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Abstract

Most of the existing robotic exploration schemes use occupancy grid representations and geometric
targets known as frontiers. The occupancy grid representation relies on the assumption of indepen-
dence between grid cells and ignores structural correlations present in the environment. We develop
a Gaussian Processes (GPs) occupancy mapping technique that is computationally tractable for online
map building due to its incremental formulation and provides a continuous model of uncertainty over
the map spatial coordinates. The standard way to represent geometric frontiers extracted from occu-
pancy maps is to assign binary values to each grid cell. We extend this notion to novel probabilistic
frontier maps computed e�ciently using the gradient of the GP occupancy map. We also propose a
mutual information-based greedy exploration technique built on that representation that takes into
account all possible future observations. A major advantage of high-dimensional map inference is the
fact that such techniques require fewer observations, leading to a faster map entropy reduction dur-
ing exploration for map building scenarios. Evaluations using the publicly available datasets show the
e�ectiveness of the proposed framework for robotic mapping and exploration tasks.
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1 Introduction

Exploring an unknown environment without any prior knowledge gives rise to di�culties for the robot
to make sequential decisions that maximize the long-term expected reward or information gain. Among
these di�culties, available information in the current state of the robot is limited to its perception �eld
and the partially known state of its trajectory and the map as a priori. This leads the problem towards the
sequential decision making under imperfect state information which is known to be NP-hard (Singh et al.
2009).

Autonomous mobile robots are required to generate a spatial representation of the robot environment,
this is known as the mapping problem. Solving this problem is an integral part of all autonomous nav-
igation systems as the map encapsulates the knowledge of the robot about its surrounding. In robotic
navigation tasks, a representation (map) that indicates occupied areas of the environment is required. Fur-
thermore, it is desirable that such maps be generated autonomously where the robot explores new regions
of an unknown environment. This is known as the autonomous exploration problem in robotics. In this
article, we are concerned with autonomous exploration for map building when the robot pose is estimated
by an appropriate strategy such as Pose SLAM (Ila et al. 2010).

We develop a Gaussian Processes (GPs) occupancy mapping algorithm that is tailored for robotic nav-
igation and is computationally tractable due to its incremental formulation. This representation has been
shown to be superior to the traditional occupancy grid map (Moravec and Elfes 1985; Elfes 1987) as it cap-
tures structural correlations present in the environment and produces a continuous representation of the
sensing uncertainty in the map space (O’Callaghan et al. 2009; T O’Callaghan and Ramos 2012; Kim and
Kim 2012, 2013a,b; Gha�ari Jadidi et al. 2013a,b, 2014, 2015; Kim and Kim 2015; Gha�ari Jadidi et al. 2017b).
Furthermore, this representation has applications beyond the occupancy mapping problem and it has been
applied for large-scale terrain modeling (Vasudevan et al. 2009), active learning (Krause and Guestrin 2007),
building maps to predict the �uid concentration (Stachniss et al. 2008), informative path planning (Binney
and Sukhatme 2012), robotic information gathering (Hollinger and Sukhatme 2014; Hollinger 2015; Ghaf-
fari Jadidi et al. 2016), and high-dimensional semantic map representation (Gha�ari Jadidi et al. 2017a).

In the problem of robotic exploration for map building, targets are usually de�ned by geometric fron-
tiers extracted from the Occupancy Grid Map (OGM) (Yamauchi 1997). We propose an algorithm to extract
frontiers from Gaussian Processes Occupancy Maps (GPOMs) representations in the form of a probability
map. Furthermore, we develop an algorithm to numerically calculate the Mutual Information (MI) between
the map and future measurements on that representation. MI is a measure of the value of information that
quanti�es the information gain from sensor measurements (Krause and Guestrin 2005). The maximum
expected utility principle states that the robot should choose the action that maximizes its expected utility,
in the current state (Russell and Norvig 2009, page 483). The expectation is taken due to the stochastic
nature of the state and observations. The proposed MI algorithm takes into account all possible future
measurements (by taking expectations over them), and therefore, is a suitable utility function.

The MI-based utility function is computed at the centroids of geometric frontiers and the frontier with
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Figure 1: Schematic illustration of the autonomous mapping and exploration process using GPs maps. The GP mapper module
provides the continuous occupancy map which can be exploited to extract geometric frontiers and mutual information maps.
The maps also give support to the planner module for basic navigation tasks as well as cost-aware planning. The explorer node
returns a macro-action (chosen frontier) that optimizes the expected utility function. The gray nodes are not investigated.

the highest information gain is chosen as the next-best “macro-action”. We borrow the notion of macro-
action from planning under uncertainty (He et al. 2010) and de�ne it as follows.

De�nition 1 (Macro-action). A macro-action is an exploration target (frontier) which is assumed to be
reachable through an open-loop control strategy.

The employed measurement model is a standard beam-based mixture model for range-�nder sen-
sors (Thrun et al. 2005), however, the proposed algorithm can be adapted to other sensor modalities with
reasonable probabilistic observation models. Figure 1 depicts the proposed mutual information-based nav-
igation process concept using GPOMs.

1.1 Contributions

This article is based on our preliminary work (Gha�ari Jadidi et al. 2015) where we presented continuous
probabilistic frontier maps and an algorithm to calculate MI between the current map and future measure-
ments. However, the distinguishable items from the previously published work are as follows:

• We expand the decision making part and use the notion of macro-action.

• We provide details about the derivation of the sensor model and the construction of the training and
test point sets.
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• We present more detailed evaluations with comparable techniques.

The main contributions of this work are as follows.

• A framework for incremental Gaussian processes occupancy mapping using range-�nder sensors is
developed. The method runs signi�cantly faster with performance close to batch computation.

• We develop a novel probabilistic geometric frontier representation by exploiting continuous occu-
pancy mapping and using L1-norm of the gradient of continuous occupancy maps.

• A tractable technique for greedy information gain-based exploration is developed that takes into
account all possible future observations. The technique can deal with sparse measurements and
uses a forward sensor model for map predictions.

• The results from publicly available datasets in a highly structured indoor environment and a large-
scale outdoor space are presented.

1.2 Notation

In the present article probabilities and probability densities are not distinguished in general. Matrices
are capitalized in bold, such as in X , and vectors are in lower case bold type, such as in x. Vectors are
column-wise and 1: n means integers from 1 to n. The Euclidean norm is shown by ‖·‖. |X | denotes the
determinant of matrixX . For the sake of compactness, random variables, such as X, and their realizations,
x, are sometimes denoted interchangeably where it is evident from context. x[i] denotes a reference to
the i-th element of the variable. An alphabet such as X denotes a set, and the cardinality of the set is
denoted by |X |. A subscript asterisk, such as in x∗, indicates a reference to a test set quantity. The n-by-n
identity matrix is denoted by In. vec(x[1], . . . ,x[n]) denotes a vector such as x constructed by stacking x[i],
∀i ∈ {1: n}. The function notation is overloaded based on the output type and denoted by k(·), k(·), and
K(·) where the outputs are scalar, vector, and matrix, respectively. Finally, E[·], V[·], and Cov[·] denote
the expected value, variance, and covariance (for random vectors) of a random variable, respectively.

