
Submitted to Autonomous Robots on 20 November 2014
Manuscript No. AURO-D-14-00185

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly
Sparse Gaussian Process Regression

Sean Anderson · Timothy D. Barfoot · Chi Hay Tong · Simo Särkkä

Received: 20 November 2014

Abstract In this paper, we revisit batch state estimation
through the lens of Gaussian process (GP) regression. We
consider continuous-discrete estimation problems wherein
a trajectory is viewed as a one-dimensional GP, with time
as the independent variable. Our continuous-time prior can
be defined by any nonlinear, time-varying stochastic differ-
ential equation driven by white noise; this allows the pos-
sibility of smoothing our trajectory estimates using a vari-
ety of vehicle dynamics models (e.g., ‘constant-velocity’).
We show that this class of prior results in an inverse kernel
matrix (i.e., covariance matrix between all pairs of measure-
ment times) that is exactly sparse (block-tridiagonal) and
that this can be exploited to carry out GP regression (and
interpolation) very efficiently. When the prior is based on
a linear, time-varying stochastic differential equation and
the measurement model is also linear, this GP approach is
equivalent to classical, discrete-time smoothing (at the mea-
surement times); when a nonlinearity is present, we iterate
over the whole trajectory to maximize accuracy. We test the
approach experimentally on a simultaneous trajectory esti-
mation and mapping problem using a mobile robot dataset.

S. Anderson
Autonomous Space Robotics Lab, University of Toronto Institute for
Aerospace Studies, Canada
E-mail: sean.anderson@mail.utoronto.ca

T. D. Barfoot
Autonomous Space Robotics Lab, University of Toronto Institute for
Aerospace Studies, Canada
E-mail: tim.barfoot@utoronto.ca

C. H. Tong
Mobile Robotics Group, University of Oxford, United Kingdom
E-mail: chi@robots.ox.ac.uk

S. Särkkä
Department of Biomedical Engineering and Computational Science,
Aalto University, Finland
E-mail: simo.sarkka@aalto.fi

Keywords State Estimation · Localization · Continuous
Time · Gaussian Process Regression

1 Introduction

Probabilistic state estimation has been a core topic in mobile
robotics since the 1980s (Durrant-Whyte, 1988; Smith and
Cheeseman, 1986; Smith et al., 1990), often as part of the
simultaneous localization and mapping (SLAM) problem
(Bailey and Durrant-Whyte, 2006; Durrant-Whyte and Bai-
ley, 2006). Early work in estimation theory focused on recur-
sive (as opposed to batch) formulations (Kalman, 1960), and
this was mirrored in the formulation of SLAM as a filtering
problem (Smith et al., 1990). However, despite the fact that
continuous-time estimation techniques have been available
since the 1960s (Jazwinski, 1970; Kalman and Bucy, 1961),
trajectory estimation for mobile robots has been formulated
almost exclusively in discrete time.

Lu and Milios (1997) showed how to formulate SLAM
as a batch estimation problem incorporating both odome-
try measurements (to smooth solutions) as well as landmark
measurements. This can be viewed as a generalization of
bundle adjustment (Brown, 1958; Sibley et al., 2010), which
did not incorporate odometry. Today, batch approaches in
mobile robotics are commonplace (e.g., GraphSLAM by
Thrun and Montemerlo (2006)). Kaess et al. (2008) show
how batch solutions can be efficiently updated as new mea-
surements are gathered and Strasdat et al. (2010) show that
batch methods are able to achieve higher accuracy than their
filtering counterparts, for the same computational cost. Most
of these results are formulated in discrete time.

Discrete-time representations of robot trajectories are
sufficient in many situations, but they do not work well
when estimating motion from certain types of sensors (e.g.,
rolling-shutter cameras and scanning laser-rangefinders) and

ar
X

iv
:1

41
2.

06
30

v1
 [

cs
.R

O
]

 1
 D

ec
 2

01
4

2 Sean Anderson et al.

Fig. 1 To carry out batch trajectory estimation, we use GP regression
with a smooth, continuous-time prior and discrete-time measurements.
This allows us to query the trajectory at any time of interest, τ .

sensor combinations (e.g., high datarate, asynchronous). In
these cases, a smooth, continuous-time representation of the
trajectory is more suitable. For example, in the case of es-
timating motion from a scanning-while-moving sensor, a
discrete-time approach (with no motion prior) can fail to
find a unique solution; something is needed to tie together
the observations acquired at many unique timestamps. Ad-
ditional sensors (e.g., odometry or inertial measurements)
could be introduced to serve in this role, but this may not
always be possible. In these cases, a motion prior can be
used instead (or as well), which is most naturally expressed
in continuous time.

One approach to continuous-time trajectory representa-
tion is to use interpolation (e.g., linear, spline) directly be-
tween nearby discrete poses (Bibby and Reid, 2010; Bosse
and Zlot, 2009; Dong and Barfoot, 2012; Furgale et al.,
2012; Hedborg et al., 2012; Lovegrove et al., 2013). Instead,
we choose to represent the trajectory nonparametrically as
a one-dimensional Gaussian process (GP) (Rasmussen and
Williams, 2006), with time as the independent variable (see
Figure 1). Tong et al. (2012, 2013) show that querying the
state of the robot at a time of interest can be viewed as a
nonlinear, GP regression problem. While their approach is
very general, allowing a variety of GP priors over robot tra-
jectories, it is also quite expensive due to the need to invert
a large, dense kernel matrix.

While GPs have been used in robotic state estimation
to accomplish dimensionality reduction (Ferris et al., 2006,
2007; Lawrence, 2003) and to represent the measurement
and motion models (Deisenroth et al., 2012; Ko and Fox,
2009, 2011), these uses are quite different than representing
the latent robot trajectory as a GP (Tong et al., 2012, 2013).

In this paper, we consider a particular class of GPs,
generated by nonlinear, time-varying (NTV) stochastic dif-
ferential equations (SDE) driven by white noise. We first
show that GPs based on linear, time-varying (LTV) SDEs
have an inverse kernel matrix that is exactly sparse (block-
tridiagonal) and can be derived in closed form; an approx-
imation for GPs based on a NTV SDE is then shown that

results in the same sparsity properties as the linear case.
Concentrating on this class of covariance functions results
in only a minor loss of generality, because many commonly
used covariance functions such the Matérn class and the
squared exponential covariance function can be exactly or
approximately represented as linear SDEs (Hartikainen and
Särkkä, 2010; Särkkä et al., 2013; Solin and Särkkä, 2014).
We provide an example of this relationship at the end of this
paper. The resulting sparsity allows the approach of Tong
et al. (2012, 2013) to be implemented very efficiently. The
intuition behind why this is possible is that the state we are
estimating is Markovian for this class of GPs, which implies
that the corresponding precision matrices are sparse (Lind-
gren et al., 2011).

This sparsity property has been exploited in estima-
tion theory to allow recursive methods (both filtering and
smoothing) since the 1960s (Kalman, 1960; Kalman and
Bucy, 1961). Jumarie (1990) offers an interesting discus-
sion on nonlinear, continuous-time filtering (using both a
nonlinear dynamical plant and nonlinear observations). The
tracking literature, in particular, has made heavy use of
motion priors (in both continuous and discrete time) and
has exploited the Markov property for efficient solutions
(Maybeck, 1979). For the nonlinear, discrete-time case, Bell
(1994) shows that Kalman filtering and smoothing with it-
erated relinearization is equivalent to Gauss-Newton on the
full-state trajectory. It is of no surprise that in vision and
robotics, discrete-time batch methods commonly exploit this
sparsity property as well (Triggs et al., 2000). In this paper,
we make the (retrospectively obvious) observation that this
sparsity can also be exploited in a batch, continuous-time
context. The result is that we derive a principled method to
construct trajectory-smoothing terms for batch optimization
(or factors in a factor-graph representation) based on a class
of useful motion models; this paves the way to incorporate
vehicle dynamics models, including exogenous inputs, to
help with trajectory estimation.

Therefore, our main contribution is to emphasize the
strong connection between classical estimation theory and
machine learning via GP regression. We use the fact that
the inverse kernel matrix is sparse for a class of useful GP
priors (Lindgren et al., 2011; Särkkä et al., 2013) in a new
way to efficiently implement nonlinear, GP regression for
batch, continuous-time trajectory estimation. We also show
that this naturally leads to a subtle generalization of SLAM
that we call simultaneous trajectory estimation and map-
ping (STEAM), with the difference being that chains of
discrete poses are replaced with Markovian trajectories in
order to incorporate continuous-time motion priors in an ef-
ficient way. Finally, by using this GP paradigm, we are able
to exploit the classic GP interpolation approach to query the
trajectory at any time of interest in an efficient manner.

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 3

This ability to query the trajectory at any time of in-
terest in a principled way could be useful in a variety of
situations. For example, Newman et al. (2009) mapped
a large urban area using a combination of stereo vision
and laser rangefinders; the motion was estimated using the
camera and the laser data were subsequently placed into a
three-dimensional map based on this estimated motion. Our
method could provide a seamless means to (i) estimate the
camera trajectory and then (ii) query this trajectory at every
laser acquisition time.

