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Abstract A probabilistic stable motion planning strategy1

applicable to reconfigurable robots is presented in this paper.2

The methodology derives a novel statistical stability crite-3

rion from the cumulative distribution of a tip-over metric.1 4

The measure is dynamically updated with imprecise terrain5

information, localization and robot kinematics to plan safety-6

constrained paths which simultaneously allow the widest7

possible visibility of the surroundings by simultaneously8

assuming highest feasible vantage robot configurations. The9

proposed probabilistic stability metric allows more conserv-10

ative poses through areas with higher levels of uncertainty,11

while avoiding unnecessary caution in poses assumed at well-12

known terrain sections. The implementation with the well13

known grid based A* algorithm and also a sampling based14

RRT planner are presented. The validity of the proposed15

approach is evaluated with a multi-tracked robot fitted with16

a manipulator arm and a range camera using two challeng-17

ing elevation terrains data sets: one obtained whilst operating18

the robot in a mock-up urban search and rescue arena, and19

the other from a publicly available dataset of a quasi-outdoor20

rover testing facility.21
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1 Introduction and related work 25

The demand for autonomous robots in industry and field 26

application is increasing with the technological advances 27

in modern sensors, actuators, hardware and software facil- 28

ities which make employing of robotics technology more 29

economical and feasible. In field application, mobile robots 30

are required to operate fully or semi-autonomously in harsh, 31

unstructured environments such as agriculture (Santosh et al. 32

2014), mining (SeungBeum et al. 2014), planetary explo- 33

ration (Liang et al. 2013) and search and rescue (Keiji et al. 34

2013) missions for example. The robot model used to validate 35

the results of this work is the multi-tracked iRobot Packbot 36

robot depicted in Fig. 1. The robot is equipped with multiple 37

sensors to get feedback from its own kinematic and gather and 38

analyse environmental data. Dealing with uncertainty about 39

the effects of imperfect actuators and poor environmental 40

sensor information is a very common challenging problem 41

in navigation over rough terrains. 42

Although uncertainty is usually ignored in classical 43

motion planning techniques (LaValle 2006), more up to date 44

algorithms have investigated different approaches to take into 45

account imperfect robot motion or sensing models (Sebastian 46

et al. 2005). One of the well studied approaches developed in 47

the literature to explicitly deal with uncertainties in the input 48

data and system model parameters is the partially observ- 49

able Markov decision process (POMDP) (Matthijs and Nikos 50

2005; Brooks et al. 2006). For example a POMDP model for 51

finding belief-feedback policies for a team of robots cooper- 52

ating to extinguish a spreading fire is presented in Candido 53

et al. (2010). The proposed planning algorithm is able to 54

employ user-supplied domain knowledge for the synthesis 55

of information feedback policies. 56

A linear-quadratic Gaussian motion planning (LQG-MP) 57

strategy that is able to take into account the motion and sens- 58
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Auton Robot

Fig. 1 The iRobot Packbot robot with a 1 DoF arm, pan-tilt sensor unit

and two flippers on a mock-up USAR arena

ing uncertainty is illustrated in Berg et al. (2011). Assuming a59

Gaussian model of uncertainty and having a linear-quadratic60

controller, the LQG-MP method aims to characterise pri-61

ori probability distributions of the state of the robot in62

advance. The performance of LQG-MP is studied using sim-63

ulation experiments where the rapidly exploring random tree64

(RRT) (LaValle 1998) is employed to generate the candidate65

paths. Motion planning in dynamic uncertain environments is66

another challenge for mobile robots operating in close prox-67

imity with many other moving agents; e.g. a service robot68

acting as a waiter in a restaurant, or mobile robots in exhi-69

bitions and trade fairs. In this case, the future evolution and70

uncertainties of the states of the moving agents and obstacles71

also needs to be addressed. A strategy to account for future72

information gathering in the planning in dynamic, uncertain73

environments is presented in Toit and Burdick (2012). The74

uncertainty in location of the robot and obstacles is consid-75

ered using a partially closed-loop receding horizon control76

algorithm that is able to integrate the prediction, estimation,77

and planning and approximately solve the stochastic dynamic78

programming problem.79

The path following with uncertainty has also been studied80

by the control community. A Kalman-based active observer81

controller for the path following of wheeled mobile robots82

subject to non-holonomic constraints is presented in Coelho83

and Nunes (2005). The effect of external disturbances, gen-84

eral model errors, and uncertainties present in the system are85

reduced by adding an extra state (the “active state”) to the86

controller design. The effectiveness of the proposed path-87

following controller is evaluated via simulation results for a88

wheelchair robot following a straight line and a circular path.89

More recently, a path following controller design approach90

for articulated manipulators based on transverse feedback91

linearisation is presented in Gill et al. (2013). The Lya-92

punov redesign (Parks 1966) method is employed to make93

the proposed controller robust against modelling uncertainty.94

Experimental results of a four DoF manipulator with a com-95

bination of revolute and linear actuated links are provided 96

where the end-effector was set to move in a circular path. 97

The uncertainty in a system can be considered in two 98

types of stochastic methods: non-deterministic (a boundary is 99

assumed for uncertainties), and probabilistic (the uncertain- 100

ties are described using probability distributions) (Toit and 101

Burdick 2012). We are employing the stability uncertainty 102

in a probabilistic formulation. Other authors have looked 103

at the problem of non-deterministic incorporation of uncer- 104

tainty at the planning stage, e.g. by considering variations 105

in the 2.5D terrain elevation data and localisation errors, as 106

described in Iagnemma and Dubowsky (2004) for an artic- 107

ulated wheeled mobile robot. The original force angle (FA) 108

margin (Papadopoulos and Rey 1996) was employed to eval- 109

uate the stability of the rover in the elevation map, therefore 110

the position of robot’s centre of mass (CM) and the ground 111

contact points (CPs) would be the essential inputs to calcu- 112

late the safety margin. The CPs are assumed to be under the 113

wheels and are calculated based on the robot’s kinematic and 114

its position over the elevation map. A conservative path plan- 115

ning approach is adopted that considers terrain measurement 116

uncertainty, where a set of potential worst-case robot config- 117

urations at boundary locations in the terrain are examined to 118

make sure that the vehicle would remain stable for a given 119

arbitrary fixed variance in the elevation map. If any posture in 120

this set is proven unstable, the corresponding location in the 121

map will be regarded as untraversable. To address the local- 122

isation uncertainty for a given path, all points along the path 123

within a distance proportional to the assumed robot localisa- 124

tion uncertainty are examined given all possible configura- 125

tions. A point in the terrain would be considered as a feasible 126

point for path finding purposes only if all configurations in 127

the overall search have been proven to be stable. The output 128

of this brute-force approach is a simple failure or success, 129

with no concern for the probability of a tip-over instability. 2130

A strategy for global path planning over ruggedised ter- 131

rains while accounting for stability uncertainty is presented 132

in this work. A novel safety confidence (SC) stability margin 133

based on the conclusions of the statistical stability analysis 134

technique described in Norouzi et al. (2013b) is introduced. 135

The proposed probabilistic stability criterion is employed 136

to advance further the deterministic stable path planning 137

strategy described in Norouzi et al. (2013a), proven to be 138

particularly suitable for search and rescue missions, with the 139

goal of improving robot navigation safety in scenarios where 140

the model of the system and the sensory data available to 141

the robot may be imperfect. As also noted in that work, the 142

proposed strategy is equally applicable to planning in large 143

areas where prior knowledge of the terrain is assumed, or in 144

exploratory settings where the robot needs to create the cov- 145

erage map as it navigates further and only partial information 146

from the surrounding area is available, hence setting goals in 147

closer vicinity. 148
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The FA stability measure (Papadopoulos and Rey 2000)149