1.3 Outline

The remaining parts of this article are organized as follows. In Section 2, a literature review is given. In
Section 3, we present the proposed mapping algorithms and provide evaluations and comparison with
occupancy grid maps. The exploration approach, MI surface calculation, and decision making process
proposed in this work are discussed in Section 4. Section 5 presents the results from experiments in two
di�erence scenarios. Finally, Section 6 concludes the article and discusses the limitations of this work.
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2 Related work

An environment can be explored by directing a robot towards frontiers that indicate unknown regions of
the environment in the neighboring known free areas (Yamauchi 1997). Traditional autonomous explo-
ration strategies have been devised to use OGM (Moravec and Elfes 1985; Elfes 1987; Konolige 1997; Thrun
2003; Hornung et al. 2013; Merali and Barfoot 2014) to represent free, occupied and unknown regions. The
following works use the concept of active perception (Bajcsy 1988) to take actions that reduce the uncer-
tainty in the state variables. A combined information utility for exploration is developed in Bourgault
et al. (2002) using the information-based cost function in Feder et al. (1999) and an OGM. A one-step look-
ahead strategy is used to generate the locally optimal control action. The reported results indicated that
the utility for mapping attracts the robot to unknown areas while the localization utility keeps the robot
well localized relative to known features in the map. In Makarenko et al. (2002) an integrated exploration
approach for a robot navigating in an unknown environment populated with beacons is proposed; a total
utility function consisting of the weighted sum of the OGM entropy, navigation cost, and localizability is
used. To enhance the map quality of the EKF-based Simultaneous Localization And Mapping (SLAM) (Ca-
dena et al. 2016), an A-optimal criterion for autonomous exploration is examined in Sim and Roy (2005).
Later in Carrillo et al. (2012), it is shown that the D-optimal (Determinant optimal) criterion (Pukelsheim
2006) is more e�ective in such scenarios.

In Stachniss et al. (2005), Rao-Blackwellized Particle Filters (RBPF) (Doucet et al. 2000) are employed
to compute map and robot pose posteriors. The proposed uncertainty reduction approach is based on the
joint entropy minimization of the SLAM posterior. The information gain is approximated using ray-casting
for a given action. In Blanco et al. (2008), through the entropy of the expected map of RBPF, the technique
takes the uncertainty in both robot path and map into account. In a similar framework Carlone et al.
(2010, 2014) addressed the problem of active SLAM and exploration, speci�cally the inconsistency in the
�lter due to information loss for a given policy using the relative entropy concept. In Amigoni and Caglioti
(2010), it is assumed that all random variables are normally distributed and an exploration strategy based
on relative entropy metric, combined traveling cost, and expected information gain is proposed.

The techniques in Valencia et al. (2012); Vallvé and Andrade-Cetto (2013, 2014, 2015) evaluate ex-
ploratory and place revisiting paths, which are selected based on entropy reduction estimates of both
map and path. Similar to this work, these techniques use Pose SLAM (Ila et al. 2010; Valencia et al. 2013),
a delayed-state SLAM algorithm from the pose graph family. Given the inherent complexity in the for-
mulation to calculate the joint entropy of robot pose and map, it is assumed that they are conditionally
independent. In Carrillo et al. (2015), to avoid the need to update the map using unknown future measure-
ments, the objective function is simpli�ed to the current map entropy. In Kim and Eustice (2015), a greedy
approach for active visual SLAM that considers area coverage and navigation uncertainty is proposed.
In Julian et al. (2014), the MI surface between a map and future measurements is computed numerically.
The work assumes known robot poses, and relies on an OGM representation and measurements from a
laser range-�nder. The algorithm integrates over an information gain function with an inverse sensor
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model at its core. It is formally proven that any controller tasked to maximize an MI reward function
is eventually attracted to unexplored areas. The technique in Charrow et al. (2015) is closely related to
this work. The computational performance of the information gain is increased by using Cauchy-Schwarz
Quadratic Mutual Information (CSQMI). It is shown that the behavior of CSQMI is similar to that of MI
while it can be computed faster. The technique has also been further extended to the multi-robot sce-
nario (Faigl et al. 2012; Charrow et al. 2014; Charrow 2015).

The methods reviewed above fall short of accounting for structural correlations in the environment.
Kernel methods in the form of a Gaussian Processes framework (Rasmussen and Williams 2006) are non-
parametric regression and classi�cation techniques that have been extensively used by researchers to
model spatial phenomena (Lang et al. 2007; Vasudevan et al. 2009; Hadsell et al. 2010). Gaussian Processes
have proven particularly powerful to represent the a�nity of spatially correlated data, hence overcoming
the traditional assumption of independence between cells, characteristic of the occupancy grid method for
mapping environments (O’Callaghan et al. 2009; T O’Callaghan and Ramos 2012). The variance surface of
GPs equate to a continuous representation of uncertainty in the environment, which it can be used to high-
light unexplored regions and optimize a robot’s search plan. The continuity property of the GP map can
improve the �exibility of the planner by inferring directly on collected sensor data without being limited
by the resolution of the grid cell (Yang et al. 2013). The incremental GP map building using the Bayesian
Committee Machine (BCM) technique (Tresp 2000) is developed in Kim and Kim (2012); Gha�ari Jadidi
et al. (2013a,b, 2014) and for online applications in Wang and Englot (2016). In Ramos and Ott (2015), the
Hilbert maps technique is proposed that is more scalable and can be updated in linear time. However, it
approximates the problem and produces maps with less accuracy than GPOM.

GPOM, in its original formulation (O’Callaghan et al. 2009; T O’Callaghan and Ramos 2012), is a batch
mapping technique and the cubic time complexity of GPs (see Section 3.7) is prohibitive for scenarios
such as robotic navigation where a dense representation is preferred. The incremental GP map building
was studied in Kim and Kim (2012), and in Gha�ari Jadidi et al. (2013a,b, 2014). In this work, we exploit
GPs to develop tractable online robotic mapping and exploration techniques. We start from the prob-
lem of occupancy mapping and expand the method to exploration using geometric frontiers, and mutual
information-based exploration.

3 Mapping

The GP mapper module is shown in Figure 2 which takes the processed measurements, i.e. training data,
and a test point window centered at the current robot pose as inputs to perform regression and classi�ca-
tion steps for local maps generation and fuse them incrementally into the global frame through the BCM
technique (Tresp 2000).

Before formal statement of the problem, we clarify the following assumptions.

Assumption 1 (Static environment). The environment that the robot navigates in is static.
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Figure 2: Schematic illustration of GP Mapper module. GP models the correlation in data and place distributions on test points.
The logistic regression classi�er squashes the output of GP into probabilities and returns the local map where the BCM module
updates the global map incrementally.

Assumption 2 (Gaussian occupancy map points). Any sampled point from the occupancy map represen-
tation of the environment is a random variable whose distribution is Gaussian.

