 6= i

Wij(k) = dj(k)/max{dsti (k), dstj (k)}, if (i, j) ∈ Ek,
Wij(k) = 0 otherwise, (18)

and where dsti (k) is the space-time degree of each robot i

at step k, containing the number of map changes prop-

agated by both robot i and its neighbors N k
i up to step

k, dsti (k) =
∑

j∈Nk
i ∪{i}

dj(k). ut

Robots decide on their own when they want to ex-

ecute a new measurement update step. If up to step k

a robot i never tried to merge its map with the other

robots, then di(k) = 0, and thus it does not execute

the spatial update. We consider these robots i as dis-

connected from the others ((i, j) /∈ Ek for all j 6= i),

even if they are in communication range.

The superscript A in the variables of the previous

algorithm refers to the fact that the matrices and vec-

tors estimated by the robots track the average of the

information increments, instead of its sum. In several

places in this paper, we will refer instead to the global

estimates of a robot i, which are obtained from the av-

eraged variables ÎAi (k), îAi (k) as follows,

ÎGi (k) = d(k) ÎAi (k), x̂G
i (k) =

(
ÎAi (k)

)−1
îAi (k),

îGi (k) = d(k) îAi (k), Σ̂G
i (k) =

(
ÎAi (k)

)−1
/d(k), (19)

where d(k) = d1(k) + · · · + dn(k) is the degree of the

robot team containing the number of times robots prop-

agated changes in their local maps, up to step k. Note

that in order to obtain the global map estimate in In-

formation Filter form ÎGi (k), îGi (k), or to compute the

covariance matrix Σ̂G
i (k), robots need to estimate in

parallel the total amount of measurement update steps

d(k). This can be done, for instance, using similar tech-

niques as for estimating the number of nodes [32, 54].

Later in this section (Theorem 1) we provide an expres-

sion (ÎAi (k+1))−1/di(k) for the covariance that ensures

it remains consistent. When robots compute the unbi-

ased mean x̂G
i (k) (eq. (19)) and consistent covariance

(ÎAi (k+1))−1/di(k) (eq. (26)) form, they do not need to

know d(k), but only di(k) which is local to each robot.
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4.1 Initial correspondence and data association

The expressions in eqs. (4), (7)-(10) implicitly assume

that the local maps are expressed in a common reference

frame. This issue is related to initial correspondence or

map alignment problems. The robots usually start their

operation at unknown poses and, before merging their

maps, they must agree on a common reference frame.

This common frame needs to be computed at least once,

and usually only requires the robots to know the rela-

tive pose of its nearby teammates, see e.g., [21, 51, 58]

where different methods for computing robot-to-robot

transformations are presented. There exist several dis-

tributed algorithms that combine these measurements

to produce the common frame, e.g., [2,17,30,31,38] and

references therein.

Equivalently, for simplicity, we have presented the

formulation in Sections 3 and 4 including the structures

of the information matrices and vectors îAi (k), ÎAi (k),

as if robots knew the total amount of features m and

the relationship between their local features and the

global ones, encoded in the observation matrices Hk
i in

eq. (9). The problem of establishing a relationship be-

tween the elements observed by the different robots is

known as data association, and it has been investigated

in the context of distributed map merging [3,6,14,27,37]

and multi-robot target tracking [29, 47, 52]. First, local

matches are established between the variables of neigh-

boring sensors; after that, exclusive variables are iden-

tified without requiring any extra efforts: they are vari-

ables that have not been associated to any other one. In

practice, our robots execute the distributed data asso-

ciation method in [3,6] for feature-based maps. Robots

discover the features observed by the others in the mes-

sages exchanged at each iteration, and introduce new

columns and rows in îAi (k), ÎAi (k) accordingly. As a re-

sult, the information matrices and vectors do not con-

tain non-informative zero rows and columns. Informa-

tion matrices ÎAi (k) (eq. (19)) are invertible at each

iteration of the algorithm and thus the global map can

always be estimated. Note also that the total number

of features m is used only as a tool for presenting the

formulation, but it does not need to be known by the

robots or even to be fixed. Instead, the variables man-

aged by the robots îAi (k), ÎAi (k) have a structure that

is adapted according to the features observed by the

robot team.