was employed in Norouzi et al. (2013a) to analyse the tip-over150

margin of the vehicle, and is also the choice in this work. It151

should be noted that there are several other criteria which can152

be combined using multi-objective optimisation in order to153

navigate in irregular terrains, e.g. when maximising ground154

clearance for more general wheel-legged mobile robots (Fre-155

itas et al. 2010). Considering further mobility criterion could156

indeed expand the applicability of the proposed planning157

method. The FA measure is a deterministic criterion that can158

be calculated based on the position of the robot’s CM and the159

CPs interaction with the terrain, which form a convex area160

called “support polygon” (SP). As will be shown, the main161

difficulty in path planning using a deterministic constant sta-162

bility margins is that a conservative large tip-over criterion163

can produce safe paths, but it may also easily end up being164

overly restrictive, and filtering out many probable pathways.165

On the other hand, planning on the tip-over stability margin166

boundary may clearly jeopardise stability if uncertainties are167

present. The main advantage of employing dynamic SC mea-168

sure to path planning is that it can take into consideration the169

model uncertainties when finding paths, instead of resorting170

to restrictive fixed minimum safety margins. Moreover, while171

in Norouzi et al. (2013a) the mechanisms where provided to172

exploit stability both as a constraint and also as an added cost173

to the A* (Hart et al. 1968) search optimisation process, in174

the overall path planning strategy proposed here we take the175

stand that simply using it as a constraint is appropriate to176

guarantee paths that are “confidently” stable. In essence we177

are advocating for the fact that so long as we are confident178

the final path found will be stable, it is less relevant whether179

another one might be slightly more stable, as that’s ultimately180

less relevant to the final outcomes in a realistic setting, and181

we suggest not spend computational resources in doing that.182

The effectiveness of the proposed probabilistic tip-over183

measure in stable path planning over challenging terrains is184

confirmed using a grid based A* algorithm as well as a sam-185

pling based RRT planner. The model of the Packbot robot186

shown in Fig. 1 is imported to a dynamic physic simulator187

engine and comprehensive simulations in a USAR arena and188

data from a quasi-outdoor rover testing facility at the Uni-189

versity of Toronto Institute for Aerospace Studies (UTIAS)190

(Tong et al. 2013) are provided. Part of this work was ini-191

tially suggested in Norouzi et al. (2014) and has been hereby192

extended with further analysis and discussions, and its gen-193

eralisation to another cost-based planner in the form of a194

randomized RRT planner.195

2 Overview of stability analysis196

The most common stability margins can be calculated based197

on two informations, the robot’s CM and its SP defined by198

Fig. 2 The 3D FA stability measure for n = 4 and i = 3 i.e. for third

axis of a SP with four CPs. The CM’s position has been shifted up

and vectors are scaled for easier visualization. The FA measure can be

intuitively described as the effect of the net force and moment over CM

projected on the SP e.g. β3 = θ3 ‖d3‖ ‖f3‖

the convex area spanned between the ground CPs. While the 199

CM may be easily evaluated from the robot’s kinematic state, 200

prediction of SP is not a trivial problem and some works 201

like (Liu and Liu 2010) have considered an ideal support 202

polygon (ISP) for the vehicle, i.e. the CPs are assumed to 203

be fixed under the sprockets of the robot. It is illustrated 204

through some experiments in Norouzi et al. (2013a) how this 205

is a strong assumption for the case of highly unstructured 206

terrains, where CPs can lay anywhere along the robot’s track 207

and in general describe a variable support polygon (VSP). In 208

this work no ISP is assumed and the process to derive the 209

contact support polygon of a robot on a terrain is also briefly 210

presented in this section. 211

2.1 Force angle stability margin 212

The FA stability margin (Papadopoulos and Rey 2000) was 213

principally proposed for mobile machines with manipula- 214

tors operating in construction, mining, and forestry. FA was 215

proven to be one of the most effective stability margins. For 216

example, a combination of the FA stability measure with an 217

artificial potential field to obtain the demanded actuator val- 218

ues was used in Besseron et al. (2008). This simple criterion 219

can then be computed based principally on the minimum 220

angle between the effective net force and the tip-over axis 221

normal. The normalized FA measure will be between zero 222

(borders of instability) to one (most stable configuration). 223

Negative values of the FA measure for an axis indicate that 224

occurring tip-over instability about that axis is in progress. 225

As shown in Fig. 2, the criterion βi for the i th tip-over axis 226

ai can be principally described by 227

βi = θi ‖di‖ ‖fi‖, i = {1, . . . , ncp} (1) 228

123

Journal: 10514 MS: 9474 TYPESET DISK LE CP Disp.:2015/7/18 Pages: 21 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Auton Robot

