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Abstract Hierarchical inverse dynamics based on cas-

cades of quadratic programs have been proposed for the

control of legged robots. They have important benefits

but to the best of our knowledge have never been imple-

mented on a torque controlled humanoid where model

inaccuracies, sensor noise and real-time computation re-

quirements can be problematic. Using a reformulation

of existing algorithms, we propose a simplification of

the problem that allows to achieve real-time control.

Momentum-based control is integrated in the task hier-

archy and a LQR design approach is used to compute

the desired associated closed-loop behavior and improve

performance. Extensive experiments on various balanc-

ing and tracking tasks show very robust performance

in the face of unknown disturbances, even when the

humanoid is standing on one foot. Our results demon-

strate that hierarchical inverse dynamics together with

momentum control can be efficiently used for feedback

control under real robot conditions.
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1 Introduction

1We expect autonomous legged robots to perform com-

plex tasks in persistent interaction with an uncertain

and changing environment (e.g. in a disaster relief sce-

nario). Therefore, we need to design algorithms that can

generate precise but compliant motions while optimiz-

ing the interactions with the environment. In this con-

text, the choice of a control strategy for legged robots

is of primary importance as it can drastically improve

performance in the face of unexpected disturbances and

therefore open the way for agile robots, whether they

are locomoting or performing manipulation tasks.

Robots with torque control capabilities [4,12], in-

cluding humanoids [5,25,28], are becoming increasingly

available and torque control algorithms are therefore

necessary to fully exploit their capabilities. Indeed, such

algorithms often offer high performance for motion con-

trol while guaranteeing a certain level of compliance [4,

16,33,34]. In addition, they also allow for the direct con-

trol of contact interactions with the environment [12,

30,31], which is required during operation in dynamic

and uncertain environments. Recent contributions have

also demonstrated the relevance of torque control ap-

proaches for humanoid robots [13,28,36]. We can essen-

tially distinguish two control approaches.

Passivity-based approaches on humanoids were orig-

inally proposed in [13] and recently extended in [28].

They compute admissible contact forces and control

commands under quasi-static assumptions. The great

advantage of such approaches is that they do not re-

quire a precise dynamic model of the robot. Moreover,

robustness is generically guaranteed due to the passiv-

1 Part of the material presented in this paper has been pre-
sented at the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems
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ity property of the controllers. However, the quasi-static

assumption can be a limitation for dynamic motions.

On the other hand, controllers based on the full dy-

namic model of the robot have also been successfully

implemented on legged robots [12,30,36,23,38]. These

methods essentially perform a form of inverse dynam-

ics. The advantage of such approaches is that they are

in theory well suited for very dynamic motions. How-

ever, sensor noise (particularly in the velocities), lim-

ited torque bandwidth and the need for a precise dy-

namic model make them more challenging to imple-

ment. Moreover, it is generally required to simplify the

optimization process to meet time requirements of fast

control loops (typically 1 kHz on modern torque con-

trolled robots). Although there are many contributions

showing the potential of such approaches in simulation

[7,8,18,34], evaluations on real robots are still rare due

to the lack of torque controlled humanoid platforms and

the complexity in conducting such experiments.

Extensions of the inverse dynamics approach have

been proposed where it is also possible to control hi-

erarchies of tasks using the full dynamics of the robot.

The main advantage is that it is possible to express

complicated behaviors directly at the task level with

a strict enforcement of hierarchies between tasks. It

is, for example, useful to ensure that a balancing task

will take precedence over a task of lower importance in

case of conflicting goals. Early hierarchical approaches

are based on pseudo-inverse techniques [35] and take

inspiration directly from techniques used for manipu-

lators [26]. However, pseudo-inverse-based controllers

are limited as they cannot properly handle inequal-

ity constraints such as torque limits or friction cone

constraints. More recently, generalizations have been

proposed [19,33,22,6] that naturally allow the inclu-

sion of arbitrary types of tasks including inequalities.

The resulting optimization problems are phrased as cas-

cades of quadratic programs (QPs). Evaluation of their

applicability was done in simulation and it has been

shown that these algorithms are fast enough to be im-

plemented in a real-time fast control loop for inverse

kinematics. It has also been argued that they can be

implemented fast enough for the use with inverse dy-

namics and can work on robots with model-uncertainty,

sensor noise and limited torque bandwidth. But to the

best of our knowledge, these controllers have never been

used as feedback-controllers on real torque-controlled

humanoids.

In [33], the trajectories computed in simulation are

replayed on a real robot using joint space position con-

trol, but the method is not used for feedback control

in task-space on the robot. This work is very interest-

ing because it demonstrates that trajectories generated

by a hierarchical inverse dynamics are such that they

can be used on a real system. However, it is important

to note that this does not show that feedback control

can be done using these controllers. Indeed, when re-

playing trajectories, feedback is reduced to joint level

tracking. Therefore it is not possible to directly con-

trol interaction forces during multi-contact tasks or to

close a feedback loop directly around the tasks of in-

terests, for example the center of gravity (CoG), that

respects the desired hierarchies. It is worth mentioning

that [12] recently successfully implemented a controller

using the full dynamics of the robot and task hierar-

chies on a torque controlled quadruped robot. The ap-

proach is based on pseudo-inverses and not QPs which

makes it potentially inefficient to handle inequalities

(e.g. friction cone constraints, torque saturation, center

of pressure constraints, etc...).

During balancing and walking tasks, an appropri-

ate control of the CoG is of major importance. Re-

cently, it has been realized that the control of both the

linear (i.e. the CoG) and angular momentum of the

robot could be very beneficial for balancing and walk-

ing tasks. The control of overall momentum was orig-

inally proposed in [15] using a resolved rate control

framework and it was recently extended in [21] where

it was integrated with an inverse dynamics controller.

It has been shown in several contributions [39,21] that

the regulation of momentum could be very powerful

for control on humanoids. Despite the growing popu-

larity for momentum-based control approaches, there

have been very few evaluations of such techniques on a

real humanoid robot [36]. In [36] the momentum-based

control is computed using a simplification of the op-

timization problem and does not necessarily generate

the optimal command. Moreover, the control command

generated from inverse dynamics is used in conjunction

with a joint PD controller and not used as the sole feed-

back controller of the system (i.e. there are two distinct

feedback pathways, one coming from the momentum

control through inverse dynamics and the other com-

ing from desired joint positions at the joint level). To

the best of our knowledge a momentum-based controller

has never been evaluated either in a complete hierarchi-

cal inverse dynamics framework or without additional

joint PD stabilization.

As advanced torque control techniques are devel-

oped there is a need to evaluate these techniques on

torque-controlled platform to assess their capabilities

and also their drawbacks. Such an evaluation is the

main goal of the paper. In a recent contribution [11],

we have demonstrated that hierarchical inverse dynam-

ics controllers could be efficiently used on a torque-

controlled humanoid robot. In particular, we demon-
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strated robust performance during balancing and track-

ing tasks when using a momentum-based balance con-

trol approach. We also proposed a method to simplify

the optimization problem by factoring the dynamics

equations of the robot such that we could significantly

reduce computational time and achieve a 1 kHz control-

loop.

