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A. Torres-González · J. R. Martinez-de Dios · A. Ollero

Received: date / Accepted: date

Abstract This work is motivated by schemes of robot-sensor
network cooperation where sensor nodes –beacons– are used
as landmarks for Range-Only (RO) Simultaneous Localiza-
tion and Mapping (SLAM). In most existing RO-SLAM tech-
niques beacons are considered as passive devices ignoring the
capabilities they are actually endowed with. This paper pro-
poses a RO-SLAM scheme that distributes the measurements
gathering and integration between the beacons surrounding
the robot. It naturally integrates inter-beacon measurements,
significantly improving map and robot estimations and speed-
ing up beacon initialization. The proposed scheme is based
on Sparse Extended Information Filter (SEIF) and it is proven
that it preserves the constant time and sparsity properties of
SEIF and thus, inherits its efficiency and scalability. As a
result, our scheme has lower robot and map estimation errors,
faster beacon initialization and lower computer requirements
than existing methods. This paper experimentally validates
and evaluates the proposed method for 3D SLAM using an
octorotor.
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1 Introduction

This paper deals with Range-Only (RO) Simultaneous Local-
ization and Mapping (SLAM) in which the robot integrates
range measurements to radio beacons deployed in the sce-
nario in order to build a map of an unknown environment
and to self-localize in that map. Our scheme uses the nodes
of a sensor network as beacons –landmarks– for RO-SLAM.
In short, sensor networks consist of spatially distributed au-
tonomous devices –nodes– employed to gather measurements
of an environment or a process and to cooperatively trans-
mit them to a main location. Visual SLAM does not require
any deployment in the environment, which is critical in many
problems, and a very high number of very good visual SLAM
solutions have been developed [22]. However, RO-SLAM
using radio beacons is more interesting than visual SLAM in
many other cases. RO-SLAM is independent of lighting con-
ditions and does not require line-of-sight operation, whereas
visual SLAM is often sensitive to changing lighting condi-
tions and is not suitable in presence of smoke, heavy dust [3]
or specular reflections. Besides, using radio beacons as land-
marks naturally solves the data association problem, typical
of visual SLAM.

Consider a GPS-denied scenario where a large number
of sensor nodes have been deployed at unknown locations.
For instance, they have been placed at random locations for
real-time monitoring of an accident, or they are used for
monitoring an industrial facility and their exact location was
not registered during deployment. Each sensor node gathers
measurements and transmits them to a Monitoring Station.
We assume that each node can measure the distance to other
nodes. This is not a hard requirement, in fact most Commer-
cial Off-The-Shelf (COTS) sensor network nodes can mea-
sure the radio signal strength (RSSI) of incoming packets and
estimate the range to the emitting node [1]. Accurate map-
ping and robot localization is critical for the navigation of the
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robot in complex GPS-denied environments. Also, the local-
ization of sensor nodes –mapping– is necessary to geolocate
the measurements collected. Besides, knowing the location
of robots and nodes enable robot-sensor node cooperative
missions of interest in these scenarios such as sensor node
transportation and deployment [5,16] or collection of data
from sensors [6]. The potentialities of robot-sensor network
collaboration has originated significant interest in RO-SLAM
techniques that employ sensor nodes as beacons, see e.g. [4,
18,19]. However, most reported techniques consider beacons
as passive landmarks and do not exploit the capacities they
are actually endowed with.

This paper proposes a RO-SLAM scheme that exploits
the robot-sensor network collaboration by distributing mea-
surement gathering and integration in SLAM between the
beacons around the robot. It is based on Sparse Extended
Information Filter (SEIF) [25], and inherits its efficiency and
scalability. Its distributed approach shares resource consump-
tion, reducing robot CPU burden, and at the same time natu-
rally integrates inter-beacon measurements (measurements
between two beacons), which improves map and robot local-
ization accuracies. It is proven in the paper that the proposed
scheme accumulates higher amount of information than the
conventional SEIF SLAM and at the same time, it preserves
the sparsity of the information matrix and its constant time
property. The paper presents the scheme, evaluates and com-
pares its performance with existing methods in experiments
performed with an octorotor aerial robot.

This paper is an extended version of our work [26]. The
main improvements of this paper over [26] are:

– a new section that justifies the validity of the proposed ap-
proach analyzing its effect on the building of the informa-
tion matrix. First, it theoretically proves the preservation
of the main properties of SEIF using common assump-
tions. Then, it analyzes with simulations their validity
when the assumptions are relaxed;

– extension to 3D SLAM and integration of the scheme
with an octorotor aerial robot;

– a new section with the extensive validation of the pro-
posed method in 3D SLAM using an octorotor.

– extension and more detailed related work. Also, the paper
has been restructured and all sections have been com-
pleted and rewritten for clarity.

The paper is organized as follows. Section 2 summarizes
the main existing RO-SLAM methods. Section 2.1 briefly
summarizes SEIF SLAM as an introduction to our method,
which is detailed in Section 3. Section 4 analyzes the build-
ing of the information matrix in proposed scheme and proofs
that it preserves the main properties of SEIF SLAM. Section
5 evaluates and compares with existing methods its perfor-
mance and robustness in 3D SLAM in real experiments and
simulations. The conclusions are in the last section.

2 Related work

A good number of RO-SLAM methods have been developed
in the last years. Most of them employ approaches based on
Extended Kalman Filter (EKF) SLAM or on Fast-SLAM.
FastSLAM [2] factorizes the state vector dividing it in the
vehicle pose estimation and the map estimation. It is more
flexible than EKF due to the use of a Particle Filter as the
core of the algorithm, which allows having different noise
distributions apart from only Gaussian as in the case of EKF.
In FastSLAM each particle of the filter represents an hy-
pothesis of the state (robot pose and map). EKF SLAM [8,
17] is a well-known method, obtains good results in most
implementations but it lacks scalability.

Different strategies have been developed in the past years
to improve efficiency and scalability in SLAM. The majority
of them use the canonical form of the Gaussian distribution.
Thin Junction Tree Filters [21] employ an special data struc-
ture –called junction tree– to represent the information matrix.
Work [21] proposes approximations to keep these junction
trees simple –thin– regardless of the map size. Treemap Fil-
ters [12] hierarchically divide the map into local regions.

