
This is a pre-print version of an article published in Autonomous Robots.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s10514-018-09822-3

3D Multi-Robot Patrolling with a Two-Level Coordination
Strategy

Luigi Freda · Mario Gianni · Fiora Pirri

Abel Gawel · Renaud Dubé · Roland Siegwart · Cesar Cadena

Received: June 25, 2019/ Accepted: date

Abstract Teams of UGVs patrolling harsh and com-

plex 3D environments can experience interference and

spatial conflicts with one another. Neglecting the oc-

currence of these events crucially hinders both sound-

ness and reliability of a patrolling process. This work

presents a distributed multi-robot patrolling technique,

which uses a two-level coordination strategy to mini-

mize and explicitly manage the occurrence of conflicts

and interference. The first level guides the agents to

single out exclusive target nodes on a topological map.

This target selection relies on a shared idleness rep-

resentation and a coordination mechanism preventing

topological conflicts. The second level hosts coordina-

tion strategies based on a metric representation of space

and is supported by a 3D SLAM system. Here, each

robot path planner negotiates spatial conflicts by ap-
plying a multi-robot traversability function. Continuous

interactions between these two levels ensure coordina-

tion and conflicts resolution. Both simulations and real-

world experiments are presented to validate the perfor-

mances of the proposed patrolling strategy in 3D envi-

ronments. Results show this is a promising solution for

managing spatial conflicts and preventing deadlocks.

Keywords 3D patrolling · 3D multi-robot systems ·
distributed multi-robot coordination · UGVs

1 Introduction

Multi-robot patrolling is a relevant area of investiga-

tion in Artificial Intelligence (AI) and robotics since

the early nineties (see [56] for a survey and [58] for a

study on strategies and algorithms). Still, the literature

is limited to abstract agents and robots that hardly can

be operated in full 3D environments.

Multi-agents and multi-robot patrolling methods have

been largely treated in the literature for agents and

robots operating in laboratory settings and in allegedly

2D flat environments. However, very little has been

done so far when patrolling (i) concerns real 3D world

environments such as emergency or inspection scenar-

ios, and (ii) deals with complex robot structures such

as Unmanned Ground Vehicles (UGV). In this regard,

the differences are substantial: first, the difficulties to

be faced are substantially higher; second, in real scenar-

ios, where professional operators (purportedly trained)

act with extreme difficulties, the problems and tasks

that need to be addressed are driven by specific current

needs and not by abstract strategies.

This work addresses the multi-robot patrolling prob-

lem for UGVs operating in full 3D environments. We

propose a strategy that minimizes and explicitly man-

ages the occurrences of conflict and interference. These

unwanted events can generate deadlocks and severe-

ly impact a team of robots when patrolling narrow

surroundings due to collapsed infrastructures or other

wreckages obstructing passages.

L. Freda, M. Gianni and F.Pirri
ALCOR Lab, DIAG - Sapienza University of Rome, Italy
E-mail: freda,gianni,pirri@diag.uniroma1.it

A. Gawel, R. Dubé, R. Siegwart and C. Cadena
Autonomous Systems Lab - ETH Zurich, Switzerland
E-mail: gawela, rdube, rsiegwart, cesarc@ethz.ch

ar
X

iv
:1

90
6.

09
59

1v
1

 [
cs

.R
O

]
 2

3
Ju

n
20

19

2 Luigi Freda et al.

Fig. 1: Patrolling scenarios with their 3D maps and patrolling graphs. We refer the reader to the paper webpage
https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/ for videos and further details.

Indeed, despite the fact that fully autonomous robots

cannot be involved in human rescue so far, they can cer-

tainly assist a human team engaged in several difficult

tasks. For example, robots are expected to lift the op-

erators from the burden of assessing the state of the en-

vironment such as reachability of specific areas, footing

of collapsed building, dangerous pipes, infrastructures

and objects, and safe areas where the rescuers can pos-

sibly pass through in order to reach relevant objectives.

There is nowadays a wealth of literature on the tasks

and roles a robot team can perform in order to reduce

human risks under these circumstances (recent reviews

can be found in [38,36]). An analysis of robots’ poten-

tials in reducing human risks during disaster response

and their associated costs are treated in [69].

Immediate intervention of robot teams to the after-

math of tragic events (see for example [48,40,49,39,42]

for a list of these episodes) requires urgent solutions

and assessments in terms of communication, mapping

and areas to be covered for information acquisition. In

this context, response time is often a key factor. As a

matter of fact, the deployment of several robots in the

same disaster area can yield critical success by poten-

tially allowing a faster coverage of larger areas. Further-

more, different orders of robot autonomy are required

and long-term human-robot collaboration is desired to

preside a disaster area over several days (see e.g. [40]).

Therefore, a crucial support to the operators is the

ability of the UGVs team to collect information by pa-

trolling the hazardous area and reporting to the oper-

ators the gathered knowledge.

To this end, solving spatial conflicts between several

robots is crucially required in order to attain optimal

patrolling in full 3D environments with large amounts

of obstacles and obstructed paths.

In this work, we delineate methods for handling

strategies to safely govern UGVs behaviors in close prox-

imity. To show our methodology we focus on autonomous

multi-robot path planning and frequency-based patrolling,

highlighting the role of robot inference in resolving,

sometimes compelling, conflicts. We present a distributed

multi-robot patrolling technique, which uses a two-level

coordination strategy that minimizes and explicitly man-

ages the occurrence of conflict and interference, consid-

ering both topological and metric strategies to solve

spatial conflicts. The topological strategy deals with

the team coordination by allocating nodes to individ-

ual UGVs on a patrolling graph. The metric strategy

attains coordination by ensuring safe traversal and col-

lision free multi-robot operation.

We show that the proposed framework is capable of

operating in full 3D environments, allowing robots to

successfully patrol in uneven and unstructured terrain.

The patrolling algorithm is integrated with a 3D pose-

graph Simultaneous Localization and Mapping (SLAM)

system, allowing robots to continuously update and ex-

tend their traversable area as well as register their data

in a common reference frame using an OctoMap repre-

sentation. We also present a novel multi-robot traver-

sability analysis that is based on the local shape of the

map point-cloud, the spatial arrangement of the team

and the robots planned paths.

Results shown in Section 10.2 (some examples in

real scenarios are depicted in Fig. 1) demonstrate that

the proposed system can face and solve an interesting

set of spatial conflicts while minimizing interference.

Due to the difficulties in operating these UGV systems

we augment the set of real world experiments, reported

in the experiment section, with simulation experiments

that reproduce real scenarios.

https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/
https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 3

In summary, the novel contributions of the work are

the following:

(i) Patrolling on a 2D manifold embedded in the 3D

space.

(ii) A two level coordination strategy for guiding a team

of patrolling robots in a distributed fashion.

(iii) Multi-robot traversability analysis considering team-

mates planning decisions.

(iv) A validation of our approach in real world environ-

ments and in realistic simulation scenarios.

(v) An open source implementation is available1.

The proposed strategy is presented within a compre-

hensive system for 3D multi-robot patrolling.

The remainder of this paper is organized as follows.

Section 2 presents an overview of the main challenges

that need to be faced by a team of patrolling robots. In

Section 3, we survey works on multi-robot patrolling,

though none of them faces the real-world conditions we

considered in this work. Section 4 describes the prob-

lem setup. An overview of the proposed multi-robot pa-

trolling system is given in Section 5.2. In Section 6,

we describe the adopted distributed patrolling strat-

egy. Next, Section 7 describes the used multi-robot path

planning approach, followed by details on our 3D SLAM

system in Section 8. Finally in Section 10.2 we present

the results in both real world and simulation experi-

ments and provide implementation details.

2 Problem Overview

A team of UGVs is called to patrol a 3D complex envi-

ronment. A set of locations of interest is assigned and

must be continuously visited in order to monitor their

surroundings. The team objective is to maximize the

visit frequency of each assigned location. Such a mis-

sion poses many challenges.

3D uneven and complex terrain. The UGVs are

required to navigate over a 3D uneven and complex

terrain. In general, the 3D terrain shape must be ef-

ficiently modelled and properly interpreted in order to

allow UGVs to robustly localize and plan safe and feasi-

ble trajectories. To this aim, a high-level understanding

is typically required beyond a basic geometric 3D rep-

resentation of the scenario.

Spatial conflicts. Narrow passages (for example due

to collapsed infrastructures or debris) typically generate

spatial conflicts amongst teammates. A suitable strat-

egy is required to (i) minimize interferences and (ii) rec-

ognize and resolve possible incoming deadlocks, which

can hinder UGVs activities or even provoke major fail-

ures.

1 https://gitlab.com/luigifreda/3dpatrolling

Dynamic environment. The environment may be dy-

namic and large-scale [14]. In this case, UGVs must

continuously update their internal representations of

the surrounding scenario in order to best adapt their

behaviours and quickly react to changes. This is a cru-

cial requirement for continuous, efficient and safe oper-

ations.

Unreliable communication network. In order to

collaborate, UGVs must continuously exchange coordin-

ation messages and share their knowledge over a net-

work infrastructure. Indeed, real world networks might

be unreliable and offer only a limited communication

bandwidth. Therefore, the patrolling strategy must rely

on an efficient coordination protocol and show robust-

ness with respect to possible communication failures.

Long-term operations. Patrolling is a long-term task

which requires the adoption of suitable persistent mod-

els. UGVs are resource-constrained systems which must

be able to efficiently select and integrate only relevant

information. At the same time, irrelevant sensory data

must be filter out and disregarded. These capabilities

are crucially required to maintain a compact and usable

knowledge representation in the long-term.

We address the aforementioned challenges in the fol-

lowing.

3 Related Work

Multi-robot patrolling has found in recent years several

applications in real domains where distributed surveil-

lance, inspection, or control are crucial (e.g., computer

network administration [8,20], security [3,4,33], Search

and Rescue (SaR) [1,7,53], persistent monitoring [68],

hotspot policing [15], military [51]). Typically, in this

contexts, a team of robots is required to repeatedly visit

a set of areas of interest to be monitored [6,16,24,46,

58,63].

Existing approaches can be classified either on the

basis of the kind of application [3,4] or with respect

to the applied theoretical principles [16,24,30,33,46,

50,61,64]. Considering the type of application, exist-

ing approaches can be divided in adversarial patrol [76],

perimeter patrol [5], and area patrol [58]. Regarding the

theoretical baseline, they can be distinguished in pio-

neer methods [46], graph theory methods [16,55], and

alternative coordination methods [64].

On the basis of recent research advancements in this

field, alternative subdivisions might be devised. For in-

stance, alternative coordination methods can be fur-

ther decomposed in game theory methods [33], meth-

ods resorting to statistical approaches [64,61], meth-

ods using principles from control theory [50], and logic-

based methods [7]. An alternative up-to-date review of

https://gitlab.com/luigifreda/3dpatrolling

4 Luigi Freda et al.

some of the aforementioned works can be found in [61]

and in [74]. The presented work is developed at the in-

tersection of the pioneer methods and the area patrol

classes, addressing scalability and computational com-

plexity constraints.

Pioneer methods are commonly based on simple ar-

chitectures where heterogeneous robots with limited per-

ception and communication capabilities are guided to

locations that have not been visited for a while, aim-

ing to maintain a high frequency of visits [58]. Un-

der this setting, agents can behave either in a reactive

(with local information) or in a cognitive (with access

to global information) manner [24,46]. Over the years,

these methods led to what is today better known as

frequency-based patrolling [16,25]. In this type of pa-

trolling, the goal of the team of robots is to optimize

a given frequency criterion, usually the idleness [55],

that is, the time between consecutive visits to a par-

ticular point within the patrol region [52,59]. In [60],

the authors state that in some cases, simple strategies

like the pioneer ones, with reactive agents, even with-

out communication capabilities, can achieve equivalent

or improved performance when compared to more com-

plex ones. A study of the scalability and performance of

some of the patrolling strategies mentioned above has

been reported in [58].

Despite the focus that multi-robot patrolling has re-

ceived recently, it can be noted that there is a lack of

practical real-world implementations of such systems [60].