Contribution In this contribution, we extend our pre-

liminary work and present extensive experimental eval-

uations. First, we show modifications we applied to

the algorithm, originally proposed by [19,17], that were

necessary to execute it in a real-time feedback control

setting for inverse dynamics tasks (Section 2). We also

propose a method to systematically compute the feed-

back gains for the linear and angular momentum con-

trol task by using a linear optimal control design ap-

proach (Section 3). This leads us to the main contri-

bution of this paper, where we show experiments with

extensive quantitative analysis for various tasks (Sec-

tions 4 and 5). We show that the momentum-based con-

troller with optimal feedback gains can improve robot

performance. Balancing experiments in various condi-

tions demonstrate performances that are comparable

to, if not better than, current state of the art balanc-

ing algorithms, even when the robot is balancing on

one foot. Tracking and contact switching experiments

also show the versatility of the approach. It is, to the

best of our knowledge, the first demonstration of the

applicability of the methods proposed in [19] or [33]

as feedback controllers on torque controlled humanoids

(i.e. without joint space PD control) with the use of a

momentum-based control approach. In the last section,

we discuss the experimental results as compared to the

state of the art.

2 Hierarchical Inverse Dynamics

In this section, we detail our modeling assumptions,

give a short summary on how tasks can be formulated

as desired closed-loop behaviors and revisit the original

solver formulation [19]. In Section 2.3 we then propose

a simplification to reduce the complexity of the original

formulation. The simplification is also applicable to any

other inverse dynamics formulation.

2.1 Modelling Assumptions and Problem Formulation

In the following, we describe the constraints and tasks

that are considered by the hierarchical inverse dynam-

ics. They will all be written as affine functions of joint

and body accelerations, joint torques and contact forces

in order to formulate the control problem as a series of

quadratic programs. They constitute the variables that

will be optimized by the controller.

Rigid Body Dynamics Assuming rigid-body dynamics,

we can write the equations of motion of a robot as

M(q)q̈ + N(q, q̇) = ST τ + JT
c λ (1)

where q = [qT
j xT ]T denotes the configuration of the

robot. qj ∈ Rn is the vector of joint positions and

x ∈ SE(3) denotes the position and orientation of a

frame fixed to the robot with respect to an inertial

frame (the floating base). M(q) is the inertia matrix,

N(q, q̇) is the vector of all non-contact forces (Coriolis,

centrifugal, gravity, friction, etc.), S = [In×n0] repre-

sents the underactuation, τ is the vector of commanded

joint torques, Jc is the Jacobian of the contact con-

straints and λ are the generalized contact forces.

Contact constraints End effectors are constrained to re-

main stationary. We express the constraint that the feet

(or hands) in contact with the environment do not move

(xc = const) by differentiating it twice and using the

fact that ẋc = Jcq̇. We get the following equality con-

straint

Jcq̈ + J̇cq̇ = 0. (2)

Center of pressure To ensure stationary contacts, the

center of pressure (CoP) at each end effector needs to

reside in the interior of the end effector’s support poly-

gon. This can be expressed as a linear inequality by ex-

pressing the ground reaction force at the zero moment

point.

Friction cone For the feet not to slip we constraint the

ground reaction forces (GRFs) to stay inside the fric-

tion cones. In our case, we approximate the cones by

pyramids to have linear inequality constraints in the

contact forces.

Torque and joint limits Especially important for gener-

ating control commands that are valid on a robot is to

take into account actuation limits τmin ≤ τ ≤ τmax.

The same is true for joint limits, which can be written

as q̈min ≤ q̈j ≤ q̈max, where the bounds are computed

in the form q̈min/max ∝ tanh(q− q̈min/max).
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Motion and force control tasks Motion controllers can

be phrased as ẍref = Jxq̈ + J̇xq̇, where Jx is the task

Jacobian and ẍref is a reference task acceleration that

will correspond to a desired closed-loop behavior (e.g.

obtained from a PD-controller). Desired contact forces

can be directly expressed as equalities on the general-

ized forces λ. In general, we assume that each control

objective can be expressed as a linear combination of

q̈, λ and τ , which are the optimization variables of our

problem.

At every control cycle, the equations of motion (Equa-

tion (1)), the constraints for physical consistency (torque

saturation, CoP constraints, etc.) and our control ob-

jectives are all expressed as affine equations of the vari-

ables q̈,λ, τ . Tasks of the same priority can then be

stacked vertically into the form

Ay + a ≤ 0, (3)

By + b = 0, (4)

where y = [q̈T λT τT ]T , A ∈ Rm×(2n+6+6c), a ∈ Rm,

B ∈ Rk×(2n+6+6c), b ∈ Rk and m, k ∈ N the overall

task dimensions and n ∈ N the number of robot DoFs.

c ∈ N is the number of constrained end effectors.

The goal of the controller is to find q̈, λ and τ (and

therefore a control command) that satisfies these ob-

jectives as well as possible. Objectives will be stacked

into different priorities, with the highest priority in the

hierarchy given to physical consistency. In a lower prior-

ity, we will express balancing and motion tracking tasks

and we will put tasks for redundancy resolution in the

lowest priorities.

2.2 Hierarchical Tasks & Constraints Solver

The control objectives and constraints in Equations

(3) and (4) might not have a common solution, but

need to be traded off against each other. In case of a

push, for instance, the objective to decelerate the CoG

might conflict with a swing foot task. A tradeoff can

be expressed in form of slacks on the expressions in

Equations (3),(4). The slacks are then minimized in a

quadratic program. We propose an algorithm that is a

combination of the methods originally proposed in [19,

17].

min.
y,v,w

‖v‖2 + ‖w‖2 + ε‖y‖ (5)

s.t. V(Ay + a) ≤ v, (6)

W(By + b) = w, (7)

where matrices V ∈ Rm×m,W ∈ Rk×k weigh the cost

of constraints against each other and v ∈ Rm,w ∈ Rk

are slack variables. Note that v,w are not predefined,

but part of the optimization variables. The objective is

regularized by a small value ε (typically 10−4), which

ensures positive definiteness of the objective hessian.

In the remainder, we write the weighted tasks using

Ā = VA, ā = Va, B̄ = WB, b̄ = Wb.

Although W,V allow us to trade-off control objec-

tives against each other, strict prioritization cannot be

guaranteed with the formulation in Equation (5). For

instance, we might want to trade off tracking perfor-

mance of tasks against each other, but we do not want

to sacrifice physical consistency of a solution at any

cost. In order to guarantee prioritization, we solve a

sequence of QPs, in which a QP with constraints im-

posed by lower priority tasks is optimized over the set

of optimal solutions of higher priority tasks as proposed

by [17]. Given one solution (y∗r ,v
∗
r) for the QP of prior-

ity r, all remaining optimal solutions y in that QP are

expressed by the equations

y = y∗r + Zrur+1, (8)

Āry + ār ≤ v∗r , (9)

. . .

Ā1y + ā1 ≤ v∗1,

where Zr ∈ R(2n+6+6c)×zr represents a surjective map-

ping into the nullspace of all previous equalities B̄r, . . . ,

B̄1 and ur ∈ Rzr is a variable that parameterizes that

nullspace. We compute Zr from a Singular Value De-

composition (SVD). With this nullspace mapping we

reduce the number of variables from one hierarchy level

to the next by the number of locked degrees of freedom.

In our implementation the SVD is computed in parallel

with the QP at priority level r − 1 and rarely finishes

after the QP, i.e. it adds only a negligible overhead.

Now, we can express a QP of the next lower priority

level r + 1 and additionally impose the constraints in

Equations (8), (9) in order to optimize over y without

violating optimality of higher priority QPs:

min.
ur+1,vr+1

‖B̄r+1(y∗r + Zrur+1) + b̄r+1‖+ (10)

‖vr+1‖+ ε‖y‖
s.t. Ār+1(y∗r + Zrur+1, ) + ār+1 ≤ vr+1,

Ār(y∗r + Zrur+1, ) + ār ≤ v∗r , (11)

. . .