This paper is a significant extension of our recent con-
ference paper (Barfoot et al., 2014). We build upon the
exactly-sparse GP-regression approach that used linear,
time-varying SDEs, and show how to use GPs based on
nonlinear, time-varying SDEs, while maintaining the same
level of sparsity as the linear case. The algorithmic differ-
ences are discussed in detail and results are provided using
comparable linear and nonlinear priors. Furthermore, this
paper shows how the block-tridiagonal sparsity of the ker-
nel matrix can be exploited to improve the computational
performance of hyperparameter training. Finally, discussion
is provided on using the GP interpolation equation for fur-
ther state reduction at the cost of accuracy.

The paper is organized as follows. Section 2 summarizes
the general approach to batch state estimation via GP re-
gression. Section 3 describes the particular class of GPs we
use and elaborates on our main result concerning sparsity.
Section 4 demonstrates this main result on a mobile robot
example using a ‘constant-velocity’ prior and compares the
computational cost to methods that do not exploit the spar-
sity. Section 5 provides some discussion and Section 6 con-
cludes the paper.

2 Gaussian Process Regression

We take a Gaussian-process-regression approach to state es-
timation. This allows us to (i) represent trajectories in con-
tinuous time (and therefore query the solution at any time
of interest), and (ii) optimize our solution by iterating over
the entire trajectory (recursive methods typically iterate at a
single timestep).

We will consider systems with a continuous-time, GP
process model and a discrete-time, nonlinear measurement
model:

x(t) ∼ GP(x̌(t), P̌(t, t′)), t0 < t, t′ (1)

yn = g(x(tn)) + nn, t1 < · · · < tN , (2)

where x(t) is the state, x̌(t) is the mean function, P̌(t, t′)

is the covariance function, yn are measurements, nn ∼
N (0,Rn) is Gaussian measurement noise, g(·) is a non-
linear measurement model, and t1 < . . . < tN is a sequence
of measurement times. For the moment, we do not consider

the STEAM problem (i.e., the state does not include land-
marks), but we will return to this case in our example later.

We follow the approach of Tong et al. (2013) to set up
our batch, GP state estimation problem. We will first assume
that we want to query the state at the measurement times,
and will return to querying at other times later on. We start
with an initial guess, xop, for the trajectory that will be im-
proved iteratively. At each iteration, we solve for the optimal
perturbation, δx?, to our guess using GP regression, with our
measurement model linearized about the current best guess.

The joint likelihood between the state and the measure-
ments (both at the measurement times) is

p

([
x
y

])
= N

([
x̌

g + G(x̌− xop)

]
,

[
P̌ P̌GT

GP̌ GP̌GT + R

])
,

(3)

where

x =

 x(t0)
...

x(tN)

 , xop =

 xop(t0)
...

xop(tN)

 , x̌ =

 x̌(t0)
...

x̌(tN)

 ,
y =

 y1
...

yN

 , g =

 g(xop(t1))
...

g(xop(tN))

 , G =
∂g
∂x

∣∣∣
xop

,

R = diag (R1, . . . ,RN) , P̌ =
[
P̌(ti, tj)

]
ij
.

Note, the measurement model is linearized about our best
guess so far. We then have that the Gaussian posterior is

p(x|y) =

N
(

x̌ + P̌GT
(
GP̌GT + R

)−1 (y− g−G (x̌− xop)
)︸ ︷︷ ︸

x̂, the posterior mean

,

P̌− P̌GT
(
GP̌GT + R

)−1 GP̌︸ ︷︷ ︸
P̂, the posterior covariance

)
. (4)

Letting δx? = x̂ − xop, and rearranging the posterior mean
expression using the Sherman-Morrison-Woodbury identity,
we have(
P̌−1 + GTR−1G

)
δx? = P̌−1(x̌− xop) + GTR−1(y− g),

(5)

which is a linear system for δx? and can be viewed as the
solution to the associated maximum a posteriori (MAP)
problem. We know that the GTR−1G term in (5) is block-
diagonal (assuming each measurement depends on the state
at a single time), but in general P̌−1 could be dense, depend-
ing on the choice of GP prior. At each iteration, we solve for
δx? and then update the guess according to xop ← xop +δx?;
upon convergence we set x̂ = xop. This is effectively Gauss-
Newton optimization over the whole trajectory.

4 Sean Anderson et al.

We may want to also query the state at some other
time(s) of interest (in addition to the measurement times).
Though we could jointly estimate the trajectory at the mea-
surement and query times, a better idea is to use GP interpo-
lation after the solution at the measurement times converges
(Rasmussen and Williams, 2006; Tong et al., 2013) (see Sec-
tion 3.1.3 for more details). GP interpolation automatically
picks the correct interpolation scheme for a given prior; it
arrives at the same answer as the joint approach (in the linear
case), but at lower computational cost.

In general, this GP approach has complexity O(N3 +

N2J), where N is the number of measurement times and
J is the number of query times (the initial solve is O(N3)

and the queries are O(N2J)). This is quite expensive, and
therefore we will seek to improve the cost by exploiting the
structure of the matrices involved under a particular class of
GP priors.

3 A Class of Exactly Sparse GP Priors

3.1 Linear, Time-Varying Stochastic Differential Equations

We now show that the inverse kernel matrix is exactly sparse
for a particular class of useful GP priors. We consider GPs
generated by linear, time-varying (LTV) stochastic differen-
tial equations (SDE) of the form

ẋ(t) = F(t)x(t) + v(t) + L(t)w(t), (6)

where x(t) is the state, v(t) is a (known) exogenous input,
w(t) is white process noise, and F(t), L(t) are time-varying
system matrices. The process noise is given by

w(t) ∼ GP(0,QC δ(t− t′)), (7)

a (stationary) zero-mean Gaussian process (GP) with (sym-
metric, positive-definite) power-spectral density matrix,
QC , and δ(·) is the Dirac delta function.

The general solution to this LTV SDE (Maybeck, 1979;
Stengel, 1994) is

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s) (v(s) + L(s)w(s)) ds,

(8)

where Φ(t, s) is known as the transition matrix. From this
model, we seek the mean and covariance functions for x(t).

3.1.1 Mean Function

For the mean function, we take the expected value of (8):

x̌(t) = E[x(t)] = Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)v(s) ds, (9)

where x̌0 = x̌(t0) is the initial value of the mean. If we now
have a sequence of measurement times, t0 < t1 < t2 <

· · · < tN , then we can write the mean at these times in lifted
form as

x̌ = Fv, (10)

where

x̌ =

x̌(t0)

x̌(t1)
...

x̌(tN)

 , v =

x̌0

v1

...
vN

 , vn =

∫ tn

tn−1

Φ(tn, s)v(s) ds,

F =

1 0 · · · 0 0
Φ(t1, t0) 1 · · · 0 0

Φ(t2, t0) Φ(t2, t1)
. . .

...
...

...
...

. . . 0 0
Φ(tN−1, t0) Φ(tN−1, t1) · · · 1 0
Φ(tN , t0) Φ(tN , t1) · · · Φ(tN , tN−1) 1

.

(11)

Note that F, the lifted transition matrix, is lower-triangular.
We arrive at this form by simply splitting up (9) into a sum
of integrals between each pair of measurement times.

3.1.2 Covariance Function

For the covariance function, we take the second moment
of (8) to arrive at

P̌(t, t′) = E
[
(x(t)− x̌(t))(x(t′)− x̌(t′))T

]
= Φ(t, t0)P̌0Φ(t′, t0)T

+

∫ min(t,t′)

t0

Φ(t, s)L(s)QCL(s)TΦ(t′, s)T ds,

(12)

where P̌0 is the initial covariance at t0 and we have as-
sumed E[x(t0)w(t)T] = 0. Using a sequence of measure-
ment times, t0 < t1 < t2 < · · · < tN , we can write the
covariance between two times as

P̌(ti, tj)=

Φ(ti, tj)

(∑j

r=0
Φ(tj , tr)QrΦ(tj , tr)T

)
tj < ti∑i

r=0
Φ(ti, tr)QrΦ(ti, tr)T ti = tj(∑i

r=0
Φ(ti, tr)QrΦ(ti, tr)T

)
Φ(tj , ti)T ti < tj

(13)

where

Qn =

∫ tn

tn−1

Φ(tn, s)L(s)QCL(s)TΦ(tn, s)
T ds, (14)

for n = 1 . . . N and Q0 = P̌0 (to keep the notation simple).
Given this preparation, we are now ready to state the main
sparsity result that we will exploit in the rest of the paper.

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 5

Lemma 1 Let t0 < t1 < t2 < · · · < tN be a monotonically
increasing sequence of time values. Using (13), we define
the (N + 1)× (N + 1) kernel matrix (i.e., the prior covari-
ance matrix between all pairs of times), P̌ =

[
P̌(ti, tj)

]
ij

.