Dual to Kalman Filters, Information Filters (IFs) repre-
sent the state by its canonical form based on the information
vector and the information matrix. In Extended Information
Filter (EIF) SLAM the update stage is very efficient –additive–
but the prediction stage requires operations with the whole
information matrix, involving bad scalability with the map
size. Besides, it is a full SLAM solution, i.e. it solves the
SLAM problem after all information has been gathered, not
being suitable for on-line applications.

Sparse Extended Information Filter (SEIF) [25,15] solves
on-line SLAM maintaining a sparse representation of the
information matrix, which simplifies the matrix operations,
improving efficiency and scalability. It has been demonstrated
in [25,11] that many of the off-diagonal elements of the
information matrix are relatively close to zero. SEIF SLAM
enforces the sparsity of the information matrix, enabling
efficient algorithms for motion update and state recovery.
As a result, it can be executed in constant time regardless
of the map size. SEIF for feature-based SLAM has been
researched in some works. In [9] a modification for ensuring
the consistency of the global map estimate was proposed.
SEIF SLAM for multi-robot systems was used in [24].

Most RO-SLAM techniques employ only robot-beacon
range measurements. Work [8] was the first in using also
measurements between beacons (inter-beacon). Integrating
inter-beacon measurements improves map and robot estima-
tion accuracies and speeds up beacon initialization. Despite
its advantages few methods employ them since they involve
significantly higher consumption of resources including the
computational power required to integrate the higher num-
ber of measurements. In a previous work [28] we addressed
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the increment in resource consumption proposing a central-
ized EKF SLAM scheme that dynamically disconnects the
integration of inter-beacon measurements in SLAM when
the desired uncertainties have been met. In this paper we
propose an efficient robot-beacons distributed SEIF scheme
where beacons actively participate in gathering and integrat-
ing measurements in SLAM, sharing resource consumption
and ensuring constant time execution. Work [7] presented a
decentralized scheme to self-localize a sensor network with
the help of a mobile robot. It is based on Loopy Belief Prop-
agation (LBP) [13], so it requires the sensor network to be
sparse –not fully connected– which is an important limitation
in many applications. In case of having loops in the network
some information can be counted twice, making it more diffi-
cult to accurately recover the exact state representation.

2.1 Range Only SEIF SLAM in a nutshell

This section briefly summarizes the SEIF SLAM algorithm
as an introduction to the proposed scheme. Most expressions
have been omitted. For notation simplicity, time subindex
t has been also omitted. Refer to [23] for further details.
The adopted state vector x is comprised of the robot po-
sition (xr) and the location of all the beacons in the map
(x1,x2, . . . ,xN). SEIF SLAM is based on Extended Informa-
tion Filter (EIF). Dual to EKF, EIF represents the state vector
by the information vector ξ = Σ−1µ and the information
matrix Ω = Σ−1, where µ is the mean of the state vector
and Σ is the covariance matrix. Ω , see (1), is symmetric and
positive-semidefinite. Each off-diagonal entry of Ω –called
link [25]– represents the relation between two elements in x.

Ω =


Ωr,r Ωr,1 · · · Ωr,N
Ω1,r Ω1,1 · · · Ω1,N

...
...

. . .
...

ΩN,r ΩN,1 · · · ΩN,N

 (1)

At any time in the SLAM operation some of the off-
diagonal elements of Ω are zero meaning lack of information
between the involved elements; some of them have high val-
ues –strong links– meaning high information; and a number
of them have values close to zero –weak links. Weak links
have much lower impact on the estimation than strong links
but both involve similar computational burden. SEIF main-
tains a sparse representation of Ω by keeping the number
of active beacons –beacons with non-zero links to the robot–
bounded by a threshold. Every time the number of active bea-
cons is above the bound, the sparsification step is performed
deactivating the beacons with the weakest links.

Measurement update in information filters modifies only
the entries of Ω corresponding to the elements involved in
the measurement. Factorizing Ω allows efficient update stage

regardless of the map size. Also, the sparsity of Ω signifi-
cantly reduces the computational burden required in SEIF
for the prediction stage. For linearizing the prediction and
observation models it is required to recover the state estimate
µ from the predicted Ω̄ and ξ̄ . The whole state is not needed,
only the states of the robot and active beacons are required.
Of course, enforcing sparseness in Ω involves an approxi-
mation error in the estimations obtained by SEIF. Work [23]
suggests using sparsification bounds in the range [4−10] in
order to balance accuracy degradation and burden reductions.

We could not find any paper that used SEIF SLAM with
range measurements. The observation model we adopted for
the integration of robot-beacon range measurement zr, j taken
by the robot to beacon bi is:

hr,i(µ) =
√

δ 2
x +δ 2

y +δ 2
z , (2)

where δx = µx− µ i
x, δy = µy− µ i

y and δz = µz− µ i
z, where

[µx,µy,µz] and [µ i
x,µ

i
y,µ

i
z] are respectively the estimated po-

sitions of the robot and bi. hr,i is nonlinear. Its Jacobian is:

Hr,i =
∂hr,i

∂ µ
=
[

δx
hr,i

δy
hr,i

δz
hr,i
· · · −δx

hr,i

−δy
hr,i

−δz
hr,i
· · ·
]

(3)

All the entries of Hr,i that are not shown in (3) are zero.
All the entries are zero except for those corresponding to
the robot and to bi. Our method also integrates inter-beacon
measurements, such as zi, j gathered by beacon bi to b j. The
model adopted hi, j is an extension of that in (2). Again, all
the entries of Jacobian Hi, j are zero except for those corre-
sponding to the beacons involved in the measurement:

Hi, j =
[
0 · · · δx

hi, j

δy
hi, j

δz
hi, j
· · · −δx

hi, j

−δy
hi, j

−δz
hi, j
· · ·
]

(4)