When dealing with a team of real robots operating

in harsh environments, particular attention has to be

payed on the communication, the coordination, and the

collaboration amongst teammates for safe joint naviga-

tion [2,11,67]. Most of the proposed approaches do not

account for 3D environments [12,35,52].

In this work, we study the patrolling problem from

a non-adversarial point of view. Specifically, we cast

the patrolling problem as an online optimization of the

point visit frequency (frequency-based patrolling). Even

if optimal or near-optimal solutions can be typically

guaranteed by off-line methods [16], we select a online

framework in order to best face the compelling uncer-

tainty in perceptions, modelling, and action executions.

We present a multi-robot system which is able to patrol

a 2D manifold of the 3D space.

Many previous multi-robot patrolling systems have

been demonstrated under strong assumptions, such as

perfect localization, perfect communication or assum-

ing no major failures at path planning level. The draw-

backs of these assumptions have been already noticed

in the community, “the theoretical strategies need to be

adapted to take into account the uncertainties and dy-

namics of the actual execution” as stated in [28]. In this

Fig. 2: The patrolling robot model.

Table 1: Table of the main symbols.

Symbol Description

W Environment
T Time interval
S Surface terrain in W
O Obstacle region
C Configuration space of each robot
Aj(q) Region occupied by robot j at q ∈ C
G Patrolling graph
M 3D metric map of the environment

paper, we present a system tested in real-world scenar-

ios aiming at stepping “towards better validation pro-

cesses” [62]. Our system approaches the online multi-

robot patrolling task by fully considering the 3D space

with a SLAM system running on each robot. Specifi-

cally, the SLAM system allows the team to be aware of,

and adapt to, changes in the environment, for instance,

by reassigning goals when a node is no longer reachable
for one of the robots due to changes in the traversabi-

lity map. Furthermore, the presented implementation

uses nimbro network [65] to handle the communication

bandwidth which can be scarce in any full integrated

system.

4 The Patrolling Model

In this section we introduce the model and data struc-

tures of our patrolling framework. We focus on a team

of robots called to patrol an asperous area for which a

terrain condition knowledge is required.

The robot team is composed by m ≥ 2 ground pa-

trolling robots. The main components of a patrolling

robot are represented in Fig. 2. A patrolling robot in-

teracts with its environment through observations and

actions, where an observation consists of a set of sen-

sor measurements and an action corresponds to a robot

actuator command. Team messages are exchanged with

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 5

teammates over a network for sharing knowledge and

decisions in order to attain team collaboration.

Decision making is achieved by the patrolling agent

and the path planner, basing on the available infor-

mation stored in the environment model and the team

model. In particular, the environment model consists

of a topological map G, aka patrolling graph, and a 3D

metric map M. The team model represents the robot

belief about the current plans of teammates (goals and

planned paths).

The main components of the patrolling robots are

introduced in the following subsections. A list of the

main symbols is reported in Table 1.

4.1 3D Environment, Terrain and Robot

Configuration Space

The 3D environment W is a compact connected region

of R3. Let T = [t0,∞) ⊂ R denote a time interval,

where t0 ∈ R is the starting time. The obstacle region is

in general time-varying and denoted by O = O(t) ⊂ R3

for every time t ∈ T . We assume O is a collection of

low-dynamic objects [70], whose slow motions do not

immediately affect results of robot computations.

The robots move on a 3D terrain, which is identified

as a compact and connected manifold S in W.

The configuration space C of each robot is the spe-

cial Euclidean group SE(3) [45]. In particular, a robot

configuration q ∈ C consists of a 3D position of the

robot representative centre and a 3D orientation. We

denote with Aj(q) ⊂ R3 the compact region occupied

by robot j at q ∈ C.
A robot configuration q ∈ C is considered valid if the

robot at q is safely placed over the 3D terrain S. This

requires q to satisfy some validity constraints defined

according to [32].

A robot path is a continuous function τ : [0, 1]→ C.
A path τ is safe for robot j in a time interval [t1, t2] ⊂ T
if for each s ∈ [0, 1] and each t ∈ [t1, t2]: Aj(τ (s)) ∩
O(t) = ∅ and τ (s) ∈ C is a valid configuration.

We assume each robot in the team is path control-

lable, i.e., each robot can follow any assigned safe path

in C with arbitrary accuracy [30].

4.2 Patrolling Graph and Patrolling Agent

A patrolling graph G is a topological graph-like repre-

sentation of the environment to be patrolled.

Namely, G = (N , E) is an undirected connected

graph, with N a set of nodes and E ⊆ N 2 a set of

edges.

A node ni ∈ N is associated to a 3D region of inter-

est B(ni) ⊂ W, and to a priority weight w(ni) ∈ R+.

In particular, B(ni) is a ball of pre-fixed radius Rv ∈ R
centred at the corresponding position p(ni) ∈ S.

An edge eij ∈ E between node ni and nj denotes

the existence of a safe path τij connecting the regions

B(ni) and B(nj). The length of such a path is used as

edge travel cost c(eij) ∈ R+.

A patrolling graph is built before the mission (see

Sect. 9) and assigned to the team at t0.

A node nj ∈ N is visited at time t ∈ T if a robot

centre lies inside the associated region B(nj) at t.

The instantaneous idleness Ij(t) ∈ R+ of a node

nj ∈ N at time t ∈ T is Ij(t) = w(nj)(t−tl), where tl is

the most recent time in [t0, t] the node was visited by a

robot. When computing Ij(t), the priority w(nj) ∈ R+

locally “dilates” or “contracts” time at node nj . We

assume Ij(t0) = 0 for each node nj in G.

Considering the idleness Ij(t) of a node nj in a time

subinterval [t1, t2] ⊂ T , we compute its average idle-

ness Iaj [t1, t2] = 1
t2−t1

∫ t2
t1
Ij(t)dt, its standard deviation

Iσj [t1, t2] = 1
t2−t1

∫ t2
t1

(
Ij(t)− Iaj [t1, t2]

)2
dt and its max-

imum value IMj [t1, t2] = max
t∈[t1,t2]

Ij(t).

The average graph idleness of G is

IG [t0, t] =
1

N

N∑
j=1

Iaj [t0, t] (1)

where N = |N | is the total number of nodes in G. N is

assumed to be constant.

The patrolling plan π of a robot is defined as an

infinite sequence {(nk, tk)}∞k=0, where nk ∈ N denotes

the k-th node visited at time tk ∈ T by the robot. A
team patrolling strategy Π = {π1, ..., πm} collects the

patrolling plans of all the robots in the team.

Patrolling objective. In our framework, the goal of

the robot team is to cooperatively plan a team pa-

trolling strategy Π that minimizes the average graph

idleness IG [t0, t] at all times t ∈ T .

An instance of the patrolling agent runs on each

robot h and is responsible of cooperatively generating

the patrolling plan πh according to the above patrolling

objective. A pseudo-code description of the patrolling

agent is presented in Sect. 6.

4.3 Metric Map and Path-Planning

Each robot of the team is equipped with a rangefinder

producing 3D scans2 and is able to localize in a global

2 This can be a rotating laser range-finder or a full 3D scan-
ner.

6 Luigi Freda et al.

Table 2: Table of broadcast messages.

Broadcast message Description Affected data in receiving robot h

〈j, t, reached, n〉 robot j has reached its goal node n node n idleness is zeroed in I(h)(t); the j-th tuple
in team model T (h) is reset

〈j, t, visited, n〉 robot j is visiting a non-goal node n along the way
to its goal

node n idleness is zeroed in I(h)(t)

〈j, t, planned, n〉 robot j has planned node n as perspective goal the j-th tuple in team model T (h) is filled with
(n, c =∞, t)

〈j, t, selected, n, c〉 robot j has actually selected node n as goal and is
heading towards it, c is the current path length to
the goal

the j-th tuple in team model T (h) is filled with
(n, c, t)

〈j, t, path, τ , c〉 robot j has planned a path τ from its current posi-
tion to its goal, c is the corresponding path length

the j-th tuple in team model T (h) is filled with
(τ , c, t) and the multi-robot traversability map of
robot h is updated (see Sect. 7.2)

〈j, t, aborted, n〉 robot j aborted its goal node n the j-th tuple in team model T (h) is reset

〈j, t, idleness, I(j)(t)〉 robot j shares its current idleness estimations

I(j)(t) = 〈I(j)1 (t), ..., I
(j)
N (t)〉

the current idleness estimations I(h)(t) are syn-
chronized with I(j)(t) according to Algorithm 1

map frame, which is shared with its teammates (cfr.

Sect. 8).

In our framework, each robot uses a 3D point cloud

as a metric representation M of the environment. A

map M is built beforehand and assigned to the team

at t0. A multi-robot traversability cost function trav :

R3 → R is defined on M (cfr. Sect. 7.2). This function

is used to associate a navigation cost J(τ) to each safe

path τ (cfr. Sect. 7.4).

Given the current robot position pr ∈ R3 and a

goal position pg ∈ S, the path planner computes a safe

path τ ∗ which minimizes the navigation cost J(τ) and

connects pr with pg (cfr. Sect. 7.3). The path planner

reports a failure if a safe path connecting pr with pg is

not found.

4.4 Network Model and Broadcast Messages

Let the network connectivity graph Φ be an undirected

graph where a node represents a robot, while an edge

represents a communication link between the two con-

nected robot nodes. Specifically, two robots are able to

exchange messages if and only if they are connected by

an edge in Φ.

We assume Φ is dynamic and stochastic. An edge

between any two robots can appear or disappear at any

time instant. An independent Bernoulli distribution is

associated to each message transmission: any message

sent between robots i and j is successfully received with

a probability P cij = P cji. We assume the state of Φ is not

observable by the robots.

Each robot can broadcast messages in order to share

knowledge, decisions and achievements with teammates.

In particular, a broadcast message emitted by robot j

IdlenessSynchronization(〈j, idleness, I(j)(t)〉)
// robot h updates I(h)(t) by using input idleness message

1 for k = 1 to N do

2 I
(h)
k (t)← min(I

(h)
k (t), I

(j)
k (t))

3 end

Algorithm 1: IdlenessSynchronization

at time t ∈ T is received only by the robots which are

connected with robot j on Φ at t.

Different types of broadcast messages are used by

the robots to convey various information (see Sect. 6).

In this process, the identification number (ID) of the

emitting robot is included in the heading of any broad-

cast message. In particular, a broadcast message is emit-

ted by a robot in order to inform teammates when it

reaches a goal node (reached), visits a node (visited),

planned a perspective goal node (planned), selected a

node as actual goal and it is heading towards it (se-

lected), and aborts a goal node (aborted). Addition-

ally, a message idlenesses is broadcast in order to en-

force the synchronization of idleness estimates amongst

teammates (see Sect. 4.5). The path message will be

described in Sect. 7.5. Table 2 summarizes the used

broadcast messages along with the conveyed informa-

tion/data. The vector of estimated idlenesses I(h)(t)
and the team model T (h) are introduced in the next

two subsections. The general broadcast message format

is 〈robot id, timestap,message type, data〉.

4.5 Shared Knowledge Representation

Each robot of the team stores and updates its individual

representation of the world state.

At t0 ∈ T , a robot loads as input the 3D mapM and

the patrolling graph G. Then, it internally maintains

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 7

an instance of these representations. In particular, we

denote by M(h) and G(h) the local instances of M and

G in robot h, respectively.

Since the environment is dynamic, robot h updates

its individual 3D map M(h) by using the last acquired

3D scan measurements (see Sect. 8). This allows the

path planner to safely account for new environment

changes.

At the same time, robot h updates its patrolling

graph G(h) by using the received broadcast messages

and the path planner output. Specifically, the travel

cost c(h)(eij) of an edge eij in G(h) is locally updated

when a new path is computed between the two corre-

sponding nodes ni and nj .

