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Abstract In manufacturing, advanced robotic technol-
ogy has opened up the possibility of integrating highly
autonomous mobile robots into human teams. However,
with this capability comes the issue of how to maxi-
mize both team efficiency and the desire of human team
members to work with these robotic counterparts. To
address this concern, we conducted a set of experiments
studying the effects of shared decision-making author-
ity in human-robot and human-only teams. We found
that an autonomous robot can outperform a human
worker in the execution of part or all of the process of
task allocation (p < 0.001 for both), and that people
preferred to cede their control authority to the robot
(p < 0.001). We also established that people value hu-
man teammates more than robotic teammates; how-
ever, providing robots authority over team coordination
more strongly improved the perceived value of these
agents than giving similar authority to another human
teammate (p < 0.001). In post-hoc analysis, we found
that people were more likely to assign a disproportion-
ate amount of the work to themselves when working
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with a robot (p < 0.01) rather than human teammates
only. Based upon our findings, we provide design guid-
ance for roboticists and industry practitioners to design
robotic assistants for better integration into the human
workplace.

Keywords Human-Robot Teaming · Planning and
Scheduling · Team Performance · Human-Robot
Interaction

1 Introduction

There is a growing desire within the manufacturing field
to leverage the unique strengths of humans and robots
to form highly effective human-robot teams [11,35,36].
Robots are often not capable of performing the same
tasks as their human counterparts; and, upon the in-
troduction of a robot worker into their environment,
human workers often shift their focus toward the per-
formance of a smaller set of tasks that are better suited
for human dexterity and intelligence. The proper func-
tioning of a human-robot manufacturing team requires
strict coordination between human and robotic work
that satisfies hard temporal and spatial constraints.
Academic researchers and industry practitioners alike
have developed systems for the planning or scheduling
of human and robot work, where the humans are ei-
ther included in the decision-making process [11,13,45]
or the work is scheduled autonomously [2,7]. In this
work, we experimentally investigate whether decision-
making authority over how best to allocate work should
be shared between robots and human workers in order
to maximize both human-robot team fluency and hu-
man worker satisfaction.

Human workers often develop a sense of identity and
security from their roles or jobs, and many are used



to some degree of decision-making autonomy. As a re-
sult, a human worker may feel devalued when tasked by
an automated scheduling algorithm. Even if the algo-
rithm increases process efficiency at first, taking control
away from human workers may alienate them and, in
turn, ultimately damage overall productivity. On the
other hand, workers may find the process of schedul-
ing to be burdensome, and prefer to be part of an ef-
ficient team rather than have a role in the scheduling
process, if maintaining such a role decreases their ef-
ficiency. While autonomous scheduling algorithms can
provide near-optimal schedules within seconds, we also
want to determine how much decision-making authority
humans should have in the task allocation process, so
that they continue to feel appreciated while still main-
taining a high level of team efficiency.

We conducted a set of experiments studying the ef-
fects of shared decision-making authority within human-
robot and human-only teams. In our first experiment,
we studied the effects of allowing human and robotic
teammates more or less decision-making authority over
task allocation, or the assignment of which worker will
perform which task. We hypothesized that human work-
ers would be less capable of coordinating a human-robot
team than an autonomous scheduling algorithm. Sec-
ondly, we posited that a person’s desire to work on a
team would be greatest when that person had some con-
trol over their role on the team. Rather than finding
a desired “middle ground” between fully autonomous
and manual scheduling scenarios, we observed statisti-
cally significant evidence that allowing human subjects
greater authority over task allocation negatively influ-
enced both team fluency (p < .02) and the desire of
the subject to work with the robot again (p < 0.001).
In post-hoc analysis, we also found evidence of a desire
for subjects to monopolize the robot’s time, as well as
a tendency for the subjects to take a disproportionate
amount of the work onto themselves.

In our second experiment, we tested the effects of
shared decision-making authority over task allocation
between human teammates. By collecting data for sub-
jects working within a human-only team, we could study
how human behavior might differ when working with
another human compared with a robotic assistant. We
hypothesized that people would value their human as-
sistant more, even if the human and robotic teammates
served the same role on the team, but that a robotic
teammate that demonstrated novel scheduling capabil-
ity would have a stronger positive impact on subjects’
perceptions of the value of the robot than a human.
Both of these hypotheses were supported by the result-
ing data.

From our findings across both experiments, we are
able to provide guidelines for how to design effective
robotic teammates to work alongside human counter-
parts (Section 6).

2 Background

The development of effective human-machine systems
has been the focus of research for many within the
fields of human factors, robotics, manufacturing and
aerospace, among others. A key goal of this work has
been to leverage the unique strengths of both the hu-
man and robot. Researchers have defined an effective
robot teammate as one that permits humans to choose
their own actions and the timing of those actions on
the fly, dynamically anticipates and adapts to these de-
cisions, and supports fluid interaction that feels natural
to the human [8,14,31,39,42].

However, the human-robot interface has long been
identified as a major bottleneck for the utilization of
these robotic systems to their full potential [9]. Signifi-
cant research efforts have been aimed at enabling easier
use of these systems in the field, including the careful
design and validation of supervisory and control inter-
faces [4,12,18,24,26]. For example, Barnes et al. in-
vestigated mixed-autonomy for robot soldiers, with a
focus on various issues of interface design. They found
that operators were not efficient at the concurrent use of
more than one asset. Furthermore, operators performed
worse when controlling semi-autonomous ground vehi-
cles than when directly teleoperating those assets [4].

Goodrich et al. studied human-robot interaction in
the context of wilderness search and rescue. They pre-
sented several lessons learned from field trials using
camera-equipped UAVs, and observed that the ability
to effectively search for persons lost in remote areas was
hampered by an inability to clearly see targets in the
video obtained from the UAVs, as well as inadequate
representation of the quality and progress of the search
by the visualization tools.

Jones et al. investigated robotic agents assisting in
law-enforcement – specifically, Special Weapons and Tac-
tics (SWAT) operations. In these operations, a SWAT
team either has a practically unlimited time to plan be-
fore responding to a situation, or must react in real-time
to environmental uncertainties and actions taken by ad-
versaries. For this study, researchers identified the need
for robots to be able to effectively plan in both situa-
tions, but found that SWAT members were reluctant to
introduce uncertainty into the environment through the
use of the robot. Thus, roboticists must develop robots
and human-robot interfaces that allow for a robot to be



a valuable, dependable member of a team in order to
achieve effective utilization [26].

Recently, the DARPA Robotics Challenge provided
an opportunity for the robotics community to develop
and test real-world, human-machine systems [15,21,25,
32,41]. The teams participating in the challenge de-
ployed robots to perform a series of tasks in a mock
disaster-response scenario. Murphy [32] reported that
teams seemed to struggle with whether deploying robots
with task-level autonomy was practical or even feasible.
Where possible, the teams would incorporate auton-
omy into the system and, when that autonomy would
fail, the system would revert back to manual control
[32]. The dominant strategy employed was execution
approval, where only a small set of actions was reviewed
and approved by the supervisor at each step in the pro-
cess [32]. Murphy identified the lack of effort and ex-
pertise in user-interface design and the number of op-
erators required to control the robot as two key areas
of concern [32].

Related research efforts have focused on the inclu-
sion of a human in the decision-making loop to improve
the quality of task plans and schedules for robots or
semi-autonomous systems [3,11,12,19,20,30,45]. This
is particularly important in the event that the human
operators have knowledge of factors not explicitly cap-
tured by the system model, or if scheduling decisions
may have serious consequences. Studies of these cases
have supported preserving the human in the decision-
making loop by demonstrating that veteran operators
were sometimes able to use heuristics to quickly gen-
erate an efficient plan that outperformed optimization
algorithms [38].

These works aim to leverage the strengths of both
humans and machines in scheduling by soliciting user
input in the form of quantitative, qualitative, hard or
soft constraints over various scheduling options. For
example, Ardissono et al. presented a mixed-initiative
scheduler that supports users to organize and revise
their calendars. Their system relies on common tem-
poral reasoning techniques to provide possible sched-
ules, and even suggest ways to improve the schedule by
changing the timing of tasks [3].

Similarly, Zhang et. al developed a collaborative
planning system called Mobi. This system is a form
of “crowdware”, which relies on feedback from crowd
participants in order to improve schedule quality. Mobi
presents the current schedule to participants, who then
provide feedback on which activities are to be performed,
along with any temporal constraints that relate to those
activities. Mobi is able to iteratively generate sched-
ules as more constraints are added or revised, and can

provide guidance for the user when certain constraints
cannot be satisfied [45].