where ncp is the number of out-most CPs. fi is the component229

of effective net force fr which acts about the tip-over axis ai.230

θi is the angle between fi and the tip-over axis normal li.231

di is the minimum length vector from ai to fi. For example232

in this work a1, a2, a3 and a4 are left, rear, right and front233

axis respectively as illustrated in Fig. 2. The angles are in234

reference to the support pattern, which is the convex polygon235

derived from the CPs of the robot, and are sensitive to changes236

in CM’s height. The overall robot’s FA measure β, is given by237

β = min(βi ), i = {1, . . . , ncp} (2)238

In general, mobile vehicles operate at low speed when travel-239

ling over rough terrain and quasi-static robot dynamics can be240

safely assumed (Iagnemma et al. 2003). Thus, the net force fr241

acting on the system’s CM will come from the gravitational242

loading term243

fr =
∑

fgrav = mtot g. (3)244

The control aspect of maintaining speed and dynamic stabil-245

ity along the path is not hereby considered given the scope246

of the work. As demonstrated by various practical results in247

the paper, a suitable low speed controller was developed that248

readily validated this assumption.249

2.2 Robot model250

Figure 1 shows the multi-tracked iRobot Packbot robot model251

and its coordinate frame convention that was employed in252

this paper to validate the simulation results. The mechanical253

structure consists of a skid-steer vehicle base, flippers (two254

synchronised small sub-tracks in the front) and an arm that255

carries a 2D pan-and-tilt unit equipped with several cameras256

and lights. It is clear that for these types of robots the arm257

and/or flippers angles (φa and φ f ) will significantly affect the258

location of the CM. Moreover, when the flippers are in contact259

with the terrain they change the shape of the SP, which in turn260

has a more significant effect on the stability of the robot.261

2.3 Robot posture reconfiguration262

The robot’s posture between successive path points is263

updated using an analytically derivable reconfiguration264

objective function (Norouzi et al. 2013a). The cost function265

is able to address different objectives including sensor vis-266

ibility, track–terrain interaction and energy expenditure in267

changing postures. There are in general a large number of268

conflicting objectives that can play a significant role when269

planning paths in the context of realistic scenarios. The sta-270

bility of the robot remains, however, the critical constraint271

so that if robot is ever found to be unstable, the optimality272

of any other parameters should be scarified to always satisfy 273

the stability margin. 274

The reconfiguration cost function of the robot Uc is given 275

by 276

Uc =
n

∑

i=1

Ui (4) 277

where Ui represents the reconfiguration cost associated to 278

the i th joint. For the Packbot model used in this work n = 2, 279

i.e. the arm and flipper joints (φa, φ f ). More details about 280

the reconfiguration algorithm, robot’s kinematic model and 281

the effect of the mass distribution can be found in Norouzi 282

et al. (2013a). 283

2.4 Contact points prediction and stability criteria 284

The calculation of stability margins is predicated on calcu- 285

lating the projection of the robots geometric underside on 286

the points defining the terrain underneath so as to derive 287

the CPs. While straightforward geometry-based propositions 288

can possibly be derived to find out CPs for simpler convex 289

robots surfaces, this is not necessarily the case for more com- 290

plicated shapes. A generic solution is proposed where the 291

robot-terrain prediction algorithm is based on the mathemat- 292

ical description of the robot in the open dynamics engine 293

(ODE) (Smith 2005), a widely used physical rigid body 294

dynamics simulator. A 3D model of the terrain has been con- 295

structed from the ranging data measured with the RGB-D 296

camera situated on the head of the robot. The CP deriva- 297

tion scheme is predicated on calculating the projection of the 298

robot’s geometric underside on the points defining the terrain 299

underneath. Under the assumption of quasi-static equilib- 300

rium, the simulator predicts the behaviour of the robot under 301

the influence of gravitational forces for a given pose and pos- 302

ture configuration to extract the SP. Some examples of the 303

Packbot robot at various locations in a two-step field terrain 304

model are given in Fig. 3. 305

Given a rigid box sitting steadily on a hard rough ground 306

surface, the number of CPs can not be less than three. An 307

analogy can be established for instance with a rigid four- 308

legged table, where one leg of the table would be left in the air 309

when sitting stably unless the terrain is flat, or soft, in which 310

case it will be four. The FA margin calculations requires the 311

out-most CPs, hence a maximum of four possible CPs are 312

assigned to form the vertices of the SP even when the rigid 313

body makes full contact with the surface, i.e. when the terrain 314

across the wheel sprockets is flat such as in a ramp or stairs. 315

The Packbot robot is not a truly rigid model in that it is 316

equipped with hard rubbery tracks which, albeit minimal, 317

allow a bit of sag and deformation, effectively making larger 318

contact with terrain surfaces, even in uneven hard surfaces. 319
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Fig. 3 Examples of support

polygon shapes over two

step-fields terrain models

This robot–terrain interaction behaviour is extremely difficult320

if not impossible to model accurately. Hence, for the ODE CP321

calculations, the point set located within an allowance dis-322

tance set by the terrain mesh-grid resolution and the measured323

deformations of the rubbery tracks has been considered, and324

the out-most points selected as CP. The robot will thus be325

regarded stable at a given location if the resulting SP fulfils326

the following criteria: ncp ≥ 3 and β > βmin , where βmin is327

0 or an arbitrary (positive) lower bound set for the stability328

margin. This process is described in more detail in Norouzi329

et al. (2013a).330

3 Uncertainty analysis method331

The probabilistic stability margin calculation, the definition332

of the proposed safety confidence and it’s use in the context333

of path planning which form the novel contribution of this334

paper are described in the following sections.335

3.1 Transformation of means and covariance336

The probabilistic approach for uncertain stability analysis is337

detailed in Norouzi et al. (2013b). For completeness, this338

section will quickly summarise the aspects most relevant to339

the novel proposition in this work. The general problem can340

be expressed as follows: for a n-dimensional input vector341

x with given mean x̂ and covariance Pxx , what would be342

the mean ŷ and covariance Pyy of a m-dimensional random343

variable vector y, where y is related to x by a non-linear344

transformation y = g[x]. For the system hereby considered,345

the arm and flipper angles (φa, φ f ) that determine the posture346

of the robot, the 3D model of a given terrain and the robot’s 347

position on it constitute the input parameters, i.e. x37×1 = 348

(φa, φ f , r x, r y, yaw, 32 × terrain sections). The output 349

vector includes a list with (up to) four CPs, the CM and the 350

FA stability measure, i.e. 351

y16×1 = (4 × (C P_x, C P_y, C P_z), 352

(C M_x, C M_y, C M_z), β). 353

Without loss of generality, expressions are shown for the 354

case of four CPs, while as indicated in Sect. 2.4, the robot 355

can also be stable with three CPs. In that case the dimension 356

of y equals 13 × 1. 357

Given the highly non-linear nature of g[.], Taylor series 358

approximation (Greenberg 1998) and general error propaga- 359

tion (Siegwart and Nourbakhsh 2004) are not applicable to 360

enumerate ŷ and Pyy . Standard Monte Carlo (SMC) (Rubin- 361

stein and Reuven 1981) is a proven iterative algorithm to 362

estimate probability density functions of a general system’s 363

output response from a large set of random inputs. Hence, 364

by introducing perturbations to the input parameters, ODE 365

simulations can be carried out and β subsequently calcu- 366

lated. The tendency to bigger input sets to attain more 367

accurate distributions makes SMC computationally expen- 368

sive. The structured unscented transform (UT) (Julier and 369

Uhlmann 2004) has been proposed in the literature to address 370

this issue, and was employed in this work to speed up 371

the transformation of means and covariances. The overall 372

technique as applied to this work, summarised in Algo- 373

rithm 1, intelligently simulates the SMC method by choosing 374

a deterministic set of inputs instead of a vast random sample 375

population. 376
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Algorithm 1 The Unscented Transform (UT)

1: function ut_trans f orm(φa ,φ f , r x, r y, yaw, terrain, k)

2: x̂ ← mean(φa, φ f , r x, r y, yaw, terrain)// 37x1 i.e.
n=37

3: Pxx ← 0 // 37x37
4: Pxx i i ← sigma(φa, φ f , r x, r y, yaw, terrain)

5: X0 ← x̂
6: W0 ← k/(n + k)
7: for i = 1 → n do
8: X i ← x̂ +

(√
(n + k) Pxx

)

i
9: Wi ← 1/(2(n + k))

10: X i+n ← x̂ −
(√

(n + k) Pxx

)

i
11: Wi+n ← 1/(2(n + k))
12: end for
13: for i = 0 → 2n do
14: (CP, CM) ← ode_simulate(X i )
15: β ← F A(CP, CM)
16: Yi ← (CP, CM, β)
17: end for
18: ŷ ←