Then, we can factor P̌ according to a lower-diagonal-upper
decomposition,

P̌ = FQFT , (15)

where F is the lower-triangular matrix given in (3.1.1) and
Q = diag

(
P̌0,Q1, . . . ,QN

)
with Qn given in (14).

Proof Straightforward to verify by substitution. ut

Theorem 1 The inverse of the kernel matrix constructed in
Lemma 1, P̌−1, is exactly sparse (block-tridiagonal).

Proof The decomposition of P̌ in Lemma 1 provides

P̌−1 = (FQFT)−1 = F−TQ−1F−1. (16)

where the inverse of the lifted transition matrix is

F−1 =

1 0 · · · 0 0
−Φ(t1, t0) 1 · · · 0 0

0 −Φ(t2, t1)
. . .

...
...

0 0
. . . 0 0

...
... · · · 1 0

0 0 · · · −Φ(tN , tN−1) 1

,

(17)

and Q−1 is block-diagonal. The block-tridiagonal property
of P̌−1 follows by substitution and multiplication. ut

While the block-tridiagonal property stated in Theorem
1 has been exploited in vision and robotics for a long time
(Lu and Milios, 1997; Triggs et al., 2000; Thrun and Monte-
merlo, 2006), the usual route to this point is to begin by con-
verting the continuous-time motion model to discrete time
and then to directly formulate a maximum a posteriori op-
timization problem; this bypasses writing out the full ex-
pression for P̌ and jumps to an expression for P̌−1. How-
ever, we require expressions for both P̌ and P̌−1 to carry out
our GP reinterpretation and facilitate querying the trajectory
at an arbitrary time (through interpolation). That said, it is
also worth noting we have not needed to convert the motion
model to discrete time and have made no approximations
thus far.

Given the above results, the prior over the state (at the
measurement times) can be written as

x ∼ N
(
x̌, P̌
)

= N
(
Fv,FQFT

)
. (18)

Fig. 2 Although we began with a continuous-time prior to smooth our
trajectory, the class of exactly sparse GPs results in onlyN+1 smooth-
ing terms, Ji, in the associated optimization problem, the solution of
which is (19). We can depict these graphically as factors (black dots) in
a factor-graph representation of the prior (Dellaert and Kaess, 2006).
The triangles are trajectory states, the nature of which depends on the
choice of prior.

More importantly, using the result of Theorem 1 in (5) gives

(block-tridiagonal︷ ︸︸ ︷
F−TQ−1F−1 + GTR−1G

)
δx?

= F−TQ−1(v− F−1xop) + GTR−1(y− g). (19)

which can be solved in O(N) time (at each iteration), us-
ing a sparse solver (e.g., sparse Cholesky decomposition
then forward-backward passes). In fact, in the case of a
linear measurement model, one such solver is the classi-
cal, forward-backward smoother (i.e., Kalman or Rauch–
Tung–Striebel smoother) (Bell, 1994). Put another way,
the forward-backward smoother is possible because of the
sparse structure of (19). For nonlinear measurement models,
our scheme iterates over the whole trajectory; it is therefore
related to, but not the same as, the ‘extended’ version of
the forward-backward smoother (Särkkä, 2013; Särkkä and
Sarmavuori, 2013; Särkkä et al., 2013).

Perhaps the most interesting outcome of Theorem 1
is that, although we are using a continuous-time prior to
smooth our trajectory, at implementation we require only
N + 1 smoothing terms in the associated MAP optimiza-
tion problem: N between consecutive pairs of measurement
times plus 1 at the initial time (unless we are also estimating
a map). As mentioned before, this is the same form that we
would have arrived at had we started by converting our mo-
tion model to discrete time at the beginning (Lu and Milios,
1997; Triggs et al., 2000; Thrun and Montemerlo, 2006).
This equivalence has been noticed before for recursive so-
lutions to estimation problems with a continuous-time state
and discrete-time measurements (Särkkä, 2006), but not in
the batch scenario. Figure 2 depicts the N + 1 smoothing
terms in a factor-graph representation of the prior (Dellaert
and Kaess, 2006; Kaess et al., 2012).

However, while the form of the smoothing terms/factors
is similar to the original discrete-time form introduced by
Lu and Milios (1997), our approach provides a principled
method for their construction, starting from the continuous-
time motion model. Critically, we stress that the state being
estimated must be Markovian in order to obtain the desirable

6 Sean Anderson et al.

sparse structure. In the experiment section, we will inves-
tigate a common GP prior, namely the ‘constant-velocity’
or white-noise-on-acceleration model: p̈(t) = w(t), where
p(t) represents position. For this choice of model, p(t) is
not Markovian, but

x(t) =

[
p(t)

ṗ(t)

]
, (20)

is. This implies that, if we want to use the ‘constant-velocity’
prior and enjoy the sparse structure without approximation,
we must estimate a stacked state with both position and ve-
locity. Marginalizing out the velocity variables fills in the
inverse kernel matrix, thereby destroying the sparsity.

If all we cared about was estimating the value of the state
at the measurement times, our GP paradigm arguably offers
little beyond a reinterpretation of the usual discrete-time ap-
proach to batch estimation. However, by taking the time to
set up the problem in this manner, we can now query the tra-
jectory at any time of interest using the classic interpolation
scheme that is inherent to GP regression (Tong et al., 2013).

3.1.3 Querying the Trajectory

As discussed in Section 2, after we solve for the trajectory
at the measurement times, we may want to query it at other
times of interest. This operation also benefits greatly from
the sparse structure. To keep things simple, we consider a
single query time, tn ≤ τ < tn+1 (see Figure 1). The
standard linear GP interpolation formulas (Rasmussen and
Williams, 2006; Tong et al., 2013) are

x̂(τ) = x̌(τ) + P̌(τ)P̌−1(x̂− x̌), (21a)

P̂(τ, τ) = P̌(τ, τ) + P̌(τ)P̌−1
(

P̂− P̌
)

P̌−T P̌(τ)T , (21b)

where P̌(τ) =
[
P̌(τ, t0) · · · P̌(τ, tN)

]
. Note, we write (21b)

in a less common, but equivalent, form, as we intend to ex-
ploit the sparsity of the product P̌(τ)P̌−1.

For the mean function at the query time, we simply have

x̌(τ) = Φ(τ, tn)x̌n +

∫ τ

tn

Φ(τ, s)v(s) ds, (22)

which can be evaluated in O(1) time. For the covariance
function at the query time, we have

P̌(τ, τ) = Φ(τ, tn)P̌(tn, tn)Φ(τ, tn)T+∫ τ

tn

Φ(τ, s)L(s)QCL(s)TΦ(τ, s)T ds, (23)

which is also O(1) to evaluate.
The computational savings come from the sparsity of the

product P̌(τ)P̌−1, which represents the burden of the cost in

the interpolation formula. After some effort, it turns out we
can write P̌(τ) as

P̌(τ) = V(τ)FT , (24)

where F was defined before,

V(τ) =
[
Φ(τ, tn)Φ(tn, t0)P̌0 Φ(τ, tn)Φ(tn, t1)Q1 · · ·

· · · Φ(τ, tn)Φ(tn, tn−1)Qn−1 Φ(τ, tn)Qn · · ·

· · · QτΦ(tn+1, τ)T 0 · · · 0
]
, (25)

and

Qτ =

∫ τ

tn

Φ(τ, s)L(s)QCL(s)TΦ(τ, s)T ds. (26)

Returning to the desired product, we have

P̌(τ)P̌−1 = V(τ) FTF−T︸ ︷︷ ︸
1

Q−1F−1 = V(τ)Q−1F−1. (27)

Since Q−1 is block-diagonal, and F−1 has only the main
diagonal and the one below it non-zero, we can evaluate the
product very efficiently. Note, there are exactly two non-zero
block-columns:

P̌(τ)P̌−1 =
[

0 · · · 0 Λ(τ)︸ ︷︷ ︸
block
col. n

Ψ(τ)︸ ︷︷ ︸
block

col.n+1

0 · · · 0
]
, (28)

where

Λ(τ) = Φ(τ, tn)−Ψ(τ)Φ(tn+1, tn), (29a)

Ψ(τ) = QτΦ(tn+1, τ)TQ−1n+1. (29b)

Inserting this into (21), we have

x̂(τ) = x̌(τ) +
[
Λ(τ) Ψ(τ)

] [x̂n − x̌n
x̂n+1 − x̌n+1

]
, (30a)

P̂(τ, τ) = P̌(τ, τ) +
[
Λ(τ) Ψ(τ)

]([P̂n,n P̂n,n+1

P̂n+1,n P̂n+1,n+1

]
−
[

P̌n,n P̌n,n+1

P̌n+1,n P̌n+1,n+1

])[
Λ(τ)T

Ψ(τ)T

]
,

(30b)

which is a linear combination of just the terms from tn and
tn+1. If the query time is beyond the last measurement time,
tN < τ , the expression will involve only the term at tN
and represents extrapolation/prediction rather than interpo-
lation/smoothing. In summary, to query the trajectory at a
single time of interest is O(1) complexity.