Ā1(y∗r + Zrur+1, ) + ā1 ≤ v∗1,

where we wrote the QP as in Equation (5) and substi-

tuted w into the objective function. In order to en-
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sure that we optimize over the optimal solutions of

higher priority tasks, we added Equation (9) as an ad-

ditional constraint and substituted Equation (8) into

Equations (10)-(11). This allows us to solve a stack

of hierarchical tasks recursively as originally proposed

by [17]. Right-multiplying Zr to inequality matrices Ār

creates zero rows for constraints that do not have de-

grees of freedom left. For example, after the GRFs are

decided, CoP and friction constraints become obsolete.

This way the number of inequalities reduces potentially

from one QP to the other. Note that this optimization

algorithm is guaranteed to find the optimal solution in

a least-squares sense while satisfying priorities.

With this formulation we combine the two benefits

of having inequalities in all hierarchical levels [17] and

reducing the number of variables from one QP to the

other [19].

2.3 Decomposition of Equations of Motion

Hierarchical inverse dynamics approaches usually have

in common that consistency of the variables with physics,

i.e. the equations of motion, need to be ensured. In [19]

these constraints are expressed as equality constraints

(with slacks) resulting in an optimization problem over

all variables q̈, τ ,λ. In [22] a mapping into the nullspace

of Equation (1) is obtained from a SVD on Equation (1).

In both cases, complexity can be reduced as we will

show in the following. We decompose the equations of

motion as

Mu(q)q̈ + Nu(q, q̇) = τ + JT
c,uλ, (12)

Ml(q)q̈ + Nl(q, q̇) = JT
c,lλ (13)

where Equation (12) is just the first n equations of Eq.

(1) and Equation (13) is the last 6 equations related

to the floating base. The latter equation can then be

interpreted as the Newton-Euler equations of the whole

system [40]. They express the change of momentum of

the robot as a function of external forces. A remarkable

feature of the decomposition in Equations (12), (13) is

that the torques τ only occur in Equation (12) and are

exactly determined by q̈,λ in the form

τ = Mu(q)q̈ + Nu(q, q̇)− JT
c,uλ (14)

Since τ is linearly dependent on q̈,λ, for any combi-

nation of accelerations and contact forces there always

exists a solution for τ . It is given by Equation (14).

Therefore, it is only necessary to use Equation (13) as

a constraint for the equations of motion during the op-

timization (i.e. the evolution of momentum is the only

constraint).

Because of the linear dependence, all occurrences of

τ in the problem formulation (i.e. in Equations (3)-(4))

can be replaced with Equation (14). This reduces the

number of variables in the optimization from (2n+ 6 +

6c) to (n+ 6 + 6c). This decomposition thus eliminates

as many variables as there are DoFs on the robot. This

simplification is crucial to reduce the time taken by the

optimizer and allowed us to implement the controller in

a 1 kHz feedback control loop.

Remark The simplification that we propose2 can ap-

pear trivial at first sight. However, it is worth men-

tioning that such a decomposition is always ignored in

related work despite the need for computationally fast

algorithms [19], [22], [36].

2.4 Solution to the first priority

Since we are interested in writing inverse dynamics con-

trollers, we set the highest priority tasks to always be

the Newton-Euler Equations (Equation (13)) together

with torque saturation constraints. We then need to

find the space of solutions for equations

B1y + b1 = 0 (15)

−τ sat ≤ τ (y) ≤ τ sat (16)

with τ (y) given by Equation (14), B1 =
[
Ml − JT

c,l

]
and b1 = Nl. In this case, we can obtain the space of so-

lutions (cf. Equation (8)) without having to solve a QP.

A trivial solution can be readily obtained, thus reduc-

ing computation time. Indeed, it is always possible to

satisfy the equations of motion together with the torque

saturation constraints exactly by choosing τ = λ = 0

and resolving for q̈ = −M−1N using Equation (1). The

resulting solution will be in the set of minimizers, i.e.

∃u1 : y =

[
q̈

0

]
= −B†1b1 + Z1u1, (17)

∧ τ (y) = 0 (18)

with Z1 computed as described in Section 2.2. We

can then obtain y∗1 = −B†1b1,v
∗
1 = 0, which is re-

quired to construct the QP for priority r = 2. Al-

though y∗1 may violate torque saturation constraints,

Equations (17), (18) guarantee that an admissible y

can always be found and will be found in the following

QPs. With this choice of y∗1 there is no need to invert

2 We originally proposed the simplification in a technical
note [10].
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M. Note that B1 represents the Newton-Euler equa-

tions of the system and is always of full row rank 3 and

thus computing B†1 requires only inverting the 6 × 6

sized positive definite matrix B1B
T
1 . By designing the

first hierarchy level in this way, we can improve com-

putation time by avoiding to solve the first QP while

already reducing the size of the problem by 6 variables

for the next priority.

3 Linear and angular momentum regulation

As we mentioned in the introduction, we are interested

in writing desired feedback behaviors using hierarchical

inverse dynamics and more specifically, we are inter-

ested in controlling the linear and angular momentum

of the robot. The feedback controller that regulates mo-

mentum is often written as a PID controller with hand-

tuned gains. Such control design does not take into ac-

count the coupling between linear and angular momen-

tum during a multi-contact task and can potentially

lead to a controller which is sub-optimal and difficult

to tune.

In this section, we write the momentum regulation

problem as a force control task and then use a simple

LQR design to compute a linear optimal feedback con-

trol law. This feedback law is then used to compute

a desired closed-loop behavior in the hierarchical in-

verse dynamics controller. The advantage of such design

is that it fully exploits multi-contacts and momentum

coupling while significantly simplifying the design of the

controller by reducing the number of open parameters.

3.1 Linear and angular momentum models

The control of momentum and CoG is inherently both a

kinematic and a force task. Indeed, using the centroidal

momentum matrix [27], one can find a linear mapping

between the overall robot momentum and the robot

joint and pose velocities

h = HG(q)q̇ (19)

where h = [hT
lin hT

ang]T is the system linear and angular

momentum expressed at the CoG. The matrix HG is

called the centroidal momentum matrix. The derivative

of Equation (19) allows us to express the rate of change

of the momentum and the CoG

ẋcog =
1

m
hlin

ḣ = HGq̈ + ḢGq̇ (20)

3 The part of Ml multiplying the base acceleration is always
full rank.

This formulation has been often used in a resolved ac-

celeration scheme where the centroidal momentum ma-

trix is viewed as the task Jacobian (e.g. in [21]).

Using the Newton-Euler equations, the total change

of momentum can also be written in terms of the ex-

ternal forces

ẋcog =
1

m
hlin

ḣ =

[
I3×3 03×3 . . .

[xi − xcog]× I3×3 . . .

]
λ +

[
mg

0

]
, (21)

where mg is the gravitational force, λ the vector of

generalized external forces, [�]× maps a vector to a skew

symmetric matrix, s.t. [x]×λ = x × λ and xi is the

position of the ith contact point.

We see that the rate of momentum change can equiv-

alently be written either as a kinematic task (i.e. a func-

tion of q̈ as in Equation (20)) or a force task (i.e. a

function of λ as in Equation (21)). The matrix in front

of q̈ or λ is viewed as the Jacobian of the task.

In general, deriving a momentum control law with

Equation (21) might be better because we do not have

to compute ḢG, which usually is acquired through nu-

merical derivation and might suffer from magnified noise.