Range measurements have the problem of partial observ-
ability. The SEIF SLAM filter should be combined with an
auxiliary tool for beacon initialization such as are Particle Fil-
ters [17], Probability Grids [8,20] and trilateration methods
[18]. Trilateration methods, although simple and efficient,
are very sensitive to measurement noise and can lead to high
initialization errors. Probability Grids provide better initial-
ization but their accuracy depends on the size and resolution
of the grid. Particle Filters (PFs) are the most widely applied
method. They provide better accuracy and various mecha-
nisms have been developed to reduce their computational
burden. We adopted PFs in the experiments shown in the pa-
per. When the robot takes the first measurement from beacon
bi, the initialization of bi is started and then beacon bi enters
at the “initialization phase”. It keeps in this stage until the
auxiliary tool converges and an initial estimation of the loca-
tion of bi is computed. Then, it is added to the state vector.
From now on we say that bi is at the “state vector phase”.
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3 Robot-sensor network distributed SEIF SLAM

The proposed work is strongly motivated by our envisioned
application: aerial robot autonomous navigation for mainte-
nance and repairing in industrial plants, which are environ-
ments with poor GPS reception. Figure 1 shows a picture of a
typical environment in our problem. These scenarios are not
well textured, they contain many pipes, which often have few
features. Also, pipes frequently originate specular reflections
and shadows causing drastic local lighting changes involving
severe problems in visual and RGB-D SLAM techniques. Al-
though very good visual and RGB-D SLAM solutions have
been developed, in these environments they are not always
robust enough for safe robot localization and navigation. In
our problem RO-SLAM techniques that use sensor nodes
–beacons– as landmarks are an interesting alternative. Each
beacon is endowed with sensing, computing and communi-
cation capabilities and can measure the distance to the robot
or to other beacons within its sensing region. These are not
constraints in practice. A wide variety of Commercial Off-
The-Shelf sensor nodes fulfill them. Our method performs
satisfactorily with low densities of beacons deployed with-
out special care in the scenario. Besides, in many industrial
plants sensor nodes are already deployed and currently used
for process monitoring & maintenance.

Fig. 1 Pictures of the objective scenario of the proposed method.

In conventional RO-SLAM techniques the robot gathers
range measurements to the beacons within its sensing region
and integrates these measurements in the update stage. In
the proposed scheme measurement gathering and integration
in SLAM is distributed among the beacons. The beacons in-
volved at time t can be classified into two sets: direct beacons
and indirect beacons. Direct beacons are those that at time t
are within the robot sensing region (SRr). The set of direct
beacons at time t is DBSt = {bi : bi ∈ SRr}. Indirect beacons
are those that are outside SRr but within the sensing region
of a direct beacon. The set of indirect beacons at t is:

IBSt = {b j : b j /∈ SRr, b j ∈ SRi ∀bi ∈ SRr}, (5)

where SRi is the sensing region of beacon bi.
The operation of the presented scheme is as follows. The

SLAM prediction stage is executed in the robot. The robot
keeps LNB, the list with the direct beacons it has detected.
Then, the robot broadcasts an UpdateReq message that in-
cludes LNB and the predicted state. Each direct beacon bi
receives the message and extracts LNB. If bi finds itself in
LNB, it gathers a range measurement to the robot (zi,r) and
to each of the beacons within its sensing region SRi. This
measurement set is designed as MSi = {zi,r,zi, j ∀b j ∈ SRi}.
Then, each direct beacon bi computes with the measurements
in MSi its contribution to the update stage and transmits it
to the robot in an UpdateResp message. The update stage in
SLAM represented in the information form is additive. Thus,
the robot reconstructs the SLAM updated state by adding the
contributions it received. Figure 2-top summarizes the main
tasks and message interchanged in the proposed scheme..

Measurement gathering is illustrated in Fig. 2-bottom.
The red and gray circumferences represent the sensing re-
gions of the robot and beacons, respectively. Direct bea-
cons are represented in black color and, indirect in gray:
DBSt = {b1,b5,b6} and IBSt = {b2,b3}. In conventional
RO-SLAM the robot gathers and integrates measurements to
direct beacons, {zr,1, zr,5,zr,6} in Fig. 2. In our scheme each
direct beacon bi gathers and integrates the measurements in
its MSi, e.g. b5 gathers MS5 = {z5,r, z5,1,z5,6}. Thus, when
the robot completes the SLAM update stage it has integrated
measurements {z1,r,z1,2,z1,3,z1,5,z5,r,z5,1,z5,6,z6,r,z6,5}.

Our scheme integrates all robot-beacon and inter-beacon
measurements that involve one or more direct beacons, nat-
urally avoiding repeated measurements. It gathers one mea-
surement for all these distances except for those between two
direct beacons, e.g. b1 and b5. In these cases two different
measurements are gathered, e.g. z1,5 and z5,1. The method is
also robust to message loss, as is shown in Section 5.

3.1 Operation of the robot

The operation of the robot in one prediction-update cycle is
summarized in Alg. 1. First, the robot computes the SLAM
prediction stage. We assume static beacons and a robot with
nonlinear kinematic model. Thus, its Jacobian should be com-
puted at each time, which requires recovering µ . Our scheme
uses the efficient algorithm described in [23] for motion up-
date and state recovery (step 1 in Alg. 1). This algorithm
computes the predicted information vector ξ̄ , the information
matrix Ω̄ and also the recovered predicted estimate µ .

Next, the robot broadcasts an UpdateReq message that
includes the predicted estimate µ . Transmitting the whole
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UpdateReq

UpdateResp

SEIF motion update 
and state recovery

Update LNB

Sum the update con-
tributions: (7)-(8)

SEIF Sparsification

Take measurements MSi

Compute Li and Ài: (9)-(10)

Robot Beacon bi

b1

b5

b2

b3

b4

b6

b7

Fig. 2 (Top) Main tasks and messages interchanged between the robot
and beacon bi in the proposed scheme. (Bottom) Measurement gathering
in a conventional RO-SLAM and in the proposed scheme. The red
triangle represents the robot. Direct beacons are represented with black
circles and indirect, with gray circles. Circumferences represent the
sensing regions of the robot (red) and of beacons (gray).