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 7

3.1.4 Interpolating Measurement Times

Thus far, we have shown that by storing the Markovian,
x(tn), state at every measurement time, tn, n = 1 . . . N , we
are able to perform Gaussian-process regression in O(N)

time and then query for other times of interest x(τ), all with-
out approximation. Given the ability to interpolate, storing
the state at every measurement time may be excessive, es-
pecially in a scenario where the measurement rate is high in
comparison to the smoothness of the robot kinematics (e.g.
a 1000 Hz IMU or individually timestamped lidar measure-
ments, mounted on a slow indoor platform).

Tong et al. (2013) discuss a scheme to remove some of
the measurement times from the initial solve, which further
reduces computational cost with some loss of accuracy. By
estimating x at only some keytimes, tk, k = 0 . . .K, which
may or may not align with some subset of the measurement
times, the interpolation equation can be used to modify our
measurement model as follows,

yn = g (xop(tn))

= g
(

x̌(tn) +
[
Λ(tn) Ψ(tn)

] [xop,k − x̌k
xop,k+1 − x̌k+1

])
, (31)

where tk ≤ tn < tk+1. The matrices Λ(tn) and Ψ(tn) are
constructed according to (28), where the measurement time,
tn, is now the query time and the bounding times (previ-
ously tn and tn+1) become the keytimes tk and tk+1. The
effect on G is that each block row now has two adjacent
non-zero block columns, rather than one. This causes the
structure of GTR−1G to change from being block-diagonal
to block-tridiagonal; the structure of GTR−1G is of partic-
ular importance because it directly affects the complexity of
solving (19). Fortunately, the complexity is unaffected be-
cause our prior term is also block-tridiagonal.

An important intuition is that the interpolated state at
some measurement time, tn, depends only on the state es-
timates, xop,k and xop,k+1, and the prior terms, x̌(t) and
P̌(t, t′). Therefore, the effect of estimating x at some re-
duced number of times is that we obtain a smoothed solu-
tion; any details provided by high frequency measurements
between two times of interest, tk and tk+1, are lost. Al-
though this detail information is smoothed over, there are
obvious computational savings in having a smaller state and
a subtle benefit regarding the prevention of overfitting mea-
surements. With respect to fitting, the glaring issue with this
scheme is that there is not a principled method to determine
an appropriate spacing for the keytimes, tk, such that we
could guarantee a bound on the loss of accuracy. Learning
from the parametric continuous-time estimation schemes,
which suffer from a similar issue, it is reasonable to start
with some uniform spacing and add additional keytimes
based on the results of a normalized-innovation-squared test

between each pair of keytimes (Oth et al., 2013). Some ex-
perimentation is necessary to better understand which ap-
proach to state discretization is best in which situation.

3.2 Nonlinear, Time-Varying Stochastic Differential
Equations

In reality, most systems are inherently nonlinear and can-
not be accurately described by a LTV SDE in the form of
(6). Moving forward, we show how our results concerning
sparsity can be applied to nonlinear, time-varying (NTV)
stochastic differential equations (SDE) of the form

ẋ(t) = f(x(t),u(t),w(t)), (32)

where f(·) is a nonlinear function, x(t) is the state, u(t) is a
(known) exogenous input, and w(t) is white process noise.
To perform GP regression with a nonlinear process model,
we begin by linearizing the SDE about a continuous-time
operating point xop(t),

ẋ(t) = f(x(t),u(t),w(t))

≈ f(xop(t),u(t), 0) + F(t)(x(t)− xop(t)) + L(t)w(t).

(33)

where

F(t) =
∂f
∂x

∣∣∣∣
xop(t),u(t),0

, L(t) =
∂f
∂w

∣∣∣∣
xop(t),u(t),0

. (34)

Setting

v(t) = f(xop(t),u(t), 0)− F(t)xop(t) (35)

lets us rewrite (33) in the familiar LTV SDE form,

ẋ(t) ≈ F(t)x(t) + v(t) + L(t)w(t), (36)

where F(t), v(t), and L(t) are known functions of time,
since xop(t) is known. Setting the operating point, xop(t),
to our best guess of the underlying trajectory at each it-
eration of GP regression, we note a similarity in nature
to the discrete-time, recursive method of Bell (1994); in
essence, our approach offers a continuous-discrete version
of the Gauss-Newton estimator, using the Gaussian-process-
regressor type of approximate bridging between the mea-
surement times.

3.2.1 Mean and Covariance Function

Although the equations for calculating the mean, x̌, and co-
variance, P̌, remain the same as in (9) and (12), there are
a few algorithmic differences and issues that arise due to
the new dependence on the continuous-time operating point,
xop(t). An obvious difference in contrast to the GP regres-
sion using a LTV SDE is that we now must recalculate x̌

8 Sean Anderson et al.

and P̌ at each iteration of the optimization (since the lin-
earization point is updated). The main algorithmic issue that
presents itself is that the calculation of x̌ and P̌ require inte-
grations involving F(t), v(t), and L(t), which in turn require
the evaluation of xop(t) over the time period t ∈ [t0, tN].
Since an estimate of the posterior mean, xop, is only stored at
times of interest, we must make use of the efficient (for our
particular choice of process model) GP interpolation equa-
tion derived in Section 3.1.3,

xop(τ) = x̌(τ) + P̌(τ)P̌−1(xop − x̌). (37)

The problem is that the above interpolation depends again
on x̌ and P̌, which are the prior variables for which we want
to solve. To rectify this circular dependence, we take advan-
tage of the iterative nature of GP regression and choose to
evaluate (37) using the values of x̌(τ), x̌, and P̌(τ)P̌−1 from
the previous iteration.

Another issue with nonlinear process models is that
identifying an analytical expression for the state transition
matrix, Φ(t, s) (which is dependent on the form of F(t)),
can be very challenging. Fortunately, the transition matrix
can also be calculated numerically via the integration of the
normalized fundamental matrix, Υ(t), where

Υ̇(t) = F(t)Υ(t), Υ(0) = 1. (38)

Storing Υ(t) at times of interest, the transition matrix can
then be computed using

Φ(t, s) = Υ(t)Υ(s)−1. (39)

In contrast to the LTV SDE system, using a nonlinear pro-
cess model causes additional computational costs (primar-
ily due to numerical integrations), but complexity remains
linear in the length of the trajectory (at each iteration), and
therefore continues to be computationally tractable.

3.2.2 Querying the Trajectory

In this section, we discuss the algorithmic details of the GP
interpolation procedure as it pertains to a NTV SDE process
model. Recall the standard linear GP interpolation formulas
presented in (21), for a single query time, tn ≤ τ < tn+1:

x̂(τ) = x̌(τ) + P̌(τ)P̌−1(x̂− x̌),

P̂(τ, τ) = P̌(τ, τ) + P̌(τ)P̌−1
(

P̂− P̌
)

P̌−T P̌(τ)T .

The final iteration of GP regression (where x̂ = xop), pro-
vides values for x̌, P̌, x̂, and P̂; however, obtaining values for
x̌(τ), P̌(τ)P̌−1 (recall sparse structure in (28)), and P̌(τ, τ)

is not trivial. The suggestion made in Section 3.2.1 was to
use values from the previous (or in this case, final) iteration.
Thus far, the method of storing these continuous-time func-
tions has been left ambiguous.

The naive way to store x̌(τ), P̌(τ)P̌−1, and P̌(τ, τ) is to
keep the values at all numerical integration timesteps; the
memory requirement of this is proportional to the length of
the trajectory. During the optimization procedure this naive
method may in fact be preferable as it reduces computation
time in lieu of additional storage (which is fairly cheap using
current technology). For long-term storage, a method that
uses a smaller memory footprint (at the cost of additional
computation) may be desirable. The remainder of this sec-
tion will focus on identifying the minimal storage require-
ments, such that queries remain O(1) complexity.

We begin by examining the mean function; substituting
(22) and (35), into the GP interpolation formula above:

x̂(τ) = Φ(τ, tn)x̌n +

∫ τ

tn

Φ(τ, s)
(
f(x̂(s),u(s), 0)

− F(s)x̂(s)
)
ds+ P̌(τ)P̌−1(x̂− x̌). (41)

It is straightforward to see how x̂(τ) can be simultane-
ously numerically integrated with the normalized funda-
mental matrix from (38), as long as we can evaluate the
term P̌(τ)P̌−1. Although we chose to examine the mean
function, a similar conclusion can be drawn by examining
the covariance function in (23). Recalling the sparse struc-
ture of P̌(τ)P̌−1 (see (28)) for an LTV SDE process model,
where

Λ(τ) = Φ(τ, tn)−Ψ(τ)Φ(tn+1, tn),

Ψ(τ) = QτΦ(tn+1, τ)TQ−1n+1,

we are able to draw two conclusions. First, in the case that
an analytical expression for Φ(t, s) is unavailable, we must
store Υ(tn) at the times of interest tn, n = 1 . . . N , since
any numerical integration will involve ‘future’ values of
Υ(t) (via the evaluation of Φ(tn+1, tn), Φ(tn+1, τ), and
Q−1n+1). Second, in the case that L(t) is a time-varying ma-
trix, we must store Q−1n , n = 1 . . . N , since the evaluation
of Q−1n , requires L(s) (evaluated at x̂(s)) over the time pe-
riod [tn−1, tn]. The memory requirements of this alternative
are still proportional to the length of the trajectory, but are
greatly reduced in contrast to the naive method; the added
cost is that any new query requires numerical integration
from the nearest time tn to the query time τ (which is of
order O(1)).