Berry et al. went a step further, and introduced
a personalized meeting scheduling assistant that at-
tempts to learn users’ preferences for scheduling meet-
ings within an office environment. This system allows
users to input activity requests and their preferences
for when those activities occur using a restricted nat-
ural language and direct manipulation of the schedule.
Berry et al. employed general-purpose machine learn-
ing algorithms to predict users’ preferences in order to
improve interaction with the scheduling assistant [6].

Supervisory systems have also been developed to as-
sist human operators with coordination of the activities
of four-robot or eight-robot teams [10]. Experiment re-
sults demonstrated that operators were less able to de-
tect key surveillance targets when controlling a larger
number of robots. Similarly, other studies have investi-
gated the perceived workload and performance of sub-
jects operating multiple mobile robots [1]. Results indi-
cated that the presence of more than two robots greatly
increased perceived workload and decreased the perfor-
mance of human subjects.

Some industry practitioners, however, have taken a
different approach to scheduling within human-robot
teams. For example, when fulfilling online orders in
warehouses, workers must navigate the warehouse to
find and collect the correct items, then return to the
packaging area to complete the order. Kiva Systems
has developed robots that are able to fetch items for
the worker and ensure that each worker is never idle
while waiting for the next item to package. One might
initially think that narrowing the role of workers in a
factory setting may cause them to feel less important;
however, CNN has reported that “robots make for a
more pleasant work environment” because they “elim-
inate much of the mundane physical labor employees
once did to retrieve products off shelves.” [2].

In this work, we are motivated by the application
of robotics in the manufacturing domain, where hu-
man workers will perform physical tasks in coordina-
tion with robotic partners. In some cases, the human
workers may also be responsible for tasking the team
and tracking progress. We seek to understand how much
control human workers should have over the assignment
of roles and schedules when working in teams that in-
clude robots. We specifically investigate the role of a
robotic teammate as opposed to a virtual scheduling
assistant. The embodiment of artificial intelligence in a
phyiscal platform has been shown to have an important
effect on the performance of the human-robot team and
the desire of a person to work with the system [28,29,
37,43].



The following sections will describe our experiment
to lend insight into the relationship between team effi-
ciency and worker satisfaction, as a function of the con-
trol authority possessed by human workers over team
scheduling, and the effects of sharing that control with
human versus robotic teammates.

3 Aim of the Experiment

We sought to understand the contributions of efficiency,
worker decision-making authority and human idle time
to objective and subjective measures of team perfor-
mance and worker satisfaction. Understanding the rela-
tionship between these measures will provide researchers
and industry practitioners with better insight into how
to design successful human-robot teams.

3.1 Experiment 1: Human-Robot Team

In our first experiment, we controlled the level of decision-
making authority over task allocation that the subject
has during work scheduling for their team. This inde-
pendent variable can have one of three values:

1. Manual control - The subject decides who will per-
form which tasks

2. Semi-Autonomous control - The subject decides which
tasks he will perform, while the robot allocates the
remaining tasks to itself and a human assistant

3. Autonomous control - The robot allocates all tasks.

The robot performed task sequencing in all three condi-
tions. We explored decision-making authority over task
allocation alone, rather than over both task allocation
and sequencing, in order to isolate the effects of task al-
location and mitigate experimental confound. We leave
the investigation of sequencing and joint task allocation
and sequencing to our future experimentation.

3.2 Experiment 2: Human-Only Team

While it is critical to understand how the level of decision-
making authority over task allocation affects team flu-
ency and worker satisfaction within a human-robot team,
we must also determine whether these effects are com-
mon to teams consisting solely of humans, or if there
is an intrinsic difference when working with a robotic
teammate. To compare the effects of team composition,
we conducted the same experiment as depicted above,
but with a human-only team.

3.3 Hypotheses

H1 Team productivity degrades when the subject has
more control over the rescheduling process. As a metric
of productivity, we measured both the time it takes to
reschedule and the time it takes to finish all tasks.
Determining the optimal schedule while under hard upper-
and lowerbound temporal constraints is NP-Hard [7].
Even for problems of a modest size, optimal scheduling
becomes intractable under these circumstances. While
we have seen a great deal of work in the development
of supervisory control interfaces and human in-the-loop
systems to leverage the strengths of human insight and
the computational power of autonomous scheduling al-
gorithms ([4,11,13,18,26]), we expected a near-optimal
scheduling algorithm to generate better schedules than
those generated by human subjects.
H2 Subjects prefer having partial control over the
rescheduling process to complete control, and prefer hav-
ing complete control to no control. We utilized a series
of subjective Likert-scale questions to determine which
level of control the subjects preferred.
We posited that allowing subjects decide which tasks
they would perform and having the robot complete the
remainder of the rescheduling would be most satisfy-
ing for the subject. In this scenario, a subject can se-
lect their preferred tasks according to perceived phys-
ical and mental demands, and has a more substantial
role in the success of their team. On the other hand,
we expected that giving subjects the responsibility of
quickly and optimally rescheduling all work would be
overwhelming and least desirable. Furthermore, allow-
ing the robot complete control would improve team flu-
ency, but at the cost of possibly devaluing the role of
the subject. Interestingly, as we discuss in Section 5, the
data did not support this hypothesis. Instead, a post-
hoc analysis with a Bonferroni correction showed that
subjects preferred the robot having complete control
over task allocation decisions.
H3 Subjects are more satisfied with their experience
working on the team when they are less idle. To test this
hypothesis, we utilized timing information about task
execution during the assembly process and the same set
of subjective Likert-scale questions used to test Hypoth-
esis 2.
Many studies have used idle time as a proxy for team
fluency [23,34,40], and we posited that subjects’ satis-
faction would be negatively correlated with idle time.
H4 Subjects are more satisfied and perceive the team
as more fluent when working with a human-only team
rather than a human-robot team.
In our experimental design, we afforded the human and
robot co-leaders identical functions and capabilities, by



restricting the human co-leaders’ capabilities such that
they were the same as those of the robot. We nonethe-
less hypothesized that subjects would value working
with a human co-leader more highly than working with
a robot co-leader.
H5 Providing robots authority over team coordina-
tion more strongly improves the perceived value of these
agents than giving similar authority to another human
teammate.
Humans are intelligent agents capable of advanced rea-
soning, dexterous manipulation, and multi-modal com-
munication. On the other hand, researchers are still
learning how to endow robots with these capabilities.
We anticipate that giving a robotic teammate author-
ity over task allocation provides a significant, novel ad-
vancement with respect to people’s expectations of a
robotic agent. We hypothesize that subjects’ views on
the perceived value of the robot co-leader will vary more
substantially with the robot’s increased authority over
task allocation, as compared to the perceived value of
a human teammate.

4 Experimental Methods

We designed an environment analogous to that of a
manufacturing setting. In our experiment, the subject
is identified as a member of a manufacturing team re-
sponsible for completing a set of tasks that includes
the fetching and building of part kits. For each trial,
the team must schedule and complete this set of tasks.
The goal was to assemble various components of a Lego
kit, as shown in Figure 1. A video describing the exper-
iment is available at http://tiny.cc/k4hzgx.

4.1 Materials and Setup

We used a Willow Garage PR2 platform, depicted in
Figure 2, as the robotic co-leader for our human-robot

Fig. 1: The Assembled Lego Model.

team. Relevant to the experiment, the PR2 has a holo-
nomic base with optical encoders for each wheel and a
270 deg Hokuyo laser at the base. We mapped the lab-
oratory using this laser, as well as the standard Gmap-
ping package in the Robot Operating System (ROS).
For navigation, we used the Adaptive Monte Carlo Lo-
calization (AMCL) [16] probabilistic localization pack-
age and a hybrid-dynamical proportional-derivative (PD)
controller. The locations of the pick-up and drop-off lo-
cations for each part kit were hard-coded into the robot
controller. The inspection component of the fetching
task was simulated.

4.2 Human-Robot Team Composition

In the first experiment, our human-robot manufactur-
ing team consisted of the human subject (the leader),
a robotic co-leader and a human assistant. The human-
only manufacturing team for the second experiment
consisted of the human subject (the leader), a human
co-leader and a human assistant. The subject was ca-
pable of both fetching and building, while the co-leader
was only capable of fetching. The role of the human as-
sistant, who was capable of both fetching and building,
was played by one of the experimenters in both scenar-
ios. This human assistant was included to more real-
istically represent the composition of a multi-member
team. The subjects either performed task allocation
alone or shared decision-making authority over task al-
location with the co-leader, depending on the experi-
mental condition. The co-leader was always responsible
for sequencing the team’s work. The human assistant
did not aid in the task allocation or sequencing process.