4.2 Properties of the Dynamic Map Merging

Algorithm

We first discuss properties of convergence and unbiased

mean to check that our method performs correctly.

Lemma 1 (Convergence) Assume all the robots i ∈
V execute the dynamic map merging algorithm (Algo-

rithm 1), and assume that the set of communication

graphs that occur infinitely often is jointly connected.

Let k? ≥ max{k ∈ Ti} for all i ∈ V be a step when all

map updates have been propagated by the robots, and

x̂k?

G , Σk?

G be the centralized global estimate of the fea-

tures’ positions at this step, (Ik?

G , ik?

G in IF form), given

by eqs. (5), (7)-(9). Then, the estimated information

matrix ÎGi (k), information vector îGi (k), mean x̂G
i (k),

and covariance Σ̂G
i (k) as in eq. (19), at each robot i ∈ V

asymptotically converge to this global estimate,

lim
k→∞

ÎGi (k) = Ik?

G , lim
k→∞

x̂G
i (k) = x̂k?

G ,

lim
k→∞

îGi (k) = ik?

G , lim
t→∞

Σ̂G
i (k) = Σk?

G . (20)

Proof As it is stated by [57, Th. 2], if the set of commu-

nication graphs Gk that occur infinitely often is jointly

connected, then

lim
k→∞

ÎAi (k) =

n∑
i=1

∑
k′∈Ti

∆k′

i

d
, lim

k→∞
îAi (k) =

n∑
i=1

∑
k′∈Ti

δk
′

i

d
,

which equals IkG/d(k), ikG/d(k) in eq. (8) when all mea-

surements have been taken, i.e., when k? ≥ max{k ∈
Ti} for all i ∈ V. ut

Now, we present a more compact expression for eqs.

(15)-(17) in Algorithm 1 which will simplify the analysis

of the remaining properties:

di(k)ÎAi (k + 1) =

n∑
j=1

W(k)jidj(k − 1)ÎAj (k)

+

n∑
j=1

W(k)ji(dj(k)− dj(k − 1))∆k
j , (21)

Moreover, since ÎAi (0) = 0, then

di(k)ÎAi (k + 1) =

k∑
k′=0

n∑
j=1

[Φ(k, k′)]ij ∆
k′

j , (22)

where matrix Φ(k, k′), with k′ ≤ k, is

Φ(k, k′) =W(k)T . . .W(k′)T (D(k′)−D(k′ − 1)), (23)

and D(k) ∈ Rn×n is a diagonal matrix; each entry of its

main diagonal Dii(k) equals the degree di(k) of robot i

at step k. The equivalent expressions for îAi (k + 1) are

got by replacing ÎAj (k), ∆k
j with îAj (k), δkj .
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Lemma 2 (Unbiased mean) The estimates of the

features’ positions in the global map mean x̂G
i (k), for

each robot i ∈ V, after k iterations of Algorithm 1, such

that di(k − 1) > 0, are unbiased estimates of the true

feature positions x,

E
[
x̂G
i (k)

]
= E

[(
ÎAi (k)

)−1
îAi (k)

]
= x. (24)

Proof It can be done in a similar fashion as in [57] by

noting that the local features’ positions estimates x̂k
j at

each robot j (eq. (1)) are an observation of the true x,

x̂k
j = Hk

i x
k
G + vk

j , with E
[
vk
j

]
= 0,

and the increment information vector δkj = ikj − ik−1j is

δkj = (Hk
j )T (Σk

j )−1vk
j − (Hk−1

j )T (Σk−1
j )−1vk−1

j +∆k
jx,

which combined with eq. (22) gives

îAi (k) = ÎAi (k)x +
1

di(k − 1)