Algorithm 1 Summary of the operation of the robot
Require: ξt−1,Ωt−1
1: SEIF SLAM motion update and state recovery
2: Update LNB and create UpdateReq message
3: Broadcast UpdateReq message
4: Receive UpdateResp messages from beacons
5: Sum SLAM update contributions to ξ̄ and Ω̄ as in (7) and (8)
6: SEIF SLAM Sparsification
7: return ξt ,Ωt

µ is not suitable in cases with large numbers of beacons:
it would require broadcasting large –or several– messages,
increasing message losses. Besides, the greater part of µ is
not of interest for direct beacons. Only the elements in µ

required for each direct beacon in LNB are transmitted. Each
direct beacon bi gathers range measurements to the robot
and to the beacons b j ∈ SRi. For integrating them it needs
µi, µr and µ j ∀b j ∈ SRi. evi is the vector with the estimates
required for direct beacon bi to perform its SLAM update:

evi =
[
µr µi µ j

]T (6)

At the beginning LNB is assumed empty. If a direct bea-
con that received the UpdateReq message does not find itself
in LNB, it sends a BeaconDiscovery message to the robot

with its ID and the IDs of the beacons that are within its
sensing region. Then, the robot will add it to LNB. When the
robot does not receive update contributions from beacon bi
within LNB in a number of consecutive times, it is interpreted
that bi is currently outside SRr and is deleted from LNB.

UpdateResp message from bi contains its contribution
to the SLAM update (ξi and Ωi). The robot receives the
UpdateResp messages and when a timeout expires, it recon-
structs the updated state (ξ and Ω ) adding the predicted ξ̄

and Ω̄ to the contributions it received:

ξ = ξ̄ +∑
i

FT
i ξi, (7)

Ω = Ω̄ +∑
i

FT
i ΩiFi, (8)

where Fi is the projection matrix that implements operations
that allocate ξi and Ωi at the correct entries for ξ and Ω .

Finally, the robot checks if the updated Ω satisfies the
sparsification bound θx. If not, the active beacons with the
strongest links are selected and the weakest links are deac-
tivated. Note that measurements from both active and non-
active beacons are integrated in the update stage. Integrating
measurements from a non-active beacon gives this beacon
the possibility of being selected in the sparsification step.

3.2 Operation of beacons

The operation of the beacons is summarized in Alg. 2. Each
beacon bi that received an UpdateReq message first measures
the range to the beacons in its sensing range –its measurement
set is MSi. The operation of bi is different if it is at the
“initialization phase” or at the “state vector phase”. If bi is
at the “state vector phase”, it computes its SLAM update
contribution integrating the measurements in MSi as follows:

ξi = ∑
k∈MSi

HT
i,kR−1[zi,k−hi,k(evi)+Hi,kevi] (9)

Ωi = ∑
k∈MSi

HT
i,kR−1Hi,k (10)

where hi,k(evi) and Hi,k are the predictions and Jacobians
for each measurement in MSi either if it is a robot-beacon
measurement or an inter-beacon measurement. R is the co-
variance matrix of the measurement noise.

Next, each beacon bi transmits the resulting ξi and Ωi to
the robot in an UpdateResp message, as in step 6 in Alg. 2.

If bi is the “initialization phase”, the measurements in
MSi cannot be used for the update of the SLAM state vector:
they are used for the initialization of beacon bi. Two versions
of the proposed scheme were developed:
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Algorithm 2 Summary of the operation of beacon bi
1: Receive UpdateReq message. Extract LNB
2: if (bi is present in LNB) then
3: Take measurements MSi
4: if (bi is at “state vector phase”) then
5: Compute ξi and Ωi with MSi as in (9) and (10)
6: Send ξi and Ωi to robot in an UpdateResp message
7: else
8: Send MSi to robot in an UpdateResp message
9: end if

10: else
11: Send to robot a BeaconDiscovery message
12: end if

– Method1: The initialization of each beacon bi is com-
puted by the robot. In this case bi transmits to the robot
an UpdateResp message containing MSi. The robot will
use MSi for the initialization of bi. When beacon initial-
ization is finished, the robot computes the estimation of
the location of bi and adds it to the SLAM state vector x.

– Method2: Each beacon computes its own initialization:
both SLAM update and beacon initialization are decen-
tralized. bi integrates MSi in its own initialization tool.
When the beacon initialization is finished, bi sends the
robot its estimation in an UpdateResp message so that it
adds the initialized beacon to x.

The selection between Method1 or Method2 depends on
the beacon computational capabilities and on the initializa-
tion tool. For instance, with beacons implemented using Wire-
less Sensor Networks (WSN) technology, Method2 is suitable
in case of using trilateration initialization but would require
Method1 if using PFs. Beacons implemented with embed-
ded PCs (RaspberryPi as in the experiments), smatphones or
PDAs can execute Method2 using PFs as initialization tools.

4 Analysis of the proposed scheme

If we analyze the building of the information matrix in the
proposed scheme we can obtain the following conclusions:

– In the proposed scheme the integration of inter-beacon
measurements is responsible for obtaining higher values
of Ω , and hence lower robot localization and map uncer-
tainties, than schemes that integrate only robot-beacon
measurements. We believe that this conclusion is clear
and for brevity it is not proven.

– The proposed method preserves the sparsity of the infor-
mation matrix of the conventional SEIF SLAM. Under
common assumptions, both create the same links of the
information matrix. This will be proven in Section 4.2.

– The proposed scheme preserves the constant time prop-
erty of SEIF SLAM, which integrates only robot-beacon
measurements. It is clear that the prediction stage and
the distributed update stage of the proposed scheme are

constant time. In Section 4.3 it will be proven that state
recovery in our scheme is also constant time.

Finally, in Section 4.4 the assumptions of the demon-
strations used in Sections 4.2 and 4.3 are relaxed and the
above conclusions are confirmed using simulations. Next, the
building of the information matrix and links is described.

4.1 Building of the information matrix

The information matrix and its structure was briefly presented
in Section 2.1. Each off-diagonal entry of the information
matrix constraints two elements in the state vector –each on-
diagonal entry constraints one. The off-diagonal entry Ωr,i
links together the estimations of the robot pose and of the
location of beacon bi. Entry Ωi, j ∀i 6= j links together the
localization estimations of bi and b j.

Two types of links can be distinguished: robot-beacon
links and inter-beacon links. A robot-beacon link relates the
robot with a beacon. They are created or reinforced (the value
of the link is incremented) when a robot-beacon measurement
is integrated in the SLAM update stage. Integrating zr, j affects
Ωr,r, Ω j, j and the robot-beacon links between the robot and
b j, i.e. Ωr, j and its symmetric Ω j,r. Inter-beacon links relate
two beacons. They are created or reinforced when an inter-
beacon measurement is integrated. Integrating zi, j affects Ωi,i,
Ω j, j and inter-beacon links Ωi, j and Ω j,i. Inter-beacon links
are created/reinforced also when integrating the robot motion
in the SLAM prediction stage.