4.3 Experiment Task

In our scenario, the fetching of a kit required walk-
ing to one of two inspection stations where the kits
were located, inspecting the part kit and carrying it to
the build area (depicted in Figure 3). The architecture
of our fetching task is analogous to what is required
in many manufacturing domains: In order to adhere
to strict quality assurance standards, fetching a part
kit requires verification from one to two people that
all correct parts are in the kit, along with certification
from another person that this verification has been per-
formed. Building a part kit required putting together
the parts in the kit (depicted in Figure 4.

There were a number of constraints imposed on the
analog assembly process in order to model relevant con-
straints encountered during assembly manufacturing:
First, a part kit must have been fetched before it could

http://tiny.cc/k4hzgx


Fig. 2: This figure depicts the laboratory room where
the experiment took place. There are two locations
where the human and robot workers can inspect part
kits during a fetching task, and two locations where the
human workers can assemble the part kits.

be built. Also, no two agents were able to occupy the
same fetching or build station simultaneously. There
were two fetching stations and two build stations, as
shown in Figure 2, with four part kits located at each
fetching station. When fetching a part kit, inspection of
that kit must have been performed at the station where
it was initially located.

Fig. 3: This figure shows the participant verifying that
one of the kits has all of the necessary parts and putting
the parts one-by-one back into the part kit. This in-
spection is part of the fetching process. After verifying
that the correct parts are located within the kit, the
participant will bring the kit to the build stations. An
experimenter is shown here instructing the subject on
how to fetch a part kit before the experimental trials
begin.

Fig. 4: This figure shows the participant putting to-
gether the pieces of a kit as part of the build process.
An experimenter is shown here instructing the subject
on how to build the assembled lego model from the kit
before the experimental trials begin.

Because there were an equal number of building
stations and agents able to build, there were no ad-
ditional constraints imposed exclusively on build tasks.
However, because there were three agents able to fetch
but only two fetching stations, the agents were required
to take turns using these stations. Allowing workers to
sort through parts from multiple kits at the same loca-
tion risked the mixing of parts from different kits. We
imposed a 10-minute deadline from the time that the
fetching of a part kit began until that part kit had been
built, for similar reasons. In manufacturing, if a part or
part kit is missing from an expected location for too
long, work in that area of the factory will temporarily
halt until the missing pieces are found.

4.4 Formulation of the Human-Robot Scheduling
Problem

Assembly of the Lego model involved eight tasks τ =
{τ1, τ2, . . . , τ8}, each of which was composed of a fetch
and build subtask τi = {τfetchi , τ buildi }. The time each
subject took to complete each subtask Csubject−fetchi

and Csubject−buildi was measured during an experiment
training round. The times necessary for the human as-
sistant Cassist−fetchi and Cassist−buildi tasks were mea-
sured prior to the experiments. To provide a fair com-
parison, the human co-leader in the human-only team
worked at the same constant pace as the robot co-leader
for each subtask Cco-leader−fetchi = Cco-leader−fetchj =
120 seconds,∀i, j. Because the robot required signifi-



cantly more time to complete the fetching task than
the average person, we justified the longer duration to
the subjects by explaining that the experimenter was
asking both the human and robotic co-leaders to per-
form an extra auditing process on the part kits and
would therefore take longer than normal.

Constraints on lowerbound completion time of tasks
are presented in Equations 1-5

f
build
i − sbuildi ≥ Csubject−buildi −M(1− Asubject

τbuildi
) (1)

f
fetch
i − sfetchi ≥ Csubject−fetchi −M(1− Asubject

τ
fetch
i

) (2)

f
fetch
i − sfetchi ≥ Cco-leader−fetchi −M(1− Aco−leader

τ
fetch
i

) (3)

f
build
i − sbuildi ≥ Cassist−buildi −M(1− Aassist

τbuildi
) (4)

f
fetch
i − sfetchi ≥ Cassist−fetchi −M(1− Aassist

τ
fetch
i

) (5)

where Aagent
τsubtaski

is a binary decision variable for the as-
signment of agent ∈ {subject, assist, co-leader} to each
subtask ∈ {fetch, build} of τi ∈ τ . Variables sbuildi ,
sfetchi , f buildi , and ffetchi are the start and end times of
the build and fetch subtasks, respectively. M is a large
constant that allows for constraints to be selectively
enforced[5].

Constraints 6 and 7 ensured that each agent per-
formed only one subtask at a time.

syx − f
j
i ≥ −M

(
1− x〈τji ,τyx 〉

)
−M

(
2−Aagent

τji
−Aagent

τyx

)
,∀τ ji , τ

y
x ∈ τ (6)

sji − f
y
x ≥ −Mx〈τji ,τyx 〉

−M
(

2−Aagent
τji

−Aagent
τyx

)
,∀τ ji , τ

y
x ∈ τ , (7)

where x〈τji ,τyx 〉 ∈ {0, 1} is a binary decision variable

specifying whether τ ji comes before or after τyx .
Temporal constraints 8 and 9 ensured that the parts

necessary for each task were fetched before the building
process began, and that assembly was completed within
D = 10 minutes of fetching the parts.

∞ ≥ sbuildi − ffetchi ≥ 0,∀τi ∈ τ (8)

D ≥ f buildi − sfetchi ≥ 0,∀τi ∈ τ (9)

The spatial constraint in Equation 10 ensured that
no two agents occupied the same fetching station at the
same time.

sfetchj − ffetchi ≥ 0 ∨ sfetchi − ffetchj ≥ 0,

∀τi, τj ∈ τ s.t. Rfetchi = Rfetchj (10)

whereRfetchk denotes the physical floor area reserved for
the fetching subtask τfetchk . Fetching subtasks {τfetchi |i ∈

{1, 2, 3, 4}} incorporated the first inspection stationRfetch1 ,
while {τfetchi′ |i′ ∈ {5, 6, 7, 8}} used the second inspec-
tion station Rfetch2 .

Finally, one pair of tasks, τtwo−step = 〈τ3, τ4〉, was
related through a precedence constraint. Specifically,
participants were instructed that the first task in the
pair, τ3, be completed before beginning to fetch parts
for the second task, τ4. This constraint is presented in
Equation 11.

sfetchj − f buildi ≥ 0,∀ 〈τi, τj〉 ∈ τtwo−step (11)

The objective of the problem (Equation 12) was to
minimize the maximum amount of work assigned to any
one agent while satisfying the constraints in Equations
1 - 11.

obj = arg min

max
agent

∑
τi

( ∑
subtask

C
agent

τsubtaski
A
agent

τsubtaski

) (12)

Figure 6a shows the set of tasks and associated tem-
poral constraints as a Simple Temporal Network [33].
Nodes represent events (e.g., sfecth2 is the start of sub-
task τfetch2 ), and edges represent interval temporal con-
straints (e.g., an edge [0, d] between sfetch2 and f build2

means that subtask τ build2 must finish between 0 and
d units of time after the start of τfetch2 ). To schedule
the task set, one must assign agents to subtasks and or-
der the nodes to minimize the makespan such that each
agent ∈ {subject, assist, co−leader} performs no more
than one subtask at a time, and resources Rfetch1 and
Rfetch2 are used by at most one agent at a time. This
network shows subtask durations as a variable Cji (e.g.,
Cbuild1 ). When an agent is assigned to a subtask, the
duration of the subtask is set to the duration required
by that agent to complete that subtask (e.g., Cbuild1 as-
signed to subject would become Csubject−build1 ). Lastly,
node s is simply a reference point to be scheduled at
t = 0.

4.5 Human-Robot Coordination

Subjects were provided the expected time necessary for
each agent to complete each of the 16 subtasks under
conditions where the subject performed the task al-
location. For the manual condition, subjects specified
the assignment of agent ∈ {subject, assist, co-leader}
to each subtask ∈ {fetch, build} of τi ∈ τ by writ-
ing the assignment list on a blank paper. In the semi-
autonomous condition, subjects selected only the sub-
tasks that they would complete themselves.