Additionally, robot h locally maintains an idleness

estimate I
(h)
j (t) for each node nj in G(h). We denote

by I(h)(t) = 〈I(h)1 (t), ..., I
(h)
N (t)〉 the vector of estimated

idlenesses in robot h. Every time a robot visits(reaches)

a node nj , a visited(reached) message is broadcast and

each receiving robot h correspondingly updates its local

idleness estimate I
(h)
j (t). Clearly, since broadcast mes-

sages may be lost, the idleness estimates I
(h)
j (t) may not

correspond to the actual idleness values. In order to mit-

igate this problem, each robot continuously broadcasts

an idleness message at a fixed frequency 1/Tidln. Such

messages are used to synchronize the idleness estimates

amongst robots according to Algorithm 1.

The above information sharing mechanism imple-

ments a shared idleness representation which allows

team cooperation, e.g. minimizing inefficient actions such

as re-visiting nodes just inspected by teammates.

4.6 Team Model

In order to cooperate with its team and manage con-

flicts, robot h maintains an internal belief representa-

tion of the current teammate plans (aka team model)

by using a dedicated table

T (h) = 〈(n1g, τ 1, c1, t1), ..., (nmg , τ
m, cm, tm)〉 (2)

which stores for each robot j: its selected goal node

njg ∈ N , the last computed safe path τ j to njg, the

corresponding travel cost cj ∈ R+ (i.e. the length of

τ j) and the timestamp tj ∈ T of the last message used

to update (njg, τ
j , cj).

The table T (h) is updated by using reached, planned,

selected and aborted messages. In particular, reached

and aborted messages received from robot j are used

to reset the tuple (njg, c
j , τ j , tj) to zero (i.e. no in-

formation available). A planned message sets the sub-

tuple (njg, t
j), with cj = ∞. A selected message sets

Fig. 3: The two-level strategy implemented on each robot.

(njg, c
j , tj), while a path message completes the tuple

with τ j information.

An expiration time Texp is used to clean T (h) of

old invalid information. In fact, part of the information

stored in T (h) may refer to robots which underwent

critical failures or whose connections have been down

for a while. In particular, let t ∈ T be the current time.

A tuple (njg, τ
j , cj , tj) is reset to zero if (t− tj) > Texp.

4.7 System Architecture

The patrolling plan π of a robot can be pre-computed

offline, i.e. before starting the patrolling execution [16,

26,55], or online, i.e. by planning and visiting a new

node at each patrolling step k [66,58,57,61].

In a centralized system, the team patrolling strat-

egy {π1, ..., πm} is computed by a central control robot

(i.e. the leader) and communicated to all its teammates.

Conversely, in a decentralized system, a central leader

does not exist. Different levels of decentralization are

possible and spans from hierarchical to distributed ar-

chitectures [75,27,9]. In a distributed system, each robot

independently computes its patrolling plan by possi-

bly taking advantage of exchanged information and co-

ordination messages.

Our system is online and distributed. In particu-

lar, an instance of the patrolling agent algorithm (see

Sect. 6) runs on each robot and is responsible of on-

line generating its own patrolling plan π. Namely, at

each patrolling step k, the patrolling agent plans a new

goal node nk in G. In this process, a patrolling robot

exchanges messages with its teammates (see Sect. 4.4)

in order to attain coordination (avoid conflicts) and co-

operation (avoid inefficient actions). More details are

provided in Sect. 5.2.

8 Luigi Freda et al.

5 Two Level Coordination Strategy

This section first introduces the notions of topological

and metric conflicts, and then presents our two-level

coordination strategy (see Sect. 5.2).

5.1 Topological and Metric conflicts

A topological conflict between two robots is defined on

the patrolling graph G. This occurs when two patrolling

agents select the same node ni ∈ G as goal (node con-

flict) or plan to simultaneously traverse the same edge

eij ∈ G (edge conflict).

On the other hand, metric conflicts are defined in

the 3D Euclidean space where two robots are referred

to be in interference if their centres are closer than a

pre-fixed safety distance Ds. It must hold Ds ≥ 2Rb,

where Rb is the bounding radius of each robot, i.e. the

radius of its minimal bounding sphere. A metric conflict

occurs between two robots if they are in interference or

if their planned paths may bring them in interference3.

It is worth noting that topological conflicts may not

correspond to metric conflicts. In our framework, an

edge may represent a large passage which could be si-

multaneously traversed by two or more robots without

interferences. Similarly, a node may represent a large

region which could actually be visited by two or more

robots at the same time.

5.2 Two Level Coordination Strategy

Our patrolling strategy is distributed and supported on

both topological and metric levels.

The patrolling agent acts on the topological strat-

egy level by selecting the next goal node ng on G. In

this process, cooperation is attained by using the shared

idleness representation. This avoids inefficient actions

such as selecting nodes just inspected by teammates

(see Sect. 4.5).

The path planner acts on the metric strategy level

(see Figure 3) by computing the best safe path from the

current robot position to p(ng) by using its internal 3D

map M(h) (see Sect. 7.3)).

The patrolling agent guarantees topological coordin-

ation by continuously monitoring and negotiating pos-

sibly incoming node conflicts (see Sect. 6). In case mul-

tiple robots select the same goal (node conflict), the

robot with the smaller travel cost actually goes, while

the other robots stop and re-plan towards new nodes.

3 That is, the distance between the closest pair of points of
the two planned paths is smaller than Ds.

The path planner guarantees metric coordination by

applying a multi-robot traversability function. This in-

duces a prioritized path planning [45], in which robots

negotiate metric conflicts by preventing their planned

paths from locally intersecting (see Section 7.2).

The continuous interaction between the patrolling

agent and the path planner plays a crucial role. When

moving towards p(ng), the path planner continuously

re-plans the best traversable path till the robot reaches

the goal. During this process, if a safe path is not found,

the path planner stops the robot, informs the patrolling

agent of a path planning failure and the patrolling agent

re-plans a new node. On the other hand, every time the

path planner computes a new safe path, its length is

used as travel cost by the patrolling agent to resolve

possible node conflicts.

In our view, the two-way strategy approach allows

(i) to simplify the topologically based decision mak-

ing and (ii) to reduce interferences and manage pos-

sible deadlocks. In fact, while the patrolling agent fo-

cuses on the most important graph aspects (shared idle-

ness minimization and node conflicts resolution), the

path planner takes care of possible incoming metric

conflicts due to unmanaged topological edge conflicts.

Moreover, where the path planner strategy may fail

alone in arbitrating challenging conflicts, the patrolling

agent intervenes and reassigns tasks in order to better

redistribute robots over the graph. As a result, these

combined strategies minimize interferences by explic-

itly controlling node conflicts and by planning on multi-

robot traversability maps.

6 Distributed Patrolling

In this section, we present in detail the patrolling agent

algorithm. A pseudocode description is reported in Al-

gorithm 2.

A patrolling agent instance runs on each robot. It

takes as input the robot ID, the patrolling graph and

the metric map. A main while loop supports the pa-

trolling algorithm (lines 3–22). First, all the relevant

data structures and the main boolean variables4 are up-

dated (line 4, see Section 6.1). This update takes into

account all the information received from teammates

and recasts the distributed knowledge. If the current

goal node has been reached (line 5), a broadcast mes-

sage informs the team (line 6). Then, a new node is

planned, a corresponding broadcast message is emitted

and the goal position is sent to the path planner (lines

7–9, see Sect. 6.3).

4 We use an “is ” prefix to denote boolean variables.

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 9

PatrollingAgent(robot id, patrolling graph, metric map)
1 is goal reached← true
2 goal← ∅
3 while true do
4 Update() // update data structures and boolean variables

5 if is goal reached then
6 broadcast goal is reached
7 goal ← PlanNextGoal() // plan next goal node

8 broadcast goal is planned
9 send goal to path planner

10 else
11 if is path planning failure or is node conflict or is goal visited then
12 send abort to path planner
13 broadcast goal is aborted
14 goal ← PlanNextGoal() // replan next goal node

15 broadcast goal is planned
16 send goal to path planner

17 else
18 broadcast goal selected // broadcast a selected message while reaching the goal

19 sleep for Tsleep

20 end

21 end

22 end

Algorithm 2: PatrollingAgent

Update()

1 update idlenesses I(h)(t) and travel costs in G // asynchronous update through received messages and path planner feedback

2 update metric map M(h) and traversability map // asynchronous update through sensor callbacks

3 update team model T (h) // asynchronous update through received messages and path planner feedback

4 is node conflict ← check if another robot in T (h) has the same goal node
5 is goal reached ← check if current goal has been reached by this robot
6 is goal visited ← check if current goal is visited by another robot // check by using received visited messages

7 is path planning failure ← check if path planner failed to compute a path to goal // check continuous replanning

8 is critical path planning failure ← check if path planning failure is lasting more than Tpcr

9 is critical node conflict ← check if robot is experiencing node conflicts for more than a time interval Tncr

10 is node visited ← check if a non-goal node is visited by this robot while reaching the current goal
11 if is node visited then
12 node ← get node visited along the way
13 broadcast node is visited // inform teammates about the non-goal node visit

14 end
15 broadcast idleness message with pre-fixed frequency 1/Tidln

Algorithm 3: Update (in robot h)

PlanNextGoal()
1 goal← ∅
2 if is critical path planning failure or is critical node conflict then
3 goal← ComputeRandomNode() // randomized selection of next node

4 else
5 D ← BuildSearchSet() // build a search set with candidate goal nodes

6 goal← ComputeNextBestNode(D) // compute next best node in D
7 end
8 return goal;

Algorithm 4: PlanNextGoal

On the other hand, if the robot is still reaching the

current goal node, lines 11–20 are executed. If a path

planner failure, a node conflict (see Section 6.2), or a

node visit (see Section 6.1) occurs on the selected goal

(line 11), the patrolling agent first sends a goal abort

to the path planner, next broadcasts its decision and

then triggers a new node selection (lines 12–16). Other-

wise (lines 18–19), a selected message is broadcast and

a sleep for a pre-fixed time interval Tsleep allows the

robot to continue its travel towards the selected goal

(line 18).

10 Luigi Freda et al.

(a) (b) (c)

(d) (e) (f)

Fig. 4: A sequence of node negotiations amongst: top robot t, left robot l and bottom robot b. The patrolling graph is shown:
nodes are depicted as disks; each node has a radius proportional to its idleness. The traversability map of robot b is shown:
red points are obstacles; green points are traversable (for robot b). Planned paths are emanated from each robot. Both global
and local paths are shown (respectively, blue and magenta). Fig. (a): robot b plans the central node nc and then selects nc.
Fig. (b): robot t also plans nc. Fig. (c): robot b detects a node conflict (with robot t) on node nc, aborts nc, plans the right
node nr; robot l plans nc. Fig. (d): robot l selects nc; robot t detects a node conflicts (with robot l) on nc, aborts nc and then
plans nr; robot b selects nr. Fig. (e): robot t detects a node conflict (with robot b) on nr, aborts nr and plan nc. Fig. (f):
both robot l and b are moving towards their goals while robot t is searching for a reachable and non-conflicting node. At this
time, robot t observes that each node is either selected by a closer robot, currently visited or unreachable.

It is worth noting that the condition at line 11 of

Algorithm 2 allows each robot to modify its plan at

need while reaching the goal. Moreover, a selected mes-

sage broadcast is repeated at each step5 in order to add

robustness with respect to network failures.

5 Or at a pre-fixed frequency, after a first selected is broad-
cast along the way to the current goal.

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 11

6.1 Data Update

The Update() function is summarized in Algorithm 3.

This is in charge of refreshing the robot data struc-

tures presented in Sect. 4. Indeed, these structures are

asynchronously updated by callbacks which are inde-

pendently triggered by received broadcast messages or

path planner feedback messages.

Lines 1–3 of Algorithm 3 represent the asynchronous

updates of the local instances of the patrolling graph

G, the point cloud mapM and the team model T . The

remaining lines describe how the reported boolean vari-

ables are updated depending on the information stored

in the team model and received through path planner

feedback.

6.2 Node Conflict Management

The concept of topological conflict was defined in Sec-

tion 5.1. During the patrolling process, a topological

node conflict occurs when two or more patrolling agents

select the same goal node, which we refer to as con-

tended node. Our strategy resolves a topological conflict

by assigning the contended node to the robot which can

reach it with the smallest travel cost.