k−1∑
k′=1

n∑
j=1

[Φ(k − 1, k′)]ij(
(Hk′

j )T (Σk′

j )−1vk′

j − (Hk′−1
j )T (Σk′−1

j )−1vk′−1
j

)
,

and thus E[(ÎAi (k))−1 îAi (k)] = x since the noises vk′

j

have zero mean for all k and all j ∈ V. ut

Next we present our main result, regarding the con-

sistency of the maps estimated by the robots, at each

iteration. This property is of high interest in map merg-

ing scenarios. This means that at each step k, robots

have indeed a map that they can use. As a result, the

robots do not need to wait for any specific number of

iterations of the map merging algorithm. Instead, they

can make decisions on their temporal global map esti-

mates whenever they need. Our result relies on condi-

tion Ik+1
j � Ikj , which means that the local estimates of

the features’ positions at successive steps have more in-

formation, or equivalently, that they become more pre-

cise. Note that this is the behavior expected in classical

SLAM approaches [15] as more observations are taken,

and in our experiments it has been always observed.

There is an additional condition, di(k) > 0; recall that

di(k) = 0 means that robot i has not initiated the map

merging process yet. Since robot i has not computed

any covariance yet, it does not make sense to question

whether its covariance is consistent or not.

Theorem 1 (Consistent covariance) Assume that

the local map at each robot j satisfies, for successive

steps k, k + 1,

Ik+1
j � Ikj , (25)

Then, the covariance (ÎAi (k+ 1))−1/di(k) estimated by

each robot i for which di(k) > 0, at each iteration k,

is consistent with respect to the centralized covariance

matrix Σk
G,

(ÎAi (k + 1))−1/di(k) � Σk
G. (26)

Proof Along this proof we use the following change of

variables; we let ĴA
i (k) be

ĴA
i (k) = di(k − 1)ÎAi (k), (27)

and note that if di(k − 1) = 0, then ĴA
i (k) = 0. From

eq. (21), this variable evolves according to

ĴA
i (k + 1) =

n∑
j=1

Wji(k)ĴA
j (k)

+

n∑
j=1

Wji(k)(dj(k)− dj(k − 1))(Ikj − Ik−1j ), (28)

where dj(k) − dj(k − 1) = 1 if robot j introduced a

new map increment during the last step k, and zero

otherwise, and W(k)ji, is given by eq. (18). Note that

the entries of matrix W(k) are numbers between 0 and

1, and recall that Wji(k) = 0 if di(k) = 0 or dj(k) = 0.

We want to prove that, for all i and k,

ĴA
i (k + 1) �

n∑
j=1

Ikj = IkG; (29)

this is done by induction. We consider first that case

k = 0, where the robots states ĴA
j (k) are initialized with

zeros, where dj(−1) = 0, and where the map increments

are exactly the maps at k = 0, since Ik−1j = 0 for k = 0;

we have that for all i,

ĴA
i (1) =

n∑
j=1

Wji(0)dj(0)I0j . (30)

Since the weights Wji(k) are numbers between 0 and

1, the degrees dj(0) are equal to 0 or to 1, and the

local information matrices Ikj are positive semidefinite,

Ikj � 0, then we have Wji(k)dj(k)Ikj � Ikj , and thus

ĴA
i (1) �

n∑
j=1

I0j = I0G. (31)

Now that we have proved that it is true for k = 0, we

assume it is true for k, i.e., ĴA
j (k) � Ik−1G =

∑n
j′=1 I

k−1
j′

for all j, and we try to prove than then it holds for k+1
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as well. Considering eq. (28), and taking into account

that the weights satisfy
∑n

j=1Wji(k) = 1, we have

ĴA
i (k + 1) =

n∑
j=1

Wji(k)ĴA
j (k)

+

n∑
j=1

Wji(k)(dj(k)− dj(k − 1))(Ikj − Ik−1j )

�
n∑

j=1

Wji(k)(

n∑
j′=1

Ik−1j′ ) +

n∑
j=1

Wji(k)(Ikj − Ik−1j )

=

n∑
j′=1

Ik−1j′ +

n∑
j=1

Wji(k)(Ikj − Ik−1j ). (32)

From condition (25), Iki − I
k−1
i � 0, and thus, using

again the fact that Wji(k) are positive numbers be-

tween 0 and 1, we have

ĴA
i (k + 1) �

n∑
j=1

Ik−1j +

n∑
j=1

(Ikj − Ik−1j ) =

n∑
j=1

Ikj = IkG,

(33)

concluding that ĴA
i (k+1) � IkG. Thus, when di(k) > 0,

(ÎAi (k + 1))−1

di(k)
= (ĴA

i (k + 1))−1 � (IkG)−1 = Σk
G, (34)

which concludes the proof. ut

Note that the results about the estimated merged

maps being unbiased and consistent (Lemma 2 and

Theorem 1) rely on the local maps being consistent as

in eqs. (1) and (2). Depending on the sensing model,

e.g., if robots can only obtain partial observations of the

features positions, and depending on the local mapping

method used, the local maps may not be consistent.