Under the manual condition, the experimenter pro-
vided the subjects’ selections to the human or robot



co-leader, and the co-leader would then sequence all of
the subtasks. In the semi-autonomous condition, the
experimenter provided the subjects’ selections to the
human or robot co-leader, who would then divide the
remaining subtasks between the co-leader and the hu-
man assistant and sequence all of the subtasks. Under
the autonomous condition, the co-leader allocated and
sequenced all of the subtasks.

4.6 Scheduling Mechanism

To enable the co-leader to schedule with varying degrees
of decision-making input from the subject, we adapted
Tercio, a fast, near-optimal scheduling algorithm that
divides the scheduling process into task allocation and
sequencing subroutines [17].

As shown in Figure 5, the algorithm takes as input
a temporal constraint problem, a list of agent capabil-
ities (i.e., the lowerbound, upperbound and expected
duration for each agent performing each task) and the
physical location of each task. Tercio first solves for an
optimal task allocation by ensuring that the minimum
amount of work assigned to any agent is as large as
possible, as depicted in Equation 13. In this equation,
Agents is the set of agents, Aa

τji
is a task allocation

variable that equals 1 when agent a is assigned to sub-
task τ ji and 0 otherwise, A is the set of task allocation
variables, A∗ is the optimal task allocation and Ca

τji
is the expected time it will take agent a to complete
subtask τ ji .

A∗ = max
{A}

min
Agents

∑
j

Aaτi × C
a
τi ,∀a ∈ Agents (13)

After determining the optimal task allocation, A∗,
Tercio uses a fast sequencing subroutine to complete the
schedule. The sequencer orders the tasks through simu-
lation over time. Before each commitment is made, the
sequencer conducts an analytical schedulability test to
determine whether task τi can be scheduled at time t
given prior scheduling commitments. If the schedulabil-
ity test returns that the commitment can be made, the
sequencer then orders τi and continues. If the schedula-
bility test cannot guarantee commitment, the sequencer
evaluates the next available task.

If the schedule, consisting of a task allocation and a
sequence of tasks, does not satisfy a specified makespan,
a second iteration is performed by finding the second-
most optimal task allocation and the corresponding se-
quence. The process terminates when the user is satis-
fied with the schedule quality, or when no better sched-
ule can be found. In this experiment, we specified that

Tercio run for 25 iterations and return the best sched-
ule.

In the first experiment, where the subject worked
with a robot co-leader, the robot used Tercio to per-
form task allocation and sequencing. In the scenario
where the subject performed task allocation, the robot
used Tercio to sequence tasks and return a flexible,
dispatchable schedule [33]. When the subject decided
which tasks he or she would perform, the robot used
Tercio to find an efficient schedule by iterating over
different allocations to the robot and the human assis-
tant. Tercio receives the upperbound, lowerbound, and
expected duration of each task, and uses the expected
durations to compute near-optimal schedules. The up-
perbound and lowerbound times are used for comput-
ing a flexible, dispatchable schedule to allow subjects
to work faster or slower than expected, if necessary. We
set the lowerbound duration of subtasks assigned to the
subject to be 25% faster than the speed observed dur-
ing training to mitigate subject idle time due to learning
effects.

Figure 6b shows an example solution generated by
Tercio. Tercio takes as in put the Simple Temporal Net-
work from Figure 6a. Tercio then generates an assign-
ment of which agents will perform each task and the
sequencing of those tasks such that each agent only
performs one subtask at a time and each resource is
used by only one agent at a time. Rather than gener-
ating a set of fixed timepoints for the schedule, Tercio
adds ordering constraints to the original Simple Tem-
poral Network to enforce the schedule while preserving
flexibility where possible [44].

In the second experiment, where the subject worked
with a human co-leader, the human co-leader simulated

Fig. 5: Tercio takes as input a temporal constraint prob-
lem and finds a satisficing, flexible schedule by utilizing
an analytical schedulability test to ensure a feasible so-
lution.



(a) This figure shows the unscheduled task set as a Simple Temporal Network.

(b) This figure shows an example of a scheduled task set.

Fig. 6: The robot uses Tercio to schedule the task set shown in Figure 6a. Tercio returns the solution in the form
of a flexible, dispatchable schedule shown in Figure 6b.



allocating and sequencing tasks with pen and paper.
The human co-leader provided a simulated schedule to
an experimenter, who would run Tercio directly instead
of using the human co-leader’s schedule. This simula-
tion is intended to suggest to the subject that the hu-
man co-leader was actually responsible for scheduling,
rather than an autonomous scheduling algorithm.

In both experiments, Tercio served as a dispatcher,
communicating to the subject, human assistant and
co-leader when to initiate their next subtasks. Tercio
would tell each agent when they were able to start or
finish each subtask, and each agent would send a mes-
sage acknowledging the initiation or completion of a
subtask. The team members communicated this infor-
mation by sending simple, text-based messages over a
TCP/IP GUI1.

4.7 Procedure

We first introduced the subject to the manufacturing
scenario. Each subject was told that they were a mem-
ber of a manufacturing team. We explained the various
temporal and spatial constraints of our analog manu-
facturing task, as well as the capabilities and roles of
each team member.

We then conducted a training round where the sub-
ject fetched and built each of the eight part kits. We
timed how long it took the participant to complete each
task, and provided this information to the co-leader and
the subject for use when scheduling the work. Partic-
ipants were instructed to work as quickly as possible
without making mistakes. Next, the experimenter ex-
plained the constraints imposed on the assembly pro-
cess, and the subject was trained on how to communi-
cate with the Tercio dispatcher via the TCP/IP GUI.

We then performed three trials in which the subject
was exposed to each of the three conditions (i.e., man-
ual, semi-autonomous or autonomous control), varying
the order of the conditions across subjects. Each trial
consisted of scheduling the work and completing all
tasks according to that schedule. In scenarios where the
subject participated in the task allocation process, we
provided the subject with information about how long
it took each agent to perform each task. The subject
was instructed to quickly construct an efficient task al-
location with the goal of minimizing the amount of time
spent rescheduling and completing the tasks. Subjects
took approximately 5 minutes when asked to allocate
all of the tasks, and approximately 2 minutes when de-
ciding which tasks to complete themselves.

1 SocketTest v3.0.0 c©2003-2008 Akshathnkumar Shetty
(http://sockettest.sourceforge.net/)

Either autonomously or according to the task alloca-
tion information provided by the subject, the co-leader
completed the rescheduling and the assembly process
began. Each trial took approximately 15 minutes. Af-
ter each trial, subjects were asked to answer a post-test
questionnaire, which consisted of 21 Likert-scale ques-
tions assessing their experience. The experiment con-
cluded with a final post-test questionnaire consisting of
three Likert-scale questions and two free-response ques-
tions, as shown in Tables 1 and 2.

After reviewing the results of the first experiment,
where subjects worked with a robot co-leader, we wanted
to ask subjects an additional set of questions to better
understand their task allocation strategies, preferences
and impressions of the team dynamic. As such, we in-
cluded an additional post-test questionnaire for sub-
jects in our second experiment, where subjects worked
with a human co-leader. The contents of this second
post-test questionnaire are depicted in Table 3.

4.8 Experimental Design

The goal of our experiment was twofold. First, we sought
to understand the relationship between efficiency and
worker satisfaction, as a function of how much control
the worker has over his or her own role as part of a
human-robot manufacturing team. Second, we wanted
to know whether the effects of varying subjects’ au-
thority over their own role differed when the subjects
worked within a human-robot versus a human-only team.

To test our experimental hypotheses, we employed a
2x3 mixed-factorial design. Our first factor, team com-
position, was of a between-subjects design; the second
factor, how decision-making authority was shared amongst
the team members, was within-subjects.

In prior experience, we have observed human sub-
jects assemble Lego models at vastly differing rates. A
within-subjects design for varying decision-making au-
thority can help to mitigate the effects of inter-subject
variability. However, because of this design, we needed
to account for possible learning effects over the differ-
ent trials, as the speed at which subjects build generally
increases with practice. To account for this factor, we
balanced the assignment subjects into groups for each
of the k! orderings of our k = 3 conditions.

To address the potential variability in the character-
istics of the human assistant on each team, a laboratory
researcher played the role of the human assistant in all
trials. This assistant performed tasks at a nearly con-
stant speed, and did not aid the subject in rescheduling
the work.

http://sockettest.sourceforge.net/


4.9 Objective Evaluation

Objective measures of team fluency consist of assem-
bly time, rescheduling time and idle time. “Assembly
time” is defined as the difference between the time the
last task was completed and the time the first task was
initiated. “Rescheduling time” is defined as the sum of
the time taken to allocate and sequence tasks. (The ex-
perimenter was required to input the task allocation of
the subject into the robot’s scheduling algorithm, but
we did not include this as part of the rescheduling time.)
Lastly, we defined “idle time” as the sum of all periods
during which the subject was not working.