3.3 Training the Hyperparameters

As with any GP regression, we have hyperparameters asso-
ciated with our covariance function, namely QC , which af-
fect the smoothness and length scale of the class of functions
we are considering as motion priors. The covariances of
the measurement noises can also be unknown or uncertain.
The standard approach to selecting these parameters is to

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 9

use a training dataset (with ground-truth), and perform op-
timization using the log marginal likelihood (log-evidence)
or its approximation as the objective function (Rasmussen
and Williams, 2006). We begin with the marginal likelihood
equation,

log p(y|QC) = −1

2
(y− x̌)TP−1w (y− x̌)

− 1

2
log |Pw| −

n

2
log 2π,

(42)

Pw = P̌(QC) + σ2
w1, (43)

where y is a stacked vector of state observations (ground-
truth measurements) with additive noise N (0, σ2

w1), x̌ is a
stacked vector of the mean equation evaluated at the obser-
vation times, tw, w = 1 . . .W , and P̌ is the covariance ma-
trix associated with x̌ and generated using the hyperparam-
eters QC . Taking partial derivatives of the marginal likeli-
hood with respect to the hyperparameters, we get

∂

∂QCij

log p(y|QC) =
1

2
(y− x̌)TP−1w

∂Pw
∂QCij

P−1w (y− x̌)

− 1

2
tr

(
P−1w

∂Pw
∂QCij

)
, (44)

where we have used that ∂P−1
w

∂QCij
= −P−1w

∂Pw

∂QCij
P−1w .

The typical complexity of hyperparameter training is
bottlenecked at O(W 3) due to the inversion of Pw (which is
typically dense). Given P−1w , the complexity is then typically
bottlenecked at O(W 2) due to the calculation of ∂Pw

∂QCij
.

Fortunately, in the present case, the computation of the log
marginal likelihood can also be done efficiently due to the
sparseness of the inverse kernel matrix, P̌−1. Despite the ad-
dition of observation noise, σ2

w1, causing P−1w to be a dense
matrix, we are still able to take advantage of our sparsity
using the Sherman-Morrison-Woodbury identity:

P−1w = P̌−1 − P̌−1
(

P̌−1 +
1

σ2
w

1
)−1

P̌−1= F−TQ−1w F−1,

(45)

where we define

Q−1w =

(
Q−1 −Q−1F−1

(
P̌−1 +

1

σ2
w

1
)−1

F−TQ−1
)
.

(46)

Although computing P−1w explicitly is of order O(W 2), we
note that the product with a vector, P−1w v, can be computed
in O(W) time; this is easily observable given that Q−1
is block-diagonal, F−1 is lower block-bidiagonal, and the
product (P̌−1 + 1

σ2
w

1)−1v can be computed in O(W) time

using Cholesky decomposition, because (P̌−1 + 1
σ2
w

1) is

block-tridiagonal. While the two terms in (44) can be com-
bined into a single trace function, it is simpler to study their
computational complexity separately. Starting with the first
term, we have

1

2
(y− x̌)TP−1w

∂Pw
∂QCij

P−1w (y− x̌)

=
1

2
(y− x̌)TF−TQ−1w

∂Q
∂QCij

Q−1w F−1(y− x̌), (47)

where

∂Q
∂QCij

= diag
(

0,
∂Q1

∂QCij

, . . . ,
∂QN

∂QCij

)
, (48)

∂Qn

∂QCij

=

∫ tn

tn−1

Φ(tn, s)L(s)
∂QC

∂QCij

L(s)TΦ(tn, s)
T ds,

=

∫ tn

tn−1

Φ(tn, s)L(s)1i,jL(s)TΦ(tn, s)
T ds, (49)

and 1i,j denotes a projection matrix with a 1 at the ith row
and jth column. Taking advantage of the sparse matrices and
previously mentioned fast matrix-vector products, it is clear
that (47) can be computed in O(W) time (in contrast to the
typical O(W 3) time).

Taking a look at the second term, we have that

1

2
tr

(
P−1w

∂Pw
∂QCij

)
=

1

2
tr

((
F−TQ−1w F−1

)(
F

∂Q
∂QCij

FT
))

=
1

2
tr

(
∂Q
∂QCij

Q−1w

)
, (50)

which can only be computed in O(W 2), due to the form
of Q−1w . In general, the total complexity of training for this
sparse class of prior is then bottlenecked at O(W 2). A com-
plexity of O(W) can only be achieved by ignoring the addi-
tive measurement noise, σ2

w1; revisiting the second term of
(44), and setting Pw = P̌, we find that

1

2
tr

(
P̌−1

∂P̌
∂QCij

)
=

1

2
tr

(
∂Q
∂QCij

Q−1
)
, (51)

which can be computed in time O(W). The effect of ignor-
ing the measurement noise, σ2

w1, is that the trained hyperpa-
rameters will result in an underconfident prior; the degree of
this underconfidence depends on the magnitude of the noise
we are choosing to ignore. If accurate ground-truth measure-
ments are available and the size of the training dataset is very
large, this approximation may be beneficial.

10 Sean Anderson et al.

3.4 Complexity

We conclude this section with a brief discussion of the time
complexity of the overall algorithm when exploiting the
sparse structure. If we have N measurement times and want
to query the trajectory at J additional times of interest, the
complexity of the resulting algorithm using GP regression
with any linear (or nonlinear), time-varying process model
driven by white noise will be O(N +J). This is broken into
the two major steps as follows. The initial solution to find xop

(at the measurement times) can be done in O(N) time (per
iteration) owing to the block-tridiagonal structure discussed
earlier. Then, the cost of the queries at J other times of in-
terest is O(J) since each individual query is O(1). Clearly,
O(N+J) is a big improvement over theO(N3+N2J) cost
when we did not exploit the sparse structure of the problem.

4 Mobile Robot Example

4.1 Linear Constant-Velocity GP Prior

We will demonstrate the advantages of the sparse struc-
ture through an example employing the ‘constant-velocity’
prior, p̈(t) = w(t). This can be expressed as a linear, time-
invariant SDE of the form in (6) with

x(t) =

[
p(t)

ṗ(t)

]
, F(t) =

[
0 1
0 0

]
, v(t) = 0, L(t) =

[
0
1

]
,

(52)

where p(t) =
[
x(t) y(t) θ(t)

]T
is the pose and ṗ(t) is the

pose rate. In this case, the transition function is

Φ(t, s) =

[
1 (t− s)1
0 1

]
, (53)

which can be used to construct F (or F−1 directly). As we
will be doing a STEAM example, we will constrain the first
trajectory state to be x(t0) = 0 and so will have no need for
x̌0 and P̌0. For n = 1 . . . N , we have vn = 0 and

Qn =

[
1
3∆t3nQC

1
2∆t2nQC

1
2∆t2nQC ∆tnQC

]
, (54)

with ∆tn = tn − tn−1. The inverse blocks are

Q−1n =

[
12∆t−3n Q−1C −6∆t−2n Q−1C
−6∆t−2n Q−1C 4∆t−1n Q−1C

]
, (55)

so we can build Q−1 directly. We now have everything we
need to represent the prior: F−1, Q−1, and v = 0, which can
be used to construct P̌−1.

We will also augment the trajectory with a set of L land-
marks, `, into a combined state, z, in order to consider the
STEAM problem:

z =

[
x
`

]
, ` =

`1...
`L

 , `i =

[
xi
yi

]
. (56)

While others have folded velocity estimation into discrete-
time, filter-based SLAM (Davison et al., 2007) and even
discrete-time, batch SLAM (Grau and Pansiot, 2012), we
are actually proposing something more general than this: the
choice of prior tells us what to use for the trajectory states.
And, although we solve for the state at a discrete number
of measurement times, our setup is based on an underlying
continuous-time prior, meaning that we can query it at any
time of interest in a principled way.