Even in this case, the global maps estimated by our

algorithm are more conservative than the centralized

map.

We finally note that the estimates of the robot poses

r̂kG,i, R
k
G,ii are obtained by each robot i by replacing

x̂k
G and Σk

G in eq. (10) with its most recent estimates

of the features’ positions. It can be easily checked that

by using x̂G
i (k), Σ̂G

i (k) (eq. (19)), the estimates of r̂kG,i,

Rk
G,ii are convergent as in Lemma 1; and by using x̂G

i (k)

and the expression for the consistent covariance (ÎAi (k+

1))−1/di(k) the estimates of r̂kG,i, R
k
G,ii are unbiased

and consistent, as in Lemma 2 and Theorem 1.

4.3 Communication and Memory Costs

Now we discuss what are the benefits of using consensus-

based approaches instead of classical propagation meth-

ods, in terms of communication and memory costs.

Several distributed map merging methods rely on

propagating local data whenever this data changes, e.g.,

raw data, or local map representations. The ones based

on raw (not processed) data, have several inconveniences,

and they usually present large memory and communi-

cation costs. The ones that propagate local maps seem

appealing from the communication point of view, since

each piece of data traverses the network only once,

whereas consensus-based methods transmit information

at each iteration. However, methods based on propa-

gating local maps have the inconvenience that, in ad-

dition to the global map, each robot must store the

local map of every other robot in the network. Note

that we are considering scenarios where the communi-

cation network can get disconnected at any moment,

and individual or small groups of robots can leave the

remaining team for long periods of time. In order to

properly re-synchronize with them in posterior meet-

ings, and correctly replace the old information in the

global map, robots must keep track of all the informa-

tion (local maps) available. Thus, the memory cost is∑n
i=1((Rk

i +M)2+(Rk
i +M)) for storing either the n in-

formation matrices and vectors, or the n mean vectors

and covariance matrices3, plus (Mk
G)2 +Mk

G for the

global map. The memory cost does not scale well with

the size of the network, i.e., if the number of robots is

increased without changing the scene size, the memory

cost increases as well. Consensus-based approaches do

not suffer from this problem, since each robot keeps a

single representation of the scene, and thus the memory

cost does not depend on the number of nodes.

Similarly to the memory cost discussion, in consensus-

based approaches, robots send their single representa-

tion of the scene at each iteration, so that the communi-

cation cost per iteration exclusively depends on the size

of the scene, and it is almost equal for all the robots.

However, propagation methods do not have any control

about the amount of new information that arrives to a

particular robot; thus, they are prone to generate high

communications peaks and bottlenecks in some areas

of the network. The communication load is not prop-

erly balanced, so some particular robots may be send-

ing large amounts of data. Due to the iterative nature

of consensus methods, the total final communication

cost may be larger than for other approaches depend-

ing on the number of iterations executed by the robots.

This convergence speed depends on the network topol-

ogy and it is related to the algebraic connectivity of

3 (Rk
i +M)2 is a worst case cost for the information ma-

trices; in practical applications, a better performance can
be achieved by taking advantage of their sparse structure.
E.g., for full robot trajectories approaches, it can be order
(M + (l + 1)Rk

i ), where l is the average number of features
observed from each robot pose.
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the communication graph, as discussed in [3, 4]. There

exist several methods for estimating this algebraic con-

nectivity, e.g., [8]. The number of iterations can also be

easily optimized in a local way, by executing a new con-

sensus iteration only if the neighborhood has changed,

or if there have been great modifications in the state of

some of the robots in the neighborhood.