In addition, in Equation (21) external forces can be in-

terpreted as the control inputs of the system, which is

a useful interpretation for control design, as we explain

below.

3.2 LQR design for momentum control

A desired momentum behavior is typically achieved us-

ing a PD control law, for example

ḣdes = P

[
m(xref − xcog)

0

]
+ D(href − h) + ḣref

where href and xref are reference momentum and CoG

trajectories. Using Equation (20), a desired closed-loop

behavior is then added in the hierarchical inverse dy-

namics as

HGq̈+ ḢGq̇ (22)

= P

[
m(xref − xcog)

0

]
+ D(href − h) + ḣref

There are, however, several issues with such an ap-

proach. First, the tuning of the PD controller can be

problematic. In our experience, on the real robot it is

necessary to have different gains for different contact

configurations to ensure proper tracking which leads to

a time consuming process with many open parameters.

Second, such a controller does not exploit the coupling

between linear and angular momentum rate of change

that is expressed in Equation (21).
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We propose to use the model of Equation (21) to

compute optimal feedback gains. We linearize the dy-

namics and compute a LQR controller by selecting a

desired performance cost. We find a control law of the

form

λ = −K
[
xcog

h

]
+ k(xref ,href ) (23)

that contains both feedback and feedforward terms. A

desired closed-loop behavior for the momentum that

appropriately takes into account the momentum cou-

pling is then computed. The desired task used in the

hierarchical inverse dynamics controller is then written

as[
I3×3 03×3 . . .

[xi − xcog]× I3×3 . . .

](
λ + K

[
xcog

h

]
− k

)
= 0 (24)

We project the control λ into the momentum space

such that we can use the available redundancy during

multi-contact tasks to optimize the internal forces fur-

ther. It would not be possible if we used directly Equa-

tion (23).

The proposed approach takes into account the cou-

pling between linear and angular momentum, which will

prove beneficial in the experimental section. Moreover,

we specify the performance cost once and for all and the

feedback gains are computed optimally for every con-

tact and pose configuration of the robot at a low compu-

tational cost. In our experience, it drastically simplified

the application on the real robot.

Remark In our experiments, we use an infinite hori-

zon LQR design and compute gains for key poses of

the robot, one for each contact configurations. Dur-

ing a contact transition we interpolate between the old

and new set of gains to ensure continuous control com-

mands. This solution is not ideal from a theoretical

point of view as the interpolation does not guaran-

tee stable behavior, but it works well in practice. In-

deed, the contact transitions are very fast and all the

trajectories were planned in advance. It would also be

straightforward to linearize the dynamics at every con-

trol sequence and use a receding horizon controller with

time-varying gains to allow online replanning of desired

trajectories.

4 Experimental Setup

In this section, we detail the experimental setup, the

low-level feedback torque control, the state estimation

algorithm and the limitations of the hardware. These

details are important in order to understand the stren-

gths and limitations of the presented experiments. They

should also ease the reproduction of the experimental

results on other platforms.

Fig. 1 The lower part of the Sarcos Humanoid. (Credit:Luke
Fisher Photography)

4.1 Sarcos Humanoid Robot

The experiments were done on the lower part of the

Sarcos Humanoid Robot [5], shown in Figure 1. It con-

sists of two legs and a torso. The legs have 7 DoFs

each and the torso has 3 DoFs. Given that the torso

supports a negligible mass, because it is not connected

to the upper body of the robot and its motion does

not significantly influence the dynamics, we froze these

DoFs during the experiments. The legs of the robot are

0.82m high. Each foot is 0.09m wide and 0.25m long.

Note also that the front of the foot is made of a passive

joint that is rather flexible, located 10cm before the tip

of the foot. Moving the CoP across this link makes the

foot bend and causes the robot to fall. This makes the

effectively used part of the sole rather small for a biped.

The total robot mass is 51kg.

The robot is actuated with hydraulics and each joint

consists of a Moog Series 30 flow control servo valve that

moves a piston. Attached to the piston is a load cell to

measure the force at the piston. A position sensor is also

located at each joint. Each foot has a 6-axis force sen-

sor and we mounted an IMU on the pelvis of the robot

from which we measure angular velocities and linear

accelerations of the robot in an inertial frame. An off-

board computer sends control commands to the robot

and receives sensor information in real-time at 1 kHz.

The control commands consist of the desired current

applied to each valve. We used a computer running a

linux kernel patched with Xenomai 2.6.3 for real-time

capabilities.
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Fig. 2 Example of torque tracking performance during a bal-
ancing experiment. The left hip flexion/extension, left knee
and left ankle flexion/extension and adduction/abduction
joints are shown. Both desired (blue) and actual (green)
torques are shown.

4.2 Low-level torque control

For each actuator, we implemented a torque feedback

controller that ensures that each joint produces the de-

sired force generated by the hierarchical inverse dynam-

ics controller. The controller essentially computes de-

sired flow directly in terms of valve current. The con-

troller we implemented is very much inspired from the

work in [4,3], with the difference that we implemented

a simpler version where piston velocity feedback has

a constant gain. The constant gain allows us to avoid

the computation of the piston chamber sizes and the

measurement of the pressure inside. The control law is

v = PID(Fdes, F ) +Kẋpiston + d (25)

where v is the valve command, PID is a PID controller

according to desired force command and force measured

from the load cells, K is a positive gain, ẋpiston is the

piston velocity (computed from the joint velocity and

the kinematic model) and d is a constant bias.

This controller design allowed us to achieve good

torque tracking performance. It is important to note

that such performance was necessary to achieve good

performance in the hierarchical inverse dynamics con-

troller. Figure 2 illustrates the torque tracking perfor-

mance during a balancing experiment.

4.3 State estimation

An accurate estimation of the floating base pose and

twist is important for a good performance of the inverse

dynamics controller. We used a recently developed ap-

proach [32] based from the ideas in [2]. The estimation

uses an extended Kalman filter that fuses information

from both the IMU and leg kinematics. The filter han-

dles contact switching and makes no assumption about

the gait or contact location in the world but only uses

the knowledge that a leg is in contact. It also has favor-

able observability characteristics which make it partic-

ularly convenient for our experiments. More details on

the filter can be found in [32].

4.4 Dynamic model

Our dynamic model is based on the CAD model of the

robot. This means that it is not very accurate as it

does not take into account the contribution of the hy-

draulic hoses, the electronics or any type of friction in

the model. We expect to have even better performance

once we perform a good identification of the dynamics

[1,24] but it is interesting to note that good results with

hierarchical inverse dynamics can be obtained without

a perfect dynamic model. It demonstrates that these

methods are robust to model uncertainty in a compila-

tion of balancing and tracking tasks.

4.5 Experimental tools

For our experiments we use different tools to gener-

ate and measure disturbances on the robot. We built

a push stick that has a FTN-Mini 45 force sensor at-

tached. It measures the applied force over time when

we push the robot. We conduct experiments where the

robot is standing on a rolling platform or a tilting plat-

form that is put on top of a beam. In both scenarios

we attached a Microstrain 3DM-GX3-25 IMU (See Fig-

ure 3) to the plate that the robot is standing on in order

to measure linear acceleration and angular velocities of

the platform when a disturbance is applied. These sen-

sors are connected to the controlling computer together

with the robot sensors, which allows for easy synchro-

nization of the readings. We use real-time ethernet for

the force sensor and real-time USB for the IMU.