Figure 3 illustrates how the information matrix is built
in the conventional SEIF SLAM (a-c) and in the proposed
scheme (d-f) in a simple example. We assume that b1 and
b2 are currently direct beacons (within SRr) and that b1 and
b2 are within the sensing region one another. b3 is within
the sensing region of b2. We assume that initially Ωr,1=Ωr,2=
Ω1,2=0. First, we describe the operation of the conventional
SEIF SLAM. The SEIF SLAM update stage integrates mea-
surements zr,1 and zr,2, which creates robot-beacon links Ωr,1
and Ωr,2 –and their symmetric links, see Fig. 3-a. Next, the
robot motion in the SEIF SLAM prediction stage transfers
some low amount of information from the robot-beacon links
–Ωr,1 and Ωr,2 in Fig. 3-b– to the inter-beacon links between
the involved beacons –Ω1,2. Link Ω1,2 is created. At that
time, Ωr,1 and Ωr,2 are strong (have high value) whereas
Ω1,2 is weak. Next, the sparsification step in this example
deactivates b1 and hence, removes link Ωr,1, see Fig. 3-c.

In the proposed distributed scheme the update stage inte-
grates zr,1, zr,2, z1,2 and z2,3, which strengthens robot-beacon
links between the robot and all direct beacons –Ωr,1, Ωr,2–
and also the involved inter-beacon links –Ω1,2 and Ω2,3, see
Fig. 3-d. The prediction stage transfers some low amount of
information from Ωr,1 and Ωr,2 to Ω1,2, see Fig. 3-e. At that
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time, links Ωr,1, Ωr,2, Ω1,2 and Ω2,3 are strong. Finally, the
sparsification step deactivates b1 and removes Ωr,1, Fig. 3-f.

Our scheme creates exactly the same robot-beacon links
that SEIF SLAM and exactly with the same value –strength.
The main difference between both is how they treat inter-
beacon links. In SEIF SLAM the only way to create/reinforce
inter-beacon links is through the robot motion in the predic-
tion stage. Besides, in our method they are created/reinforced
also when integrating inter-beacon measurements. As a result
inter-beacon links accumulate significantly more information
than in SEIF SLAM.

4.2 Preservation of the sparsity of the information matrix

The conventional SEIF SLAM imposes sparsification bounds
both in the number of robot-beacon links, θx, and in the num-
ber of inter-beacon links, θy [25]. In [25] it was proven that
keeping the number of robot-beacon links below θx automat-
ically constrains the number of inter-beacon links below θy.
One could think that in our scheme integrating inter-beacon
measurements may increase the number of inter-beacon links,
violating the sparsification bound. In this section we proof
that this is not the case: we demonstrate that in many sce-
narios it creates exactly the same inter-beacon links that the
conventional SEIF SLAM. Our scheme accumulates higher
amount of information than the conventional SEIF SLAM,
but this increment is not used to create new links but to in-
crease the strength of existing links, enabling lower map and
robot uncertainty with a compact description.

Without loss of generality we assume that: (1) every bea-
con is within the robot sensing range at some time in the
robot path and; (2) every pair of neighbor beacons in the
environment (beacons which are within the sensing region
one another) fall simultaneously within SRr at some time
in its path. These assumptions do not involve practical con-

straints. They are met in cases where the robot follows dense-
navigation paths, which are typically adopted in SLAM in
mapping or surveillance applications. Besides, in Section 4.4
it is shown that sparsity preservation is confirmed also when
these assumptions are relaxed.

In the proposed scheme inter-beacon links are created
through the robot motion and also by the integration of inter-
beacon measurements. In the following the sets of inter-
beacon links created in the full experiment through both
mechanisms are analyzed. The integration of zi, j creates/ re-
inforces inter-beacon link Ωi, j. Assuming dense-navigation
robot paths, the robot will integrate inter-beacon measure-
ments of every pair of neighbor beacons ∀ bi,b j : bi ∈ SR j.
Thus, in the full robot path the set of inter-beacon links cre-
ated by inter-beacon measurements are:

LIB = {Ωi, j > 0 ∀ bi,b j : bi ∈ SR j} (11)

Besides, recall that the robot motion creates an inter-
beacon link between any pair of beacons in which both
beacons fall simultaneously within SRr. The robot path is
assumed dense enough such that every pair of neighbor bea-
cons bi and b j in the environment –∀bi,b j : bi ∈ SR j– fall
simultaneously within SRr at some time in the robot path.
Thus, the set of inter-beacon links between neighbor beacons
created through the robot motion in the full robot path is:

L1
R = {Ωi, j > 0 ∀ bi,b j : bi ∈ SR j} (12)

The robot motion creates inter-beacon links between
neighbor beacons but, also between beacons that are not
neighbors one another but both are simultaneously within
SRr at a certain time t. The set of inter-beacon links between
non-neighbor beacons will be called L2

R. In the general case
L2

R 6= /0 and the set of inter-beacon links created through the

Fig. 3 Top) Effect of the steps in the conventional SEIF SLAM on the information matrix: (a) measurement integration, (b) prediction stage and (c)
sparsification. Bottom) Effect of the steps in the proposed scheme on the information matrix : (d) measurement integration, (e) prediction stage and
(f) sparsification.
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robot motion is LR = L1
R∪L2

R. From Eqs. (11) and (12) it is
easy to notice that LIB ⊆ LR.

In the conventional SEIF SLAM inter-beacon links are
created only via the robot motion: the set of inter-beacon
links is LSEIF = LR. In our scheme they are created through
both mechanisms: the set of inter-beacon links is Lprop =

LIB ∪LR = LR. Thus, our scheme creates exactly the same
inter-beacon links as SEIF SLAM, preserving the sparsity of
the information matrix. From Section 4.1 it is clear that both
create the same robot-beacon links. Thus, it is concluded
that under the above assumptions both create the same robot-
beacon and also inter-beacon links.

If the dense-navigation robot path assumption is not met,
inter-beacon measurements could create some links in LIB
that are not present in LR. Section 4.4 evaluates through
simulation the effects of relaxing this assumption.