Thus, using consensus strategies is a more efficient

choice whenever there is common information that was

observed by several robots, whereas propagation meth-

ods make sense when there is no overlapping in the

features observed by the robot team. Our method com-

bines the benefits of both approaches: consensus is ex-

ecuted to estimate the feature positions x̂k
G, Σk

G, with

memory cost (M)2+M and communication cost per it-

eration (M)2+M; and each robot i locally estimates its

poses r̂kG,i, R
k
G,ii (eq. (10)) and propagates vector r̂kG,i

and the main diagonal of Rk
G,ii. Thus, the memory cost

per robot for storing the global map is (
∑n

i=1Rk
i ) +

(M)2 +Mk
G, and there is no need to keep any addi-

tional information from the other robots. The commu-

nication cost associated to the propagation (vector r̂kG,i

and the main diagonal of Rk
G,ii) is light, since these el-

ements are vectors. Moreover, in practice, our robots

execute the algorithm described in this paper for esti-

mating the global mean x̂k
G and covariance Σk

G of the

common features, i.e., using the information increments

of the features that appear in several local maps. In

addition, a robot i may have been the only one that

has observed some exclusive features. These exclusive

features are managed in the same fashion as for the es-

timated robot poses, i.e., they are re-estimated and its

mean and the main diagonal entries of their covariance

matrix are propagated. As a result, all the robots have

the information of the exclusive features of the other

robots. Thus, the size M used in this paragraph refers

to the number of common features, and the sizes Rk
i

to the number of poses and exclusive features at robot

i. Equivalently, the computational cost of our method,

which is cubic on the size M (eq. (19)), refers to the

number of common features as well.

5 Experiments

5.1 Experiments with RGB-D data

We have performed experiments using RGB-D sensors

(Figure 1 (a)), which provide both regular RGB (Fig-

ure 1 (b)) and depth image information (Figure 1 (c)).

Thus, it is possible to compute the cloud of points in

3D from a single image (Figure 1 (d)). We consider a

robot team composed by 9 robots that acquire infor-

mation with RGB-D sensors, and that extract SIFT

features [35] from the images. The robots take 473 im-

ages in total, and from each image around 1333 SIFT

points are extracted. Each robot uses a standard EKF

SLAM method for computing the local maps, taking

as features SIFT points. It processes the measurements

(image coordinates and depth data) and builds its local

map, composed of the estimates of the 3D position of

the SIFT features, as well as the estimate of its own last

3D position and orientation. The robot motions are es-

timated by comparing the RGB-D + SIFT point clouds

obtained in the previous and current steps. Candidate

relative translations and rotations are obtained from

three matched points, and are voted with a RANSAC

method. We solve both initialization and data associ-

ation in a centralized fashion, using the same method

(obtaining the most voted relative translations and ro-

tations between RGB-D + SIFT point clouds). Note

that the observation model consisting of the image coor-

dinates and the depth of the SIFT features is not linear.

However, the local maps build by the robots contain an

estimate of the Cartesian coordinates of the features as

in eq. (1).

We illustrate the behavior of our algorithm in the

following scenario: four of the robots (R3, R5, R7, R9)

have already finished their exploration when the merg-

ing process begins; they provide their local maps at the

step k = 0 and remain static during the execution of the

algorithm. Robots R2, R6, R8 on the other hand, keep

on moving and updating their local maps, simultane-

ously to the merging process. Finally, robots R1 and R4

explore and update their maps as well, but they form

a different exploration cluster and remain disconnected

from the team for several steps. A summary of the time

steps when robots propagated their local maps in our

experiment can be seen in Table 1. The local maps of

the robots contain around 962 features per map at the

last step; the smallest and largest local maps belong to

robots R2 and R9 and have respectively 163 and 2858

features.

Table 1 Steps Ti at which robot i propagates its local map.

Fixed agents Exploring agents Other cluster
T3 = {0}
T5 = {0}
T7 = {0}
T9 = {0}

T2 = {0, 4, 8}
T6 = {0, 5, 10, 20}
T8 = {0, 5, 10, 20}

T1 = {5, 15, 25}
T4 = {5, 15, 25}

As robots move, the communication graph Gk changes

and new links appear and disappear (Figure 2); for in-

stance, R2 gets isolated for some steps (k = 6); R1

and R4 remain isolated from the others (k = 0, k = 6)

until step k = 33; and the neighbors of all the robots
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Fig. 1 Data given by a RGB-D sensor. x−, y− and z− axes in (d) are in millimeters.