A robot checks for node conflicts by using the infor-

mation stored in its individual team model (cfr. Sect.

4.6). In this process, it compares its plan with those of

teammates. In particular, robot j detects a node conflict

with robot i at node ng ∈ N if the following conditions

are verified:

1. robots j finds in its team model T (j) that robot i

has the same goal, i.e., njg = nig in T (j).

2. the travel cost cj is higher than ci in T (j), or j > i

in the unlikely case the travel costs cj and ci are

equal (robot priority by ID as a fall-back).

When the two above conditions are verified, robot j

sets the boolean variable is node conflict to true (line

4 of Alg. 3), aborts its current goal njg and re-plans a

new node (lines 12–16 of Alg. 2).

If a robot experiences node conflicts for more than a

pre-fixed time interval Tncr, it enters in a critical node

conflict state. In this case, a boolean variable is criti-

cal node conflict is set true (line 9 of Alg. 3).

As an example, we report in Fig. 4 a sequence of

node negotiations amongst three robots.

6.3 Next Node Planning and Selection

The strategy adopted for planning the next node is de-

scribed in Algorithm 4. First, the algorithm verifies if

a critical condition is occurring (line 2), i.e., if either

a critical path planning failure (see Section 7.5) or a

critical node conflict is occurring (see Section 6.2). If

a critical condition is not occurring (line 3), a search

set D (i.e., a set of candidate goal nodes) is built (line

5), then the next best node is computed in D (line

6). Here, the functions BuildSearchSet(·) and Compute-

NextBestNode(·) can encode any user-defined strategy

with the proviso that D must not contain the possible

contended node in case is node conflict is true.

On the other hand, if a critical condition occurs (line

2), a randomized node selection is performed on the

graph (line 3). Such a randomized selection is used to

crucially discharge the planner from any search space

restriction (line 5) and selection strategy (line 6). In

fact, these may trap the algorithm in a “local mini-

mum”, where the planner continuously selects a tem-

porary unreachable node as goal.

For instance, a search space restriction (line 5) at

graph depth d = 1 (aka reactive strategy) makes the

robot stuck idle when reachable nodes are available only

at depth d > 1.

On the other hand, “local minima traps” can be en-

visioned on the top of any deterministic selection strat-

egy (line 6) by introducing a virtual objective function

which combines together the explicit user-defined “util-

ity” function6 and the navigation cost-to-go. Indeed, a

local minima trap occurs when an obstruction blocks

the robot way towards the node n∗ with the highest

“utility”. For instance, the obstruction “disconnecting”

n∗ can be a door suddenly closed or a group of team-

mates persisting in front of the robot. In such cases, a

randomized selection technique results in an effective

method to escape local minima in terms of computa-

tional efficiency, generality and reliability [10].

Algorithm 4 can be used as a base to support any

online strategy. In this work, as an example, we use a

reactive strategy for the implementations of the func-

tions BuildSearchSet(·) and ComputeNextBestNode(·).
Such a strategy effectively provides readiness in resolv-

ing incoming spatial conflicts and in making decisions

on rapidly changing patrolling graphs. Specifically, we

build D as the current node neighbourhood (line 4, Al-

gorithm 4) and select as best node the one in D with

the highest idleness estimate (line 5, Algorithm 4). This

implementation can be considered as an improved ver-

sion of the Conscentious Reactive algorithm [58]. In

fact, here we explicitely manage interferences and spa-

tial conflicts in order to prevent deadlocks.

For efficiency reasons, in the function

ComputeRandomNode(·) (line 3, Algorithm 4), the ran-

domized strategy first selects a node at a graph depth

one, then it linearly increases the depth of the search

6 In our case, this depends on the idlenesses of the nodes.

12 Luigi Freda et al.

Fig. 5: The metric level and its main modules.

with time if the current critical condition is not readily

escaped. In order to preserve probabilistic complete-

ness, the randomized selection is performed on the full

patrolling graph after a number of consecutive failures.

Two important observations are in order. First, lo-

cal minima (critical conditions) are detected thanks

to the continuous interaction between the patrolling

agent and the path planner. Second, the presented Al-

gorithm 2 puts into effect a cooperative strategy if the

adopted ComputeNextBestNode(·) function selects the

next node on the basis of the shared idleness representa-

tion (cfr. Sect. 4.5). The latter allows to avoid inefficient

actions, such as selecting a goal node recently visited by

a teammate.

7 Multi-robot Traversability and Path Planning

Basing on the metric strategy, the path planner attains

local coordination by applying a multi-robot traversabi-

lity function. This allows to compute a traversable path

towards the designated goal node and to locally negoti-

ate metric conflicts. Figure 5 presents the metric level

and its main modules, which are described in the fol-

lowing subsections.

7.1 Point Cloud Segmentation

At each new scan, the robot updates its individual 3D

map (see Section. 8). Map points are then segmented in

order to estimate a traversability of the terrain. First,

geometric features such as surface normals and prin-

cipal curvatures are computed and organized in his-

togram distributions. Clustering is applied on 3D co-

ordinates of points, mean surface curvatures and nor-

mal directions [47,29]. As a result, a classification (la-

beling) of the 3D map in regions such as walls, terrain,

surmountable obstacles and stairs/ramps is obtained.

All regions which are not labeled as walls are referred

to as non-walls.

Fig. 6: A 2D sketch of a robot future trail. The blue(dark)
rectangle represents the footprint of robot j at its current
pose qj . The current robot position pj is the centre of the
blue rectangle. Aj(qj) corresponds to the area of the blue
rectangle. The 2D projection of the current planned path τj
joins pj with the goal position pg. τc

j is the portion of τj that
keeps the robot centre within B(pj , Rc). The 2D projection of
τc
j is represented in red. Some future robot footprints along
τc
j are sketched in light grey. The future trail Pj is the union

of all the footprints whose centres lie in B(pj , Rc).

7.2 Multi-robot Traversability

The path planner computes a traversable path τ di-

rectly on the segmented non-walls regions of the indi-

vidual robot 3D map.

Denote with S a metric space on R3. Let p ∈ S
and ε ∈ R+ be the center and the radius of a ball

B(p, ε) ⊂ S, in which we consider a suitably connected

neighbourhood of p. Each non-wall point p is evaluated

along with its local neighbourhood B(p, ε) and “back-

projected” onto a robot pose q by using the local surface

normal at p [43].

For efficiency reasons7, each robot body is repre-

sented by its bounding sphere when computing its clear-

ance from obstacles and teammates. This allows faster

computations for both the traversability analysis and

the path planner (see Section. 7.5). In this context, the

path planner can restrict the path search in a “projec-

tion” of C on a 3D Euclidean space8.

Traversability for each robot is computed as a cost

function on its 3D map. To this end, each neighbour-

hood B(p, ε) of a map point p ∈ R3 is evaluated along

with its local geometric features and segmented aspects

(see Sections 7.1).

7 The metric level modules must run on the robot main
board and share computational resources with other demand-
ing processing nodes [41].
8 At this stage, we found this approach to perform very well

in practice without significantly limiting the robot manoeu-
vres in the tested scenarios.

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 13

Fig. 7: The multi-robot traversability map of the left robot l.
Green points can be traversed by robot l. Segmented obstacle
points are shown in red. The planned path of the right robot
r is reported in red on the ground. The future trail of robot
r generates a local “repelling region” on the green carpet
around robot r itself.

In particular, the traversability cost function trav :

R3 → R is computed as

trav(p) = wL(p)(1 + wCl(p))(1 + wDn(p))(1 + wRg(p)) (3)

Here the weight wL : S → R+ depends on the point

classification, wCl : S → R+ is the multi-robot clear-

ance (defined below), wDn : S → R+ depends on the

local point cloud density and wRg : S → R+ measures

the local terrain roughness (average distance of outlier

neighbour points from a local fitting plane).

In order to attain a look-ahead path planning with

local coordination and obstacle avoidance behaviours,

the traversability analysis of a robot is “informed” with

the current positions and planned paths of its team-

mates.

In particular, let qj ∈ C and pj ∈ R3 respectively de-

note the current pose and position of robot j. Aj(q) ⊂
R3 is the compact region occupied by robot j at q ∈ C.
Denote with τj : [0, 1] → C the current planned path,

which leads robot j to its assigned goal configuration.

Moreover, let τ cj : [0, 1]→ C be the portion of τj which

keeps the robot centre within B(pj , Rc), a closed ball

of radius Rc centred at pj (see Fig. 6). Here Rc is a

pre-fixed cropping radius.

The future trail of robot j is defined as the compact

region:

Pj ,
⋃

s∈[0,1]

Aj(τ cj (s)). (4)

In other words, the future trail of robot j is the 3D

region the robot would cover along τj up to a maximum

distance Rc from pj (see Fig. 6). If no goal is assigned,

one has Pj ≡ Aj(qj).

Robot i computes the multi-robot clearance wCl(x)

as its clearance at x ∈ R3 with respect to a) obstacles

sensed at its current position pi
9 b) each teammate fu-

ture trail Pj , with j 6= i, such that Pj ∩ B(pi, Rt) 6= ∅.
Here, Rt is a pre-fixed radius greater than Rc. Speci-

fically, when computing wCl(x), any teammate future

trail Pj that is distant more than Rt from the current

robot position pi is discarded.

The multi-robot traversable mapMt is obtained from

the current map by suitably thresholding the function

wCl(·) and collecting the resulting points along with

their traversability cost (see Fig. 7).

It is worth noting that the multi-robot traversability

allows the implementation of a prioritized path plan-

ning which takes into account prospective robot inter-

actions [45]. Planning priorities are implicitly assigned

to teammates according to the time order in which

their planned paths are received and integrated in the

robot traversability map Mt. In this process, the balls

B(pj , Rc) and B(pi, Rt) are used in order to locally

bound the coordination on the traversable map.

It should be emphasized that, in case of strong com-

munication delays, the sole knowledge of teammates’

positions cannot be used to attain a safe robot naviga-

tion. In such a case, the multi-robot traversability (with

its integrated knowledge of the teammates prospective

paths) allows to attain metric coordination by (i) min-

imizing interferences and (ii) safely steering each robot

ahead of time towards its goal. Moreover, given the fact

that robots “reserve” their motion space (by concur-

rently laying down prospective paths over the multi-

robot traversability), node conflicts are often prevented.

7.3 Path Planning and Windowed Search Strategy

For implementation and efficiency reasons we make use

of a global and a local path planners. Given a set of 3D

waypoints as input, the global path planner is in charge

of a) checking the existence of a traversable path joining

them and b) minimizing a mixed cost function along the

computed path (see Sect. 7.4). This mixed cost function

combines together the multi-robot traversability cost

(see Sect. 7.2) along with an optional task dependent

cost function.

Once a global path solution τg is found, the local

path planner continuously replans a traversable path

τl that safely drives the robot from its current con-

figuration q to the first configuration of τg that inter-

sects a sphere of radius Rl centred at q. This allows the

9 Here we include the segmented obstacles in the map and
the most recent nearby obstacle points which have been de-
tected by the rangefinder and are not segmented yet in the
map .

14 Luigi Freda et al.

path planner to more readily react to possible dynamic

changes in the environment.

Both the global and the local path planners cap-

ture the connectivity of the configuration space C by

using a sampling-based approach. The path search is

restricted to a “projection” of C on a 3D Euclidean

space (Sect. 7.2). In fact, the path planner computes

trajectories directly on the traversability map.

A tree K is expanded on the traversability mapMt

by using a randomized A* approach [29,18]. The start

node ns ∈ Mt and the goal node ng ∈ Mt are com-

puted as the projections of the start and goal robot

positions on Mt. ns is used as root in order to initial-

ize K. The tree expansion at the current node n ∈Mt

proceeds as follows

1. The clearance wCl is computed at the position cor-

responding to n (see Sect. 7.2)

2. A safety radius δn at n is computed as the minimum

between wCl and a pre-fixed maximum robot step;

3. A set V of neighbours is created by collecting all the

points of the traversable map that fall in a ball of

radius δn centred at the position of n;

4. A subset of neighbours in V are randomly selected

as new children of n by using a probability inversely

proportional to the corresponding traversability cost

(this biases the expansion towards more traversable

regions);

5. The A* cost-to-go of each new child is computed

by taking into account the mixed cost function pre-

sented in Sect. 7.4, eq. (6);

6. The computed A* cost-to-go is used for inserting

with priority the new child in a search queue;

7. The element of the search queue with the minimum

cost-to-go is selected as next node to expand.