3.1 Gaussian Processes

A Gaussian Process is a collection of any �nite number of random variables which are jointly distributed
Gaussian (Rasmussen and Williams 2006). The joint distribution of the observed target values, y, and the
function values (the latent variable), f ∗, at the query points can be written as yf ∗

 ∼N (0,

K(X ,X) + σ2
n In K(X ,X ∗)

K(X ∗,X) K(X ∗,X ∗)

) (1)

where X is the d × n design matrix of aggregated input vectors x, X ∗ is a d × n∗ query points ma-
trix, K(·, ·) is the GP covariance matrix, and σ2

n is the variance of the observation noise which is as-
sumed to have an independent and identically distributed (i.i.d.) Gaussian distribution. De�ne a training
set D = {(x[i], y[i]) | i = 1: n}. The predictive conditional distribution for a single query point f∗|D,x∗ ∼
N (E[f∗],V[f∗]) can be derived as

µ = E[f∗] = k(X ,x∗)
T [K(X ,X) + σ2

n In]−1y (2)

σ = V[f∗] = k(x∗,x∗)−k(X ,x∗)
T [K(X ,X) + σ2

n In]−1k(X ,x∗) (3)

The Matérn family of covariance functions (Stein 1999) has proven powerful features to model struc-
tural correlations (Gha�ari Jadidi et al. 2013a; Kim and Kim 2013b; Gha�ari Jadidi et al. 2014; Kim and Kim
2015) and hereby we select them as the kernel of GPs. For a single query point x∗ the function is given by

k(x,x∗) =
1

Γ (ν)2ν−1

[√
2ν‖x − x∗‖

κ

]ν
Kν

(√
2ν‖x − x∗‖

κ

)
(4)

where Γ is the Gamma function, Kν(·) is the modi�ed Bessel function of the second kind of order ν, κ is the
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characteristic length scale, and ν is a positive parameter used to control the smoothness of the covariance.
The hyperparameters of the covariance and mean function, θ, can be computed by minimization of

the negative log of the marginal likelihood (NLML) function.

logp(y|X ,θ) = −1
2
yT [K(X ,X) + σ2

n In]−1y − 1
2

log |K(X ,X) + σ2
n In| −

n
2

log2π (5)

3.2 Problem statement and formulation

Let M be the set of possible occupancy maps. We consider the map of the environment to be static
and as an nm-tuple random variable (M[1], ...,M[nm]) whose elements are described by a normal distri-
bution m[i] ∼N (µ[i],σ [i]), i ∈ {1: nm}. Let Z ⊂ R≥0 be the set of possible range measurements. The
observation consists of an nz-tuple random variable (Z[1], ...,Z[nz]) whose elements can take values
z[k] ∈ Z, k ∈ {1: nz}. LetX ⊂ R2 be the set of spatial coordinates to build a map on. Let x[k]

o ∈ Xo ⊂ X be an
observed occupied point by the k-th sensor beam from the environment which, at any time-step t, can be
calculated by transforming the local observation z[k] to the global frame using the robot pose xt ∈ SE(2).
LetX [k]

f ∈ Xf ⊂ X be the matrix of sampled unoccupied points from a line segment with the robot pose and
corresponding observed occupied point as its endpoints. Let D =Do∪Df be the set of all training points.
We de�ne a training set of occupied points Do = {(x[i]

o , y
[i]
o ) | i = 1: no} and a training set of unoccupied

points Df = {(x[i]
f , y

[i]
f ) | i = 1: nf } in which yo = vec(y[1]

o , ..., y
[no]
o ) and yf = vec(y[1]

f , ..., y
[nf ]
f ) are target

vectors and each of their elements can belong to the set Y = {−1,+1} where −1 and +1 corresponds to
unoccupied and occupied locations, respectively, no is the total number of occupied points, and nf is the
total number of unoccupied points. Given the robot pose xt and observations Zt = zt , we wish to estimate
p(M =m | xt ,Zt = zt). Place a joint distribution over M; the map can be inferred as a Gaussian process
by de�ning the process as the function y : X →M, therefore

y(x) ∼ GP (fm(x), k(x,x′)) (6)

It is often the case that we set the mean function fm(x) as zero, unless it is mentioned explicitly that
fm(x) , 0. For a given query point in the map, x∗, GP predicts a mean, µ, and an associated variance, σ .
We can write

m[i] = y(x[i]
∗ ) ∼N (µ[i],σ [i]) (7)

To show a valid probabilistic representation of the map p(m[i]), the classi�cation step, a logistic regression
classi�er (Rasmussen and Williams 2006, Sections 3.1 and 3.2), (Murphy 2012, Chapter 8), (Gha�ari Jadidi
et al. 2014), squashes data into the range [0,1].

3.3 Sensor model, training and test data

The robot is assumed to be equipped with a 2D range-�nder sensor. The raw measurements include points
returned from obstacle locations. For any sensor beam, the distance from the sensor position to the detected

9



Figure 3: Conceptual illustration of the robot, the environment, and observations. Training data consists of free and occupied
points labeled yf = −1 and yo = +1 respectively. Free points are sampled along each beam, i.e. negative sensor information while
occupied points are directly observable.

obstacle along that beam indicates a line from the unoccupied region of the environment. To build training
data points for the unoccupied part of the map, it is required to sample along the aforementioned line.
Figure 3 shows the conceptual illustration of the environment and training points generation.

A sensor beam zt = (z[1]
t , ...,z

[nz]
t ) has nz range observations at a speci�c bearing depending on the

density of the beam. The observation model for each z[k]
t can be written as

z[k]
t =

 r[k]
t

α
[k]
t

 = h(xt ,x
[k]
o ) + v, v ∼N (0,R) (8)

h(xt ,x
[k]
o ) ,


√

(x[k,1]
o − x[1]

t )2 + (x[k,2]
o − x[2]

t )2

arctan(x[k,2]
o − x[2]

t ,x
[k,1]
o − x[1]

t )− x[3]
t

 (9)

where r[k]
t is the range measurement from the k-th sensor beam and α[k]

t is the corresponding angle of r[k]
t .

The observation model noise v is assumed to be Gaussian with zero mean and covariance R. To �nd x[k]
o

which is in the map space, the inverse model can be calculated as

x[k]
o = x[1:2]

t + r[k]
t R(x[3]

t )

cos(α[k]
t )

sin(α[k]
t )

 (10)

where R(x[3]
t ) ∈ SO(2) indicates a 2× 2 rotation matrix.

Having de�ned the observed occupied points in the map space, now we can construct the training set
of occupied points as Do = {(x[k]

o , y
[k]
o ) | k = 1: nz}. One simple way to build the free area training points

10



is to uniformly sample along the line segment, l[k]
z , with the robot position and any occupied point x[k]

o as
its end points. Therefore,

X
[k,j]
f = x[1:2]

t + δjR(x[3]
t )

cos(α[k]
t )

sin(α[k]
t )

 (11)

where δj ∼ U (0, r[k]
t ) j = 1: n[k]

f , U (0, r[k]
t ) is a uniform distribution with the support [0, r[k]

t ] and n[k]
f is

the desired number of samples for the k-th sensor beam. n[k]
f can be a �xed value for all the beams or

variable, e.g. a function of the line segment length ‖l[k]
z ‖ = r[k]

t . In the case of a variable number of points
for each beam, it is useful to set a minimum value nf min. Therefore we can write

n
[k]
f , max({nf min, sl(r

[k]
t )}) (12)

where sl(·) is a function that adaptively generates a number of sampled points based on the input distance.
This minimum value controls the sparsity of the training set of unoccupied points. Alternatively, we can
select a number of equidistant points instead of sampling. However, as the number of training points
increases, the computational time grows cubicly. We can construct the training set of unoccupied points

as Df =
⋃nz
i=1D

[i]
f where D[i]

f = {(X [k]
f ,y

[k]
f ) | k = 1: nz} and y[k]

f = vec(y[1]
f , ..., y

[n[k]
f ]

f ).