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000

 

 

Common
Exclusive (R3)
Exclusive (R5)
Exclusive (R8)

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000

 

 

Common
Exclusive (R2)
Exclusive (R3)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R8)
Exclusive (R9)

k = 0 k = 6

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000

 

 

Common
Exclusive (R1)
Exclusive (R2)
Exclusive (R3)
Exclusive (R4)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R8)
Exclusive (R9)

−1000

0

1000

2000

3000 −1000
0

1000
2000

3000
4000

−1000

0

1000

2000

 

 

Common
Exclusive (R1)
Exclusive (R2)
Exclusive (R3)
Exclusive (R4)
Exclusive (R5)
Exclusive (R6)
Exclusive (R7)
Exclusive (R8)
Exclusive (R9)

k = 33 centralized map

Fig. 3 Global map estimated by robot R8 at different steps. We display in different colors the features that originally belonged
to the local maps of different robots. The common features belong to several different local maps. Feature covariances have
been omitted for clarity. The global map estimated by R8 at step k = 33 is already very similar to the one that would be
obtained by a centralized system. x−, y− and z− axes in are in millimeters.

change several times (k = 0 to k = 40). Note that in

none step it is a complete (all-to-all) graph. We show

the global map estimated by robot R8 with the pro-

posed map merging algorithm (Figure 3). At k = 0

it only contains information from its immediate neigh-

bors; at successive steps, this global map contains data

from more distant robots (k = 6); at step k = 33, robot

R1 establishes communication with the robot team for

the first time and it sends them the global map asso-

ciated to the cluster of R1 and R4. Thus, R8 finally

has information from all the robot teams, and obtains

a global map estimate that contains 7670 features, and

that is very similar to the one that would be obtained

by merging the maps in a centralized fashion.

We show the evolution of the covariances and mean

vectors, and information matrices and vectors of the

global map estimated by the robots (Figure 4). We illus-

trate it using the x-coordinate of a feature F2,31 which

was observed by robots in the cluster (R1, R4), and

in the remaining team (R2, R3, R5, R6, R7, R8, R9). At

each step, we display (blue solid) the estimate that

would be obtained by a centralized system (eq.(5)) con-

sidering all the robot local maps. Note that the cen-

tralized estimates change whenever a robot propagates

changes of its local map (Table 1). The mean x̂G
i (k),
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Fig. 4 Robots execute the algorithm for fusing their maps for 45 iterations k (x−axis). We show the evolution of the

estimates at each robot (different colors, dashed) of: (a) the mean vector x̂G
i (k); (b) the covariance matrix Σ̂G

i (k); (c) the

consistent expression for the covariance matrix, (ÎAi (k + 1))−1/di(k) (Theorem 1); (d) the information matrix ÎGi (k); and

(e) the information vector îGi (k). We focus on the evolution of the entry associated to the x−coordinate of feature F2,31. We
display in blue solid the value of this feature coordinate in the global map (eq. (5)). Until step k = 33, robots remain in two
separated clusters, one of them composed by R1, R4, and the other by the remaining robots. We display as well (green solid)
the centralized map that would be obtained by considering all the available local maps within each cluster. After step k = 33,
both cluster global maps (green solid) become the equal to the global map (eq. (5)) that considers the local maps of all the
robots (blue solid).
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Fig. 2 Communication graphs Gk at different steps k. Robot
R8 has received information of the local maps of the robots
displayed in red. x−, y− and z− axes in are in millimeters.

covariance Σ̂G
i (k), and information matrix ÎGi (k) and

vector iGi (k) estimated by all the robots (different col-

ors, dashed) correctly converge to the centralized value

(blue solid). Note that the covariance estimates (Fig. 4 (b),

different colors, dashed) can become smaller than the

global one (blue solid) for some robots and iterations,

whereas the consistent expression of the covariance ma-

trix (ÎAi (k + 1))−1/di(k) in Theorem 1 (Fig. 4 (c), dif-

ferent colors, dashed) remains larger than the central-

ized covariance (blue solid) for all robots and all steps.