∑2n
i=0 Wi Yi // 16x1

19: Pyy ←
∑2n

i=0 Wi {Yi − ŷ} × {Yi − ŷ}T // 16x16

20: return (ŷ, Pyy)
21: end function

It is important to note that while only the mean and stan-377

dard deviation of the FA distribution (βµ, βσ ) are exploited378

for path planning purposes in this work, the output vector379

y also provides probabilistic information about the robot’s380

CPs and CM. It is envisaged that it may well be possible to381

take advantage of these useful statistics in other stability mar-382

gins, or for other purposes (e.g. computer graphics rendering383

applications).384

3.2 Probabilistic stability metric385

Assuming a standard normal distribution N (0, 1) for β, the386

cumulative distribution function (CDF) is formulated as:387

Φ(x) = 1√
2π

x
∫

−∞

e− t2

2 dt (5)388

This function describes the probability that β will be found389

at a value less than or equal to x , where Φ(−∞) =390

0 %, Φ(0) = 50 % and Φ(∞) = 100 %. For a generic nor-391

mal distribution N (µ, σ 2) for β, the cumulative distribution392

function can be transformed by393

F(x, βµ, βσ ) = Φ

(

x − βµ

βσ

)

(6)394

Therefore F(0, βµ, βσ ) will indicate the probability that β395

will assume negative values (i.e. a tip-over is in progress). We396

can now define the SC margin to encapsulate our confidence397

in the stability prediction as398

SC(β) = (1 − F(0, βµ, βσ )) × 100 (7)399

To intuitively understand the meaning of SC the example in 400

Fig. 4a is provided. The graph illustrates possible distribu- 401

tions for β, and the corresponding values for SC , based on 402

three different robot postures at a given location on a terrain. 403

Although the mean value of the green distribution is smaller 404

than the blue one, a larger SC value indicates more certainty 405

in this configuration. A conservative fixed large β will unnec- 406

essarily push the robot away from many potentially feasible 407

trajectories. On the other hand, critically small safety margins 408

may put the robot in jeopardy, particularly when traversing 409

highly challenging terrains (e.g. stairs or rubble). By employ- 410

ing the proposed SC margin instead, the system can benefit 411

form a dynamic safety boundary that represents reliability in 412

the output predictions. 413

For the special case when the mean value is exactly zero, 414

the SC calculation would be independent of σ 2 (SC = 50 % 415

always, as illustrated by Fig. 4b). In this case, although both 416

distributions result in the same value for SC , for stability 417

purposes a distribution with smaller σ 2 should be preferred 418

(green curve in this example), indicating that the true β is 419

generally expected to be closer to zero and away from nega- 420

tive tip-over instability. Therefore, for the special case when 421

µ = 0, SC will be multiplied by (1−σ 2) to lean towards con- 422

figurations with smaller covariances. The following section 423

provides some experimental results on maps obtained from 424

a range camera fitted on the sensor head while the robot tra- 425

verses over a ramp and a series of steps are presented that 426

confirms the necessity and validity of the proposed proba- 427

bilistic stability prediction method. 428

3.3 Experimental results to prove the significance of a 429

statistical approach for stability prediction 430

To validate the results of statistical approach the robot was 431

made to traverse over the actual ramp and hill step-field (HS) 432

following a straight trajectory and constant reduced speed. 433

A localiser running of odometry and 2D range data from an 434

auto-levelled laser scanner was used to derive an estimate 435

of the robot pose (r x, r y, yaw) with a previously built 3D 436

mesh of the arena, depicted in Fig. 9a. As the platform has 437

got no suspension and the terrain is rigid, pitch and roll 438

measurements from an on-board IMU can be assumed to be 439

a veracious reflection of the vehicle’s attitude when sitting on 440

the terrain. The robot’s pose (φa, φ f ) was recorded from the 441

actual on-board encoders during the experiments. The data 442

from these tests was then analysed off-line to calculate the 443

statistical properties of CPs and stability measures. 444

The inclination of the ramp illustrated in Fig. 5 is 30 445

degrees. The result of the ramp experiment is illustrated in 446

Fig. 6. As shown in Fig. 6a, b, real inclination data is very 447

close to that inferred by the simulator. The stability measure 448

from a single simulation and mean value driven using UT in 449

each point is depicted in black and red in Fig. 6d respectively. 450
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Fig. 4 Example distributions for β and the corresponding SC values

Fig. 5 The side view of the robot configurations along the ramp (direc-

tion: left to right)

Also the standard deviation σ(68 %) and 2×σ(95 %) around451

the mean are depicted in dashed red and blue. The measured452

β and its mean value up to σ is always positive, which shows453

a convenient stability.454

The patterns of β acquired by three different configura-455

tion planning strategies along the same straight trajectory is456

illustrated in Fig. 6c. The solid black line is equal to the β457

in Fig. 6d and it is achieved while deriving the robot with458

a fairly constant configuration (φa = 90 ◦, φ f = 45 ◦) and459

simulating the robot with recorded configuration and position460

over the 3D model of the terrain. For comparison purposes,461

the stability measures of the optimal stable high visibility462

(OSHV) planner (Norouzi et al. 2013a) with βmin = 0.2 and463

the most stable (providing the highest SC) configurations, are464

depicted in dashed black and green respectively. In this ramp465

case, the β of the OSHV posture lies between the constant and 466

the most stable stability margin. For safer posture trajectory 467

the safety stability margin, βmin should be increased which 468

will shift up the dashed black plot. The minimum value of β 469

in the most stable plot is around 0.4, hence if the minimum 470

β in the planning was set to a value larger than this, the ramp 471

trajectory would be regarded as unstable. 472

A side view of the path with the robot arrangements sug- 473

gested by both planners are depicted in Fig. 5—omitted in 474

some places to increase clarity. Comparing the results at the 475

beginning of the ramp in Fig. 5a, b shows that planning purely 476

based on the stability margin has resulted in sudden flipper 477

discontinuities, while the OSHV planner produced a soft and 478

continuous kinematic trajectory thanks to the reconfiguration 479

optimization between successive path nodes where joint dis- 480

continuities are penalised. 481

HS is an example to simulate common block obstacles, 482

like rubble or unlevelled floors. The HS set-up illustrated in 483

Fig. 1 (side view in Fig. 7) is composed of three successive 484

10 cm steps: two traversed “up”, and one “down”. The results 485

of the experiment over the HS is illustrated in Fig. 8 in the 486

same way as was earlier depicted for the ramp. As can be 487

seen in Fig. 8a, b, the real inclination data is also closely 488

captured by the simulator except at around 8 and 17 s, when 489

the robot tipped-over and had to be manually handled and 490

returned to the HS to prevent a fatal crash. Although the cal- 491

culated mean value for β can be seen to be just positive over 492

the path at those instances, σ uncertainty analysis shows the 493

robot tipping-over at those instances (when the crossing over 494

the steps takes place). 495

Comparing these two examples shows that, despite the 496

smaller inclination in the HS configuration, the robot is 497

still more stable over the ramp than HS. Assuming that a 498

fixed supporting-polygon and calculations of stability based 499

on IMU data (like the approach in Roan et al. 2010) will 500

lead to apparent stability, yet that is not the case. The tradi- 501

tional deterministic stability analysis method with variable 502

supporting-polygon can be regarded as fairly reliable over 503
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Fig. 6 Experimental results over ramp