4.3 Preservation of constant time property

Constant time execution is a well known property of SEIF
SLAM. The proposed scheme distributes measurement gath-
ering and update computation making them independent of
the map size. This section analyzes if the state/map recovery
in the proposed scheme preserves constant time execution.

A critical key for SEIF SLAM being constant time is
that it only recovers the state of the robot and of all the ac-
tive direct beacons. As described in Section 3.1 our scheme
recovers evi for each direct beacon bi currently within SRr.
Recalling Eq. (6), state/map recovery for direct beacon bi
involves computing: µr, µi and the state of the beacons neigh-
bors of bi. This should be done for each direct beacon at time
t. Thus, considering all direct beacons it is easy to notice that
at time t state/map recovery should recover: the robot state;
the states of currently active direct beacons and; the state
of active indirect beacons at time t –recall the definition in
Section 3. In the proposed scheme recovering the states of
indirect beacons involves an increment in the computational
cost over that of SEIF SLAM. However, as proven below
state/map recovery is kept constant time.

Let nDB and nIB be the number of direct and indirect
beacons in the surrounding of the robot at time t. SEIF SLAM
recovers the states of the robot and of direct beacons (in black
in Fig. 2). The proposed scheme recovers also the state of
indirect beacons (in gray in Fig. 2). Our scheme uses the state
recovery algorithm presented in [23], which complexity is
linear with the number of beacons states recovered: O(nDB)

for SEIF SLAM and O(nDB +nIB) for the proposed scheme.
The complexity of state/map recovery for the proposed

method is as bounded as it is for SEIF SLAM. The computa-
tional burden of state/map recovery in our method –and also
in SEIF SLAM– depends on beacon density, and not on the
total number of beacons present in the environment. Highly

inhomogeneous local beacon densities are not very useful for
RO-SLAM. It is more interesting if beacons are deployed in
densities with some homogeneity. In these cases nDB +nIB
will have similar values along the robot path.

4.4 Simulation relaxing assumptions

This section analyzes using simulations the conclusions in
Sections 4.2 and 4.3 when the assumptions are relaxed. A
70x70m scenario with 50 randomly deployed beacons was
considered. The range measurement noise is assumed Gaus-
sian with zero mean and standard deviation of σm = 0.8m.
The robot trajectories were different in every experiment and
did not meet the dense-navigation assumption. The sparsi-
fication bound was θx = 10, in the range suggested in [23].
The proposed method was compared with EKF SLAM and
SEIF SLAM. All the methods used PFs with 500 particles for
beacon initialization and of course, all were set with exactly
the same parameters.

It is easy to notice that the proposed scheme integrates
more information than EKF SLAM and SEIF SLAM. Table
1 compares their performance in a set of 50 simulations
with different beacon settings and robot paths. Two main
metrics are analyzed: the average amount of information
integrated in Ω and the average number of inter-beacon links
created. Our scheme creates the same robot-beacon links
than SEIF SLAM and are not compared. In average, the
proposed method integrated 66% more information than EKF
SLAM and 67% more than the conventional SEIF SLAM.
Besides, in average EKF SLAM created 1042 inter-beacon
links, SEIF SLAM created 631 and the proposed scheme,
645. These scenarios do not meet the dense-navigation robot
path assumption and the proposed scheme created only 2.2%
more inter-beacon links but integrated 67% more information
than the conventional SEIF SLAM.

Table 1 Comparison of the average amount of information accumulated
and the number of inter-beacon links created by EKF SLAM, SEIF
SLAM and the proposed scheme in a set of experiments.

EKF SLAM SEIF SLAM Prop. scheme
− log(|Ω |) 197.37 197.03 328.41

inter-beacon links 1042 631 645

The proposed method creates the same inter-beacon links
as the conventional SEIF SLAM in case of having dense-
navigation robot paths. If not, it creates links involving bea-
cons that are out of the sensing range of the robot in its
path. These links could not be created by SEIF SLAM and
are useful to improve map estimation completeness. For in-
stance, Fig. 4-top shows the inter-beacon links created by
SEIF SLAM and the proposed method in one example. In
the proposed scheme all the beacons created links with other
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beacons. That is not the case with SEIF SLAM, which cannot
create links with some beacons originating incomplete maps.
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Fig. 4 (Top) Inter-beacon links created in one simulation by the pro-
posed method (left) and SEIF SLAM (right). Only the 25% strongest
links are shown for visibility. (Center) Values of the inter-beacon links
created by the proposed method, SEIF SLAM and EKF SLAM, ordered
–stronger links first– for visualization. (Bottom) Values of nDB and nIB
along the simulation.

Our method creates a relatively low number of strong
inter-beacon links between nearby beacons which provide
high amount of information of the map. As an example, Fig.
4-center shows the values of the inter-beacon links created
in each case in the simulation in Fig. 4-top. The links re-
sulting in each case are ordered –stronger links first– for
visualization. Similar conclusions were obtained in the rest
of scenarios. The complexity of state/map recovery in SEIF
SLAM and the proposed scheme are respectively O(nDB) and
O(nDB +nIB). The values of nDB and nIB along the example
in Fig. 4-top are shown in Fig. 4-bottom. Similar conclusions
were obtained in the rest of simulations. It can be noticed
that nIB is higher when nDB is higher, and lower when nDB
is lower, exhibiting some proportionality. nDB took values
between 4 and 8 during most of the time, and nIB, between

5 and 13. The lowest values took place when the robot was
located at the borders of the scenario, where few beacons
were within SRr. The highest occurred the robot was at places
with high local beacon densities. These results depend on
beacon density and not on map size.

5 Validation in 3D SLAM experiments

The proposed scheme was integrated and experimented in
AMUSE, an octorotor aerial vehicle developed in the ARCAS
project for aerial manipulation and industry maintenance
[14], see Fig. 5-top. Maintenance of industrial facilities is
currently performed using sensor nodes that gather measure-
ments for process monitoring and anomaly detection. In these
complex scenarios GPS is often unavailable or has bad qual-
ity –intermittent signals, reception from few satellites, GPS
shadows. UAS are suitable tools for confirming the detected
anomalies but require accurate sensor and robot localization.

Fig. 5 (Top) AMUSE octorotor flying during one experiment. (Bottom)
Components of the beacons employed: a RaspberryPi connected to a
Nanotron sensor, a WiFi USB adapter and a battery.