Remark 1. Generally speaking, query points can have any desired distributions and the actual represen-
tation of the map depends on that distribution. However, building the map over a grid facilitates com-
parison with standard occupancy grid-based methods, i.e. at similar map resolutions. We use function
TestDataWindow, in Algorithms 1 and 4, for generating a grid at a given position. The size of this grid can
be set according to the maximum sensor range, the environment size, or available computational resources
for data processing.

Remark 2. Throughout all algorithms, when we write m for a map, it is assumed that the mean µ, the
variance σ , the occupancy probability p(m), and the corresponding spatial coordinates are available even
if they are not mentioned or used explicitly. For simplicity, when m is used for computations such as in
log(p(m)), we write log(m).

3.4 Map management

An important advantage of a mapping method is its capability to use past information appropriately. The
mapping module returns local maps centered at the robot pose. Therefore, in order to keep track of the
global map, a map management step is required where the local inferred map can be fused with the current
global map. This incremental approach allows for handling larger map sizes, and map inference at the local
level is independent of the global map.

To incorporate new information incrementally, map updates are performed using BCM. The technique
combines estimators which were trained on di�erent data sets. Assuming a Gaussian prior with zero mean

11



Algorithm 1 IGPOM()
Require: Robot pose p and measurements z;

1: if firstFrame then
2: m←∅ // Initialize the map
3: optimize GP hyperparameters θ // Minimize the NLML, Equation (5)
4: end if
5: X ∗← TestDataWindow(p) // Query points grid centered at the robot pose
6: Xo,yo← Transform2Global(p,z) // Occupied training data, label +1, Equation (10)
7: X f ,yf ← TrainingData(p,z) // Unoccupied training data, label −1, Equation (11)
8: [µ∗,σ ∗]← GP(θ, [Xo;X f ], [yo;yf ],X ∗) // Compute predictive mean and variance, Equation (2) and (3)
9: m← UpdateMap(µ∗,σ ∗,m) // Algorithm 3

10: return m

Algorithm 2 FusionBCM(µa,µb,σa,σb)

1: σc← (σ−1
a + σ−1

b )−1 // Point-wise calculation of Equation (14)
2: µc← σc(σ−1

a µa + σ−1
b µb) // Point-wise calculation of Equation (13)

3: return µc,σc

and covariance Σ and each GP with mean E[f∗|D[i]] and covariance Cov[f∗|D[i]], it follows that (Tresp
2000)

E[f∗|D] = C−1
pm∑
i=1

Cov[f∗|D[i]]−1E[f∗|D[i]] (13)

C = Cov[f∗|D]−1 = −(pm − 1)(Σ)−1 +
pm∑
i=1

Cov[f∗|D[i]]−1 (14)

where pm is the total number of mapping processes. In this work, we use BCM for combining a local and
a previously existing global map, or merging two global maps; therefore pm = 2. In addition, in the case of
uninformative prior over map points the term Σ−1 can be set to zero, i.e. very large covariances/variances.

The steps of the incremental GPOM (I-GPOM) are shown in Figure 2 and Algorithms 1, 2, and 3, where
a BCM module updates the global map as new observations are taken. In Figure 4 a comparison of the
incremental (I-GPOM) and batch (GPOM) GP occupancy mapping using the Intel dataset (Howard and
Roy 2003) with respect to the area under the receiver operating characteristic curve (AUC) and runtime
is presented. The probability that the classi�er ranks a randomly chosen positive instance higher than a
randomly chosen negative instance can be understood using the AUC of the classi�er; furthermore, the
AUC is useful for domains with skewed class distribution and unequal classi�cation error costs (Fawcett
2006). Without loss of generality, a set of 25 laser scans, where each scan contains about 180 points, had to
be set due to the memory limitation imposed by the batch GP computations with a growing gap between
successive laser scans from 1 to 29. The proposed incremental mapping approach using BCM performs
accurate and close to the batch form even with about 8 steps intermission between successive observations
and is faster.

12



Algorithm 3 UpdateMap()
Require: Global map m, µ, σ and local map m∗, µ∗, σ ∗;

1: for all i ∈M∗ do
2: j ← �nd the corresponding global index of i using the map spatial coordinates and a nearest

neighbor search
3: µ[j],σ [j]← FusionBCM(µ[j],µ[i]

∗ ,σ [j],σ [i]
∗ ) // Algorithm 2

4: end for
5: m← LogisticRegression(µ,σ ) // Squash data into (0,1)
6: return m
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Figure 4: Comparison of I-GPOM and batch GPOM methods using the Intel dataset with the observations size of 25 laser scans at
each step due to the memory limitation for the batch GP computations. The left plot shows the AUC and the right plot depicts the
runtime for each step. The horizontal axes indicate observations gaps. As the number of gaps grows, the batch GP outperforms
the incremental method as it learns the correlation between observations at once; however, with higher computational time. On
the other hand, the incremental method in nearly constant time per update produces a similar average map quality with the mean
di�erence of 0.0078.

Optimization of the hyper-parameters is performed once at the beginning of each experiment by min-
imization of the negative log of the marginal likelihood function. For the prevailing case of multiple runs
in the same environment, the optimized values can then be loaded o�-line.

3.5 I-GPOM2; an improved mapping strategy

Inferring a high quality map compatible with the actual shape of the environment can be non-trivial (see
Figure 9 in T O’Callaghan and Ramos (2012) and Figure 3 in Kim and Kim (2013a)). Although considering
correlations of map points through regression results in handling sparse measurements, training a unique
GP for both occupied and free areas has two major challenges:

• It limits the selection of an appropriate kernel that suits both occupied and unoccupied regions of
the map, e�ectively resulting in poorly extrapolated obstacles or low quality free areas.

• Most importantly, it leads to a mixed variance surface. In other words, it is not possible to disam-
biguate between boundaries of occupied-unknown and free-unknown space, unless the continuous
map is thresholded (see Figure 6 in T O’Callaghan and Ramos (2012)).
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Figure 5: Occupancy maps visualization; from left to right: OGM, I-GPOM, I-GPOM2. The maps are build incrementally using
all observations available in the Intel dataset. For the I-GPOM and I-GPOM2 maps the Matérn (ν = 3/2) covariance function is
used. I-GPOM and I-GPOM2 can complete partially observable areas, i.e. incomplete areas in the OGM; however, using two GP in
I-GPOM2 method produces more accurate maps for navigation purposes. The SLAM problem is solved by using the Pose SLAM
algorithm and the map qualities depend on the robot localization accuracy.