Since up to step k = 33 robots remain divided into

two different clusters, we show as well (green solid)

the estimate that would be obtained by a centralized

system (eq.(5)), but considering only the robot local

maps in each cluster. During the time both clusters

are separated, the estimates of different robots (differ-

ent colors, dashed), correctly track this cluster central-

ized value (green solid) that contains all the information

that could be available in the best case to the robots.

The robot estimates react to changes in the local maps

in an appropriate way. In particular, up to iteration

k = 33, since the cluster composed by R1, R4 has a

complete (all-to-all) topology, their estimates are ex-

actly equal to the cluster centralized ones (green solid).

We make an analysis of the communication and

memory costs of our algorithm (Fig. 5, left column
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(a), (c), (e)). These cost include both the consensus

on the common features, as well as the propagation

of the mean and the elements in the main diagonal

of the covariance matrix for the exclusive features and

robot poses (Section 4.3). These exclusive features and

robot poses are re-estimated at each step based on the

most recent estimates of the common features. We con-

sider numbers encoded with single precision (4 bytes).

A benefit of using a consensus-based algorithm is its

low memory cost (Fig. 5 (e)) of around 45 MBytes per

robot, which does not depend on the number of robots

but only on the scene size. In addition, the commu-

nication cost per iteration (Figs. 5 (a), (c)) is almost

the same for all the robots; observe that there are al-

most no differences between the average (gray solid)

and maximum costs (black dashed). We have compared

our performance against a method based on propaga-

tion (Fig. 5, right column (b), (d), (f)). The memory

usage (Fig. 5 (f)) of the propagation method is much

higher than for our method (Fig. 5 (e)). If we sum up

the average communication costs per robot (Figs. 5 (a)-

(d), gray solid line) for the 45 iterations (sum of the

along the x-axis), we obtain a total of 234 MBytes ver-

sus the 61 MBytes used by the propagation method.

This means that, due to the iterative nature of our al-

gorithm, we obtain a total communication costs larger

than for the propagation method. However, paying at-

tention to the communication costs per robot (black

dashed), in our method all the robots exchange similar

amounts of data (Figs. 5 (a), (c)), whereas the propaga-

tion solution exhibits large communication cost peaks

(Figs. 5 (b), (d)). If robots propagated their observa-

tions, i.e., the 3D SIFT point clouds extracted from

their images, then the costs per robot up to step k = 33

would be 322 MBytes storage and 286 MBytes commu-

nication. Obviously, propagating the raw RGB + depth

images instead is an even worse option; the costs per

robot up to step k = 33 would be 693 MBytes stor-

age and 616 MBytes communication. After propagat-

ing the observations, one of the robots would compute

and propagate the global map, with an associated extra

cost. Thus, as it can be seen, propagating measurements

is not efficient, and propagating local maps is memory

demanding and is prone to large peaks in the commu-

nication costs.

Note that the communication costs in Fig. 5 do not

include the data association. This cost is highly de-

pendent on the method used to match the features. A

deep discussion of the performance of different match-

ing strategies can be found in [37].
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Fig. 5 Messages exchanged (a)-(d) and memory usage (e)-(f)
per robot along 45 iterations of our algorithm (left column)
against a simple propagation method (right column). Num-
bers are encoded with single precision (4 bytes). We show the
average amount of information (gray solid) as well the largest
amount of information per robot (black dashed). Figures (c)-
(d) show a detail of (a)-(b). In figures exhibiting memory
costs (e)-(f), we show the average memory used by the local
maps (green solid).