In this process, a kd-tree is used for fast nearest neigh-

bour search. The algorithm ends when a child node is

found close enough to the desired goal position.

In order to further improve the efficiency and the

response time of both the local and global path plan-

ners, a windowed search strategy has been implemented

around the basic path planner. Let pspg be the Eu-

clidean line segment joining the assigned start position

ps and the goal position pg. Each time the global/local

path planner is called to compute a new path:

1. First, the path search is restricted in the subset

of points of the traversable map Mt ∩ R1, where

R1 ⊂ R3 is a box with medial axis containing pspg.

Roughly speaking, this region is shaped as a narrow

corridor with a longitudinal axis aligned to pspg.

2. If a path cannot be found within R1, then it is

searched within a new region R2 which is built by

suitably growing R1 along its axes of symmetry.

3. If the path search fails then this process is repeated

by incrementally growing the search region until a

pre-fixed number of attempts is reached.

In order to preserve the probabilistic completeness of

the basic path planning algorithm, the last attempt

uses the full traversable map as search region. For sake

of safety, the most updated traversability map is con-

sidered as input at each planning attempt.

In this process, the different attempts allow the robot

to process different world “snapshots” over time, with

the benefit of possibly finding a solution after an initial

failed attempt (due to new occurring favourable condi-

tions).

7.4 Mixed Cost Function

The randomized A* algorithm computes a sub-optimal10

path τ = {nt}Nt=0 in the configuration space11 C by

minimizing the total cost:

J(τ) =

N∑
t=1

c(nt−1,nt) (5)

where n0 and nN are the start and the goal respec-

tively, and nt ∈ C. The cost-to-go function c : C×C → R
combines together the traversability cost and an op-

tional task dependent function12. In particular

c(nt,nt+1) =
(
d(nt,nt+1) + h(nt+1,nN)+

+ λz | nzt+1 − nzt |
)
ω1(nt+1)ω2(nt+1)

(6)

ω1(n) = λt
trav(n)− travmin

travmax − travmin + ε
+ 1 (7)

where d : C × C → R+ is a distance metric, h : C × C →
R+ is a goal heuristic, nzt ∈ R is the z-coordinate of the

node nt ∈ C, λz ∈ R+ and λt ∈ R+ are positive scalar

weights, ω1 : C → R+ is the normalized traversability

function, ε ∈ R+ is a small quantity which prevents

division by zero and ω2 : C → R+ is a normalized task-

dependent cost function. The first factor in eq. (6) sums

together the distance metric, the A* heuristic function

(usually the distance to the goal) and a weighted differ-

ence of the z-coordinates of the nodes. The other two

factors ω1, and ω2 represent a normalized traversability

cost and a normalized task-dependent cost respectively,

10 The sub-optimality of the solution is due to the used in-
cremental sampling-based approach [37,18].
11 As explained in Sect. 7.2, each point of Mt can be asso-
ciated to a robot pose.
12 This can be used for instance to steer the robot toward
regions where an estimated WIFI radio signal strength map
returns higher values [13].

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 15

PathPlanning(goal, traversability map, team model)
// find initial solution

1 path← ∅, is goal aborted← false
2 for l = 1 to lmax do
3 Update() // asynchronous

4 path← ComputePath(goal, traversability map)
5 if path 6= ∅ then
6 break
7 else
8 sleep for Twait

9 end

10 end
// move along the path and broadcast status

11 while (not is goal reached) and (not is goal aborted)
do

12 if path 6= ∅ then
13 broadcast path and success
14 TrajectoryTracking(path) // asynchronous

15 else
16 broadcast failure
17 return;

18 end
19 Update() // asynchronous

20 path← ComputePath(goal, traversability map)

21 end

Algorithm 5: PathPlanning

whose strengths can be trade-off by using the weight λt.

Note that ωi ≥ 1 for i = 1, 2. The normalized task de-

pendent function ω2 is typically built with a structure

very similar to ω1 [13].

7.5 Coordinated Path Planning and Message Protocol

The path planner continuously replans a path on the

multi-robot traversability map in order to react to pos-

sible dynamic changes in the environment. In this pro-

cess, it uses the most updated map, the knowledge of

prospective teammates paths and the current sensory

information. A pseudocode description is reported in

Algorithm 5. The function PathPlanning is invoked by

the path planner every time a new goal is received from

the patrolling agent.

Specifically, when a new goal position is designated,

the path planner first tries to compute an initial solu-

tion (lines 2–9), up to a maximum number of attempts

lmax (set to 5 in our experiments). At each failed at-

tempt, it waits for a pre-fixed time interval Twait (line

8), then it retries by using the most updated informa-

tion (line 3, see Sect. 6.1). If after lmax attempts an

initial solution is not found, the path planner commu-

nicates its failure to the patrolling agent (line 16) and

then waits for a new goal; otherwise, a solution is found

and a success message is sent to the patrolling agent

(line 13).

Once an initial solution is found, the robot starts

moving toward its goal (line 14) along the computed

path. In this process, the path planner continuously re-

plans a new path by using the most updated informa-

tion (lines 11–20). Since the environment is assumed to

be dynamic and populated by moving robots, a path

planning failure can be verified by the local path plan-

ner during its continuous replanning, even after an ini-

tial solution is found by the global path planner. In

case of failure, the path planner communicates it to the

patrolling agent and then a new goal is received (line

12–16, Algorithm 2).

The path planner is managed at the topological level

by the patrolling agent, whose decisions (i) support co-

operation and coordination with teammates, and (ii)

allow to detect and manage deadlocks. In fact, the pa-

trolling agent continuously checks the path planner sta-

tus and, in case of critical conditions (see Section. 6.3),

pre-empts its current task and reassigns it a new goal

(lines 12–16, Algorithm 2). In particular, if the path

planning keeps on failing for more than a pre-fixed time

interval Tpcr, we say that a critical path planning failure

is occurring. This can be provoked by a local minima

trap, as discussed in Sect. 6.3. In this case or when

a goal is aborted by the patrolling agent (line 12, Al-

gorithm 2), the variable is goal aborted is set to true

and the continuous re-planning loop (lines 11–21, Algo-

rithm 5) is stopped.

It is worth noting that, in the initial solution search,

the basic wait-retry process allows the robot to pro-

cess different world “snapshots” over time. In some sit-

uations, this works as a virtual traffic-light and it al-

lows teammates to move, reach their goals and free

the way. In general, this basic wait-retry process alone

is not sufficient to avoid deadlocks. For instance, it

is not able to resolve the conflict experienced by two

robots moving in opposite directions (e.g. along a nar-

row corridor) and reciprocally blocking their ways. In-

deed, such a case defines a local minima trap for both

robots (continuous path planning failures would be gen-

erated on both sides). In our approach, many ingredi-

ents are used to prevent such deadlocks: the structure

of our patrolling agent, the topological and metric co-

ordination (Sect. 5.2), the continuous interaction be-

tween the patrolling agent and the path planner. In par-

ticular, the ability to detect critical conditions (Sect. 6.3),

node conflict resolutions (topological coordination) and

the randomized selection strategy allow to escape from

local minima traps (e.g. the situation described above).

The path planner continuously publishes the follow-

ing messages after each plan or re-plan step, as a feed-

back.

16 Luigi Freda et al.

Fig. 8: The 3D SLAM pipeline.

Fig. 9: A 3D map generated prior to the patrolling experiment
which took place at the Deltalinqs training site, Rotterdam.
The point cloud is colored by height and the ground plane
has been removed for facilitating localization.

– The path planner status: this message is sent to the

patrolling agent in order to inform it if a solution

path was found (success) or not (failure), or if the

assigned goal has been reached (reached). A suc-

cess message also includes the navigation cost of

the computed path.

– The path message: this is broadcast to teammates

and contains the current estimated robot position

and the current planned path (see Table 2). These

data are essential for computing the multi-robot tra-

versability.

On the other hand, the path planner can receive com-

mand messages from the patrolling agent. In particular,

a command message contains the current goal node po-

sition along with the desired action: go or abort.

8 3D Mapping and Localization

In order to apply the distributed patrolling technique

introduced in Section 6, the robots need to localize in

a common global reference when moving in the en-

vironment. This multi-robot localization is performed

against a 3D map which is built prior to the patrolling

mission. This map is also used for generating the initial

patrolling graph presented in Section 4. In the present

system, the prior map and the individual maps of each

robot, are built using the pose-graph SLAM pipeline

depicted in Figure 8. For the experiments presented in

Section 10.2, the maps are generated using the observa-

tions from a rotating 2D LiDAR sensor. However, our

Surface

(a) Positional error

Surface

(b) OctoMap error

Fig. 10: Challenges of small incidence angles using lidar: (a)
Small variations in the angle (δα) inflict large positional un-
certainty (δs). (b) Low incident angles inflict voxels falsely
set as free (grey) in the Octomap.

system is flexible and accepts LiDAR sensors which di-

rectly provide 3D information.

Once the prior map has been generated, it is up-

loaded to each robot participating in the patrolling mis-

sion. The multiple robots globally localize themselves

using a place recognition strategy based on 3D seg-

ment extraction matching [21]. During the mission, each

robot is responsible of (1) communicating to the other

robots its location with respect to the prior map and

(2) updating its local 3D volumetric representation of

the environment to reflect dynamic changes. The multi-

robot localization solution detailed in the present sec-

tion is inspired from earlier work ([21] and [22]) and has

been adapted and integrated for fulfilling the needs of

our patrolling framework.

In the remaining of this section we describe in more

detail the SLAM approach used, the chosen map repre-

sentation, and the multi-robot localization on the prior

map.

8.1 3D Pose-Graph SLAM

In order to generate the prior map and to perform per-

sistent SLAM on each robot, the SLAM system relies on

a pose-graph optimization back-end [31]. The states of

our framework are robot poses c(ti)∈SE(3) collected at

times {ti}Ni=0. These are estimated by optimizing a neg-

ative log-posterior E, an error function that sums over a

series of constraints Θ(ci,j)=e
T
i,jΩi,jei,j . Here, ei,j de-

fines the error between the predicted state zi,j and the

observed state z̃i,j of the system, i.e., ei,j = zi,j − z̃i,j ,
and Ωi,j the information matrix. The SLAM framework

implements three different types of constraint that are

summed up in E:

– prior constraints ΘP (ci),

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 17

– odometry constraints ΘO(ci,j), and

– scan-matching constraints ΘS(ci,j).

Prior constraints can be created by using global lo-

calization information as described in Section 8.3.Sec-

ondly, odometry constraints define pose displacements

of consecutive robot locations by fusing IMU and wheel

odometry measurements using an Extended Kalman

Filter as described in [44]. Scan-matching constraints

are finally obtained using Iterative Closest Point (ICP)

to match the current scan against all previous scans

within a sliding time window [t − w, t]⊂R where t is

the current time and w is the chosen fixed time win-

dow. The output of the ICP algorithm is a set of rigid

transformations which can directly be translated into

pose-graph constraints.

Let c(t1:t2) be the sequence of robot poses acquired

in the time interval [t1, t2]⊂R. Denote by CO and CS
respectively the set of pairs of timestamps for which

odometry and scan-matching constraints exist over the

same time interval [t1, t2]. The error function is then

defined as

E(c (t− w:t)) = ΘP (c0) +
∑

〈ti,tj〉∈CO

ΘO(ci,j)+

+
∑

〈ti,tj〉∈CS

ΘS(ci,j)
(8)

on the sliding time window. This error function is fi-

nally minimized using the Gauss Newton algorithm and

the robot trajectory is updated with the optimization

result.