Table 1: Comparison of the AUC and runtime for OGM, I-GPOM, and I-GPOM2 using the Intel dataset.

Method AUC Runtime (min)

OGM 0.9300 7.28
I-GPOM 0.9439 102.44
I-GPOM2 0.9668 114.53

The �rst problem is directly related to the inferred map quality, while the second is a challenge for ex-
ploration using continuous occupancy maps. The integral kernel approach (O’Callaghan and Ramos 2011)
can mitigate the �rst aforementioned de�ciency, however, the integration over GPs kernels is computa-
tionally demanding and results in less tractable methods. In order to address these problems we propose
training two separate GPs, one for free areas and one for obstacles, and merge them to build a unique
continuous occupancy map (I-GPOM2). The complete results of occupancy mapping with the three di�er-
ent methods in the Intel dataset are presented in Figure 5, while the AUCs are compared in Table 1. The
I-GPOM2 method demonstrates more �exibility to model the cluttered rooms and has higher performance
than the other methods. The ground truth map was generated using the registered points map and an
image dilation technique to remove outliers. In this way, the ground truth map has the same orientation
which makes the comparison convenient. GPOM-based maps infer partially observed regions; however,
in the absence of a complete ground truth map, this fact can be only veri�ed using Figure 5 and is not
re�ected in the AUC of I-GPOM and I-GPOM2. Algorithms 4 and 5 encapsulate the I-GPOM2 methods as
implemented in the present work.
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Algorithm 4 IGPOM2()
Require: Robot pose p and measurements z;

1: if firstFrame then
2: m,mo,mf ←∅ // Initialize the map
3: optimize GP hyperparameters θo, θf // Minimize the NLML, Equation (5)
4: end if
5: X ∗← TestDataWindow(p) // Query points grid centered at the robot pose
6: Xo,yo← Transform2Global(p,z) // Occupied training data, label +1, Equation (10)
7: X f ,yf ← TrainingData(p,z) // Unoccupied training data, label −1, Equation (11)
8: [µo∗,σo∗]← GP(θo,Xo,yo,X ∗) // Compute occupied map predictive mean and variance, Equation (2)

and (3)
9: [µf ∗,σ f ∗]← GP(θf ,X f ,yf ,X ∗) // Compute unoccupied map predictive mean and variance using (2)

and (3)
10: mo← UpdateMap(µo∗,σo∗,mo) // Algorithm 3
11: mf ← UpdateMap(µf ∗,σ f ∗,mf )
12: m← MergeMap(mo,mf ) // Algorithm 5
13: return m,mo

Algorithm 5 MergeMap()
Require: Unoccupied map mf , µf , σ f and occupied map mo, µo, σo;

1: for all i ∈M do
2: µ[i],σ [i]← FusionBCM(µ[i]

o ,µ
[i]
f ,σ

[i]
o ,σ

[i]
f ) // Algorithm 2

3: end for
4: m← LogisticRegression(µ,σ ) // Squash data into (0,1)
5: return m

3.6 Frontier map

Constructing a frontier map is the fundamental ingredient of any geometry-based exploration approach. It
reveals the boundaries between known-free and unknown areas which are potentially informative regions
for map expansion. In contrast to the classical binary representation, de�ning frontiers in a probabilistic
form using map uncertainty is more suitable for computing expected behaviors. The boundaries that
correspond to frontiers can be computed using the following heuristic formula.

f̄ [i] , ‖∇p(m[i])‖1 − β(‖∇p(m[i]
o )‖1 + p(m[i]

o )− 0.5) (15)

where ∇ denotes the gradient operator, and β is a factor that controls the e�ect of obstacle boundaries.
‖∇p(m[i])‖1 indicates all boundaries while ‖∇p(m[i]

o )‖1 de�nes obstacle outlines. The subtracted constant
is to remove the biased probability for unknown areas in the obstacles probability map.

The frontier surface is converted to a probability frontier map through the incorporation of the map
uncertainty. To squash the frontier and variance values into the range [0,1], a logistic regression classi�er
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Figure 6: Inferred continuous occupancy map (left); associated probabilistic frontier map (middle); and mutual information sur-
face (right, discussed in Section 4.1). The frontier map highlights the informative regions for further exploration by assigning
higher probabilities to frontier points. The lower probabilities show the obstacles and walls while the values greater than the no
discrimination probability, 0.5, can be considered as frontiers. In the MI surface, the areas beyond the current perception �eld of
the robot preserve their initial entropy values and the higher values demonstrate regions with greater information gain. The map
dimensions are in meters and the MI values in nats.

with inputs from f̄ [i] and map uncertainty σ [i] is applied to data which yields

p(f [i]|m[i],w
[i]
f ) =

1

1 + exp(−w[i]
f f̄

[i])
(16)

wherew[i]
f = γf

√
λ[i] denotes the required weights, λ[i] , σmin/σ

[i] is the bounded information associated
with location i, and γf > 0 is a constant to control the sigmoid shape. The details of the frontier map
computations are presented in Algorithm 6. Figure 6 (middle) depicts an instance of the frontier map from
an exploration experiment in the Cave environment (Howard and Roy 2003).

In practice, the following steps are required to use the frontier map and check the termination condi-
tion:

1. The probabilistic frontier map is converted to a binary map using a pre-de�ned threshold. Note that
any point with a probability higher than 0.5 is potentially a valid frontier.

2. The binary map of frontiers is clustered into subsets of candidate macro-actions.

3. The centroids of clusters construct a discrete action set at time-step t, i.e. At , that is used in the
utility maximization step.

4. The robot plans a path to each centroid (macro-action) to check its reachability. A centroid that is
not reachable is then removed from the action set.

5. The exploration mission continues until the action set At is not empty (repeats from step 1).
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Algorithm 6 BuildFrontierMap()
Require: Current map m, σ and occupied map mo, σo;

1: // Compute boundaries
2: dm← ‖∇p(m)‖1, dmo← ‖∇p(mo)‖1
3: σmin←min(σ )
4: f ←∅
5: // Compute probabilistic frontiers
6: for all i ∈M do
7: f̄ [i]← dm[i] − β(dm[i]

o +m[i]
o − 0.5)

8: w
[i]
f ← γf sqrt(σmin/σ [i]) // Logistic regression weights

9: f [i]← (1 + exp(−w[i]
f f̄

[i]))−1 // Squash data into (0,1), Equation (16)
10: end for
11: return f

3.7 Computational complexity

For the mapping algorithms, the computational cost of GPs is O(n3
t ), given the need to invert a matrix of

the size of training data, nt = no+nf . BCM scales linearly with the number of map points, nm. The overall
map update operation involves a nearest neighbor query for each test point, nq, and the logistic regression
classi�er is at worst linear in the number of map points resulting in O(n3

t +nq lognq +nm).
A more sophisticated approximation approach can reduce the computational complexity further. The

fully independent training conditional (FITC) (Snelson and Ghahramani 2006) based on inducing con-
ditionals suggests an O(ntn

2
i ) upper bound where ni is the number of inducing points. More recently,

in Hensman et al. (2013), the GP computation upper bound is reduced to O(n3
i ) which brings more �exi-

bility in increasing the number of inducing points.