5.2 Monte–Carlo simulations

We have performed Monte–Carlo simulations with 5

robots following the trajectories in Fig. 6(a). They start

in the right part of the scenario and finish in the left

part. We consider a 10x10x10 meters scenario with fea-

tures spread over two walls and the floor. Three of the

robots observe the walls and two of them the floor at dif-

ferent heights. Red crosses represent the ground-truth

position of the features, and red triangles the ground-

truth robot trajectories. Robots measure features that

have a depth between 0.4 and 5 meters, and which

are placed in front of them and within the image lim-

its. These observations are corrupted with noises with

standard deviation 0.0012 + 0.0019(depth − 0.4)2 for

the depth [40], and with standard deviation 1 pixel for

the image coordinates. The algorithm used for build-
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ing and merging the maps is very similar to the one

in the experiment with real RGB-D data, with the ex-

ception that we use the ground-truth data association

for the observed features, and the ground truth initial

correspondence for the robots. Robots run the method

discussed in Section 4 for 50 steps. During the first 30

steps, they move and build their local maps, and si-

multaneously, they run the map merging method. Dur-

ing the last 20 steps there are no changes in the local

maps, and thus, they run the map merging algorithm

to agree on the latest local maps. The robots propagate

the changes in their local maps after each 3 steps. Our

agents exchange data if they are closer than 3.5 meters.

Figure 6(a) shows the 3D features position estimated by

robot 1 at the last map merging step k = 50, for the 100

Monte-Carlo simulations. Since the observation noise is

small, the points are very accurate and similar to each

other. Visually, they are almost indistinguishable.

We have studied the performance of the method us-

ing the following metrics [9]: the average root mean

square error (RMS); and the average normalized state

estimation error squared (NEES). For each robot i, step

k, and Monte–Carlo simulation l, we let x̃G,l
i (k) be the

difference between the estimates of the common fea-

tures’ positions in the global map mean x̂G
i (k) in eq.

(19) and their ground-truth position x. Equivalently,

we let (ÎA,l
i (k + 1))−1/di(k) be the consistent expres-

sion of the covariance matrix of the common features,

as in Theorem 1, for robot i, step k, and Monte–Carlo

simulation l. Figures 6(b) and (c) show the RMS and

NEES per step k computed as follows:

RMS =

√∑100
l=1

∑n
i=1

(x̃G,l
i (k))T (x̃G,l

i (k))

100n

M
, (35)

NEES =

100∑
l=1

n∑
i=1

(x̃G,l
i (k))T (di(k)ÎA,l

i (k + 1))(x̃G,l
i (k))

100n
,

where M is the size of common features.

Figure 6(b) shows the RMS per step (blue solid).

Due to the information share, the estimated features

positions become more accurate as the iterations go by,

reaching estimation errors per coordinate smaller than

1 millimeter. Figure 6(c) displays the NEES value ob-

tained (red solid), which should follow a χ2 distribu-

tion withM degrees of freedom. Thus, if the estimated

merged maps are consistent, the expected value for the

NEES is M (black solid, dof), and it should not over-

pass the value χ2
0.99,dof (black dashed). During all the

steps, the estimated features’ positions are consistent.

This is the expected behavior for systems where robots

observe the full 3D position of the features. Recall that

we ensure consistency (Theorem 1) as long as the cen-

tralized map is consistent, and this depends on the local

maps being consistent. Thus, for scenarios where robots

only get partial measurements of the features positions,

and depending on the particular local mapping method,

the local maps may not be consistent. Even in this case,

our algorithm will produce estimates more conservative

than the centralized map.

6 Conclusions

In this paper we have presented a method for merg-

ing feature-based maps in a dynamic way, i.e., robots

compute the global map at the same time as they im-

prove their local maps. Consensus is reached on the

latest global map, using the map increments between

the previous and the current time steps. Robots decide

on their own when they want to propagate their local

map modifications to the global map. Our method ex-

plicitly takes into account the limited communication

between the robots, and it is robust to modifications in

the communication topology. Robots compute the same

global map that would be obtained if all the local maps

were available to a centralized fusion unit. In addition,

the global map estimated by each robot at each itera-

tion is unbiased and consistent. We have demonstrated

the performance of the map merging algorithm under

switching topologies. Our consensus-based method out-

performs map merging techniques based on propaga-

tion, since it keeps the memory cost at each robot de-

pendent on the scene size, and not in the number of

robots. However, the communication cost of our algo-

rithm could be greatly improved by, e.g., executing a

new consensus iteration in a neighborhood only if the

set of neighbors change, or if their states experienced

important modifications since the previous step. Future

extensions of this work are in this line.
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