Fig. 7 The side view of the robot configurations along the HS (direc-

tion: left to right)

simple topologies like ramps, but can’t predict instability504

over more challenging obstacles like HS where the uncer-505

tainty in the input parameters can have a significant influence506

on the output stability metric.507

In the same way, the patterns of β acquired by three differ- 508

ent configuration planning strategies along the same straight 509

trajectory are illustrated in Fig. 8c. The solid black line is 510

equal to the β in Fig. 8d and it is achieved while deriving the 511

robot with a constant configuration (φa = 90 ◦, φ f = 45 ◦) 512

and simulating the robot with recorded configuration and 513

position over the 3D model of the terrain. For comparison 514

purposes, the stability measures of the OSHV planner with 515

βmin = 0.2 and the most stable configurations are depicted 516

in dashed black and green respectively. It can be observed 517

how for the OSHV posture β is always smaller than the most 518

stable stability margin. It can moreover be seen how in some 519

places it is also smaller than the constant configuration’s sta- 520

bility margin, as in that case there is no accounting for the 521

additional visibility constraints in the robot pose. Thus in 522

contrast to ramp traversing, at some places the constant con- 523

figuration ends up marginally more stable than the calculated 524

OSHV posture. Of course, for trajectories where increased 525

safety posture is desired, βmin can be increased, effectively 526

shifting the dashed black plot up so that it is always above 527

the constant posture. 528

A side view of the path with the robot arrangements sug- 529

gested by both planners is depicted in Fig. 7—omitted in 530

some places to increase clarity. Comparing the results in 531
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Fig. 8 Experimental results over hill step-field

the beginning, middle and the end of the HS in Fig. 7a, b532

shows that planning purely based on the stability margin has533

resulted in sudden big changes for the flippers and arm while534

the OSHV planner produced a soft and continuous kinematic535

trajectory.536

4 Path planning with stability uncertainty537

To this end, this study has proposed the probabilistic stability538

measure SC in Eq. 7 based on the cumulative distribution of539

the FA measure which indicates the probability that β will540

be found to be positive. The following section illustrates the541

implementations with grid based A* algorithm. The inte-542

gration of the proposed strategy in a sampling-based RRT543

planner will also be presented in Sect. 4.3 for completeness.544

The effectiveness of the approach has been evaluated using545

two challenging terrain data sets, and then compared to the546

OSHV planner.547

4.1 Test arenas548

The USAR test arena is chosen to investigate the performance549

of the technique in an indoor setting with distinctive features550

such as stairs, rubble etc., whereas the UTIAS arena is an 551

example of a larger outdoor scenario. In both instances, the 552

robot is expected to come up with configurations aimed at 553

keeping the arm as high as possible to achieve the best pos- 554

sible field of view whilst satisfying the constraints imposed 555

by the corresponding algorithms (βmin or SCmin). 556

The UTS mock-up rescue arena consists of a 6m × 8m 557

reconfigurable rectangle space with a ramp, a flight of stairs, 558

open space and re-arrangeable blocks of step-fields. A small 559

section is captured by Fig. 1. The 3D model of the terrain 560

was built off-line by scan matching of the RGB-D data logs 561

when manually operating the robot over the terrain at low 562

speeds. 563

The UTIAS testing facility consists of a large dome struc- 564

ture, which covers a workspace area 40m in diameter. These 565

datasets are available online and for more information, the 566

reader is referred to Tong et al. (2013). A grid resolution 567

of 5 cm was assumed for both terrains which resulted in a 568

2D graph with dimensions of 164 × 150 and 784 × 776 for 569

USAR and UTIAS arenas respectively. In order to make a 570

fair comparison between the two planners a pre-processing 571

step was first applied to both terrain models to label out 572

obvious untraversable areas, e.g. walls and markedly steep 573

slopes. 574
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Algorithm 2 A* Path Planner with Stability Uncertainty

1: closed ← ∅
2: open ← cell(start)

3: while (open 
= ∅) do

4: cell(i) = min(open)

5: closed ← closed + cell(i)

6: open ← open − cell(i)

7: for all cell( j) ∈ {8 successors of cell(i)} do

8: if (cell( j) /∈ closed & cell( j) 
= obstacle) then

9: ut_trans f orm()

10: if (SC > SC_min) then

11: if (cell( j) ∈ open) then

12: re f resh_node(i, j)

13: else

14: add_open_node(i, j)

15: end if

16: end if

17: end if

18: end for

19: if (cell(goal) = min(open)) then

20: return path

21: end if

22: end while

23: return path = ∅

4.2 Implementation with A* planner575

For comparison purposes, lets first briefly review the deter-576

ministic OSHV planner which was introduced in Norouzi577

et al. (2013a). The key contribution on this algorithm578

was the introduction of a stability constraint to a cost-579

based planner. Essentially, the stable A* algorithm first580

examines the stability of the robot when opening a new581

search node at a new location with a given configura-582

tion. The node is considered stable if β is larger than583

some nominal βmin that is satisfied. The present pro-584

posal, abstracted by Algorithm 2, takes into account SC585

as described by Eq. 7 through the ut_trans f orm() Algo-586

rithm 1, effectively transforming the fixed stability constraint587

(β > βmin) into a minimum confidence threshold (SC >588

SCmin) representative of the certainty in the stability predic-589

tion.590

4.2.1 Results of A* planner in the USAR arena591

Two sets of experiments are studied of planning based on592

varying allowable boundaries for βmin and SCmin in order593

to highlight the advantages of the probabilistic approach in594

generating safer and more optimal posture planning.595

In the first scenario, planners are set to find a path from596

the top left corner of the USAR arena with a minimum pos-597

sible βmin = 0.05 and SCmin = 50 % to the goal at the598

bottom right corner. The value of βmin = 0.05 was obtained599

experimentally as the border of stability when the robot was600

sitting on the 35◦ ramp of the arena, with the nominal con-601

Fig. 9 Planning based on the minimum safety margin and stability

confidence in the USAR arena. Planning based on SC generates safer

postures over stairs (φa = 0 ◦ in b) when compared to the deterministic

approach (φa = 20 ◦ in a)

figuration (φa = 90◦, φ f = 90◦). A positive βµ is the 602

only requirement to achieve SCmin = 50 %, consequently 603

the minimum allowable safety confidence is assumed to be 604

50 %. 605

The results are depicted in Fig. 9, where Fig. 9a, b 606

illustrate the outcomes of the shortest deterministic and 607

probabilistically stable paths respectively. Only a limited 608

number of the robot poses are shown in the figure for clar- 609

ity. In both instances the final paths traverse through the 610

step-fields and the stairs, and the robot configurations over 611

both trajectories end up being quite similar (except on the 612

stairs, way-points around 100−130 in Fig. 10, discussed 613

below). 614

The comparison of SC and β over these trajectories are 615

depicted in Fig. 10. The mean value of stability measure 616

obtained using the UT transformβµ at each instant is depicted 617

in red, with the standard deviation σ(68 %) and 2×σ(95 %) 618

around the mean depicted in dashed red and blue in Fig. 10a, 619

c. Figure 10b, d illustrate the corresponding SC measures of 620

the resulting two paths. 621

It can be seen how by setting an arbitrary lower boundary 622

(βmin = 0.05) the deterministic planner’s limited concern 623

about the instantaneous value of β results in paths with 624

instances where, although as shown in Fig. 10a β is computed 625

to be always bigger than βmin = 0.05, in some places the cor- 626

responding βµ is actually negative (SC < 50 %), indicates 627
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Fig. 10 Comparison of SC and