4.2 Nonlinear Constant-Velocity GP Prior

Since the main source of acceleration in this example is
robot-oriented (the actuated wheels), we investigate the use
of an alternate ‘constant-velocity’ prior, with the white noise
affecting acceleration in the robot body frame, ν̇(t) = w(t).
This nonlinear prior can be written as,

ẋ(t) = f(x(t),u(t),w(t))

=

[
0 RIB(θ(t))

0 0

]
x(t) + u(t) +

[
0
1

]
w(t), (57)

where

RIB(θ(t)) =

cos θ(t) − sin θ(t) 0

sin θ(t) cos θ(t) 0
0 0 1

 (58)

is a rotation matrix between the inertial and robot body
frame, and the Markovian state is x(t) =

[
p(t)T ν(t)T

]T
,

where ν(t) =
[
v(t) u(t) ω(t)

]T
= RIB(θ(t))T ṗ(t) is the

robot-oriented velocity (with longitudinal, latitudinal, and
rotational components, respectively).

Linearizing about an arbitrary operating point, xop(t),
the components F(t), v(t) and L(t) from (36) are straight-
forward to derive. Similarly, to the linear prior example de-
scribed above, we will define the exogenous input u(t) = 0;
however, we note that v(t) 6= 0 (see (35)). Since expres-
sions for Φ(t, s) and Qn are not obvious, we will rely on
numerical integration for their evaluation.

4.3 Measurement Models

We will use two types of measurements: range/bearing to
landmarks (using a laser rangefinder) and wheel odometry

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 11

Fig. 3 Factor-graph representation of our STEAM problem. There are
factors (black dots) for (i) the prior (binary), (ii) the landmark measure-
ments (binary), and (iii) the wheel odometry measurements (unary).
Triangles are trajectory states (position and velocity, for this prior);
the first trajectory state is locked. Hollow circles are landmarks.

(in the form of robot-oriented velocity). The range/bearing
measurement model takes the form

yni = grb(x(tn), `i) + nni

=

[√
(xi − x(tn))2 + (yi − y(tn))2

atan2(yi − y(tn), xi − x(tn))

]
+ nni. (59)

The wheel odometry measurement model gives the longitu-
dinal and rotational speeds of the robot, taking the form

yn = gwo(x(tn))+nn =

[
cos θ(tn) sin θ(tn) 0

0 0 1

]
ṗ(tn)+nn,

(60)

for the LTI SDE prior, and

yn = gwo(x(tn)) + nn =

[
1 0 0

0 0 1

]
ν(tn) + nn, (61)

for the NTV SDE prior. Note that in both cases the velocity
information is extracted easily from the state since we are
estimating it directly. The Jacobians with respect to the state,
x(t), are straightforward to derive.

4.4 Exploiting Sparsity

Figure 3 shows an illustration of the STEAM problem we
are considering. In terms of linear algebra, at each iteration
we need to solve a linear system of the form[

Wxx WT
`x

W`x W``

]
︸ ︷︷ ︸

W

[
δx?
δ`?

]
︸ ︷︷ ︸
δz?

=

[
bx
b`

]
︸ ︷︷ ︸

b

, (62)

which retains exploitable structure despite introducing land-
marks to the state (Brown, 1958). In particular, Wxx is
block-tridiagonal (due to our GP prior) and W`` is block-
diagonal; the sparsity of the off-diagonal block, W`x, de-
pends on the specific landmark observations. We reiterate

the fact that if we marginalize out the ṗ(tn) (or ν(tn)) vari-
ables and keep only the p(tn) variables to represent the tra-
jectory, the Wxx block becomes dense (for these priors);
this is precisely the approach of Tong et al. (2013).

To solve (62) efficiently, we can begin by either exploit-
ing the sparsity of Wxx or of W``. Since each trajectory vari-
able represents a unique measurement time (range/bearing
or odometry), there are potentially a lot more trajectory vari-
ables than landmark variables, L � M , so we will exploit
Wxx.

We use a sparse (lower-upper) Cholesky decomposition:[
Vxx 0
V`x V``

]
︸ ︷︷ ︸

V

[
VTxx VT`x

0 VT``

]
︸ ︷︷ ︸

VT

=

[
Wxx WT

`x

W`x W``

]
︸ ︷︷ ︸

W

(63)

We first decompose VxxVTxx = Wxx, which can be done in
O(N) time owing to the block-tridiagonal sparsity. The re-
sulting Vxx will have only the main block-diagonal and the
one below it non-zero. We can then solve V`xVTxx = W`x

for V`x in O(LN) time. Finally, we decompose V``VT`` =

W`` − V`xVT`x, which we can do in O(L3 + L2N) time.
This completes the decomposition in O(L3 + L2N) time.
We then perform the standard forward-backward passes, en-
suring to exploit the sparsity: first solve Vd = b for d, then
VT δz? = d for δz?, both in O(L2 + LN) time. Note, this
approach does not marginalize out any variables during the
solve, as this can ruin the sparsity (i.e., we avoid inverting
Wxx). The whole solve is O(L3 + L2N).

At each iteration, we update the state, z̄← z̄ + δz?, and
iterate to convergence. Finally, we query the trajectory at J
other times of interest using the GP interpolation discussed
earlier. The whole procedure is then O(L3 + L2N + J),
including the extra queries.

Due to the addition of landmarks, the cost of a STEAM
problem must be either be of order O(L3 + L2N + J) or
O(N3 +N2L+J), depending on the way we choose to ex-
ploit Wxx or W``. The state reduction scheme presented in
Section 3.1.4 becomes very attractive when both the number
of measurements and landmarks are very high; estimating
the state at K keytimes, K < N , and exploiting W``, the
procedure becomes order O(K3 + K2L + N + J), which
is the same complexity as a traditional discrete-time SLAM
problem (with the addition of the J query times).

4.5 Experiment

For experimental validation, we employed the same mobile
robot dataset as used by Tong et al. (2013). This dataset con-
sists of a mobile robot equipped with a laser rangefinder
driving in an indoor, planar environment amongst a forest
of 17 plastic-tube landmarks. The odometry and landmark
measurements are provided at a rate of 1Hz, and additional

12 Sean Anderson et al.

(a) GP-Traj-Sparse-LTI trajectory sample. (b) GP-Traj-Sparse-NTV trajectory sample.

Fig. 4 The smooth and continuous trajectories and 3σ covariance envelope estimates produced by the GP-Traj-Sparse estimators (both linear and
nonlinear) over a short segment of the dataset.

trajectory queries are computed at a rate of 10Hz after es-
timator convergence. Ground-truth for the robot trajectory
and landmark positions is provided by a Vicon motion cap-
ture system.

We implemented three estimators for comparison. The
first was the algorithm described by Tong et al. (2013), GP-
Pose-Dense, the second was a naive version of our estimator,
GP-Traj-Dense, based on the LTI SDE prior described in
Section 4.1, but did not exploit sparsity, and the third was a
full implementations of our estimator, GP-Traj-Sparse, that
exploited the sparsity structure as described in this paper.
The final estimator has two variants, GP-Traj-Sparse-LTI
and GP-Traj-Sparse-NTV, based on the LTI SDE and NTV
SDE priors described in Sections 4.1 and 4.2, respectively;
as the first two estimators, GP-Pose-Dense and GP-Traj-
Dense, are only of interest with regard to computational
performance, they each implement only the LTI ‘constant-
velocity’ prior.

For this experiment, we obtained QC for both the LTI
and NTV priors by modelling it as a diagonal matrix and
taking the data-driven training approach using log marginal
likelihood (with ground-truth measurements) described in
Section 3.3.

Though the focus of the exactly sparse Gaussian process
priors is to demonstrate the significant reductions in com-
putational cost, we provide Figure 4 to illustrate the smooth
trajectory estimates we obtained from the continuous-time
formulation. While the algorithms differed in their num-
ber of degrees of freedom and types of their estimated
states, their overall accuracies were similar for this dataset.
The GP-Traj-Sparse-NTV algorithm differed slightly from
the others; qualitatively, we found that the trajectory esti-
mated by the GP-Traj-Sparse-NTV algorithm more accu-
rately matched the local shape of the ground-truth on many
occasions, such as the ones highlighted by the insets in Fig-

ure 4. Also, it is clear from the plotted 3σ covariance enve-
lope that the estimate from the GP-Traj-Sparse-NTV algo-
rithm tends to be more uncertain.

4.5.1 Computational Cost

To evaluate the computational savings of exploiting an ex-
actly sparse GP prior, we implemented all algorithms in
Matlab with a 2.4GHz i7 processor and 8GB of 1333MHz
DDR3 RAM and timed the computation for segments of the
dataset of varying lengths. These results are shown in Fig-
ure 5, where we provide the computation time for the indi-
vidual operations that benefit most from the sparse structure,
as well as the overall processing time.

We see that the GP-Traj-Dense algorithm is much slower
than the original GP-Pose-Dense algorithm of Tong et al.
(2013). This is because we have reintroduced the velocity
part of the state, thereby doubling the number of variables
associated with the trajectory. However, once we start ex-
ploiting the sparsity with the GP-Traj-Sparse methods, the
increase in number of variables pays off.