4.10 Subjective Evaluation

Subjects received questionnaires after each trial, con-
sisting of 21 Likert-scale questions, as shown in Table 1.
Subjects who worked with a human co-leader received
the same questionnaire as those who did not, with the
word “robot” and the phrase “human worker” each re-
placed by “human co-leader”. Hoffman proposed a set
of composite measures for the evaluation of human-
robot fluency [22]. Questions 1-3 corresponded to Hoff-
man’s measure of Robot Teammate Traits, and Ques-
tions 4-13 represented Hoffman’s adaptation of the “Work-
ing Alliance Index” for human-robot teams, measuring
the quality of the alliance amongst the teammates. We
added questions 14-21 based on our own insight. Sub-
jects were not informed of their rescheduling and build
times during the experiment.

Subjects also received a post-test questionnaire af-
ter completing the three trials, as shown in Table 2.
This questionnaire collected demographic information,
and also included three additional Likert-scale ques-
tions summarizing the experience of the subject, along
with two open-ended questions. Subjects who worked
with a human co-leader received the same questionnaire
as those who worked with a robot, with the word “PR2”
replaced by “human co-leader,” and the phrase “human
teammate” replaced with “human assistant”.

For our second experiment, where subjects worked
with a human co-leader, we included a second post-
test questionnaire, as depicted in Table 3. The goal of
this questionnaire was to better understand how sub-
jects performed task allocation, their views on different
team roles and their preferences for performing different
types of tasks.

Table 1: Subjective measures - post-trial questionnaire

Robot Teammate Traits
1. The robot was intelligent.
2. The robot was trustworthy.
3. The robot was committed to the task.
Working Alliance for Human-Robot Teams
4. I feel uncomfortable with the robot. (reverse scale)
5. The robot and I understand each other.
6. I believe the robot likes me.
7. The robot and I respect each other.
8. I feel that the robot worker appreciates me.
9. The robot worker and I trust each other.
10. The robot worker perceives accurately what my
goals are.
11. The robot worker does not understand what I am
trying to accomplish. (reverse scale)
12. The robot worker and I are working towards mu-
tually agreed upon goals.
13. I find what I am doing with the robot worker
confusing. (reverse scale)
Additional Measures of Team Fluency
14. I was satisfied by the teams performance.
15. I would work with the robot the next time the
tasks were to be completed.
16. The robot increased the productivity of the team.
17. The team collaborated well together.
18. The team performed the tasks in the least time
possible.
19. The robot worker was necessary to the successful
completion of the tasks.
20. The human worker was necessary to the successful
completion of the tasks.
21. I was necessary to the successful completion of
the tasks.

5 Results

In this section, we report the demographics of the par-
ticipants, as well as statistically significant and insight-
ful findings from our experiment. We define statistical
significance at the α = .05 level.

5.1 Effects of Sharing Decision-Making Authority with
a Robot Co-Leader

5.1.1 Participants

Twenty-four participants were included in the experi-
ment. Each subject worked on the human-robot manu-
facturing team under each level of decision-making au-
thority, in accordance with a within-subjects design. To
control for learning effects, participants were balanced
between one of six groups, including one group for each
of the six possible sequences of the three conditions,
and four subjects for each sequence. The participants
(14 men and 10 women) had a mean age of 27±7 years
(range 20-42) and were recruited via email and fliers
distributed around a university campus.



Table 2: Subjective measures - post-test questionnaire
# 1

Overall Preference
22. If it was the PR2s job to reschedule the work, I
would want to work with the robot again.
23. If it was my job to reschedule my work and the
PR2 reschedule the work for the PR2 and my human
teammate, I would want to work with the robot again.
24. If it was my job to reschedule the work for myself,
my human teammate, and the PR2, I would want to
work with the robot again.
Open Response Questions
25. Which of the three scenarios did you prefer and
why?
26. If you were going to add a robotic assistant to a
manufacturing team, to whom would you give the job
of rescheduling the work and why?

Table 3: Subjective measures - post-test questionnaire
# 2

Overall Preference
27. I used a different strategy when scheduling when
I could only pick which tasks I would perform versus
when I could pick which tasks each team member
would perform.
28. When I could only pick which tasks I would per-
form, I tried to isolate my work (or work separately)
from the rest of the team.
29. When I could pick which tasks each team member
would perform, I tried to isolate my work (or work
separately) from the rest of the team.
30. I thought that it would be better if I performed
more of the work.
31. The teammate that performs the most work is the
most important member of the team.
32. The teammate that performs the scheduling is the
most important member of the team.
33. I prefer fetching.
34. I prefer building.

5.1.2 Objective Measures of Human-Robot Team
Fluency

We considered the team’s assembly time and the sub-
jects’ rescheduling time as a function of the subjects’
decision-making authority. Recall that hypothesis H1
predicted that the team would be more fluent, in terms
of both assembly and rescheduling time, when the robot
had more authority over task allocation. Rescheduling
and assembly times are depicted in Figure 7.

Variance analysis demonstrated statistically signifi-
cant differences in the distribution of rescheduling time
as a function of decision-making authority (F (2, 69) =
55.1, p < 0.01). Rescheduling time under the autonomous
condition (M = 30, SD = 0) was lower than for the
semi-autonomous condition (M = 108, SD = 69; t(23) =
7.24, p < 0.01 for comparison). Similarly, rescheduling

time under the semi-autonomous condition was lower
than for the manual condition (M = 315, SD = 154;
t(23) = 7.23, p < 0.01 for comparison).

Repeated-measure analysis of variances indicated sig-
nificant differences in assembly time as a function of
condition (F (2, 46) = 3.84, p = 0.03). Assembly time
under the autonomous condition (M = 520, SD = 60.6)
was faster than under either the semi-autonomous (M
= 564, SD = 83.9; t(23) = 2.37, p = 0.01 for com-
parison) or manual conditions (M = 582, SD = 115;
t(23) = 2.18, p = 0.02 for comparison).

Learning effects on assembly time were observed as
a function of trial number (ANOVA F (2, 69) = 3.68,
p = .03). Specifically, assembly times during the third
trial (M = 519, SD = 85) were lower than those ob-
served during the first (M = 585, SD = 49; t(23),
p = .002 for comparison) and second trials (M = 567,
SD = 75; t(23), p = .022 for comparison). Nonetheless,
the k–factorial design counterbalanced these learning
effects, and results indicated significant differences in
both assembly time (F (2, 46) = 3.84, p = .03) and
rescheduling time (F (2, 69) = 55.1, p < 0.01) as a func-
tion of the level of automation, thereby supporting H1.

The participants did not repeat the rescheduling
process. Each participant performed task allocation for
the entire team in the manual condition, and each par-
ticipant selected their own tasks in the semi-autonomous
condition. It is possible that participants would have
been able to perform task allocation more quickly with
practice. However, we leave such an investigation of
learning effects for future work.

5.1.3 Subjective Measure of Satisfaction as a Function
of Task-Allocation Authority

Recall that our second hypothesis H2 stated that work-
ers would prefer partial authority over the task process

Fig. 7: This figure depicts the average and standard
error for the assembly times for each condition.



Table 4: P-values for statistically significant post-trial
questions (N=24). Statistically significant values are
shown in bold.

Question Omnibus Auto v. Semi v. Auto. v.
Man. Man. Semi.

1 p = 0.033 p = 0.007 p = 0.089 p = 0.062
5 p = 0.008 p = 0.001 p = 0.011 p = 0.036
10 p = 0.006 p < 0.001 p = 0.034 p = 0.012
11 p = 0.006 p = 0.001 p = 0.023 p = 0.008
14 p < 0.001 p < 0.001 p < 0.001 p < 0.001
15 p = 0.003 p < 0.001 p = 0.020 p = 0.008
16 p = 0.012 p = 0.002 p = 0.052 p = 0.016
17 p = 0.001 p < 0.001 p = 0.005 p = 0.003
18 p = 0.001 p < 0.001 p = 0.011 p < 0.001

rather than total control, and that having no control
would be preferable to complete control. An omnibus
Friedman test confirmed a statistically significant dif-
ference in the distribution of a subset of the Likert-scale
responses for the three conditions, as shown in Table
4. A pair-wise Friedman test supported our hypothe-
sis that the subjects were more satisfied while under
the autonomous and semi-autonomous conditions com-
pared with the manual condition for the questions listed
in Table 4.