β over the trajectories depicted

in Fig. 9 where βmin = 0.05 and

SCmin = 50 % in the USAR

arena. The horizontal dark

green dash-dot lines are

indicating the reference points

where β = 0 or SCmin = 50 %
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a high risk for tip-over instability as illustrated in Fig. 10b.628

This happens for instance over the stairs (way-points around629

117), where βµ is indeed less than 0.05.630

On the other hand, as depicted by Fig. 10d, a planner631

considering an SCmin = 50 % might end up with instances632

when βµ is less than 0.05 in some places (see Fig. 10c). How-633

ever, SC remaining over the threshold of 50 % only requires634

a positive βµ, which is comfortably achieved by the plan-635

ner generating postures with lower sensor head heights (e.g.636

φa = 0 ◦ over the stairs section depicted in Fig. 9b), com-637

pared to the resulting postures (φa = 20 ◦) of a deterministic638

planner when βmin = 0.05 (Fig. 9a). This example clearly639

shows how the probabilistic approach tends towards more640

conservative paths stability-wise than a deterministic plan-641

ner in areas where uncertainty escalates.642

In the following example the safety margin and stability643

confidence are increased to βmin = 0.20 and SCmin = 70 %644

respectively. Both criteria will now filter out the stairs and645

step-fields, tending towards a safer but longer path to the646

goal through the ramp, as shown in Fig. 11. Planning based647

on βmin = 0.20 has configured the robot with (φa = 0 ◦)648

over the ramp. Yet given the higher certainty of the map over649

the ramp (as opposed to more rugged terrain sections), the650

probabilistic planner with SCmin = 70 % can satisfy the651

stability constraint with a better field of view configuration652

(φa = 50 ◦) for the same area. As with the earlier example,653

the comparison of SC and β over the resulting trajectories654

are depicted in Fig. 12.655

It can be observed how in the ramp area (way-points656

around 140–170) uncertainty is very small (βµ and covari-657

Fig. 11 Planning based on a comfortable safety margin and stability

confidence in the USAR arena. Planning based on SC generates postures

with better visibility over the ramp (φa = 50 ◦ in b) compared to the

deterministic approach (φa = 0 ◦ in a)

ance around 0.20, Fig. 12a) and the probabilistic approach 658

is then able to exploit this to generate postures with better 659

visibility than the deterministic planner. 660
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Fig. 12 Comparison of SC and

β over the trajectories depicted

in Fig. 11 with βmin = 0.20 and

SCmin = 70 % in the USAR

arena
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4.2.2 Results of A* planner in the UTIAS arena661

The UTIAS data is used to study the outcomes of plan-662

ning longer paths with different values for βmin and SCmin .663

Results in Fig. 13 show how when the stability constraint is664

reasonable medium value, the statistical approach can find665

more effective and shorter path than deterministic technique666

(the path shown in orange).667

The outcomes of a planner based on different determin-668

istic stability margins are shown in Fig. 13a where the669

path with lowest allowable safety margin βmin = 0.05670

is illustrated in black, and paths with βmin = 0.10 and671

βmin = 0.2 are depicted in orange and yellow respec-672

tively. Gray-scale colour coding indicates height of the terrain673

from 0 to 2.76 m. A pre-processing algorithm based on674

terrain gradients was first applied to the model to label675

out obviously untraversable steep slopes, shown in dark676

Brown. Given the space limitations, only the uncertainty677

analysis results of the first two trajectories are shown in678

Fig. 14, where the mean values of the stability measure679

using the UT transform at each instant are depicted in red,680

the standard deviation σ(68 %) and 2 × σ(95 %) around681

the mean are depicted in dashed red and blue in Fig. 14a,682

c. Figure 14b, d illustrate the corresponding SC mea-683

sures.684

In the same way Fig. 13b shows the effect of different685

values of SCmin on the planner, where black, orange and yel-686

low illustrate trajectories with SC_min = 50 %, SC_min =687

70 % and SC_min = 90 % respectively. The corresponding 688

uncertainty analysis are shown in Fig. 15. 689

The result of planning based on the lowest allowable 690

βmin = 0.05 and SCmin = 50 % (depicted in black in 691

Fig. 13a, b respectively) are found quiet coincidental. These 692

two trajectories are going through (A) and passing directly 693

over the central hill (C). Although the planning based on 694

βmin = 0.05 ensures that instant value of β are always larger 695

than the minimum value, βµ is found to be negative over the 696

more challenging section, hence resulting in an SC < 50 % 697

i.e. a high risk for a tip-over instability as illustrated in the 698

way-points around 150 in Fig. 14b. This would not repre- 699

sent a dangerous situation when planning is based on an 700

SC_min = 50 % as the planner will reconfigure robot so 701

that it fulfils the minimum safety confidence as illustrated 702

in Fig. 15b. Moreover planning based on more significant 703

stability margins and safety confidence (βmin = 0.20 and 704

SCmin = 90 %) results in longer routes, depicted in yellow 705

in Fig. 13a, b respectively. 706

Planning based on a comfortable stability margin and 707

safety confidence (βmin = 0.10 and SCmin = 70 %) pro- 708

duced some interesting results. With βmin = 0.10 the planner 709

could not find a trajectory through the front section (A) and 710

resorted to move up towards (B), eventually finding a path 711

via (D) to the goal. On the other hand, the planner with 712

SCmin = 70 % considered the front section (A) feasible and 713

found a shorter path which goes straight up to the middle of 714

the arena and then coincide with the path with βmin = 0.10 in 715
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Fig. 13 Planning in the UTIAS arena. The paths with βmin = 0.05

and SCmin = 50 % are illustrated in black, paths with βmin = 0.10 and

SCmin = 70 % are depicted in orange and yellow trajectories showing

the paths with βmin = 0.20 and SCmin = 90 %

the final stages in the area labelled as (D). Looking at Fig. 15c716

around way-point 25 it is seen how β around (A) is less than717

βmin = 0.10, revealing the reason why planning based on718

βmin would not consider this area traversable. Looking at the719

value of SC in Fig. 15d confirms that although β is less than720

βmin = 0.10 around (A), safety confidence is bigger than721

70 % and the planner regards this region as comfortably sta-722

ble to plan over. This example shows how planning based on723

statistical data instead of the instant values can result in more724

effective and at the same time safer routes. The overall length725

of the trajectories illustrated in Fig. 13a, b are summarised726

in Table 1.727

Algorithm 3 The RRT planner algorithm

1: function biuld_R RT (xini t , K )

2: T.init(xini t )

3: for k = 1 → K do

4: xrand ← random_state

5: xnear ← nearest_neighbour

6: if new_state(xnear , xrand ) then

7: T.add_vertex(xrand )

8: T.add_edge(xnear , xrand )

9: if (xrand = xgoal ) then

10: return T

11: end if

12: end if

13: end for

14: return T = ∅
15: end function

Algorithm 4 The original RRT state check algorithm

1: function new_state(xnear , xrand )