The pose-graph model therefore serves as an implicit

estimation of the robot trajectory and map. The latter

can explicitly be generated, in the form of an OctoMap,

by projecting individual scans from the optimized robot
poses into the global frame of reference. An example of

this 3D representation is illustrated in Figure 9.

8.2 OctoMap representation

We select the OctoMap [34] representation for mod-

elling occupied and free space explicitly. The OctoMap

representation exhibits several advantageous properties

for multi-robot applications. This representation first

allows to register mapping data from different sources in

a common frame of reference, enabling the distributed

patrolling strategy introduced in Section 6. Moreover,

this probabilistic framework accounts for dynamic ob-

jects which can be filtered over multiple observations

due to the explicit modelling of free space using ray-

casting. The OctoMap can be obtained by either load-

ing an existing map and applying potential online ex-

tension, or building it online using our LiDAR-based

SLAM approach.

In order to use this representation for navigation

and patrolling, a ‘clamping policy’ is adopted by setting

a lower and upper bound on the log-likelihood of the

occupancy estimate in the OctoMap. The final decision

about occupancy is made by thresholding this bounded

estimate which ensures that the 3D map representation

can quickly adapt to changes in the environment13.

For the Unmanned Ground Vehicle (UGV)s used

in our experiments, the LiDARs are mounted at low

heights which requires an adaptation over the classic

OctoMap approach. As displayed in Fig. 10, the mo-

tivation behind this adaptation is that a low angle of

incidence relative to the ground may cause voxels to be

falsely marked as free space which is in turn critical for

the traversability analysis introduced in Section 7.1–

7.2. We therefore limit the angle of incidence at which

ray-casting can lower the occupancy probability of vox-

els to a lower bound αmin.

The center-points of occupied OctoMap cells are

thus used for traversability analysis as shown in Sec-

tion 7.2.

8.3 Multi-robot localization

At the beginning of a patrolling mission, the global lo-

cation of each robot is estimated using the SegMatch

algorithm [21]. Specifically, 3D point cloud segments

are extracted from the prior map and all local maps by

applying ground-plane removal, followed by Euclidean

clustering with a growing distance d [19]. Eigen-value

based features are then extracted in order to uniquely

describe each segment [71]. Candidate segment matches

are identified between each local map and the target

map by considering the k nearest neighbours in feature

space. An SE(3) transformation is finally obtained for

each robot by selecting the largest group of consistent

candidates using RANSAC with a resolution r. Fig-

ure 11 illustrates a localization example with the con-

sistent group of matches depicted with green vertical

lines. The paremeters used in this algorithm through-

out the experiments are presented in Table 4.

Each robot uses this localization information for

initializing its own SLAM algorithm, as presented in

Section 8.1. Given that an unique prior map is shared

amongst all robots, scan-matching factors ΘS are gen-

erated by performing ICP against this shared map. Thus,

ensuring that the multiple robots are globally localized

in real-time and in a common reference frame, enabling

the multi-robot patrolling technique presented in this

13 The dynamic update of the OctoMap and
its reactive behaviour is demonstrated in a video
https://youtu.be/caECYcYdrgo

https://youtu.be/caECYcYdrgo

18 Luigi Freda et al.

Fig. 11: A localization example in the map illustrated in
Fig. 9. Segments extracted from the target map are shown
in white below whereas colors are used to depict segments
extracted from the local representation of the robot located
at the right. Matching segments resulting in a localization are
illustrated with vertical green lines.

(a) Radius search (b) Connected Components

(c) Iterative search with adaptive
radius

Fig. 12: Main steps of the automatic procedure for building a
graph: this is used for processing an history of robot trajec-
tories.

work. This localization paradigm is able to account for

changes in the environment, if a sufficient amount of

structure is similar, enabling ICP to converge to cor-

rect solutions.

9 Patrolling Graph Building

This section briefly presents two procedures for building

a patrolling graph: the first (interactive) takes as input

a set of Points Of Interest (POIs) selected by the user on

the 3D interface; the second (automatic) automatically

computes the patrolling graph from an history of robot

trajectories.

9.1 Patrolling Graph from a User-assigned Set of

Waypoints

In the interactive procedure, a set of POIs (or way-

points) are selected by the user on the map. These are

potentially considered as patrolling graph nodes. Then,

an algorithm automatically adds an edge between each

pair of nodes (ni, nj) that satisfy the following condi-

tions:

1. the Euclidean distance between the corresponding

points pi,pj ∈ R3 is smaller than a maximum dis-

tance dmax ∈ R (set to 5m in our experiments);

2. the line segment connecting pi and pj does not in-

tersect the map;

3. the line segment between the positions pi and pj has

an elevation angle smaller than a maximum angle

αmax ∈ R (we set this to 30◦);

4. a traversable path between the node positions pi,pj ∈
R3 exists.

The first condition is added for containing the branch

factor of each node and avoid too long travels between

nodes. The second condition checks if the line segment

pipj intersects the ground or an obstacle. The second

and third conditions together avoid connecting nodes

which belong to different floor levels or which can be

joined by a too steep passage.

If some of the points are not connected, they are

not considered as nodes, the user can move or delete

them, and then repeat the procedure. In this process,

kd-trees are efficiently used in order to perform collision

checking.

9.2 Patrolling Graph from a Saved History of Robot

Trajectories

The automatic graph building procedure is based on

the approach presented in [47]. First, each input robot

trajectory is initially discretized via uniform sampling,

in order to obtain a sparse sequence of poses. Then, each

resulting sequence is accumulated in a suitable space-

partitioning data structure, where the robot orientation

is disregarded. Next, a voxel grid filter is applied to this

data structure to reduce the number of points stored

therein.

For each resulting point in the filtered data struc-

ture a node is generated. Connections among nodes

are established as follows. A preliminary procedure is

applied to the filtered data structure to find a set of

distinct connected components (see Figure 12b). This

procedure searches for all the nearest neighbours of a

query point in a given radius (see Figure 12a). Finally

connected components are linked together through an

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 19

Fig. 13: TRADR UGV equipped with multiple encoders, an
IMU and a rotating laser-scanner.

iterative radius search procedure, where at each itera-

tion, the value of the radius is incremented in order to

ensure connectivity (see Figure 12c).

10 Results

This section presents the results we obtained with an

implementation in 3D. We validated the proposed strat-

egy on the TRADR UGV robots [41] (cfr. Fig. 13), both

in simulations and real-wold experiments. These vehi-

cles are skid-steered and satisfy the path controllability

assumption (see Sect. 4.1). Amongst other sensors, the

robots are equipped with a 360◦ spherical camera and

a rotating laser scanner.

We considered 3D scenarios which are typical for

our TRADR UGVs (see Sect. 1). Here, interferences are

very likely and the UGVs need to navigate by (i) avoid-

ing conflicts in narrow passages, (ii) performing reliable

traversability analysis and coordinated path-planning,

(iii) reliably localizing in 3D while simultaneously up-

dating and extending the input 3D metric map. In these

scenarios, there is typically an high ratio between team

size and patrolling graph size.

For convenience, we report in Tables3–4 the list of

the main parameter values we used both in simulations

and experiments.

All the algorithms are implemented in C++ (cfr.

Sect. 14.1). ROS is used as middleware. The code has

been designed to seamlessly interface with both simu-

lated and real robots. This allows to use the same code

both in simulations and experiments. An open source

implementation is available14.

A functional diagram of the presented multi-robot

system is reported in Fig. 14. This is detailed in Sect. 14.2.

14 https://gitlab.com/luigifreda/3dpatrolling.

10.1 Simulation Experiments

This section presents simulation results obtained with

the V-REP simulation framework [23]. V-REP allows to

simulate laser range finder and odometry noise. Grousers

have been added to the simulated robot tracks in order

to obtain realistic robot interactions with the terrain.

For convenience, we have adopted a single-core ROS

architecture during our simulation runs. A different and

more efficient network architecture is used for the real-

world experiments (see Section 10.2). In simulation, we

introduced a fixed delay of 0.2s in the publishing of

each broadcast message.

In this work, since the focus is on patrolling aspects,

we do not consider the articulated tracks during motion

planning15.

We perform simulations with teams up to four

TRADR robots. While this is a typical team size in the

considered SaR applications, it is mainly a limitation

from the V-REP simulations which is computationally

very demanding. To face this limitation, our setup dis-

tributes the V-REP simulations, and the ROS nodes

performing SLAM, segmentation, traversability analy-

sis, path planning and patrolling on distinct computers.

However, in our setup, V-REP is not able to stably sim-

ulate more than four robots under realistic conditions.

On the other hand, the presented multi-robot patrolling

strategy is fully distributed and the implementation of

its coordination protocol does not require special hard-

ware.

The simulated scenarios are depicted in Figures 15,

16 and 17. In particular, Fig. 16 collects the used multi-

floor scenarios, while 15 and 17 show the single-floor

scenarios. In our view, the scenarios of Fig. 17 can be

considered as representative topological types of envi-

ronment junctions, which may be found in common

single-floor scenarios. In particular, we simulated the

challenging scenario “small crossroad” with teams of

three robots and four robots. Some videos of the simu-

lations and further details are publicly available16.

In a first stage, we separately evaluated the multi-

robot traversability in order to show how it improves

the behaviour of the path-planner. To this aim, we used

the challenging scenario reported in Fig. 15a and as-

signed to the each robot one of the distinct cyclic paths

shown in Fig. 15b. Here, each robot was required to

move back and forth between its two assigned way-

points by using only the path planner (no patrolling

graph and no patrolling agent). We compared the be-

haviour of the path planner with and without the multi-

15 This aspect can be managed for instance as proposed
in [77] or [17]
16 https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

https://gitlab.com/luigifreda/3dpatrolling
https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

20 Luigi Freda et al.

Fig. 14: A functional diagram of the implemented multi-robot system. Robots share the same internal software architecture. In
particular, each robot hosts an instance of the patrolling agent and of the path-planner. The legend on the top left represents
the different kind of exchanged messages. The architecture is detailed in Sect. 14.2.

robot traversability. In the scenario of Fig. 15b, we run

10 simulations, each one lasting 10 minutes. We ob-

served that a team of three robots, which used the basic

path planners, always got stuck in a deadlock (around

the intersection of the three cyclic paths). On the other

hand, path planners and multi-robot traversability suc-

ceed in nicely coordinating the robots without conges-

tions or deadlocks17.

In similar environments, characterized by narrow

crossroads, we obtained comparable results. In general,

when considering only the path planner, we observed

that the multi-robot traversability improves the naviga-

17 Two simulation videos are available on our website and
show these behaviour.

tion ability of a robot team. This becomes particularly

evident in scenarios where significant congestions and

deadlocks may occur. Clearly, there are complex cases

which cannot be managed by the multi-robot traver-

sability, given the high complexity of the general multi-

robot path planning problem [45]. Nonetheless, we em-

pirically show that our two level coordination strategy

(multi-robot traversability plus patrolling agent) can

resolve conflicts and prevent deadlocks in complex pa-

trolling scenarios.

In a second stage, we evaluated the (full) two level

coordination strategy. To this aim, we used as perfor-

mance metrics the idleness statistics introduced in Sec-

tion 4.2 and the total number of occurred interference

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 21

Table 3: Path planning and patrolling agent main parameters used in the evaluation.

Description Symbol Value

Robot max linear velocity speed vmax 0.2m/s


Path Planning

Robot bounding radius Rb 0.47m

Robot safety distance Ds 1.2m

Future trail crop radius Rc 1.5m

Radius for considering future trails Rt 1.5m

Path planning waiting time Twait 0.5s

Critical path planning failure time Tpcr 5s


Patrolling

Critical node conflict time Tncr 5s

Patrolling sleep time Tsleep 0.1s

Patrolling main loop rate fpatrol 30Hz

Idleness message broadcast period Tidln 5s

Team model expiration time Texp 10s

Table 4: Laser mapping parameters used in the evaluation.