For the GP-Traj-Sparse methods, we see in Figure 5(a)
that the kernel matrix construction was linear in the number
of estimated states. This can be attributed to the fact that
we constructed the sparse P̌−1 directly. As predicted, the
optimization time per iteration was also linear in Figure 5(b),
and the interpolation time per additional query was constant
regardless of state size in Figure 5(c). Finally, Figure 5(d)
shows that the total compute time was also linear.

The additional cost of the GP-Traj-Sparse-NTV algo-
rithm over the GP-Traj-Sparse-LTI algorithm in kernel con-
struction time is due to the linearization and numerical inte-
gration of the prior mean and covariance. The optimization
time of the GP-Traj-Sparse-NTV algorithm is also affected
because the kernel matrix must be reconstructed from a new

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 13

(a) Kernel matrix construction time. (b) Optimization time per iteration.

(c) Interpolation time per additional query time. (d) Total computation time.

Fig. 5 Plots comparing the compute time (as a function of trajectory length) for the GP-Pose-Dense algorithm described by Tong et al. (2013)
and three versions of our approach: GP-Traj-Dense (does not exploit sparsity) and the two GP-Traj-Sparse variants (exploit sparsity). The plots
confirm the predicted computational complexities of the various methods; notably, the GP-Traj-Sparse estimators have linear cost in trajectory
length. Please note the change from a linear to a log scale in the upper part of each plot.

linearization of the prior during every optimization iteration.
The GP-Traj-Sparse-NTV algorithm also incurs some nu-
merical integration cost in interpolation time, but it is con-
stant and very small.

We also note that the number of iterations for optimiza-
tion convergence varied for each algorithm. In particular, we
found that the GP-Traj-Sparse implementations converged
in fewer iterations than the other implementations due to the
fact that we constructed the inverse kernel matrix directly,
which resulted in greater numerical stability. The GP-Traj-
Sparse approaches clearly outperform the other algorithms
in terms of computational cost.

4.5.2 Increasing Nonlinearity

In a problem with fairly accurate and high-rate measure-
ments, both the GP-Traj-Sparse-LTI and GP-Traj-Sparse-
NTV estimators provide similar accuracy. In order to expose
the benefit of a nonlinear prior based on the expected motion
of the vehicle, we increase the nonlinearity of the problem
by reducing measurement frequency.

The result of varying range measurement frequency,
with and without the use of odometry measurements, is
shown in Figure 6. In general, it is clear that as the inter-
val between range measurements is increased, the GP-Traj-
Sparse-NTV estimator is able to produce a more accurate
estimate of the continuous-time pose (translation and rota-
tion) than the GP-Traj-Sparse-LTI estimator.

In the case that the 1 Hz odometry measurements are
available, as seen in Figure 6(a), the difference in the rota-
tion estimates is small, because the GP-Traj-Sparse-LTI es-
timator has a good amount of information about its heading;

however, in the case that the odometry measurements are un-
available, as seen in Figure 6(b), the advantage of the non-
linear prior implemented by the GP-Traj-Sparse-NTV esti-
mator is prominent with respect to the rotational estimate.

In order to gain some qualitative intuition about how the
continuous-time pose estimates are affected by the reduc-
tion of measurements, Figure 7 shows the trajectories for
the same small subsection as presented in Figure 4; the es-
timates used an interval between range measurements of 7
seconds and are shown with and without the use of odom-
etry measurements. In both plots, it is clear that the GP-
Traj-Sparse-NTV estimator matches the ground-truth more
closely, as previously indicated by the error plots in Figure 6.

5 Discussion and Future Work

It is worth elaborating on a few issues. The main reason that
the Wxx block is sparse in our approach, as compared to
Tong et al. (2013), is that we reintroduced velocity variables
that had effectively been marginalized out. This idea of rein-
troducing variables to regain exact sparsity has been used
before by Eustice et al. (2006) in the delayed state filter and
by Walter et al. (2007) in the extended information filter.
This is a good lesson to heed: the underlying structure of
a problem may be exactly sparse, but by marginalizing out
variables it appears dense. For us this means we need to use
a Markovian trajectory state that is appropriate to our prior.

In much of mobile robotics, odometry measurements are
treated more like inputs to the mean of the prior than pure
measurements. We believe this is a confusing thing to do as
it conflates two sources of uncertainty: the prior over trajec-
tories and the odometry measurement noise. In our frame-

14 Sean Anderson et al.

Increasing Nonlinearity

(a) RMS errors using odometry measurements.

Increasing Nonlinearity

(b) RMS errors without using odometry measurements.

Fig. 6 Plots comparing use of the GP-Traj-Sparse-LTI and -NTV algorithms for an increasingly nonlinear problem; the dataset was made more
nonlinear by varying the interval between available range measurements. The results in (a) used the odometry measurements available at 1 Hz, while
(b) was made to be even more nonlinear by excluding the use of odometry measurements. The plots show that for a small interval between range
measurements, both estimators perform similarly; as the interval was increased, the estimate provided by the nonlinear prior is consistently better
in both translation and angular error. Notably, when odometry is available, both estimators are able to achieve a similar orientation performance;
the negative effect of removing odometry measurements is more prominent on the linear prior estimator.

(a) With odometry measurements. (b) Without odometry measurements.

Fig. 7 Plots showing the GP-Traj-Sparse-LTI and -NTV estimates for the same small trajectory subsection as Figure 4, with an interval between
range measurements of 7 seconds. Results in (a) used odometry measurements, while (b) did not.

work, we have deliberately separated these two functions
and believe this is easier to work with and understand. We
can see these two functions directly in Figure 3, where the
prior is made up of binary factors joining consecutive tra-
jectory states, and odometry measurements are unary factors
attached to some of the trajectory states (we could have used
binary odometry factors but chose to set things up this way
due to the fact that we were explicitly estimating velocity).

While our analysis appears to be restricted to a small
class of covariance functions, we have only framed our dis-
cussions in the context of robotics. Recent developments

from machine learning (Hartikainen and Särkkä, 2010) and
signal processing (Särkkä et al., 2013) have shown that it
is possible to generate other well-known covariance func-
tions using a LTV SDE (some exactly and some approxi-
mately). This means they can be used with our framework.
One example is the Matérn covariance family (Rasmussen
and Williams, 2006),

P̌m(t, t′) = σ2 21−ν

Γ(ν)

(√
2ν

`
|t− t′|

)ν
Kν

(√
2ν

`
|t− t′|

)
1

(64)

Batch Nonlinear Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression 15

where σ, ν, ` > 0 are magnitude, smoothness, and length-
scale parameters, Γ(·) is the gamma function, and Kν(·) is
the modified Bessel function. For example, if we let

x(t) =

[
p(t)

ṗ(t)

]
, (65)

with ν = p+ 1
2 with p = 1 and use the following SDE:

ẋ(t) =

[
0 1
−λ21 −2λ1

]
x(t) +

[
0
1

]
w(t), (66)

where λ =
√

2ν/` and w(t) ∼ GP (0,QC δ(t− t′)) (our
usual white noise) with power spectral density matrix,

QC =
2σ2π

1
2λ2p+1Γ(p+ 1)

Γ(p+ 1
2)

1, (67)

then we have that p(t) is distributed according to the Matérn
covariance family: p(t) ∼ GP(0, P̌m(t, t′)) with p = 1. An-
other way to look at this is that passing white noise through
LTV SDEs produces particular coloured-noise priors (i.e.,
not flat across all frequencies).

In terms of future work, we plan to incorporate the dy-
namics (i.e., kinematics plus Newtonian mechanics) of a
robot platform into the GP priors; real sensors do not move
arbitrarily through the world as they are usually attached
to massive robots and this serves to constrain the motion.
Another idea is to incorporate latent force models into our
GP priors (e.g., see Alvarez et al. (2009) or Hartikainen
et al. (2012)). We also plan to look further at the sparsity
of STEAM and integrate our work with modern solvers to
tackle large-scale problems; this should allow us to exploit
more than just the primary sparsity of the problem and do so
in an online manner.

6 Conclusion

We have considered continuous-discrete estimation prob-
lems where a trajectory is viewed as a one-dimensional
Gaussian process (GP), with time as the independent vari-
able and measurements acquired at discrete times. Query-
ing the trajectory can be viewed as nonlinear, GP regres-
sion. Our main contribution in this paper is to show that
this querying can be accomplished very efficiently. To do
this, we exploited the Markov property of our GP priors
(generated by nonlinear, time-varying stochastic differen-
tial equations driven by white noise) to construct an inverse
kernel matrix that is sparse. This makes it fast to solve for
the state at the measurement times (as is commonly done in
vision and robotics) but also at any other time(s) of interest
through GP interpolation. Other implications of this sparsity
were discussed with respect to hyperparameter training, and
including measurements at query times. We also considered

a slight generalization of the SLAM problem, simultaneous
trajectory estimation and mapping (STEAM), which makes
use of a continuous-time trajectory prior and allows us to
query the state at any time of interest in an efficient manner.
We hope this paper serves to deepen the connection between
classical state estimation theory and recent machine learn-
ing methods by viewing batch estimation through the lens
of Gaussian process regression.