2: for xi = xnear → xrand do // all states along a straight line

connection

3: if xi = xobs then

4: return f alse

5: end if

6: end for

7: return true

8: end function

4.3 Implementation with RRT planner 728

In this section an integration of the strategy in the well 729

established sampling based RRT planner is presented for 730

completeness. Fundamentally RRT builds a space-filling 731

tree (T) and extends it randomly to efficiently search high- 732

dimensional spaces. As RRT planners can quickly cover an 733

environment by the random tree expansion, they have been 734

widely used in autonomous robotics path planning. When 735

extending the tree, it is able to regularly check the collision 736

with obstacles and differential constraints (non-holonomic, 737

kino-dynamic etc). 738

In spite of the fact that the RRT planner does not need a 739

grid to expand, for simplicity and comparison purposes, lets 740

assume that search space is a 2D grid equal to A* algorithm’s 741

environment. The grids of the graph are classified into two 742

sets referred to as obstacle and f ree. The path planning 743

can be viewed as a search in this grid from an initial start 744

node, xini t to the goal node xgoal while avoiding obstacle 745

nodes xobs . An RRT that is rooted at xini t and has K vertices 746

can be summarized as an iterative procedure as illustrated in 747

Algorithm 3. 748

In beginning, the algorithm initiates RRT tree T with 749

start node as the first vertex. In each iteration, the algo- 750

rithm attempts to extend the RRT by adding a random new 751

node xrand . The nearest vertex xnear already in the RRT to 752

the given xrand will be chosen according to a metric like 753

Euclidean distance. The function new_state is called in 754
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Fig. 14 Comparison of SC and

β for the paths depicted in

Fig. 13a in the UTIAS arena,

with βmin = 0.05 and

βmin = 0.10
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Fig. 15 Comparison of SC and

β over the trajectories depicted

in Fig. 13b in the UTIAS arena

with SCmin = 50 % and

SCmin = 70 %
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this stage to detect potential collisions to determine whether755

the xrand (and all intermediate states) satisfies the global756

constraints as shown for the simple scenario of obstacle757

avoidance in Algorithm 4. If new_state is successful, the758

xrand is added as a new vertex to T. An edge from xnear759

to xrand is also added. If the recently added vertex reaches 760

the xgoal , the algorithm successfully returns T and the final 761

path will be the chain of branches from the xgoal back 762

to the xini t node (similar to parent’s chain in A* algo- 763

rithm). 764
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Table 1 Overall length of paths shown in Fig. 13a, b

βmin length (m) SCmin length (m)

0.05 39.6184 50 % 39.0450

0.10 43.4073 70 % 41.8475

0.20 54.9470 90 % 53.0440

To guarantee the stability of T, the new_state function765

is modified according to Algorithm 5. For each way-point766

between xnear and xrand , the algorithm calculates the sta-767

tistical information about the tip-over instance using the768

ut_trans f orm() function in the 3D physical simulator. The769

new branch in the RRT tree would be considered safe only if770

Algorithm 5 The stable RRT state check algorithm

1: function new_state(xnear , xrand )

2: for xi = xnear → xrand do // all states along a straight line

connection

3: ut_trans f orm()

4: if (xi = xobs ∨ SC < SC_min) then

5: return f alse

6: end if

7: end for

8: return true

9: end function

it is collision-free and also satisfies the corresponding min- 771

imum safety confidence. The block diagram of the overall 772

stable RRT algorithm is illustrated in Fig. 16. 773

Fig. 16 The block diagram of

the stable RRT algorithm
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Fig. 17 Results of stability criterion in the RRT algorithm in the USAR

arena. a Results show the path derived from the original RRT planner

in blue with unstable points in red. The stable path with the lowest

allowable safety confidence SCmin = 50 % and the trajectories where

SCmin = 70 % are depicted in black and yellow respectively. b The

RRT tree is depicted in orange and has expanded to almost the entire

whole 164 × 150 search space. In the majority of times the algorithm

came up with the shorter path via stairs as depicted in blue

4.3.1 Results of RRT planner in the USAR arena774

The preference of planning based on a probabilistic metric in775

comparison with a deterministic stability measure was dis-776

cussed in Sect. 4.2. Here we are going to compare the original777

RRT planner with the RRT planner constrained on the safety 778

confidence SC measure. Some implementations of RRTs 779

limit the length of the connection between the tree and a new 780

state by a growth factor (Liangjun and Dinesh 2008). This 781

forces the random sample to lie within a maximum distance 782

from the tree and limits the size of the incremental growth. 783

In this work, the random sample is uniformly sampled from 784

the entire search space to allow the tree to quickly expand 785

towards large unsearched areas. This freedom in expansion 786

sometimes results in long straight branches (routes) in the 787

tree, but the algorithm will check the feasibility of all inter- 788

mediate way-points before accepting the new state. 789

In the first instance the result of the original RRT is com- 790

pared with the trajectories achieved from planning based on 791

lowest allowable safety confidence, SCmin = 50 % and a 792

comfortable margin SCmin = 70 %, in the USAR arena. The 793

outcomes of the proposed stable RRT planner are illustrated 794

from a top view in Fig. 17 on the USAR arena in compar- 795

ison with the standard RRT, where Fig. 17a is showing all 796

three trajectories simultaneously, and Fig. 17b presents the 797

RRT tree and trajectory of the ordinary path in a separate 798

figure. A pre-processing algorithm was first applied to the 799

3D map to determine extreme untraversable areas, e.g. walls 800

and markedly steep slopes. Results in Fig. 17a show the path 801

derived from the original RRT in blue while the way-points 802

where the robot was not stable for the fixed vertical arm and 803

flipper pose are highlighted in red. The stable path with the 804

the lowest allowable safety confidence SCmin = 50 % and 805

the trajectories where SCmin = 70 % are depicted in black 806

and yellow respectively. 807

While ordinary route and stable path where SCmin = 808

50 % may find a way to the goal either from stairs or via 809

the ramp in the top left corner of the arena, the planning 810

with more conservative stability constraint of SCmin = 70 % 811

leaves the ramp the only possible trajectory. As illustrated in 812

Fig. 17b, the original RRT tree has expanded entire the USAR 813

arena, but most of the time the shorter route via the stairs was 814

chosen as the final trajectory. 815

The robot configurations along stable trajectories are 816

depicted in Fig. 18, where Fig. 18a, b illustrate the outcomes 817

of the stable paths where SCmin = 50 % and SCmin = 70 % 818

respectively. Only a limited number of the robot poses are 819

shown for clarity. The corresponding uncertainty analysis are 820

shown in Fig. 19. Both planners have handled the correspond- 821

ing SCmin constraint successfully while expanding the RRT 822

trees. To fulfil SCmin = 50 %, the planner has configured 823

robot to φa = 0 ◦ over the stairs section depicted in Fig. 18a, 824

while given the higher certainty of the map over the ramp, the 825

algorithm can satisfy the stability constraint SCmin = 70 % 826

with a better field of view configuration (φa = 50 ◦), as illus- 827

trated in Fig. 18b. 828

Table 2 summarises the statistical information about aver- 829

age length and standard deviation (σ ) of RRT paths over 830

123

Journal: 10514 MS: 9474 TYPESET DISK LE CP Disp.:2015/7/18 Pages: 21 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Auton Robot