5 Experiments

We formulated balancing and motion tracking tasks us-

ing the algorithm discussed in Section 2 together with

the momentum controller discussed in Section 3 and

evaluated them on the Sarcos Humanoid described in

Section 4. The performance of the controller was evalu-

ated in different scenarios: balancing experiments and a

tracking task in single and double support. A summary

of the experiments is shown in the attached movie 4.

For all the experiments, we run the hierarchical inverse

4 The movie is also available on www.youtube.com/
watch?v=jMj3Uv2Q8Xg
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Fig. 4 An overview of the control structure used in the presented experiments.

dynamics controller as a feedback controller. The de-

sired torque commands computed by the controller are

directly sent to the robot. We do not use any joint PD

controller for stabilization (i.e. feedback control is only

done in task space). A diagram visualizing the flow of

control variables is presented in Figure 4.

5.1 Processing Time

The computation time of the solver mainly depends on

a) the number of DoFs of the robot b) the number

of contact constraints and c) the composed tasks. All

experiments were performed on an Intel Core i7-2600

CPU with a 3.40GHz processor. Subsequent QPs (cf.

Section 2.2) were solved with an implementation of the

Goldfarb-Idnani dual-method [9] using the Eigen ma-

trix library. In the real robot experiments we use the 14

DoF lower part of a humanoid to perform several tasks

in a 1 kHz control loop. In the following, however, we

construct a more complex stepping task in simulation

for the full 25 DoF robot. The goal is to a) evaluate the

speedup from the simplification proposed in Section 2.3

and b) give an intuition on how the method scales with

the complexity of the robot.

We summarized in Table 1 the hierarchy that is used

in simulation. The highest two priorities satisfy hard-

ware limitations and dynamic constraints, the third pri-

ority task tracks a predefined center of gravity and

swing foot motion and the remaining priorities resolve

redundancies on motion and forces. The problem size

changes depending on the number of contacts c (c = 2

in double support and c = 1 in single support). The pro-

posed decomposition removed 25 equality constraints

and 25 optimization variables. We measured the com-

Rank Nr. of eq/ineq
constraints

Constraint/Task

1
25 eq Equation (12) (not required

for simplified problem)
6 eq Newton Euler Equation (13)
2 × 25 ineq torque limits

2 c× 6 eq Contact constraints, Eq. (2)
c× 4 ineq Center of Pressure, Sec. 2.1
c× 4 ineq Friction cone, Sec. 2.1
2 × 25 ineq joint acceleration limits,

Sec. 2.1
3 3 eq PD control on CoG

(2 − c) × 6 PD control on swing foot
4 25 + 6 eq PD control on posture
5 c× 6 eq regularizer on GRFs

DoFs: 25 max. time: 5 ms / 3 ms

Table 1 Full Humanoid Stepping Task for Speed Compari-
son. The maximum computation time was observed in double
support (c = 2).

putation time of both versions of the hierarchical solver,

one with the full EoM and one with the proposed reduc-

tion as plotted in Figure 5. Looking at the worst case (as

this is significant for execution in a time critical control

loop) we can reduce computation time by 40%. In our

experiments with a 14 DoF robot, this speedup allows

us to run a 1 kHz control-loop as we will demonstrate in

the following sections. It would not have been possible

by using this algorithm without the simplification. Go-

ing from a 14 DoF robot to a 25 DoF robot with similar

task setup makes the peak computation time rise from

1ms to 3ms. In our speed comparison in Figure 5 one

can see that computation time varies with the number

of constrained end effectors, which can be problematic

if the number of contacts increases too much (e.g. when

using both hands and feet).



10 Alexander Herzog1 et al.

�

�

Fig. 3 We attach a FTN-Mini 45 force sensor to a stick (top)
to measure forces during pushes. In some of our experiments
the robot stands on a rolling platform (middle) or a balancing
board (bottom). In both scenarios an IMU is attached to
the platform, which allows measuring linear accelerations and
angular velocities, when disturbances are applied. The black
box shows the internal frame of the IMU.

5.2 Balance Control Experiments

In the first set of experiments on the robot, we were

interested in systematically evaluating the balance ca-

pabilities of the momentum-based controller with hier-

archical inverse dynamics. First, we compare the per-

formance of the balance control when using the LQR
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Fig. 5 Processing time of a stepping task (see Table 1) using
the decomposition proposed in Section 2.3 (red) and the same
task performed without the decomposition (blue). The dotted
line represents the maximum computation per control cycle
respectively. Intervals shaded in gray show the robot in single
support phase. In the remaining time the robot is in double
support. With the proposed decomposition we decreased the
computation time by approximately 40%.

design and the PD controller described in Section 3 and

then test the performance of the robot when balancing

on a rolling platform and a balancing board.

5.2.1 Specification of the tasks

The specification of the task is summarized in Table

2 together with the maximum running time for one

control cycle. The physical constraints are put in the

highest priority. In the second priority, we put kine-

matic contact constraints, acceleration limits and con-

straints on reaction forces, i.e. CoP boundaries and

friction cones with a higher weight on CoPs. In the

third hierarchy level, we express our desired closed loop-

dynamics on the momentum together with a PD con-

troller on the posture and ground reaction force regular-

ization. Here, we prefer to have the momentum control

together with the posture control on the same level,

since the kinematic contact constraints (2nd priority)

lock 12 DoFs and the momentum control another 6

DoFs. Given that we only have 20 DoFs (including 6

for the floating base), we are left with too few DoFs to

keep a good posture. In our experience this allowed the

robot to keep a better looking posture given the limited

redundancy available.

We did not carefully tune the weights between the

tasks in the same priority level but merely selected

an order of magnitude by choosing among 4 different

weights for all tasks, 104, 1, 10−1 or 10−4. If not stated

otherwise, we chose P,D gains to be diagonal matrices

in all of our tasks except the momentum control. We

put a higher weight on the momentum control since
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Rank Nr. of eq/ineq
constraints

Constraint/Task

1 6 eq Newton Euler Equation (13)
2 × 14 ineq torque limits

2 2 × 6 eq Contact constraints, Eq. (2)
2 × 4 ineq Center of Presure, Sec. 2.1
2 × 4 ineq Friction cone, Sec. 2.1
2 × 14 ineq joint acceleration limits,

Sec. 2.1
3 6 eq momentum control, Eqs. (24)

or (23)
14 + 6 eq PD control on posture
2 × 6 eq regularizer on GRFs

DoFs: 14 max. time: 0.9 ms

Table 2 Hierarchy for experiments in Double Support

balancing is our main objective and gave less weight to

posture control and regularization of ground reaction

torques.

5.2.2 Comparison of momentum controllers

In this experiment we pushed the robot impulsively

with our push-stick at various contact points with dif-

ferent force directions. The robot was pushed at 4 points

on the torso above the hip (from the front, right, back

and left) and at 3 points at hip level (from the front,

right and left) as can be seen in the attached video.

The electronics of the robot are attached at the back

part of the hip which is why we did not push it at that

point. At each of the 7 points we applied 4 pushes of

increasing impact up to peak forces of 290 N and im-

pulses of 9.5 Ns, which is on the upper scale of pushes

in related work [28,23,29]. This episode of experiments

is executed with both variations of momentum control
discussed in Section 3: PD control with diagonal gain

matrices and with optimal gains from LQR design. We

put a reasonable amount of effort into finding parame-

ters for both controllers in order to be able to compare

them and in both cases we tried to find parameters

that would lead to fast damping of momentum, with a

slight preference for damping linear momentum to en-

sure that the CoG was tracked properly. Our resulting

LQR performance cost was

∞∑
t

[
xcog

h

]T
Q

[
xcog

h

]
+ λTRλ, (26)

with Q = diag([30, 30, 50, .5, .5, .5, .1, .1, .1]), R =

diag([0.1, 0.1, 0.01, 2, 2, 2]). For both momentum control

tasks, the robot was able to withstand impacts with

high peak forces and strong impulses without falling.