Description Symbol Value

Maximum laser range rmax 20m


3D SLAM

Scan maximum density ρmax 50000 1
m3

Scans in Sliding window estimation nscans,SWE 3

knn surface normal computation nknn 20

ICP error metric point-to-plane

Prior noise model ΩP 06x6

Odometry noise model ΩO (500, 500, 500, 500, 0.015, 500)T I6x6

Scan matching noise model ΩS (0.05, 0.05, 0.05, 0.015, 0.015, 0.015)T I6x6

OctoMap resolution φ 0.075m
OctoMap

OctoMap occupancy thresholds omin, omax 0.12, 0.97

OctoMap hit / miss probabilities Phit, Pmiss 0.75, 0.2

OctoMap min angle ground removal αmin 4 degrees

Region growing distance d 0.2m
SegMatchNumber of nearest neighbours k 5

RANSAC resolution r 0.3m

(a) Three-ways (b) Cyclic paths (c) Maps

Fig. 15: Left : the three-ways scenario in V-REP. Center : the three cyclic paths assigned to the robots (in different colours).
Each robot is required to move back and forth between its two assigned waypoints (mainly along the horizontal, diagonal
or vertical direction). Right : the environment maps, i.e. patrolling graph (red circular vertex and yellow edges), traversable
regions (green point cloud), obstacle regions (red point cloud).

22 Luigi Freda et al.

(a) Multi-floor ramp

(b) Two-floor ring

Fig. 16: Multi-floor scenarios in V-REP (left) and their maps (right): patrolling graph (red circular vertex and yellow edges),
traversable regions (green point cloud), obstacle regions (red point cloud).

events. In particular, we continuously measured in a

moving-window [t − ∆, t] ⊂ R the average graph idle-

ness IaG[t−∆, t], its standard deviation IσG[t−∆, t] and

its maximum value IMG [t − ∆, t], where t denotes the

current time and we selected ∆ = 600s. In particular,

we considered a moving-window in order to better ob-

serve transient dynamics. We found that a time width

of 600s was a good compromise to significantly capture

both transients and regime behaviours.

Moreover, we counted the total number of inter-

ference events that are broadcast by the robots when

their centres get closer than the safety distance Ds (see

Section 5.1). These checks are executed at 2Hz and

recorded at a pre-fixed frequency of 0.2Hz. Indeed, such

an interference measure overall represents how long the

robot team experienced interference and conflicts18.

18 Since V-REP simulations are computationally demand-
ing in our setup, the simulated robots were not able to move

We compared the patrolling strategy presented in

this paper (see Algorithms 2–4) with two simplified

versions of it. The first simplified strategy is obtained

by only disabling the multi-robot traversability (met-

ric coordination). The second one is obtained by dis-

abling node conflict management (topological coordina-

tion) and shared idleness estimation (cooperation), but

it preserves metric coordination. In the remainder of

this paper, we refer to the full patrolling strategy as

CC strategy (Cooperation plus Coordination), to the

first simplified strategy as CwMC strategy (Coopera-

tion without Metric Coordination) and to the second

simplified strategy as No-CC strategy. As explained in

Sect. 6.3, in this work, we selected a reactive strategy for

in real time and their motions were very slow (this can be
observed in our simulation videos on our website). As a re-
sult, when robots got in interference, they persisted in such
conditions for longer times with respect to a normal real time
simulation.

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 23

(a) Corridor

(b) Crossroad

(c) Small crossroad (d) Fork

(e) Ring

Fig. 17: Single-floor scenarios in V-REP (left) and their maps (right): patrolling graph (red circular vertex and yellow edges),
traversable regions (green point cloud), obstacle regions (red point cloud).

the implementations of the functions BuildSearchSet(·)
and ComputeNextBestNode(·) of Algorithm 4.

For each simulated scenario, we report the results

obtained with a simulation run lasting one hour. In all

the runs, we used the same software deployment, i.e.

we distributed ROS nodes and V-REP in the same way.

It is worth noting that, in each scenario, we observed

consistent results across simulation experiments started

with different initial robot poses, as already reported in

other works [28].

The obtained performance metrics are shown in Fig-

ures 18, 19, 20 and 21. In each sub-figure, we report

24 Luigi Freda et al.

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

10

20

30

40

50

60
idleness statistics

CC

CwMC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

50

100

150

200

250

300

350
idleness max

CC

CwMC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

2000

4000

6000

8000

10000
interferences

CC

CwMC

(a) Three-ways

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

20

40

60

80

100

120

140
idleness statistics

CC

CwMC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

100

200

300

400

500

600
idleness max

CC

CwMC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

1000

2000

3000

4000

5000

6000
interferences

CC

CwMC

(b) Crossroad

Fig. 18: Performance metrics obtained by comparing CC with CwMC in the three-ways and crossroad scenarios. Left : a plot of
the average idleness of the graph along with its standard deviation. Statistics are computed in a moving time-window of width
600s. Center : the maximum idleness observed in the moving time-window. Right : the total number of observed interferences
up to the current time. CC strategy performances are reported in blue while CwMC performances are depicted in red.

(left) a plot of the moving average idleness of the graph

along with its standard deviation, (center) the maxi-

mum idleness observed in the moving time-window and

(right) the total number of observed interferences up to

the current time.

In particular, we compared the CwMC and CC strate-

gies in the challenging scenarios three-ways (now using

the patrolling graph in Fig. 15c) and crossroad. These

simulations allow to highlight the performance improve-

ments that can be provided by the multi-robot traver-

sability when patrolling robots need to negotiate chal-

lenging space conflicts.

As can be observed, the performance metrics of the

CC strategy overall present better trends in all the sce-

narios. In Fig. 18, results confirm the superiority of

combining the multi-robot traversability with the path

planner. In other scenarios, the comparisons between

CC and CwMC returned small improvements or com-

parable idleness performances19. Notably, in the multi-

floor scenarios, the number of interferences of CC is

constantly zero in the two-floor ring (Fig. 19b), while

19 Which we do not report here in order to reduce space.

its value grows20 to 90 during the second part of the

simulation in the multi-floor ramp (Fig. 19a). In gen-

eral, the big spikes which characterize the max idleness

curves in Fig. 19 correspond to an inefficient team de-

ployment over the graph or to the occurrence of chal-

lenging conflicts. In the latter case, the conflicts are

constantly controlled and solved by the CC, while they

produce a big performance degradation in the case of

the No-CC strategy. Indeed, it is possible to observe a

significant correlation between the maximum idleness

and the average idleness which are shown in Fig. 19.

Another important result can be observed on both

the idleness statistics curves shown in Fig. 19: The

moving average idleness of the CC is overall smaller

and much less dispersed than the correspondent curve

of No-CC. Similar results are obtained in the case of

single-floor scenarios (see Figures 20 and 21). We ob-

served that the multi-floor ramp, the single-floor corri-

dor and the crossroad are very challenging scenarios for

the No-CC strategy since the robots continuously ob-

struct each other while trying to reach the ends of the

graph. On the other hand, the CC strategy succeeds to

20 This is not visible in the plot but it was observed by
inspecting the recorded data.

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 25

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

50

100

150

200

250

300

350

400
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

200

400

600

800

1000

1200
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

500

1000

1500

2000

2500

3000

3500
interferences

CC

No CC

(a) Multi-floor ramp

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

50

100

150

200

250

300
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

200

400

600

800

1000

1200

1400
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

1000

2000

3000

4000

5000
interferences

CC

No CC

(b) Two-floor ring

Fig. 19: Performance metrics obtained by comparing CC with No-CC in the multi-floor scenarios. Left : a plot of the average
idleness of the graph along with its standard deviation. Statistics are computed in a moving time-window of width 600s.
Center : the maximum idleness observed in the moving time-window. Right : the total number of observed interferences up to
the current time. CC strategy performances are reported in blue while No-CC performances are depicted in red.

avoid interference and direct negotiation of metric con-

flicts by mainly using node conflict management and

shared idleness in order to properly redirect and redis-

tribute robots over the graph. Clearly, in these challeng-

ing cases, all the encountered metric conflicts usually

subject the engaged robot path planners to an high and

useless computational load with a strong performance

degradation.

It should be emphasized that no deadlocks occurred

during all our simulation runs. The two-level strategy

succeeded in safely governing the robot behaviour, ar-

bitrating conflicts and suitably distributing the robots

over the graph.

10.2 Real-world Experiments

The real-world multi-robot system is implemented in

ROS by using a multi-master architecture. In partic-

ular, nimbro network [65] is used for efficiently trans-

porting ROS topics and services over a WIFI network.

Indeed, nimbro network allows to fully leverage UDP

and TCP protocols in order to control bandwidth con-

sumption and avoid network congestions. This capabil-

ity along with a comparative testing of different ROS

multi-master architectures made the TRADR consor-

tium adopt nimbro network [41,72,73].

We used the same C++ code in order to run both

simulations and experiments (cfr. Sect. 14.1). Only ROS

launch scripts were adapted in order to specifically in-

terface the modules with the actual multi-master nim-

bro network transport layer.

We performed patrolling experiments with real UGVs

aiming at showing the applicability and portability of

the developed software in the real 3D world. We tested

our strategy with teams of two and three robots in dif-

ferent environments. Figure 22 shows two of the con-

sidered scenarios along with their maps and patrolling

graphs. In particular, the CC strategy described in Sect.

6.3 was tested on the TRADR UGVs and a satisfactory

behaviour was achieved. Some videos of the performed

experiments and further details are publicly available21.

Experiments confirmed that map visualization is the

most demanding networking functionality of the sys-

tem. This is only required on the 3D GUI of the central

core if a user want to monitor patrolling actitivities

(see Fig. 14). In this context, nimbro network trans-

port layer was crucial for achieving almost smooth map

21 https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

https://sites.google.com/a/dis.uniroma1.it/3d-cc-patrolling/

26 Luigi Freda et al.

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

5

10

15

20

25

30

35

40
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

50

100

150

200

250
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

1000

2000

3000

4000

5000
interferences

CC

No CC

(a) Small crossroad with 3 robots

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

10

20

30

40

50
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

50

100

150

200

250

300
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

1000

2000

3000

4000

5000

6000
interferences

CC

No CC

(b) Small crossroad with 4 robots

Fig. 20: Performance metrics obtained by comparing CC with No-CC in the small crossroad scenarios with 3 and 4 robots.
Left : a plot of the average idleness of the graph along with its standard deviation. Statistics are computed in a moving
time-window of width 600s. Center : the maximum idleness observed in the moving time-window. Right : the total number of
observed interferences up to the current time. CC strategy performances are reported in blue while No-CC performances in
red.

data transfers. Only the broadcast of compact coordin-

ation messages is required in order to implement the

presented CC strategy.

During the experiments, we observed that some of

the path and selected messages were delayed or lost.

Such situations temporally provoked a patrolling per-

formance drop, due to a locally degraded coordination.

Nonetheless, nor the operation activity of the system

was crucially affected, neither major congestions or dead-

locks occurred. These aspects are further discussed in

Sect. 11.

It is worth noting that the windowed search strat-

egy presented in Section 7.3 proved to work very well

in practice. Most times, the path planner finds a path

at the first attempt with the advantages of (i) conve-

niently reducing the search space 22 and (ii) reducing

on the average the computational load generated by the

path planner.

22 In these cases, the path planner only considers the most
interesting and useful part of the traversability map.

11 Discussion

In this section, we shortly discuss the presented pa-

trolling approach in terms of network resilience and
scalability. Then, we present some lessons learnt in de-

ploying our system in real-world scenarios.

11.1 Network Resilience

The proposed multi-robot system is distributed and

avoids any centralized arbitration scheme, which would

represent a critical point of failure.

In the proposed strategy, the communication proto-

col was designed with redundant messages and an idle-

ness synchronization scheme which support the shared

knowledge representation (see Sect. 4.5).