Acknowledgements Thanks to Dr. Alastair Harrison at Oxford who
asked the all-important question: how can the GP estimation approach
(Tong et al., 2013) be related to factor graphs? This work was sup-
ported by the Canada Research Chair Program, the Natural Sciences
and Engineering Research Council of Canada, and the Academy of
Finland.

References

Alvarez, M., Luengo, D., and Lawrence, N. (2009). Latent force mod-
els. In Proceedings of the Int. Conf. on Artificial Intelligence and
Statistics (AISTATS).

Bailey, T. and Durrant-Whyte, H. (2006). SLAM: Part II State of the
art. IEEE RAM, 13(3):108–117.

Barfoot, T. D., Tong, C. H., and Särkkä, S. (2014). Batch continuous-
time trajectory estimation as exactly sparse gaussian process re-
gression. In Proceedings of Robotics: Science and Systems (RSS),
Berkeley, USA.

Bell, B. M. (1994). The iterated kalman smoother as a Gauss-Newton
method. SIAM Journal on Optimization, 4(3):626–636.

Bibby, C. and Reid, I. D. (2010). A hybrid SLAM representation for
dynamic marine environments. In Proc. ICRA.

Bosse, M. and Zlot, R. (2009). Continuous 3D scan-matching with a
spinning 2D laser. In Proc. ICRA.

Brown, D. C. (1958). A solution to the general problem of multiple sta-
tion analytical stereotriangulation. RCA-MTP data reduction tech.
report no. 43, Patrick Airforce Base.

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007).
MonoSLAM: Real-time single camera SLAM. IEEE T. PAMI,
29(6):1052–1067.

Deisenroth, M. P., Turner, R., Huber, M., Hanebeck, U. D., and Ras-
mussen, C. E. (2012). Robust filtering and smoothing with Gaussian
processes. IEEE T. Automatic Control, 57:1865–1871.

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous
localization and mapping via square root information smoothing.
IJRR, 25(12):1181–1204.

Dong, H. J. and Barfoot, T. D. (2012). Lighting-invariant visual odom-
etry using lidar intensity imagery and pose interpolation. In Proc.
Field and Service Robotics.

Durrant-Whyte, H. and Bailey, T. (2006). SLAM: Part I Essential al-
gorithms. IEEE RAM, 11(3):99–110.

Durrant-Whyte, H. F. (1988). Uncertain geometry in robotics. IEEE
Journal of Robotics and Automation, 4(1):23–31.

Eustice, R. M., Singh, H., and Leonard, J. J. (2006). Exactly sparse
delayed-state filters for view-based SLAM. IEEE TRO, 22(6):1100–
1114.

Ferris, B., Fox, D., and Lawrence, N. (2007). Wifi-SLAM using Gaus-
sian process latent variable models. In Proc. IJCAI.

Ferris, B., Hähnel, D., and Fox, D. (2006). Gaussian processes for
signal strength-based localization. In Proc. RSS.

Furgale, P. T., Barfoot, T. D., and Sibley, G. (2012). Continuous-time
batch estimation using temporal basis functions. In Proc. ICRA.

16 Sean Anderson et al.

Grau, O. and Pansiot, J. (2012). Motion and velocity estimation of
rolling shutter cameras. In Proceedings of the 9th European Con-
ference on Visual Media Production, pages 94–98.

Hartikainen, J. and Särkkä, S. (2010). Kalman filtering and smoothing
solutions to temporal Gaussian process regression models. In Proc.
of the IEEE Int. Work. on Machine Learning for Signal Processing.

Hartikainen, J., Seppänen, M., and Särkkä, S. (2012). State-space infer-
ence for non-linear latent force models with application to satellite
orbit prediction. In Proc. ICML.

Hedborg, J., Forssén, P., Felsberg, M., and Ringaby, E. (2012). Rolling
shutter bundle adjustment. In Proc. CVPR.

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory.
Academic, New York.

Jumarie, G. (1990). Nonlinear filtering. A weighted mean squares ap-
proach and a Bayesian one via the maximum entropy principle. Sig-
nal Processing, 21(4):323–338.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and Del-
laert, F. (2012). iSAM2: Incremental smoothing and mapping using
the Bayes tree. IJRR, 31(2):217–236.

Kaess, M., Ranganathan, A., and Dellaert, R. (2008). iSAM: Incre-
mental smoothing and mapping. IEEE TRO, 24(6):1365–1378.

Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45.

Kalman, R. E. and Bucy, R. S. (1961). New results in linear filtering
and prediction theory. Transactions of the ASME–Journal of Basic
Engineering, 83(3):95–108.

Ko, J. and Fox, D. (2009). GP-BayesFilters: Bayesian filtering using
Gaussian process prediction and observation models. Autonomous
Robots, 27(1):75–90.

Ko, J. and Fox, D. (2011). Learning GP-BayesFilters via Gaussian
process latent variable models. Auton. Robots, 30(1):3–23.

Lawrence, N. (2003). Gaussian process latent variable models for vi-
sualization of high dimensional data. In Proc. NIPS.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link
between Gaussian fields and Gaussian Markov random fields: the
stochastic partial differential equation approach. J. of the Royal Stat.
Society: Series B, 73(4):423–498.

Lovegrove, S., Patron-Perez, A., and Sibley, G. (2013). Spline fusion:
A continuous-time representation for visual-inertial fusion with ap-
plication to rolling shutter cameras. In Proc. BMVC.

Lu, F. and Milios, E. (1997). Globally consistent range scan alignment
for environment mapping. Auton. Robots, 4(4):333–349.

Maybeck, P. S. (1979). Stochastic Models, Estimation, and Control,
volume 141 of Mathematics in Science and Engineering. Academic
Press Inc.

Newman, P., Sibley, G., Smith, M., Cummins, M., Harrison, A., Mei,
C., Posner, I., Shade, R., Schroeter, D., Murphy, L., Churchill, W.,
Cole, D., and Reid, I. (2009). Navigating, recognising and describ-
ing urban spaces with vision and laser. IJRR, 28(11-12):1406–1433.

Oth, L., Furgale, P. T., Kneip, L., and Siegwart, R. (2013). Rolling
shutter camera calibration. In Proc. of The IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), Port-
land, USA.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes
for Machine Learning. MIT Press, Cambridge, MA.

Särkkä, S. (2006). Recursive Bayesian Inference on Stochastic Differ-
ential Equations. PhD thesis, Helsinki Uni. of Technology.

Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge Uni-
versity Press.

Särkkä, S. and Sarmavuori, J. (2013). Gaussian filtering and smooth-
ing for continuous-discrete dynamic systems. Signal Processing,
93(2):500–510.

Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatiotemporal learn-
ing via infinite-dimensional Bayesian filtering and smoothing: A
look at Gaussian process regression through Kalman filtering. IEEE

Signal Processing Magazine, 30(4):51–61.
Sibley, G., Matthies, L., and Sukhatme, G. (2010). Sliding window fil-

ter with application to planetary landing. Journal of Field Robotics,
27(5):587–608.

Smith, R. C. and Cheeseman, P. (1986). On the representation and
estimation of spatial uncertainty. IJRR, 5(4):56–68.

Smith, R. C., Self, M., and Cheeseman, P. (1990). Estimating uncertain
spatial relationships in robotics. In Cox, I. J. and Wilfong, G. T., ed-
itors, Autonomous Robot Vehicles, pages 167–193. Springer Verlag,
New York.

Solin, A. and Särkkä, S. (2014). Explicit link between periodic covari-
ance functions and state space models. In Proceedings of the Int.
Conf. on Artificial Intelligence and Statistics (AISTATS).

Stengel, R. F. (1994). Optimal Control and Estimation. Dover Publi-
cations Inc.

Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2010). Real-time
monocular SLAM: Why filter? In Proc. ICRA.

Thrun, S. and Montemerlo, M. (2006). The graph SLAM algorithm
with applications to large-scale mapping of urban structures. IJRR,
25(5-6):403–429.

Tong, C. H., Furgale, P., and Barfoot, T. D. (2012). Gaussian process
Gauss-Newton: Non-parametric state estimation. In Proc. of the 9th
Conf. on Computer and Robot Vision, pages 206–213.

Tong, C. H., Furgale, P. T., and Barfoot, T. D. (2013). Gaussian pro-
cess Gauss-Newton for non-parametric simultaneous localization
and mapping. IJRR, 32(5):507–525.

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000).
Bundle adjustment — A modern synthesis. In Triggs, B., Zisser-
man, A., and Szeliski, R., editors, Vision Algorithms: Theory and
Practice, volume 1883 of Lecture Notes in Computer Science, pages
298–372. Springer Berlin Heidelberg.

Walter, M. R., Eustice, R. M., and Leonard, J. J. (2007). Exactly
sparse extended information filters for feature-based SLAM. IJRR,
26(4):335–359.