4 Exploration

In the context of autonomous robotic mapping, typically, the main goal is map completion while main-
taining the localization accuracy at an reasonable level1. Let at be an action from the set of all possible
actions At at time t. The goal is to choose the action that optimizes the desired objective function. In the
following, we de�ne the most common utility functions for the single robot exploration case.

Nearest Frontier. The nearest frontier policy drives the robot towards the closest frontier to its current
pose. Geometric frontiers can be extracted from the occupancy map (Keidar and Kaminka 2013). For the
GPOM technique, we use the probabilistic frontier map. Let Ft be the �nite set of all detected frontiers
at time t. Let the action at be the planned path from the current robot pose to the frontier ft . The cost
function, fc :At→ R≥0, is the length of the path from the current robot pose to the corresponding frontier.

1The required localization accuracy is subject to the speci�c application.
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Therefore,
a?t = argmin

at∈At
fc(at) (17)

In practice, frontier cells/points are clustered, and only those with the size above a threshold are valid. The
centroid of each cluster is considered as the target point for path planning.

Remark 3. In general, the path length can be seen as the line integral of the curve with the current robot
pose and the frontier as its end points. Thus, one can de�ne a scalar �eld over the map and calculate the
cost as the line integral of the scalar �eld using a Riemann sum. In (17) the integrand is simply 1.

Information Gain. Let fI (at), fI :At→ R≥0, be a function that quanti�es the information quality of
action at . To �nd the action that maximizes the information gain-based utility function, the problem can
be written as

a?t = argmax
at∈At

fI (at) (18)

In other words, the robot takes the action that leads to the maximum return of information. However, as
it is evident from (18) the cost of taking that action is not included in the utility function.

Cost-Utility Trade-o�. The third approach is based on the idea of a trade-o� between the cost and
utility of an action, i.e. the payo�. The total utility function can be constructed by combination of (17)
and (18). The primary problem is that the units of utility/cost functions are di�erent. One solution is to
express the cost in the form of information loss (uncertainty). Another approach is to combine them using
appropriate coe�cients, e.g. a linear combination of the utility and cost functions. Let g : R2

≥0→ R≥0 be
a function that takes fc(at) and fI (at) as its input arguments. The problem of maximizing the total utility
function, u(at) , g(fI (at), fc(at)), can then be de�ned as follows.

a?t = argmax
at∈At

u(at) (19)

4.1 Mutual information algorithm

MI is the reduction in uncertainty of a random variable due to the knowledge of another random vari-
able Cover and Thomas (1991). In other words, given a measurement Z = z from Z what will be the
reduction in the mapM =m uncertainty? The MI between the map and the future measurement Zt+1 = ẑ

is

I(M;Zt+1|z1:t) =
∫
ẑ∈Z

∑
m∈M

p(m, ẑ|z1:t) log
p(m, ẑ|z1:t)

p(m|z1:t)p(ẑ|z1:t)
dẑ

=H(M |z1:t)−H(M |Zt+1,z1:t) (20)
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where H(M |z1:t) and H(M |Zt+1,z1:t) are map and map conditional entropy respectively, which by de�-
nition are

H(M |z1:t) = −
∑
m∈M

p(m|z1:t) logp(m|z1:t) (21)

H(M |Zt+1,z1:t) =
∫
ẑ∈Z

p(ẑ|z1:t)H(M |Zt+1 = ẑ,z1:t)dẑ (22)

To compute the map conditional entropy, the predicted map posterior given the new measurement
Zt+1 = ẑt+1 is required. The Bayesian inference �nds the posterior probability for each map point m[i]

and k-th beam of the range-�nder as

p(m[i]|ẑ[k]
t+1,z1:t) =

p(ẑ[k]
t+1|m[i])p(m[i]|z1:t)

p(ẑ[k]
t+1|z1:t)

(23)

p(ẑ[k]
t+1|z1:t) =

∑
m[i]∈M

p(ẑ[k]
t+1|m

[i])p(m[i]|z1:t) (24)

The likelihood function p(ẑ[k]
t+1|M =m[i]) is a beam-based mixture measurement model, where the term

p(ẑ[k]
t+1|M = 0) can be interpreted as the likelihood of not observing the map point at location i, i.e. uniform

distribution. The term p(ẑ[k]
t+1|z1:t) is the marginal distribution over measurements which is denoted by

pz in line 18 of Algorithm 7. By numerically integrating over a desired beam range, we can compute the
predicted map posterior entropy using Equation (22). Note that the conditional entropy does not depend
on the realization of future measurements, but it is an average over them.

Let I [k]
t+1 be the index set of map points that are in the perception �eld of the k-th sensor beam at time

t + 1. At any robot location, ∀i ∈ I [k]
t+1, the MI can be written as

I [i] = h(m[i])− h(m[i]) (25)

where h(m[i]) is the current entropy of the map point m[i] and h(m[i]) is the estimated map conditional
entropy. In practice, at each time-step, the map is initialized with the current map entropy,H(M |z1:t), and
for all map points inside the current perception �eld the estimated map conditional entropy is subtracted
from corresponding initial values. In Algorithm 7, the implementation of the MI map is given where sz
denotes the numerical resolution of integration. In Figure 6, an estimated MI map during an exploration
experiments in the Cave environment (Howard and Roy 2003) is depicted.

Computational Complexity. For MI surface, the time complexity is at worst quadratic in the number
of map points in the current perception �eld of the robot, np = |

⋃nz
k=1I

[k]
t+1|, and linear in the number of

sensor beams, nz, and numerical integration’s resolution, sz, resulting in O(n2
pnzsz).
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Algorithm 7 BuildMIMap()
Require: Robot pose or desired location, current map estimate m, numerical integration resolution sz,

sensor model;
1: m̄←m
2: // Initialize MI map using current map entropy
3: I ←−(m log(m) + (1−m) log(1−m))
4: for all k do // Loop over all sensor beams
5: Compute ẑ[k]

t+1 and I [k]
t+1 using ray casting in m

6: // Calculate map conditional entropy along beam k

7: for i ∈ I [k]
t+1 do

8: h̄← 0 // Initialize map conditional entropy
9: z← s−1

z // Initialize range dummy variable
10: while z ≤ ẑ[k]

t+1 do
11: // Calculate marginal measurement probability pz, Equation (24)
12: p1← p(z|M = 0)
13: p2← 0
14: for j ∈ I [k]

t+1 do
15: p1← p1(1−m[j])
16: p2← p2+

p(z|M =m[j])m[j]
∏
l<j

(1−m[l])

17: end for
18: pz← p1 + p2
19: // Map prediction at point i along beam k

20: m̄[i]← p−1
z p(z|M =m[i]) m[i]

∏
l<i

(1−m[l])

21: h̄← h̄+
pz[m̄[i] log(m̄[i]) + (1− m̄[i]) log(1− m̄[i])]

22: z← z+ s−1
z // Increase range along the beam

23: end while
24: I [i]← I [i] + h̄s−1

z // Equation (25)
25: end for
26: end for
27: return I

4.2 Decision making

Let each geometric frontier be regarded as a macro-action. The action space can thus be de�ned as
At = {a[j]

t }
na
j=1. We de�ne the utility function as the di�erence between the total expected information

gain predicted at the macro-action at , fI (at), and the corresponding path length from the current robot
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pose to the same macro-action, fc(at), as follows

fI (at) ,
nz∑
k=1

∑
i∈I [k]

I [i](at) (26)

u(at) , αfI (at)− fc(at) (27)

where α is a factor to relate information gain to the cost of motion. Note that the expectation over future
measurements and path lengths is already incorporated into the information and cost functions.