However, responses to no single question suggested
that subjects favored the semi-autonomous condition
over the autonomous condition. A post-hoc Friedman
test with a requisite Bonferroni correction of α

3 indi-
cated that the subjects actually thought more highly
of the robot and team interaction while under the au-
tonomous condition rather than the semi-autonomous
condition (i.e., questions 5, 11, 14, 15, 16, 17 and 18).

The post-test questionnaire included three questions
designed to determine whether subjects would be likely
to work with the robot again, given the same levels of
decision-making authority allotted to the subject and
the robot as had occurred in the experiment. Applying
the omnibus Friedman test across Questions 22-24 from
Table 2, we observed a statistically significant difference
in the subjects’ responses (p < 0.001). Post-hoc analysis
using pair-wise comparison with a Bonferroni correction
confirmed that subjects agreed they were more likely to
work with the robot again if the robot performed task
allocation autonomously, rather than if the subject and
robot shared task allocation authority (p < 0.001) or
the subject had complete task allocation authority (p <
0.001). Similarly, subjects were more likely to report
that they would work with the robot again if the robot
and human shared task allocation authority than if the
subject had sole authority over task allocation (p =
0.001). Given the strong preference observed for the
autonomous condition, we revised hypothesis H2 for
future experiments to state that subjects prefer working

Table 5: Representative open-ended responses from
subjects preferring the manual, semi-autonomous, and
autonomous conditions.

Manual
“There is something soul-sucking about taking the
thinking away from the workers.”

Semi-autonomous
“I prefer the scenario where I pick the tasks I want,
because some tasks are more fun for me than others
... even if it might slightly increase completion time.”
“I got to schedule my work and the robot filled in the
rest of the schedule with the purpose of optimizing
time.”

Autonomous
“It removes the possibility of scheduling being influ-
enced by the ego of the team leader.”
“Comparing times and planning for three agents was
a headache for me; the robot did a much better job.
The whole operation felt more coordinated.”
“[It is] easier for the robot to deal with scheduling
many complex tasks than it is for a human, because
it can consider all at once [without] getting over-
whelmed.”

with a robot co-leader with more authority over task
allocation.

5.1.4 Analysis of Open-Ended Responses: Robot
Co-Leader

Questions 25 and 26 of the post-trial questionnaire of-
fered subjects the opportunity to provide open-ended
responses to prompts regarding which condition they
preferred, and to whom they would prefer to give con-
trol of task allocation to in a manufacturing setting.
While the majority of subjects’ responses were support-
ive of a robotic assistant that autonomously allocated
work, we also provide representative responses from
subjects who preferred the manual, semi-autonomous
and autonomous conditions, as shown in Table 5. While
most of the subjects’ responses directly supported one
of the three experimental conditions, some suggested a
“blended” level of control, where the robot would “as-
sign tasks but allow the person to override them (if, for
example, they become overwhelmed or bored).”

5.1.5 Subject Idle Time and Satisfaction

Our third hypothesis H3 stated that subjects would be
more satisfied working on a human-robot team when
they were less idle. Our post-test questionnaire prompted
subjects to rate the degree to which they would want to
work with the robot again, depending on the robot co-
leader’s role in the scheduling process, with one ques-
tion for each of the three conditions. Both idle time



and subject satisfaction were dependent variables in
our experiment. The three experiment conditions (au-
tonomous, semi-autonomous and manual) were ranked
according to each subject’s preference; the condition’s
rank was then plotted against the corresponding idle
time for each subject-condition pair. The Pearson product-
moment correlation coefficient of satisfaction and idle
time (r = 0.125) was not statistically significant (t(23) =
0.90, p = 0.367).

5.1.6 Post-hoc Analysis

We conducted a post-hoc analysis to better understand
the differences in the ways that people allocated work
while under the various experiment conditions. We ob-
served two important behaviors indicating statistical
significance as a function of decision-making authority:
the amount of work subjects allocated to themselves,
and the number of times that the robot fetched part
kits for the subject.

First, we measured the amount of work subjects al-
located to themselves relative to the amount of work
the robot allocated to subjects, as a function of time.
As shown in Figure 8, we found that subjects allo-
cated more work to themselves under both the semi-
autonomous (M = 12%, SD = 5%; t(23) = 2.31, p <
.016) and manual conditions (M = 11%, SD = 5%;
t(23) = 2.30, p < .016). As such, we established a new
hypothesis, H6: When subjects have more control over
their work, they prefer to take on a disproportionate
share of the work. However, this observed trend could
be a novelty, and could wear off as the work becomes
more routine.

Fig. 8: The average and standard error of the percent
difference between the time the subjects were assigned
to work under the semi-autonomous and manual con-
ditions relative to the autonomous condition.

Second, we sought to understand how the subjects
were tasking the robot. Figure 9 depicts the number of
trials in which the robot co-leader fetched more part
kits for the human assistant than for the subject. A χ2

test indicated that the number of trials in which the
robot co-leader fetched more for the human assistant
than for the subject in the autonomous condition (6 of
24 trials) was significantly different than the number
of times the robot fetched for the assistant (20 of 24
trials), χ2 = 5, p < 0.01. Subsequently, we established
a new hypothesis, H7: Subjects prefer the co-leader to
fetch part kits for them. We note, however, that sub-
jects could have been exhibiting lack of experience in
how to best utilize the robotic teammate.

5.2 Comparing the Effects of a Robot versus a Human
Co-Leader

In our first round of experiments, we observed statis-
tically significant differences in team fluency and sub-
ject satisfaction when the subject worked with a robotic
versus a human co-leader. However, we need to under-
stand whether these differences are inherent when shar-
ing decision-making authority over task allocation with
any co-leader – whether human or robot – or if there
is something intrinsic to a robotic co-leader that influ-
ences team dynamics. As such, we conducted a follow-
up experiment and report the results here.

5.2.1 Objective Measures of Human-Only versus
Human-Robot Team Fluency

We considered the team’s assembly time and the sub-
jects’ rescheduling time as functions of the subjects’

Fig. 9: The number of trials in which the robot co-leader
fetched more parts kits for the human assistant than for
the subject.



decision-making authority. Recall that hypothesis H1
predicted that the team would be more fluent, in terms
of both assembly and rescheduling time, when the hu-
man co-leader had more control authority over task al-
location.

As in the first experiment, with a robot co-leader,
variance analysis demonstrated statistically significant
differences in the distribution of rescheduling time as
a function of decision-making authority with a human
co-leader (F (2, 69) = 51.0, p < 0.01). Rescheduling
time under the autonomous condition (M = 30, SD
= 0) was lower than for the semi-autonomous condi-
tion (M = 106, SD = 60.8; t(23) = 6.11, p < 0.01).
Likewise, rescheduling time under the semi-autonomous
condition was lower than for the manual condition (M
= 220, SD = 95.9; t(23) = 4.97, p < 0.01). Figure 10
depicts the rescheduling time for both human-robot and
human-only teams. Two-factor analysis of variance with
replication showed no statistical significance between
human-robot and human-only teams (F (1, 142) = 0.429,
p = 0.514).

To compare assembly times, we considered the per-
cent difference between the assembly time in the semi-
autonomous and autonomous conditions versus the au-
tonomous condition. This comparison is shown in Fig-
ure 11. Two-factor analysis of variance demonstrated
significant differences in assembly time, as a function
of the level of decision-making authority (F (2, 46) =
3.72, p = .027) and whether the co-leader was a hu-
man or robot (F (1, 46) = 4.66, p = 0.033). The in-
teraction effect between decision-making authority and
team composition was not significant (F (1, 46) = 4.65,
p = 0.628).

Fig. 10: The average and standard error of the re-
scheduling time across different conditions for decision-
making authority and type of co-leader.

Based on our post-hoc analysis of the experiment
in which subjects worked with a robot co-leader, we
established two new hypotheses: H6 and H7. Recall
that hypothesis H6 states that subjects prefer to take
on a disproportionate share of the work themselves, and
hypothesis H7 states that subjects are biased to direct
the robot co-leader to fetch parts for them. We tested
these hypotheses in a scenario where the subjects are
working with a human co-leader, in order to determine
whether the observed trends persist.