A total of 24 beacons were deployed at random locations
and different heights in a 25x25 m environment. Each beacon
was comprised of a RaspberryPi running Linux connected
through USB to a Nanotron nanoPAN 5375 Time-of-Flight
(ToF) range sensor and to a WiFi USB adapter, see Figure
5-bottom. The performance of Nanotron sensors in outdoors
was characterized experimentally. Their error can be modeled
as a Gaussian PDF with zero mean and a standard deviation
of σm = 0.6m. Each beacon executed an independent ROS
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Fig. 6 Result of 3D SLAM experiment: (left) XY view, (right) 3D view. The mean map and robot errors were 0.34 and 0.49 m, respectively. The
mean errors in XY were 0.19 and 0.28 m.

(Robots Operating System) node that implemented the op-
eration shown in Alg. 2. The PFs were set with 500 parti-
cles distributed on a sphere. The sparsification bound taken
was θx = 10, in the range suggested in [23]. A Nanotron
nanoPAN 5375 sensor was mounted on the octorotor land-
ing skid. AMUSE is equipped with a Novatel OEM6 GPS
with centimeter accuracy, which was taken as ground truth.
UAS odometry obtained from Inertial Measurement Units
is often too noisy to be used in SLAM. Like most works in
3D SLAM, e.g. [10], we opted for employing 5 beacons as
anchors for correcting UAS odometry.

5.1 Performance analysis

Figure 6 shows the result of the proposed scheme in one
experiment in XY view (left) and 3D view (right). The re-
sulting average map and robot errors were 0.34 and 0.49 m,
respectively. The errors in XY were 0.19 and 0.35 m. In Z,
they were 0.29 and 0.28 m. Table 2 compares the proposed
Method2 with EKF SLAM and SEIF SLAM. Of course, all
the methods were set with exactly the same parameters. This
table shows the resulting average map and robot localiza-
tion RMS errors and PF convergence times. The mean robot
and map RMS errors for Method2 were 21% and 33% lower
than for SEIF SLAM, and 20% and 30% lower than for EKF
SLAM. The mean PF convergence time for Method2 was
81% lower than for SEIF SLAM. Besides, the robot CPU
time for Method2 was 35.3% lower than for SEIF SLAM.
EKF SLAM devoted the lowest robot CPU time: it is efficient
with low number of beacons but scales badly with the map
size as described in Section 5.2.

If we compare these results in 3D experiments with those
in 2D described in [26], we notice that in the 3D experiments
the robot location error was 49 cm –35 cm in XY– and, in
the 2D experiments, it was 41 cm. There are two main dif-
ferences between both sets of experiments. First, the range

Table 2 Performance comparison of EKF SLAM, SEIF SLAM and the
proposed Method2.

EKF SLAM SEIF SLAM Prop. Method2
Map RMS error [m] 0.49 0.51 0.34

Robot RMS error [m] 0.59 0.62 0.49
PF conv. time [s] 46.2 46.5 8.5

sensors were the same in both cases but the 3D experiments
were performed in outdoors and the 2D experiments, in in-
doors. The range measurements from Nanotron sensors have
higher noise level in indoors (σm = 0.8m) than in outdoors
(σm = 0.6m). Second, the odometry of the aerial robot is
based essentially on measurements from Inertial Measure-
ment Units (IMU) and is significantly more noisy than that
of the ground robot, which is based on encoders. The robot
odometry is used in the prediction stage and range measure-
ments, in the update stage. Thus, the prediction stage in these
3D experiments is less accurate than that in [26] but the
update stage is more accurate. If we consider both effects,
in these sets of experiments the improvement due to lower
measurement noise was stronger than the worsening due to
poorer odometry.

Figures 7-top and 7-center show the evolution of the
location error for each beacon in Method2 and SEIF SLAM
–EKF SLAM performs similarly to SEIF SLAM and is not
shown. The drawing for each beacon starts when its auxiliary
PF converged. In the proposed Method2 beacon PFs converge
significantly sooner and with lower error than in SEIF SLAM.

In these experiments, the proposed method created ex-
actly the same inter-beacon links –143– as SEIF SLAM.
The sensing range of Nanotron sensors was higher than 100
m and hence, the robot dense-navigation assumption was
met. Figure 7-bottom analyzes the evolution of the values
of each inter-beacon link along the experiment in the pro-
posed scheme (red) and in SEIF SLAM (green). For better
illustrating the tendency, the envelope that groups the 90%
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central curves is shown for each case. Links start taking
non-zero values in the proposed scheme sooner than in SEIF
SLAM, which is originated by the shorter beacon PF conver-
gence times. The values of inter-beacon links in the proposed
scheme grow at higher constant rate –and are higher at any
time– than in SEIF SLAM. At any time along the experiment
the proposed method has accumulated more information in
Ω , involving lower mapping uncertainty.
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Fig. 7 Evolution of the location error for each beacon in SEIF SLAM
(top) and in the proposed Method2 (center). (Bottom) Evolution of
the values of inter-beacon links along the experiment in SEIF SLAM
(green) and in our scheme (red). For better illustrating the tendency, the
envelope that groups the 90% central curves is shown.

5.2 Discussion

This section analyzes four aspects of the proposed scheme:
(1) robustness against message errors, (2) beacon density, (3)
consumption of resources of beacons and (4) scalability.

The impact of message loss was evaluated using the mea-
surements collected in the real experiments and simulating
transmission errors with Packet Reception Rates (PRRs) in
the range [60%-99%]. Figure 8-top shows the map and robot
localization errors obtained with EKF SLAM, SEIF SLAM
and the proposed Method2. The first two are not influenced
by transmission errors. The update stage of Method2 is ad-
ditive, which makes it rather robust to message loss. Map
RMS error for Method2 is lower than for EKF SLAM and
SEIF SLAM for any PRR level. Method2 had the lowest
robot error for PRR levels higher than 70%. Although the
proposed method makes extensive use of transmissions, it is
significantly robust to transmission errors.
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Fig. 8 (Top) Impact of PRR on map –full lines– and robot –dashed– er-
rors for the proposed Method2, EKF SLAM and SEIF SLAM. (Bottom)
Analysis of the influence of beacon density on the proposed Method2.