The optimal action a?t directs the robot towards the frontier with the best balance between information
gain and travel cost. This greedy action selection is similar to what is known as next-best view planning
in the literature González-Banos and Latombe (2002); Surmann et al. (2003).

4.3 Map regeneration

Loop closure during SLAM can change the map signi�cantly. To account for such changes, we reset and
learn the occupancy map with all the available data again. To be able to e�ciently detect such a drift
in the GPOM we measure the Jensen-Shannon Divergence (JSD) (Lin 1991). The generalized JSD for n
probability, p1,p2, ...,pn, with weights π1,π2, ...,πn is

JSπ(p1,p2, ...,pn) =H(
n∑
i=1

πipi)−
n∑
i=1

πiH(pi) (28)

where H(·) is the Shannon entropy function and p(xi) is the probability associated with variable xi . All
weights are set uniformly as all points are equal.

Alternatively, cumulative relative entropy by summing the computed Jensen-Shannon entropy in each
iteration shows map drifts over a period and contains the history of map variations. Consequently, the
method is less sensitive to small sudden changes.

Remark 4. The main advantage of JSD over Kullback-Leibler divergence, in this case, is that JSD is
bounded. As a result, it is more suitable for decision making (Lin 1991).

5 Results and Discussion

We now present results using two publicly available datasets (Howard and Roy 2003). In the �rst scenario,
we use the Intel research lab. map which is a highly structured indoor environment. The second scenario
is based on the University of Freiburg campus area. The second map is almost ten times larger than the
Intel map and is an example of a large-scale environment with open areas.

The experiments include comparison among the original nearest frontier (NF) (Yamauchi 1997), MI-
based exploration using OGM (OGMI), the natural extension of NF with a GPOM representation (GPNF)
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Figure 7: The constructed environment for exploration experiments using the binary map of obstacles from the Intel dataset.

Table 2: The compared exploration methods and their corresponding attributes.

NF OGMI GPNF GPMI

SLAM Pose SLAM Pose SLAM Pose SLAM Pose SLAM
Mapping OGM OGM I-GPOM2 I-GPOM2
Frontiers binary binary probabilistic probabilistic
Utility path length MI+path length path length MI+path length
Planner A∗ A∗ A∗ A∗

(Gha�ari Jadidi et al. 2014), and the proposed MI-based (GPMI) exploration approaches. NF and OGMI
results are computed using OGMs while for the GPOM-based methods the I-GPOM2 representation and
the probabilistic frontier map proposed in this work are employed. For all the techniques, we use the A∗

algorithm to �nd the shortest path from the robot position to any frontier. The path cost is calculated using
the Euclidean distance between map points. Details about the compared methods are described in Table 2.

5.1 Experimental setup

The environment is constructed using a binary map of obstacles and, for the Intel map, is shown in Fig-
ure 7. The simulated robot is equipped with odometric and laser range-�nder sensors to provide the
required sensory inputs for Pose SLAM. The odometric and laser range-�nder sensors noise covariances
are set to Σu = diag(0.1m,0.1m,0.0026rad)2 and Σy = diag(0.03m,0.03m,0.0013rad)2, respectively.
The motion of the robot is modeled using a velocity motion model (Thrun et al. 2005, Chapter 5) and a pro-
portional control law for following a planned trajectory. Laser beams are simulated through ray-casting
operation over the ground truth map using the true robot pose. In all the presented results, Pose SLAM
(Ila et al. 2010) is included as the backbone to provide localization data together with the number of closed
loops. Additionally, for each map, Pose SLAM parameters are set and �xed regardless of the exploration
method.
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Table 3: Parameters for frontier and MI maps computations. Note that the employed maximum sensor range and the maximum
range used in the MI algorithm for prediction do not need to be the same.

Parameter Symbol Value

1) Beam-based mixture measurement model:
Hit std σhit 0.03 m
Short decay λshort 0.2 m
Max range and size of TestDataWindow rmax
− Intel map 14.0 m
− Freiburg map 60.0 m
Hit weight zhit 0.7
Short weight zshort 0.1
Max weight zmax 0.1
Random weight zrand 0.1

2) Frontier map:
Occupied boundaries factor β 3.0
Logistic regression weight γ 10.0
Frontier probability threshold −
− Intel map 0.6
− Freiburg map 0.55
Frontier cluster size −
− Intel map 14
− Freiburg map 3
Number of clusters −
− Intel map 20
− Freiburg map 5

3) MI map and utility function:
No. of sensor beams over 360 deg nz 133
Max range rmax
− Intel map 4.0 m
− Freiburg map 60.0 m
Numerical integration resolution sz
− Intel map 10/3 m−1

− Freiburg map 1 m−1

Information gain factor α
− Intel map 0.1
− Freiburg map 0.5
Occupied probability threshold po 0.65
Unoccupied probability threshold pf
− Intel map 0.35
− Freiburg map 0.4

The localization Root Mean-Squared Error (RMSE) is computed at the end of each experiment by the
di�erence in the robot traveled path (estimated and ground truth poses) to highlight the e�ect of each
exploration approach on the localization accuracy. The required parameters for the beam-based mixture
measurement model (Thrun et al. 2005), frontier maps, and MI maps computations are listed in Table 3.
The sensitivity of the parameters in Table 3 is not high and slight variations of them (∼ 10%) do not a�ect
the presented results.

The implementation has been developed in MATLAB and GP computations have been implemented
by modifying the open source GP library in Rasmussen and Williams (2006). As described in Section 4.3,
during exploration, map drifts occur due to loop-closure in the SLAM process. As it is computationally
expensive to process all measurements from scratch at each iteration, a mechanism has been adopted to
address the problem. The cumulative relative entropy by summing the computed JSD can detect such map
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(a) (b) (c)

Figure 8: MI-based exploration in the Intel map derived from the Intel dataset. (a) I-GPOM2, (b) the equivalent OGM computed
at the end of the experiment (c) corresponding entropy map of the GPOM (nats). The sparse observations due to the occluded
perception �eld in a complex environment such as the Intel map signi�es the capabilities of OGM and GPOM methods to cope
with such limitations. Map dimensions are in meters, and the maps are built with the resolution 0.135m.

drifts.
Each technique is evaluated based on six di�erent criteria, namely, travel distance, mapping and plan-

ning time, Map Entropy Rate (MER), AUC of the GP occupancy map calculated at the end of each experi-
ment using all available observations, localization RMSE, and the Number of Closed Loops (NCL). The map
entropy at any time-step can be computed using (21). The map entropy calculation can become indepen-
dent of the map resolution following the idea in Stachniss et al. (2005); that is the cell area, i.e. the squared
of the map resolution, weights each entropy term. To see the performance of decision-making across the
entire an experiment, the MER is then computed at the end of each experiment using the di�erence be-
tween �nal and initial map entropies divided by the number of exploration steps. Note that none of the
compared exploration strategies explicitly plans for loop-closing actions. For each dataset, the results are
from 10 independent runs using the same setup and parameters.