We performed an omnibus z-test for one mean to
test hypothesis H6, and observed no statistically sig-
nificant evidence supporting it (M = −1.7%, SD =
25.1%; z = −0.388, p = 0.654). Performing a post-
hoc analysis with a Bonferroni correction α

2 indicated
that subjects allocated statistically significantly more
work to themselves under the manual condition (M =
7.274%, SD = 27.927%) compared with the semi-
autonomous condition (M = −10.598%, SD = 28.096%;
t(23) = 2.043, p = 0.013 for comparison). Results from
a one-sample t-test showed a statistical trend for sub-
jects to allocate less work to themselves under the semi-
autonomous condition (M = −10.598%, SD = 28.096%)
than the autonomous condition (t(23) = −1.859, p =
0.038).

We also compared the amount of work allocated
to the subjects when working with a human versus a
robot co-leader (Figure 12). A two-factor analysis of
variance with replication indicated a statistically signif-
icant difference between teams with a human co-leader
and teams with a robot co-leader (F (1, 69) = 6.005,
p < 0.016). Results from a t-test showed that subjects
allocated statistically significantly less work to them-

Fig. 11: The average and standard error of the assem-
bly time across different conditions for decision-making
authority and type of co-leader.



selves when working with a human co-leader (M =
−10.598%, SD = 28.096%) than when working with a
robot co-leader (M = 12.186%, SD = 26.065%) under
the semi-autonomous condition (t(23) = −3.077, p =
0.003).

Next, we tested hypothesis H7 to determine whether
subjects preferred the human co-leader to fetch parts
for them (Figure 13). Pearson’s χ2 test showed that the
number of trials in which the human co-leader fetched
more for the human assistant than for the subject in
the autonomous condition (12 of 24 trials) was not sta-
tistically significantly different than in the manual con-
dition (12 of 24 trials), χ2 = 0.0, p = 1.0.

Fig. 12: The average and standard error of the percent
difference between the time the subjects were assigned
to work under the semi-autonomous and manual con-
ditions relative to the autonomous condition.

Fig. 13: The number of trials in which the human co-
leader fetched more parts kits for the human assistant
than for the subject.

5.2.2 Subjective Measure of Satisfaction When
Working with Human and Robot Co-leaders

Based upon our findings when subjects worked with a
robot co-leader, we revised our second hypothesis H2 to
state that workers prefer working with a co-leader with
more decision-making authority. We now evaluate our
revised hypothesis for teams with a human co-leader.
An omnibus Friedman test for the post-trial (Table 1)
and post-test (Table 2) questionnaires showed statis-
tically significant differences only in the responses to
Questions 14 (p = 0.043) and 18 (p = 0.016) from Table
1. The autonomous condition received the most posi-
tive Likert-scale responses, while the semi-autonomous
condition garnered the most negative Likert-scale re-
sponses. These questions measured subjects’ percep-
tions of how quickly the team completed the tasks and
how well the team worked together. It is important to
note that the time to completion for teams with hu-
man co-leaders was significantly faster under the semi-
autonomous condition than the manual condition.

Next, we compare the effects of a human versus
a robot co-leader on the subjective measures of par-
ticipant satisfaction. Recall that hypothesis H4 states
that subjects would be more satisfied with a human
co-leader. We used a Mann-Whitney U test to com-
pare the Likert-scale responses from post-trial ques-
tionnaires following experiments with human co-leaders
to those with a robot co-leader. Subjects agreed more
strongly that the human co-leader liked, appreciated,
and better understood the subject (Question 6, z =
2.455, p = 0.018; Question 8, z = 3.256, p = 0.002;
and Question 5, z = 2.8468, p = 0.007); that the sub-
ject and human co-leader understood, trusted, and re-
spected each other (Question 5, z = 2.8468, p = 0.007;
Question 9, z = 2.214, p = 0.032; and Question 7,
z = 3.926, p < 0.001); and that both the subject and
human co-leader were necessary for the completion of
the tasks (Question 21, z = 2.451, p = 0.018; and Ques-
tion 19, z = 5.674, p < 0.001).

Hypothesis H5 states that providing robots author-
ity over team coordination more strongly improves the
perceived value of these agents than giving similar au-
thority to another human teammate. We evaluated this
hypothesis using xR,max(i) and xR,min(i), defined as
the maximum and minimum Likert-scale ratings asso-
ciated with a given question for subject i working with
a robot co-leader across all three experiment condi-
tions. Similarly, xH,max(j) and xH,min(j) are the corre-
sponding maximum and minimum Likert-scale ratings
for subject j working with a human co-leader across
all three experiment conditions. We evaluated the pair-
wise frequency with which subjects i working with the



Table 6: Differences between Likert-scale responses for
the autonomous and manual conditions when working
with a robot versus a human co-leader.

Question Difference Robot Co-Leader versus
Human Co-Leader

1 ∆R > ∆H χ2 = 112.232,p < 0.001
2 ∆R > ∆H χ2 = 4.672,p < 0.031
5 ∆R > ∆H χ2 = 7.291,p = 0.007
6 ∆R > ∆H χ2 = 14.070,p < 0.001
8 ∆R > ∆H χ2 = 5.036,p = 0.025
9 ∆R > ∆H χ2 = 17.831,p < 0.001
10 ∆R > ∆H χ2 = 39.287,p < 0.001
11 ∆R > ∆H χ2 = 5.000,p = 0.250
12 ∆R > ∆H χ2 = 7.170,p = 0.007
13 ∆R > ∆H χ2 = 15.515,p < 0.001
14 ∆R > ∆H χ2 = 51.564,p < 0.001
15 ∆R > ∆H χ2 = 104.836,p < 0.001
16 ∆R > ∆H χ2 = 100.000,p < 0.001
17 ∆R > ∆H χ2 = 83.571,p < 0.001
18 ∆R > ∆H χ2 = 84.366,p < 0.001
19 ∆R > ∆H χ2 = 105.780,p < 0.001

22-24 ∆R > ∆H χ2 = 68.702,p < 0.001

4 ∆H > ∆R χ2 = 24.923,p < 0.001
20 ∆H > ∆R χ2 = 68.702,p < 0.001
21 ∆H > ∆R χ2 = 5.838,p = 0.016

robot co-leaders exhibited a larger difference in Likert-
scale responses across experiment conditions than sub-
jects j working with a human co-leader. We indicated
that the difference in Likert-scale responses for sub-
ject i working with a robot co-leader were greater than
for subject j with a human co-leader if xR,max(i) ≥
xH,max(j) and xH,min(j) > xR,min(i), or else if xR,max(i) >
xH,max(j) and xH,min(j) ≥ xR,min(i). Similarly, the
difference in Likert-scale responses for subject j work-
ing with a human co-leader were indicated to be greater
than for subject i with a robot co-leader if xH,max(j) ≥
xR,max(i) and xR,min(i) > xH,min(j), or else if xH,max(j) >
xR,max(i) and xR,min(i) ≥ xH,min(j).

The Pearson χ2 test indicated that level of co-leader
autonomy more strongly influenced the perceived value
of the robot teammate than the human teammate across
16 of the 21 post-trial and post-experiment Likert-scale
questions. The results are summarized in Table 6. Per-
forming a post-hoc analysis with Bonferroni correction
of α

2 indicated that level of autonomy for the co-leader
more strongly affected the Likert-scale response for sub-
jects working with the robot co-leader than the human
co-leader.

5.2.3 Subjective Measures of Subjects’ Task Allocation
Strategies, Preferences and Views

We administered a second post-test questionnaire (shown
in Table 3) to subjects who worked with a human co-

leader, in order to understand how subjects performed
task allocation, their views on different team roles and
their preferences for performing different types of tasks.

To determine whether subjects felt that they em-
ployed a different strategy when allocating tasks un-
der the semi-autonomous and manual conditions (Ques-
tion 27), we conducted a Pearson’s χ2 test, which in-
dicated a statistically significant difference between the
two (χ2 = 7.347, p = 0.025). Specifically, 75% of sub-
jects agreed that they used a different strategy, while
21% of subjects disagreed. The Pearson’s χ2 test in-
dicated no significant difference between groups in re-
sponses to Question 28.

We conducted a Friedman test to compare Likert-
scale responses to Question 28 versus those given for
Question 29, Question 31 versus Question 32 and Ques-
tion 33 versus Question 34. Results from this test in-
dicated no significant difference between these pairs of
questions (p = 0.647, p = 0.471, and p = 0.647, respec-
tively).