For every push, the change in momentum was damped

out quickly and the CoG was tracked after an initial
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Fig. 6 The robot was pushed from 4 sides at the block
above the hip and at the hip. At each point of attack it was
pushed 4 times. This figure plots the peak forces of the pushes
against the maximum CoG displacement (top two figures)
and against the maximum angular momentum (bottom two
figures). The 1st and 3rd figures from the top show experi-
ments performed with diagonal gain matrices. In the 2nd and
4th plot experiments were conducted with the LQR momen-
tum controller. The impulses of the pushes were increasing
roughly linearly with the peak forces. A list of peak impulses
is shown in Table 3. It can be seen that overall the CoG er-
ror remains lower with the LQR controller, while the angular
momentum behaves similarly.

disturbance. While it is difficult to compare the per-

formance of the controllers with other existing state-of-

the-art algorithms because very little quantitative data

is available and performance can drastically change across

robots, it seems that both controllers perform at least

as well as, if not better than, other approaches for which

data is available [28,23,29]. Indeed, the robot was able

to absorb impact up to peak forces of 290 N and im-

pulses of 9.5 Ns. We summarized the information for

the strongest pushes in each direction in Table 3 as a

reference.
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PD Control LQR
Above Hip Joint At Hip Joint Above Hip Joint At Hip Joint

F R B L F R L F R B L F R L
Peak Force [N] 233 108 103 80 217 207 202 244 179 107 114 293 223 118
Impulse [Ns] 7.9 4.7 5.1 3.9 9.1 9.0 6.9 6.9 6.8 6.2 4.7 9.5 8.6 4.3
max. CoG Error [cm] 4.6 3.5 3.4 2.8 5.0 4.3 2.8 3.4 2.8 2.7 1.8 3.3 3.0 1.5
max. Lin. Mom. [Nm] 22.6 10.2 15.8 6.9 13.1 7.9 9.3 19.8 13.6 16.3 9.1 14.4 9.2 9.5
max. Ang. Mom. [Nms] 4.1 1.9 2.2 1.5 2.4 0.9 0.7 3.7 2.5 2.1 2.0 2.8 1.1 2.0

Table 3 Here we list the maximum pushes applied to the robot, where each column shows the properties of one push. When
the first 7 pushes were applied, the momentum was controlled with PD control using diagonal gain matrices. For the last seven
pushes, LQR gains were used. The robot was pushed from the (F)ront, (R)ight (B)ack and (L)eft either above the hip joint or
at the height of the hip joint. The first two rows describe the peak force and impulse of each push. The last 3 rows show the
maximum deviation of the CoG and the linear and angular momentum of the robot after an impact.

In Figure 6 we systematically plotted the measured

peak forces against the maximum deviation of the CoG

and angular momentum for both controllers in order to

see the typical behavior of the robot. The impulses are

not plotted as they were proportional to the peak forces

in all our experiments. The maximum error for both an-

gular momentum and CoG tended to be proportional to

the peak force for all experiments. We notice from the

figure that for both momentum controllers we get sim-

ilar maximum deviations in angular momentum. How-

ever, with the LQR gains we see a significant improve-

ment in recovering the CoG. From Figure 7 we also see

how the LQR controller recovers quicker although the

robot was pushed harder than with the controller using

diagonal gain matrices.

Figure 7 shows a typical response for both con-

trollers where we plotted the impact force together with

the CoG tracking error and the momentum. We notice

that in both cases the disturbance is damped quickly.

We notice that although the peak force is higher for the

LQR controller, the response is better behaved than for
the PD controller and the momentum is damped faster.

While it is always difficult to ensure that a better set

of parameters couldn’t be found for the PD controller,

this result suggests that the LQR design performs bet-

ter than the PD controller. Moreover, the LQR design

is much simpler to tune because the design of a perfor-

mance cost has a more intuitive meaning than PD gains

and it can capture the coupling between linear and an-

gular momentum. The other advantage of the LQR de-

sign is that once the cost function is fixed, new gains

can be computed for various poses and desired momen-

tum behaviors automatically without manual re-tuning.

This aspect was very helpful for the contact switching

and single support task that we present in the following

section.

The balance controller that is implemented does not

rely on co-planar feet and is able to produce very com-

pliant behaviors. When we pushed the robot with a con-

stant force at various parts, it stayed in balance and

adapted its posture in a compliant manner. We also

tested the controller when the feet were not co-planar,

but one foot was put on top of a block. These behaviors

can be seen in the attached movie.

5.2.3 Balancing on moving platforms

For our next experiment, we put the biped on a rolling

platform and rotated and moved it with a rather fast

change of directions. A typical behavior of the robot

is plotted in Figure 8. The angular velocity and lin-

ear acceleration measured from the IMU that we at-

tached to the rolling platform are plotted together with

the CoG tracking error and momentum. Although the

CoG is moving away from its desired position when

the platform is moving around, it remained bounded,

the momentum was damped out and the robot kept

standing and recovered CoG tracking. The stationary

feet indicated that forces were applied that were con-

sistent with our CoP boundaries. We notice from the

figure that the CoPs, as they were predicted from the

dynamics model, are approximately correct. However,

one can expect that a higher precision might be needed

to achieve dynamic motions which could be achieved

with an inertial parameters estimation procedure [24].

In an additional scenario, the biped was standing

on a balancing board. We ran the experiment with two

configurations for the robot: in one case the robot is

standing such that the board motion happens in the

sagittal plane and in the other case the motion hap-

pens in the lateral plane. In this case, the slope was

varied in a range of [−2.8◦; 5.6◦] elevating the robot up

to 6.9 cm. Even for quite rapid changes in the slope, the

feet remained flat on the ground. Compared to the push

experiment the CoPs were moving in a wider range,

but still remained in the interior of the foot soles with

a margin. In this case, we notice a discrepancy in the

predicted contact forces and the real ones, making the

case for the need for a better dynamics model. Eventu-

ally, we dropped the robot from the maximum height

(Figure 9), such that the feet bounced off the ground
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Fig. 7 In this figure we compare typical push recoveries when we run momentum control with diagonal PD gain matrices
(left) and with LQR gains (right). Although the push is stronger for the LQR controller (bottom plots), the CoG error (top
plots) does not deviate from its stationary position more than with the PD controller. Both the linear and angular momentum
of the robot (middle two plots) are damped out quickly by the LQR controller and the CoG comes to rest faster as well.

at impact and tilted for a moment as can bee seen in
the video. Yet, the robot recovered and was still able to

balance. We notice in the figure that in this case, the

measured CoP of the foot that was lifted drastically

differs from the predicted ones. We also note that the

predicted CoPs reach their admissible boundary as is

seen from the flat horizontal lines.

When we increased the pushes on the robot, even-

tually the momentum could not be damped out fast

enough anymore and the robot reached a situation where

the optimization could not find solutions that would

balance the robot anymore (i.e. the slack variable as-

sociated to the desired momentum becomes very high)

and the biped fell. In these cases the constraint that

the feet have to be stationary was too restrictive. A

higher level controller that takes into account stepping

(e.g. [29,37]) becomes necessary to increase the stability

margin.