5.2 Exploration results in the Intel map

An example of the exploration results using GPMI is shown in Figures 8 and 9. The statistical summary of
the results are depicted in Figure 10. The most signi�cant part of the results is related to the map entropy
rate in which a negative value means the map entropy has been reduced at each step. In the nearest frontier
techniques there is no prediction step regarding map entropy reduction; therefore, the results are purely
based on chance and structural shape of the environment. OGMI shows marginal improvements over NF
with roughly similar computational times for the exploration mission. Thus, it is the preferred technique
in comparison with NF.

GPNF and GPMI exploit I-GPOM2 for mapping, exploration, and planning. GP-based methods han-
dle sparse sensor measurements by learning the structural dependencies (spatial correlations) present in
the environment. The signi�cant increase in the map entropy rate is due to this fact. The results from
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Figure 9: Pose SLAM map of the MI-based exploration in the Intel map derived from the Intel dataset. Dotted (red) curves are the
robot path and connecting lines (green) indicate loop-closures. Map dimensions are in meters. The starting robot position is at
(18,26), horizontally and vertically, respectively, and the robot terminates the exploration mission at the most bottom right room.

GPMI show higher travel distance and a higher number of closed loops which can be understood from the
fact that information gain in the utility function drives the robot to possibly further but more informative
targets. As this behavior does not show any undesirable e�ect on the localization accuracy, it can be con-
cluded that it performs better than the other techniques; however with a higher computational time. The
information gain calculation could be sped up by using CSQMI due to its similar behavior to MI (Charrow
et al. 2015). Under the GPMI scheme, the robot chooses macro-actions that balance the cost of traveling
and MI between the map and future measurements. Although the utility function does not include the
localization uncertainty explicitly, the correlation between robot poses and the map helps to improve the
localization accuracy.

5.3 Outdoor scenario: Freiburg Campus

In the second scenario, the map is an outdoor area with a larger size (almost ten times). Figure 11 shows
the satellite map of the area as well as the trajectory that the robot was driven for data collection. Similar to
the �rst experiment, a binary map of the dataset is constructed and used for exploration experiments. The
statistical summary of the results is shown in Figure 12. To maintain the computational time manageable,
the occupancy maps are built with the coarse resolution of 1m.

Overall, the trend is similar to the previous test, and speci�cally, the map entropy rate plot shows a
signi�cant di�erence between GPMI and the other techniques. Again, this signi�cant map entropy rate im-
provement has been achieved without any undesirable e�ects on the localization accuracy. The sharpness
of the localization error distribution can be seen as the reliability and repeatability characteristic of GPMI.
Since this map has large open areas relative to the robot’s sensing range, it is highly unlikely that the robot
closes loops by chance. For the GPMI, the number of closed loops has a higher median which supports the
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Figure 10: The box plots show comparison of di�erent exploration strategies in the Intel dataset from 10 independent runs. The
compared criteria are travel distance (m), time (min), map entropy rate (nats/step), the mapping performance using the area under
the receiving operating characteristic curve, localization root mean-squared error (m), and the number of closed loops by Pose
SLAM.
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Figure 11: The left picture shows the satellite map of the Freiburg University Campus where the yellow dashed line indicate the
robot trajectory. The middle �gure shows the corresponding occupancy map of the dataset (Howard and Roy 2003). The right
�gure shows the corresponding binary map of obstacles used for exploration experiments. Map dimensions are in meters.

idea of implicit loop-closing actions due to the correlations between the map and the robot pose. However,
the NCL distribution has wider tails which does not support its repeatability. The exploration times in
this environment is less than those of the previous experiment in the Intel map. We associate the faster
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Figure 12: The box plots show comparison of di�erent exploration strategies in the Freiburg campus dataset from 10 independent
runs. The compared criteria are travel distance (m), time (min), map entropy rate (nats/step), the mapping performance using
the area under the receiving operating characteristic curve, localization root mean-squared error (m), and the number of closed
loops by Pose SLAM.

map exploration results with the combination of the di�erence in map resolutions and the open shape of
the Freiburg campus map. In contrast, the Intel map is highly structured with narrow hallways and small
rooms which require a �ner map resolution leading to a higher number of query points. Furthermore, in
the Intel map, unlike the Freiburg campus map, a larger maximum range does not help the robot to explore
the map faster due to the occlusion problem.

Figure 13 shows the results from an exploration run in Freiburg campus map using NF, OGMI, GPNF,
and GPMI. The robot behavior is distinguishable in all four maps. In NF case, the robot tends to travel
to every corner in the map to complete the partially observable parts of the map. This behavior leads to
trajectories along the boundaries of the map. In OGMI, the prediction of the information gain reduces
this e�ect. However, the OGM requires a higher number of measurements to cover an area; therefore,
the robot still needs to travel to the corners. In GPNF case, this e�ect has been alleviated since the the
continuous mapping algorithm can deal with sparse measurements. However, in GPMI case, the robot
behaves completely di�erent as by taking the expectation over future measurements (calculating MI) the
robot does not act based on the current map uncertainty minimization, but improving the future map state
in expectation.
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Figure 13: Illustrative examples of exploration in the Freiburg Campus map. The top left and right, and the bottom left and right
�gures show the results for NF, OGMI, GPNF, and GPMI, respectively.

6 Conclusion and Future Work

We studied the problem of autonomous mapping and exploration for a range-sensing mobile robot using
Gaussian processes maps. The continuity of GPOMs is exploited for a novel representation of geomet-
ric frontiers, and we showed that the GP-based mapping and exploration techniques are a competitor
for traditional occupancy grid-based techniques. The primary motivations stemmed from the fact that
high-dimensional map inference requires fewer observations to infer the map, leading to a faster map en-
tropy reduction. The proposed exploration strategy is based on learning spatial correlations of map points
using incremental GP-based regression from sparse range measurements and computing mutual informa-
tion from the map posterior and conditional entropy. We presented results for two exploration scenarios
including a highly structured indoor map as well as a large-scale outdoor area.

When accurate sensors with large coverage relative to the environment are available, existing SLAM
techniques can produce reliable localization without the need for an active loop-closure detection. MI-
based utility function proposed in this work is suitable for decision making in such scenarios. The more
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general form of this problem known as active SLAM requires an active search for loop-closures to reduce
pose uncertainties. However, the expansion of the state space to both the robot pose and map results in a
computationally expensive prediction problem.

Extensions of this work include development of the planning algorithms with longer horizons as well
as incorporating the robot pose uncertainty into the mapping and decision-making frameworks (Ghaf-
fari Jadidi et al. 2016, 2017b). Furthermore, as analyzed and discussed in Subsection 3.7, development of
computationally more attractive GPOM algorithms remains as an interesting future direction.
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