5.2.4 Analysis of Open-Ended Responses: Human
Co-Leader

Questions 25 and 26 of the post-trial questionnaire of-
fered subjects the opportunity to provide open-ended
responses detailing which condition they preferred work-
ing under, and to whom they would give control of
the task allocation in a manufacturing setting. While
the majority of subjects’ responses were supportive of
a robotic assistant that autonomously allocated work,
we also provide representative responses from subjects
who preferred the manual, semi-autonomous and au-
tonomous conditions, as shown in Table 7. While most
of the subjects’ responses directly supported one of the
three experimental conditions, some participants sug-
gested a “blended” level of control, where the robot was
able to assign tasks, but the subject would be able to
override the robot in the event that they became bored
or overwhelmed.

6 Discussion

6.1 Guidance on Deploying Autonomous Robot
Teammates

The aim of this study was to determine how much con-
trol a human member of a human-robot team should
have over their robot counterpart in order to maxi-
mize team efficiency and worker satisfaction. We hy-
pothesized that allowing workers some control over the
task allocation process would increase their satisfaction
without too great a sacrifice to team efficiency; however,



Table 7: Representative open-ended responses from
subjects preferring the manual, semi-autonomous and
autonomous conditions.

Manual
“I would keep the job [of scheduling] with myself, as it
gives me greater flexibility to decide who does what”
“The [manual condition] to be able to see the big
picture.”

Semi-autonomous
“Preferred the [semi-autonomous condition]. I still re-
tained some agency in assigning tasks globally, but
the ordering was optimized for me.
“When I schedule the work for myself and the co-
leader scheduled the work for the assistant. I knew
which tasks I was good at, so I preferred this sce-
nario.”

Autonomous
“I prefer the co-leader scheduling because it is less
work for me.”
“This scenario seemed to result in the least idle time
amongst the three of us.”

we observed that autonomous control yielded improve-
ments to both objective and subjective measures com-
pared with manual or semi-autonomous control. Specif-
ically, hypothesis H1, that autonomy would increase
productivity, was supported, yet hypothesis H2, that
workers prefer partial control over task allocation de-
cisions, was not supported. This finding is in keeping
with anecdotal evidence that subjects prefer working
with highly autonomous robots [2].

These results provide guidance for the successful in-
troduction of robots into human teams. First, providing
human teammates more decision-making authority over
robot behavior is not sufficient to improve worker sat-
isfaction, and may in fact degrade team performance.
Also, team fluency does appear to positively correlate
with a human worker’s willingness to collaborate with
robotic technology.

Second, results from these experiments have indi-
cated potential efficiency-related issues following from
enabling human workers to perform task allocation. For
example, giving human workers the ability to task a
teammate who can only fetch parts for the team can
result in workers monopolizing the time of their fetch-
ing teammates (hypothesis H7). We also observed that
people working with a robot co-leader tend to assign
a disproportionate amount of work to themselves (hy-
pothesis H6). This disparity is most significant when
people only have control over which tasks they will per-
form. The finding that subjects allocated a dispropor-
tionate amount of work to themselves when working
with the robot are in keeping with a well-known phe-
nomenon called the planning fallacy, which states that

people underestimate the amount of time they need to
complete a set of tasks and overestimate the amount of
time that others need to complete the same set of tasks
[27]. Our findings also show that subjects perceived the
human co-leader more favorably than the robotic co-
leader, and subjects allocated less work to themselves
when working with the human in the semi-autonomous
control. This discrepancy suggests that the planning
fallacy could be more profound when working with a
robotic teammate.

Third, responses to post-experiment questionnaires
indicated subjects felt that the human co-leader was
a better teammate than the robotic teammate, which
supports hypothesis H4. Specifically, the subjects felt
more strongly that the human co-leader liked, appreci-
ated and understood them; that subjects and the hu-
man co-leader understood, trusted, and respected each
other; and that both the subjects and the human co-
leader were important to the task.

Finally, although subjects attributed higher value
to a human co-leader than a robotic one, supporting
hypothesis H4, we did see evidence that greater robot
authority over task allocation more strongly improved
the perceived value of the agent than giving similar au-
thority to another human teammate, supporting hy-
pothesis H5. Interestingly, the subjects’ rated desire to
work with the robot again also grew as a function of
robot autonomy. It may therefore be possible to bridge
the gap in the perceived value of human and robotic
teammates by further enhancing the robot’s autonomy
and authority in team decision-making.

Given these points, we recommend that roboticists
provide robots with as much autonomy as possible to
support human-robot team coordination. Robot team-
mates with the ability to autonomously allocate and
schedule tasks can improve both task completion time
and the desire of human workers to cooperate with their
robotic teammates. Furthermore, people may not ef-
fectively understand how to utilize robotic teammates
with specialized capability. For example, our study in-
dicated subjects did not optimally employ a robot that
was dedicated solely to fetching part kits for the pri-
mary build process. While human fetchers might be
able to perceive and respond to a human builder mo-
nopolizing a fetcher’s time, a robotic assistant would
not unless given the ability to do so. Allowing robots
more autonomy over their behavior may help to coun-
teract these biases and guide people toward a better
understanding of how to best utilize these robots.



6.2 Limitations and Future Work

There are limitations to our experimental findings. Our
sample population consisted of college students and young
professionals whose livelihoods were not threatened by
the possibility of robots replacing them. Providing man-
ufacturing workers with more control in the decision-
making process may still influence the satisfaction of
those workers. However, our findings suggest that team
fluency is also likely to be an important component in
the successful introduction of robotic teammates. To
better understand the relative contributions of team
fluency and decision-making authority to worker satis-
faction in manufacturing, a future study in which man-
ufacturing workers are specifically recruited will be nec-
essary.

Also, each participant in our experiment worked as
part of a human-robot team for a single, 90-minute pe-
riod; however, those in the manufacturing field would
be working with robots every day, possibly for years.
Human workers may have strong preferences for some
jobs over others, and may make different choices or have
different preferences for task allocation when working
with robots every day over the long term. We propose
that a longitudinal study is necessary to observe the
trajectory of human worker satisfaction over time, since
the short- and long-term effects of decision-making au-
thority may differ.

The social role of the robot is an interesting point for
future study. In all control conditions, the robot team-
mate was responsible for the sequencing of tasks, track-
ing the status of the scheduling, and telling the human
teammates when each subtask could be started and fin-
ished. In the autonomous condition, the robot had full
control over the scheduling decisions, whereas, in the
manual condition, the subject had control over the al-
location of tasks to the team. In the semi-autonomous
condition, the role of task allocation was shared be-
tween the subject and the robot co-leader. Thus, one
might see the robot co-leader as more of a supervi-
sor in the autonomous condition, more like a teammate
when control was shared in the semi-autonomous con-
dition, and more like a tool or resource in the manual
condition. Furthermore, the robot was not better than
the human teammates at fetching or building part kits.
This phyiscal limitation may make the robot seem less
of an equal member of the team. Providing the robot
the ability to fetch and build as quickly as the human
teammates may also change the perceived role of the
robot on the team. These points about the perception
of the robot’s social role on the team would be an in-
teresting area for further study.

7 Conclusion

With the increasing desire and ability to integrate au-
tonomous robotic agents into manufacturing environ-
ments, it is important to understand how much decision-
making authority human workers should have over their
robotic counterparts when allocating tasks to both hu-
man and robot team members. While worker auton-
omy can improve team efficiency, providing a worker
either too little or too much control may be alienat-
ing or overwhelming, respectively. We conducted a set
of experiments with human subjects to determine how
much control a worker should have over the task alloca-
tion process, and how working with a robotic teammate
may change team dynamics, as opposed to working with
only human teammates. We found that an autonomous
robot can outperform a human worker when conduct-
ing part (p < 0.001) or all of the task allocation pro-
cess (p < 0.001). However, rather than finding an ideal
balance of control authority to maximize worker sat-
isfaction, we observed that workers preferred to cede
control authority to the robot (p < 0.001). Further-
more, we found that people were more likely to allo-
cate a disproportionate amount of work to themselves
while working with a robot (p < 0.01). Our results
suggest that providing workers with a role in the al-
location of tasks to their robotic counterparts may not
be an effective method of improving worker satisfac-
tion. Rather, team fluency may have a stronger influ-
ence on worker satisfaction than the individual’s level of
decision-making authority. Furthermore, people not ex-
perienced in working alongside robotic teammates may
not know how best to utilize this technology. Allowing
robots with advanced scheduling algorithms to control
scheduling decisions may provide an ability to account
for these biases and increase the degree to which human
workers value their robotic teammates.
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