Fig. 18 Results of probabilistic stability criterion on RRT algorithm

in the USAR arena

10 runs versus the corresponding minimum A* trajectories831

in the USAR arena. Since any increase in the stability con-832

straint will shrink the expansion of the RRT tree, there are less833

options to choose from for the planner, and over a number834

Table 2 Comparison of average length and σ of RRT paths in 10 runs

versus the corresponding minimum A* trajectories in the USAR arena

Path (m) Minimum (A*) Average RRT σ

Original 7.9899 9.5692 1.7060

SCmin = 50 % 8.2485 9.8189 1.6117

SCmin = 70 % 14.0727 17.2135 1.3460

of test runs σ will generally decrease as SCmin increases. It 835

can be observed how for the original RRT and the case when 836

SCmin = 50 %, σ values are close together and reasonably 837

larger than the RRT where SCmin = 70 %. This is because 838

the first two planners have, independently of the adopted con- 839

figurations, two clear alternatives when it comes to traverse 840

the terrain to go to the goal point, through a ramp or through 841

the stairs, whereas the RRT where SCmin = 70 % leaves 842

the ramp as the only possible trajectory. This behaviour will 843

become more apparent in the results of the UTIAS arena as 844

the planner would have a larger search space. 845

4.3.2 Results of RRT planner in the UTIAS arena 846

As the UTIAS terrain mimics an outdoor environment, the 847

comfortable stability confidence is increased to SCmin = 848

90 % when searching for a reliable tip-over margin. In the 849

same way, Fig. 20 shows the result of the stable RRT algo- 850

rithm in the UTIAS arena, where all three trajectories are 851

Fig. 19 Comparison of SC and

β over the trajectories depicted

in Fig. 18 in the USAR arena.

The horizontal dark green

dash-dot lines are indicating the

reference points where β = 0 or

SCmin = 50 %
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Fig. 20 Results of stability criterion in the RRT algorithm in the

UTIAS arena. a Results show the path derived from the original RRT

planner in blue with unstable points in red. The stable path with the

lowest allowable safety confidence SCmin = 50 % and the trajectories

where SCmin = 90 % are depicted in black and yellow respectively.

b The RRT tree is depicted in orange and has expanded to almost the

entire whole 784 × 776 search space. In most instances the planner

came up with a route via (A) and in this example eventually found a

path crossing from (C) to the goal

depicted in Fig. 20a for comparison and Fig. 20b is sepa-852

rately illustrating the expansion of the RRT tree and resulting853

trajectory for the original planner. Figure 20a pictures the854

original RRT path in blue (with unstable points in red) and855

compares the effect of different values of SCmin on the856

planner, where black and yellow illustrate trajectories where857

SC_min = 50 % and SC_min = 90 % respectively.858

While ordinary and stable RRT planner where SCmin =859

50 % may find a way to the goal either through (A) or (B),860

the planning with the highly conservative stability constraint 861

of SCmin = 90 % can only go through (B). As illustrated 862

in Fig. 20b, the original RRT tree has expanded the entire 863

UTIAS arena as well, but mostly the planner came up with 864

a route via (A) and, in this example, eventually found a 865

path crossing from (C) to the goal. In the trials provided 866

in Fig. 20a, the stable path where SCmin = 50 % is going 867

through (A) and passing directly over the central hill (C), 868

while the more conservative path where SCmin = 90 % 869

avoids both of these regions and moves up towards (B) choos- 870

ing the longest and safest route which goes around part (C). 871

The corresponding uncertainty analysis for stable routes are 872

shown in Fig. 21. According to this figure, the SCmin over the 873

resulting path and entire RRT tree was effectively satisfied 874

while searching the space for more branches. 875

In the same way, the statistical information about average 876

length and σ of the paths are collected in Table 3. As expected 877

from the previous observations in the USAR arena, σ is con- 878

tinuously descending as more constraints are applied to the 879

planners. Yet given the larger path planning search space in 880

the outdoor terrain when compared to the more restrictive 881

mock-up indoor arena, the relative σ of the routes in the 882

UTIAS arena are significantly larger than their USAR arena 883

counterparts. 884

5 Conclusions and discussion 885

This article presents a probabilistic approach to account for 886

robot’s stability uncertainty when planning motions over 887

uneven terrains. The proposed algorithm can exploit infor- 888

mation gained from a statistical stability analysis to plan safe 889

and effective routes under the presence of uncertainty in the 890

robot kinematics, terrain model and localisation on the ter- 891

rain. The integration of the strategy with two well studied 892

grid based and sampling based algorithms i.e. A* and RRT 893

planners, is presented. 894

Simulation results in an indoor rescue arena and an out- 895

door rover testing facility demonstrate the advantages of 896

planning based on statistical stability information when com- 897

pared with a deterministic approach. The results of path 898

planning based on the lowest allowable safety margin shows 899

that by setting an arbitrary lower boundary, the deterministic 900

planner’s limited concern about the instantaneous value of 901

β results in paths with instances where, although β is com- 902

puted to be always above a certain βmin , the corresponding 903

βµ can actually become negative (SC < 50 %) at times, indi- 904

cating an unacceptable high risk of tip-over instability. The 905

contingency of this potentially dangerous situation is min- 906

imised when planning is carried out based on SC_min, as 907

the planner will reconfigure the robot so that it fulfils the min- 908

imum safety confidence at any given time. Moreover, when 909

uncertainty levels are small (on ramps or sloped areas for 910
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Fig. 21 Comparison of SC and

β over the trajectories depicted

in Fig. 20 in the UTIAS arena.

The horizontal dark green

dash-dot lines are indicating the

reference points where β = 0 or

SCmin = 50 %
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Table 3 Comparison of average length and σ of RRT paths in 10 runs

versus the corresponding minimum A* trajectories in the UTIAS arena

Path (m) Minimum (A*) Average RRT σ

Original 33.0823 56.5629 15.3264

SCmin = 50 % 39.0450 59.6210 11.3975

SCmin = 90 % 53.0440 73.2896 7.3383

instance) the probabilistic approach is able to exploit this to911

generate postures with better visibility than the deterministic912

planner. Comparison of the resulting trajectories in the out-913

door UTIAS arena shows planning based on the proposed914

statistical stability methodology can result in more effective,915

and at the same time, safer routes.916

The proposed scheme relies on a physics engine (e.g.917

ODE) and surrounding terrain information to derive prob-918

abilistic stable paths. Despite the computational advances919

that UT transform brings when compared to SMC in dealing920

with uncertainty modelling, processing time remains con-921

siderable, particularly as it increases with the size of the 3D922

mesh (Smith 2005). In showing the validity of the proposed3 923

approach there was limited need to endeavour planning in924

real-time, however it is anticipated that employing a dedi-925

cated graphics processing unit for the surface manipulation926

and physics simulations required to derive probabilistic sta-927

ble paths would significantly improve the processing time to928

the point of making it altogether viable for modest sizes in929

exploratory settings.930

While the probabilistic stable motion planning strategy 931

has been shown here for the more generalised case of 932

reconfigurable robots, it is naturally equally applicable for 933

fixed-configuration robots where stability margins will dic- 934

tate safer routes to traverse under the assumption of lesser 935

DoF’s, hence simply a reduced grid search space given the 936

lack of ability to assume other poses. 937
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