5.3 Tracking Experiments in Double Support

In the next experiment the robot is performing a squat-

ting like motion. We keep the same task hierarchy as

in the balance experiments (see Table 2) and make the

CoG track sine curves of 0.3 Hz and 0.5 Hz. The CoG is

moving with an amplitude of 2 cm in the forward direc-

tion and an amplitude of 3 cm in the vertical direction.

The results can be seen in the attached video.

In order to demonstrate the utility of the hierar-

chy, we setup a squatting experiment such that CoP

constraints would be activated during the motion. We

show the result of this experiment in Figure 10. We no-

tice that the CoP constraints are active in most parts of

the experiments. This constraint prevents the feet from

tilting and the robot stays stable. We also notice that

the real CoPs follow the predicted ones relatively well

and stay inside the support polygon. As a consequence,

the tracking of the CoG, which is in a lower priority,

is not ideal but still achieves a reasonable performance.

CoG velocity tracking is still achieved reasonably well.
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Fig. 8 The top three plots show the CoG error and momen-
tum when the robot is balancing on the rolling platform. The
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tion of the platform. The platform is displaced in Y direction
with the robot facing the direction of the disturbance. The
bottom figures show predicted and measured CoPs. Please
refer to the text for a discussion of the results.
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Fig. 9 The top figure plots the robot CoG error and mo-
mentum when it was dropped from the highest point on the
balancing board. In the bottom two plots one can see the an-
gular velocity and linear acceleration of the balancing board,
where we can identify the moment of impact with the ground
at 1 s. At that moment the right foot bounced off the ground
and lost contact for an instance of time as can be seen in the
measured CoP in the bottom plots and in the video. The ad-
missible CoP hit the boundary and saturated in Y direction.
Still, the robot was able to stabilize its feet and CoG and
damp out the momentum.
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Fig. 10 Tracking of the CoG in vertical direction during
the squatting task when CoP constraint is active. The top
two plots show the CoG desired and actual vertical positions
and velocities. The grayed area corresponds to periods during
which the CoP constraint is active. The bottom plot shows
the evolution of the CoPs for both feet. The horizontal blue
lines of the desired CoP correspond to an active constraint.

We note that the discrete activation/deactivation of the

constraint is not directly visible on the CoG motion be-

havior.

This experiment illustrates the importance of hier-

archies. By solving a QP without a hierarchy, there

would be two possibilities, either the CoP constraint

is set as a hard constraint of the optimization problem

and there is no guarantees that a solution to the prob-

lem exists or it is put in the cost function with the CoG

task and the solution is necessarily a trade-off between

contact constraints and motion tasks. Exploiting a hi-

erarchical setup, we are guaranteed to find a solution

to the optimization problem and at the same time we

are guaranteed that the CoG tracking task does not

interfere with the CoP constraint.

5.4 Single Support Experiments

The experiments in the previous sections were done

while the robot remained in double support. The goal of

this experiment is to show that the controller can han-

dle more complicated tasks involving contact switching

and that the robot is able to balance on a single foot in

face of disturbances. Further, we evaluate all capabili-

ties in a single task: contact switching, push rejection

in single support and tracking a leg motion.

First the robot moves from a double support posi-

tion to a single support position where the swing foot

is lifted 10 cm above the ground while balancing. This

motion consists of 3 phases. First, the robot moves its

CoG towards the center of the stance foot. Then an

unloading phase occurs during which the contact force

regularization enforces a zero contact force to guarantee

a continuous transition when the double support con-

straint is removed. In the final phase, a task controlling

the motion of the swing foot is added to the hierarchy.

Our contact switching strategy is simple but guaran-

tees that continuous control commands were sent to

the robot. For more complicated tasks, such guarantees

can always be met by using automatic task transitions

such as in [14]. The composition of hierarchies is sum-

marized in Table 4. Concerning computation time, the

controller computes a solution in average well below

1ms but a maximum at 1.05ms is reached a few times

during the unloading phase due to many constraints

becoming active at the same time.

Once in single support, we pushed the robot to ver-

ify that it is balancing. Impacts were applied with peak

forces up to 150 N and impulses between 4.5 Ns and

5.8 Ns. We saw a quick recovery of the CoG while the

CoPs stayed bounded. In order to control the foot we

used Cartesian position control (i.e. the swing foot task

consists of a PD controller for the foot position in Carte-

sian space).

We repeat the experiment where the robot, once

it is standing on one leg, swings its leg up and down

tracking 0.25 Hz sine curves on the hip and knee flex-

ion/extension joints (as can be seen in Figure 11). In

this case, we swap the Cartesian foot control for a de-

sired trajectory of the hip and knee in joint space (i.e.

a task that consists of time-varying positions for both

joints). Indeed, while in simulation Cartesian tracking

is perfect, on the real robot the tracking performance

of the Cartesian task of the swing foot is not satisfac-

tory when moving at higher speeds and amplitudes. We

suspect that several reasons can explain the problem.

One of the reasons seems to be due to the amount of

noise present in the position sensors such that it is diffi-

cult to increase the position gains while still being able
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Rank Nr. of eq/ineq
constraints

Constraint/Task

1 6 eq Newton Euler Equation (13)
2 × 14 ineq torque limits

2 2 × 4 ineq Center of Pressure, Sec. 2.1
2 × 4 ineq Friction cone, Sec. 2.1
2 × 14 ineq joint acceleration limits,

Sec. 2.1
3 6 eq. Linear and angular momen-

tum control
12/6 eq. Contact constraints, Eq. (2)
0/6 eq. Foot motion (swing)
14 eq. PD control on posture

4 2 × 6/1 × 6 eq. regularizer on GRFs

DoFs: 14 max. time: 1.05 ms

Table 4 Hierarchy for Single Support experiments

to damp the system. Since the feedback loop is closed

around the foot position, which is estimated through

forward kinematics, its velocity estimation seems to suf-

fer from the cumulative noise of all the sensors. In this

case, a direct joint control suffers less from that prob-

lem. Another problem could come from an insufficiently

accurate model of the swing leg dynamics where un-

modeled dynamics could become more dominant.

While the robot is performing the task, it is pushed

strongly at the hip from the front as can be seen in

the video. The joint tracking together with the linear

momentum and the push force are shown in Figure 11.

A spike in momentum can be seen at the moment of

impact, but is damped and remains bounded. During

the push, the CoP constraint is activated when the CoP

comes close to the heel. Thanks to the inequality con-

straint, the foot does not start tilting and the robot can

recover from the push. What is remarkable is that the
swing leg tracking is barely affected although the push

is comparable to the strongest impacts we applied in

double support. It is worth mentioning again that the

foot size of the robot is rather small compared to other

humanoids.

6 Discussion

In the following we discuss the results we presented and

how they relate to other approaches.

6.1 Task design and hierarchies

In our experiments, we exploit hierarchical separation

of physical constraints and tasks, such as the robot

dynamics and reaction force constraints and balancing

tasks. This is guaranteed to always find a feasible so-

lution while generating physically consistent solutions
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Fig. 11 Tracking error on the position and velocity of the
knee joint (top two plots) when the robot is standing on one
leg and pushed with a peak force of 270 N (bottom plot).
Although the linear momentum of the system (3rd plot from
top) was perturbed for a moment, joint tracking was barely
affected. The bottom plot shows the CoP of the stance foot,
which saturates close to the heel during the push, such that
the foot does not start tilting.
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and generating admissible task dynamics as close as

possible to the desired ones. As we have shown in the

experiments, this is important to keep balance in cases

when reaction force constraints conflict with lower pri-

ority tasks. Here, hierarchies can guarantee that per-

formance in balancing is traded off, but the physical

consistency of the solution is always guaranteed. Note

that with a QP formulation this would not be possible.