Beacon density has also influence in the proposed method.
Rather than physical density, in our problem density refers
to measurement density, i.e. in average the number of bea-
cons that are within the measurement range of other bea-
cons. The measurement range of the beacons used in these
experiments is 100 m, i.e. each sensor could measure the
range to the rest of the deployed sensors. Hence, reducing
the number of beacons considered in the experimental area
reduces the beacon density. In the following the influence
of beacon density in real experiments is analyzed. We exe-
cuted SEIF and the presented method with the logs of the
experiments shown in Section 5.1 but with lower numbers
of sensors ND = 1,2, ...,18, i.e. we did not considered the
measurements from some of the nodes. For each ND, both
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techniques were executed in a total of 15 different scenar-
ios, each with different combinations of beacons (randomly
selected). Figure 8-bottom shows the robot RMS location
errors for each ND. With low ND, i.e. low beacon densities,
the improvement of the robot RMS error with density is clear:
changing from ND=2 to ND=6 originates informative inter-
beacon measurements that significantly reduce error. With
higher beacon densities, the improvement with density is not
very evident: the errors decrease at lower rate since the main
component in the error is originated by the robot odometry.
SEIF behaves similarly but its improvement is lower due to
the lack of inter-beacon measurements.

In these experiments beacon density of ND=6 was a good
trade-off between robot location error and beacon deploy-
ment effort. In a real environment, to be conservative we
would select ND=8-11. Since the measurement range of the
sensors is 100 m, it involves deploying 8-11 beacons per
100x100 m2, which is low effort-demanding and feasible in
many industrial plants. In the experiments performed the
sensor locations were not carefully selected: they were se-
lected in a random way. In a real scenario no special care
would be required either apart from trying to avoid large
direct obstacles between beacons and the robot.

The proposed scheme exploits beacon capabilities involv-
ing higher consumption of beacon resources than conven-
tional methods. Table 3 shows the average energy consumed
by the beacons in the experiments. It was estimated with
the number of measurements gathered and the number of
messages interchanged in the experiments, using the power
consumption characteristics in the manufacturers data-sheet.
The beacons energy consumption using Method2 is more than
3 times higher than with EFK SLAM and SEIF SLAM. It
seems interesting to develop strategies to reduce the number
of inter-beacon measurements without losing their advan-
tages: map and robot accuracy and fast map initialization.

Table 3 Average beacon energy consumption [J].

EKF SLAM SEIF SLAM Proposed Method2
182.55 182.26 634.15

In order to analyze scalability we performed series of sim-
ulations, with the same parameters of the real experiments. 25
experiments were performed for each map size with between
20 and 200 beacons –the beacon density was kept steady.
Figure 9-a shows the average robot computational burden
of the EKF SLAM, SEIF SLAM and the proposed Method1
and Method2. Method2 is the most efficient for maps with
more than 50 beacons. For any map size Method2 consumes
lower robot CPU time than Method1 and, Method1, lower
than SEIF SLAM. Figure 9-b shows the map and robot errors
obtained. The proposed Method2 obtains the lowest errors.
Method1 and Method2 obtain similar errors: only Method2

is shown for clarity. The advantage is more evident with
larger maps. Inter-beacon measurements enforce map con-
sistency and, in absence of inter-beacon measurements, the
estimations are more influenced by the robot odometry noise.

Figure 9-c shows the average number of inter-beacon
links created at the end of each simulation by each method.
Figure 9-d shows the sparsity of the information matrix ex-
pressed as the ratio between the inter-beacon links created in
the experiment and the total number of possible inter-beacon
links. The sparsity of the information matrix increases with
the map size. They both perform similarly in terms of the
absolute number of links and sparsity of the information ma-
trix. Notice that although with higher map sizes the number
of links created in the proposed scheme is a bit higher than
in SEIF SLAM, its information matrix is sparser. Integrat-
ing inter-beacon measurements allows our scheme to detect
more beacons and add them to the state vector, improving
map completeness, but these new beacons create very few
links, increasing the sparsity of the information matrix. For
instance, with maps of 190 beacons, the state vector in our
scheme contained 185 beacons, created 7048 inter-beacon
links out of the total of 17020 possible links, whereas in
SEIF SLAM the state vector contained 167 beacons and cre-
ated 6349 inter-beacon links out of 13861 possible links. Our
scheme builds more complete maps involving larger state vec-
tors and information matrices than SEIF SLAM but also the
information matrices are sparser and the robot CPU burden
is lower as shown in Figure 9-a.

6 Conclusions

This paper proposed a distributed SEIF SLAM scheme for
robot-sensor network cooperation applications. This coopera-
tion allows the distribution between the robot and the sensor
network nodes (beacons) of tasks like measurement gathering
and integration in SLAM. Beacons take range measurements
to the robot and to their neighbor beacons, estimate their con-
tribution to the SLAM update and send it to the robot. Besides
robot-beacon measurements, the proposed scheme naturally
integrates inter-beacon measurements, resulting in more ac-
curate map and robot estimations and faster convergence
of the beacon initialization PFs. Distributing measurement
integration in SLAM reduces the robot burden.

The impact of the proposed scheme on the building of the
information matrix was analyzed in detail. It was proven that:
(1) it accumulates higher amount of information than SEIF
SLAM; (2) it creates a very similar number of links than
SEIF SLAM, preserving the sparsity of the information ma-
trix and; (3) it preserves the constant time property of SEIF
SLAM. The proposed scheme integrates more information
than SEIF SLAM preserving its compact description, effi-
ciency and scalability. The proposed scheme was validated
and compared to existing methods in 3D real experiments.
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Fig. 9 Performance analysis of the proposed Method1, Method2, EKF SLAM and conventional SEIF SLAM with different map sizes: (a) robot
computational burden measured using MATLAB profiler; (b) map –represented with full lines– and robot –dashed lines– errors; (c) number of
inter-beacon links created by each method; (d) sparsity of the information matrix in terms of the ratio between created links and total possible links.

Integrating inter-beacon measurements involves signif-
icant advantages but also requires the consumption of re-
sources such as energy and bandwidth. It would be interesting
to develop tools that decide which measurements are more
interesting to integrate in SLAM and which do not provide
enough information and are not worth gathering them. This
issue is object of current research.
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