From our experience, we prefer to keep posture track-

ing task and momentum control in the same priority

and adapt importance by weights. It seems that the 14

DoFs of our robot are too limiting and do not leave

enough freedom when posture control is put in a sepa-

rate rank. Using a full humanoid with arms will increase

the flexibility of the robot and allow for more hierarchy

levels. We expect to have, for example, manipulation

tasks in a higher priority than balancing tasks.

As mentioned in the experiment description we used

only a small set of weights for our tasks. This already

gives us a balancing performance that is at least as good

as related work if not better. Better performance can

be achieved by adjusting parameters and hierarchical

setup more specific to tasks of interest [11]. It is impor-

tant to note that in both contributions we do not use

joint PD stabilization, but verify that the performance

is solely the effect of the hierarchical inverse dynamics

controller.

6.2 Relation to other balancing approaches

The balance control strategy used in this paper is sim-

ilar to the formulation of the momentum-based con-

troller presented by Lee and Goswami [21,20]. Our for-

mulation has the great advantage of solving a single

optimization problem instead of several ones and can

therefore guarantee that the control law will be consis-

tent with all the constraints (joint limits, accelerations,

torque saturation, CoP limits and contact force limita-

tions). As we have seen in the experiments, consistency

with inequality constraints can be very important to

improve robustness. Furthermore, we search over the

full set of possible solutions and thus we are guaran-

teed to find the optimum, where [21,20] optimize over

sub-parts of the variables sequentially. It is also differ-

ent from the work of [15] because we explicitly take

into account contact forces in the optimization and not

purely kinematics, which allows us to optimize the in-

ternal forces created by the contacts.

The balance controller is related to the work of [36].

In [36], the authors write the whole optimization pro-

cedure using Equation (1) with constraints similar to

the ones we use. However, with the optimization prob-

lem being complicated, they actually solve a simpler

problem where the contact forces are first determined

and then desired accelerations and torques are com-

puted through a least-square solution. From that point

of view, torque saturation and limits on accelerations

are not accounted for. In our experiments, no trade-

off is necessary and we solve for all the constraints ex-

actly. Further, the capability of strict task prioritization

makes the design of more complicated tasks like balanc-

ing on one foot easier. Also, separating the EoM from

kinematic contact constraints allows to keep solutions

consistent with the dynamics even in postures where

the feet cannot be kept stationary.

We have also shown in the paper that the use of a

LQR design for the momentum task can simplify the

controller design and improve robot performance by

taking into account the coupling between linear and

angular momentum. This design was particularly use-

ful for the contact switching and single support task.

Indeed, using the PD control approach, it was not pos-

sible to use the same gains in double or single support to

regulate the CoG. With the LQR design, the gains for

the momentum control were automatically computed

using the same cost function and therefore no specific

gain tuning was needed.

6.3 Relations to other hierarchical inverse dynamics

solvers

The implemented QP cascade is a combination of the

two algorithms [17,19]. We use a surjective Nullspace

map Zr (cf. Equation 8), similar to [19]. However, in [19]

inequality constraints are included only in the first pri-

ority, i.e. A1 = · · · = Ar. Instead, the proposed method
allows for prioritization among inequality constraints as

it was done in [17]. This variant of QP cascades com-

bines the benefits of both algorithms. On the one hand

variables are eliminated from one QP to the other, re-

sulting in faster solvable QPs. On the other hand, it al-

lows for prioritization of inequality constraints, which

we exploit e.g. to give more importance to hardware

limitations than to contact constraints.

Although fast enough for our experiments on the lower

part of our humanoid robot, the speed comparison in

Section 5.1 shows that a more efficient algorithm is re-

quired when we run feedback control on the full 25 DoF

robot. A method that is tailored to solve inequality con-

strained hierarchical tasks was derived in [6]. With an

active set method dedicated to solve prioritized inequal-

ity constraints, it can outperform QP cascades in terms

of speed. The QP cascade used in this algorithm trades

off computational efficiency to a simpler implementa-

tion, where the handling of inequality constraints is

passed on to an off-the shelf QP solver. As the focus
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of this paper was the experimental evaluation of the

problem formulation, a QP cascade with the employed

modifications was sufficiently fast and relatively easy to

implement. Another practical advantage of QP cascades

is the easily implemented regularization term in Equa-

tion (5), which increases numerical robustness in face of

task singularities as discussed in [17]. The approach of

[6] might also be interesting because it would directly

allow the use of warm-start techniques to speed up the

computations. Warm starting the optimizer should sig-

nificantly improve computation time since during most

tasks the active set does not change much from one con-

trol step to the other. Any inverse dynamics approach

using either QP cascades [22],[33] or Hierarchical QP al-

gorithm might profit from the decomposition proposed

in Section 2.3, as it is not required to compute an SVD

of the full equations of motion, but only of the last six

rows.

7 Conclusion

In this paper, we have presented experimental results

using a hierarchical inverse dynamics controller. A vari-

ant of cascades of QPs was presented and implemented

in a 1 kHz feedback-control loop. We used LQR to for-

mulate momentum controllers for balancing and track-

ing tasks. Our main focus then was the experimental

evaluation of the control framework on a torque con-

trolled humanoid robot. In a series of experiments, we

evaluated systematically the balancing and tracking ca-

pabilities of the robot. The humanoid showed a robust

performance in single and double support and was able

to recover from pushes and other disturbances. Our re-

sults suggest that the use of complete dynamic models

and hierarchies of tasks for feedback control is a feasible

approach, despite the model inaccuracies and compu-

tational complexity. For future work, we would like to

integrate higher level planners to compose more com-

plex tasks such as walking.
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He studied Computer-Science

at the Karlsruhe Institute

of Technology, in Germany.

Alexander visited the Com-

putational Learning and

Motor Control Lab (Uni-

versity of Southern Cali-

fornia) in 2011, where he

worked on the problem of

grasp planning for his diploma thesis. After receiv-

ing his Diploma in the same year, he joined the Au-

tonomous Motion Laboratory at the Max-Planck Insti-

tute for Intelligent Systems in 2012. His research inter-

ests include contact interaction in whole-body control

and grasping for humanoids.

Nicholas Rotella stud-

ied Mechanical Engineering

at The Cooper Union for

the Advancement of Science

and Art in New York, NY

from 2008 to 2012, after

which he joined the CLMC

lab at USC to pursue a

PhD in Computer Science.

He passed his PhD screen-

ing process and received

his Masters degree in Com-

puter Science from USC in
2014 and continues to work towards his PhD. His re-

search interests include optimal estimation and control

for legged robotic systems, controlling contact interac-

tions for locomotion and manipulation, trajectory opti-

mization and planning of complex motor control tasks.

Sean Mason received

the B.S. and M.S. degrees

in mechanical engineering

from Drexel University in

Philadelphia, PA in 2012.

In 2015, he received the

M.S. degree and is currently

working towards the Ph.D.

degree in Computer Science

at the University of Southern California. His research

interests include optimal control, biped locomotion, and

whole-body control frameworks for torque controlled

robots.

Felix Grimminger is

a mechatronics engineer work-

ing in Stefan Schaal’s Au-

tonomous Motion Depart-

ment at the Max-Planck-

Institute for Intelligent Sys-
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