In particular, at topological level, a selected message

is periodically broadcast (see Sect. 4.5). This redun-

dancy adds robustness with respect to sporadic selected

message losses. In fact, if a single selected message is

lost, two robots may move towards the same node until

new selected messages arrive and allow them to resolve

the node conflict. Clearly, if a significant amount of mes-

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 27

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

10

20

30

40

50

60
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

50

100

150

200

250

300

350
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

500

1000

1500

2000

2500
interferences

CC

No CC

(a) Ring

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

20

40

60

80

100
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

100

200

300

400

500
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

1000

2000

3000

4000

5000
interferences

CC

No CC

(b) Fork

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

10

20

30

40

50

60

70

80
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

100

200

300

400

500
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

2000

4000

6000

8000

10000

12000

14000
interferences

CC

No CC

(c) Corridor

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

50

100

150

200
idleness statistics

CC

No CC

time [s]

0 1000 2000 3000 4000

id
le

n
e
ss

 [
s]

0

200

400

600

800

1000

1200
idleness max

CC

No CC

time [s]

0 1000 2000 3000 4000

#
in

te
fe

re
n

c
e
s

0

1000

2000

3000

4000

5000

6000

7000

8000
interferences

CC

No CC

(d) Crossroad

Fig. 21: Performance metrics obtained by comparing CC with No-CC in the single-floor scenarios ring, fork, corridor and
crossroad. Left : a plot of the average idleness of the graph along with its standard deviation. Statistics are computed in a moving
time-window of width 600s. Center : the maximum idleness observed in the moving time-window. Right : the total number of
observed interferences up to the current time. CC strategy performances are reported in blue while No-CC performances in
red.

28 Luigi Freda et al.

(a) DIAG ramp

(b) DIAG corridor

Fig. 22: Two of the experimented scenarios with real UGVs.

sages is lost, each robot plans its actions relying on an

incomplete representation of the world state. In such

case, idleness estimates are not cooperatively updated,

moreover, coordination and cooperation smoothly de-

grade given the missed shared information and team-

mates decisions. When the network is completely down,

each robot greedily performs an independent patrolling

mission by avoiding teammates (see below) and solving

critical path-planning failures with goal pre-emption

and continuous re-planning.

At metric level, the path-planners continuously re-

plan paths and correspondingly broadcast path mes-

sages (see Table 2). In this way, each multi-robot tra-

versability map is continuously updated. If many path

messages are lost, robots will not stop but will inde-

pendently proceed towards their goals, avoiding each

other thanks to the combination of the continuous re-

planning with a low-level proximity checker23. It is worth

23 This laser proximity checker inhibits forward velocity
commands when a close front obstacle is detected by the laser.

noting that the metric coordination enforced by the

multi-robot traversability is locally bound by the ra-

dius Rt ≥ Rc (see Sect. 7.2). This implies that a correct

multi-robot traversability could be computed even if

robots were only able to exchange path messages within

a limited communication range Rt.

Additionally, even if not presented in this work, it is

worth mentioning that the system can make use of the

communication-aware path planner presented in [13].

This drives each robot towards better WIFI connectiv-

ity regions while planning a path towards the desig-

nated goal.

11.2 Scalability

In our experiments, the number of robots was limited

by V-REP24 and the real TRADR UGVs available.

Nonetheless, we observed that increasing the number

24 In our setup, V-REP is not able to stably simulate more
than four robots under realistic conditions (cfr. Sect. 10.1).

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 29

of robots tends to improve the patrolling performance

even in challenging situations, as shown for instance by

the average graph idleness curves in Fig. 20.

Additionally, we observed that, under some condi-

tions, the robot team tends to create dynamic regions

where agents patrol more often. This is a nice behaviour

already observed in other works [61], without recurring

to an explicit space decomposition and allocation. In

our case, this behaviour is induced by an explicit man-

agement of interference and conflicts (topological and

metric coordination).

In terms of network bandwidth consumption, our

approach is not demanding and could be scaled up to

many robots. In fact, the data size of the messages

reached, visited, planned, selected, and aborted is very

contained. On the other hand, even if path and idleness

messages convey vector data25, their broadcast frequen-

cies are lower. In particular, path messages are broad-

cast on path planning updates, which typically occur

at time-varying frequencies higher than 1Hz. More-

over, idleness messages are broadcast according to a

pre-fixed frequency 1/Tidln. If required, selected mes-

sages could also be broadcast at a pre-fixed frequency.

In this regard, the user can control such broadcast fre-

quencies and trade-off between bandwidth consumption

and system robustness.

As the number of robots grows, local high densities

of robots may form. In this case, the number of co-

ordination “interactions” may increase in a large group

of close robots facing a challenging space conflict (e.g.

a narrow crossroad). Specifically, such robots may need

to exchange more coordination messages in order to re-

solve node conflicts and converge in the negotiation of

new goals. We already observed such challenging sit-

uations in the experimented 3D scenarios. Nonethe-

less, the robots always succeeded in nicely redistribut-

ing over the patrolling graph in a reasonable amount of

time. In this regard, we would like to note that both

metric coordination and topological coordination tend

to prevent the formation of local high densities of robots.

11.3 Lesson Learnt in Real World Deployment

During this research and the TRADR experience [41],

we learnt the following main lessons through numerous

real world deployments.

First, a robust 3D SLAM was required in order

to enable multi-UGV operations in 3D dynamic en-

vironments over long-term missions. In fact, an accu-

rate multi-robot localization is crucial to enable con-

25 The path and idleness message sizes actually depends on
the number of patrolling graph nodes.

sistent spatially-registered cooperation and coordina-

tion. In some situations, we experienced that our ro-

tating laser system was not stiff enough and driving

over rough terrain resulted in noisy point clouds. There-

fore, a dense RGBD mapping could open the way to a

more accurate point cloud segmentation and traversabi-

lity analysis. In this regard, the use of a multi-modal

SLAM approach which processes both RGBD and laser

information could be beneficial.

Second, a distributed knowledge representation and

a robust coordination protocol is crucial in order to at-

tain multi-robot collaboration over unreliable network

infrastructures. Our framework achieves this through

redundant messages and information synchronization

mechanims. In this regard, we found some of the nim-

bro network features (e.g. forward error correction, adap-

tive image compression rate and current network qual-

ity visualization) to be highly beneficial [72,73].

Third, we discovered that interferences and conflicts

are very likely in disaster scenarios. In order to ef-

fectively cope with these problems, high-level decision

making and low-level path planning must be tightly

coupled. This is implemented in our two-level coordin-

ation strategy. In this context, metric coordination and

topological coordination favour each other in a virtu-

ous circle. In fact, when robots “reserve” their motion

space by laying down prospective paths over the multi-

robot traversability (metric coordination), teammates

part away and, therefore, node conflicts are often pre-

vented. On the other hand, when node conflicts are

resolved (topological coordination), robots are redis-

tributed over the patrolling graph and, therefore, gen-

erally pushed away from each other (preventing inter-

ferences).

12 Main Characteristics of the Strategy

Before presenting our conclusions, we summarize the

main characteristics of the presented strategy.

Coordination (avoid conflicts):

◦ The proposed patrolling strategy is distributed.

◦ Interferences and conflicts are explicitly managed.

◦ Metric conflicts are managed by the path planner by

continuously replanning over the multi-robot traver-

sability. This mechanism implements a prioritized

path planning [45] which takes into account prospec-

tive robot interactions.

◦ Topological node conflicts are detected and resolved

by the patrolling agent.

◦ Metric coordination and topological coordination

favour each other in a virtuous circle (see Sect. 11.3).

Cooperation (avoid inefficient actions): a shared idle-

ness representation supports any optimization strategy

30 Luigi Freda et al.

in the selection of the next node (see Sect. 4.5). This

allows to avoid that a patrolling agent selects a goal

node recently visited by a teammate.

Decision making:

◦ Decision making relies on a tight coupling between

the patrolling agent and the path planner. In par-

ticular, the patrolling agent continuously monitors

the path planner and accomplishes goal pre-emption

and replanning when critical conditions are detected

(see Sect. 6.3). Additionally, path lengths computed

by the path planner are used to negotiate conflicts.

◦ A randomized goal selection strategy (line 2, Al-

gorithm 4) is used in order to escape from “local

minima” traps generated by critical conditions (see

Sect. 6.3). For instance, these may be provoked by

environment changes or teammates obstructions.

◦ Our strategy can be used as a base to develop any

online patrolling solution. A wide range of user-

defined strategies could be easily encoded in the best

node selection (lines 5–6, Algorithm 4).

Network:

◦ Redundant messages and information synchroniza-

tion mechanisms add robustness with respect to net-

work failures (see Sect. 11.1).

13 Conclusions

This works presented a distributed approach for multi-

robot patrolling. We focused on aspects that are typi-

cally overlooked in the literature, such as avoiding con-

flicts and deadlocks in spaces shared by multiple UGVs,

considering full 3D environments, traversability analy-

sis, coordinated path planning, and real validation in

3D scenarios. Some of these aspects are summarized in

Sect. 12.

In particular, we developed a comprehensive frame-

work for multi-robot patrolling dealing with all the in-

herent design aspects, from high-level cooperation and

decision making, to low-level coordination and path

planning. We improved upon the state-of-the-art meth-

ods by developing a two-level coordination strategy,

which crucially takes into account the necessary tight

coupling between topological and metric decision mak-

ing. In this regard, both topological and metric coordin-

ation allow to explicitly minimize interference and con-

flicts, which crucially affect UGVs activity. We experi-

enced that this approach allows to effectively cope with

the typical challenges involved when a team of UGVs

is deployed in a disaster scenario.

The presented two-way coordination strategy is gen-

eral and can be used as a base to develop new strategies

for optimizing the patrolling graph idleness and ensur-

ing space conflicts negotiation.

Our multi-robot patrolling algorithm is fully inte-

grated with a 3D SLAM algorithm, traversability anal-

ysis and coordinated path planning. This enables our

system of ground robots to operate in 3D.

We demonstrate competitive performance in both

simulation and real world experiments, enabling robots

to simultaneously operate in realistic simulation and

in real world experiments. The obtained results show

that the Coordination plus Cooperation strategy was

superior than our baseline throughout all performance

measures, i.e., mean idleness, max idleness, spread of

idleness and inference events. Notably, when using the

CC strategy, no deadlocks were observed during our ex-

periments and the number of interferences was always

significantly reduced (or zeroed in some cases). More-

over, we observed that the multi-robot traversability is

able to improve the patrolling team behaviour in the

most challenging scenarios, where space conflicts cru-

cially affect robot activities. As discussed in Sect. 11.2,

our approach offers good scalability properties both in

terms of network bandwidth consumption and perfor-

mance (the latter to be further validated with larger

robot fleets).

We publish the source code of the presented ap-

proach with the aim of providing a useful tool for re-

searchers in the Robotics Community.

In the future, we plan to increase the number of

robots simultaneously operating in real world experi-

ments26. Furthermore, we wish to investigate on pa-

trolling prioritization with heterogeneous robot fleets.

In this context, exploration of “unknown” environments

given a topological prior (i.e., a topological map used

as a patrolling graph) seems a promising research direc-

tion. Furthermore, it would be beneficial to integrate

explicit dynamic updates of the patrolling graph. Fi-

nally, integration of a multi-robot SLAM algorithm, en-

abling map-sharing and map-persistence over the whole

operation is a promising avenue for scaling the real-

world operation to larger areas.

Acknowledgements This work was supported by the Eu-
ropean Union’s Seventh Framework Programme for research,
technological development and demonstration under the
TRADR project No. FP7-ICT-609763.

14 Appendix

14.1 Code Implementation

For the implementation of the patrolling agent algo-

rithm, we used the C++ ROS package patrolling sim

26 Recurring to simpler and more affordable robotic plat-
forms is required.

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 31

as a starting point [54,61]. This is specifically designed

for 2D patrolling tasks. It was used as a starting skele-

ton architecture providing core functionalities (such as

graph management utilities). We significantly modified

the core of this package in order to manage 3D data, im-

plement our new patrolling agent algorithm, interface

the agent module more tightly with the path planner

and the 3D GUI in our network architecture.

An open source implementation of our framework is

available27.

14.2 Software Design

A functional diagram of the presented multi-robot sys-

tem is reported in Fig. 14. The main blocks are listed

below.

The robots, each one with its own ID ∈ {1, ...,m},
have the same internal architecture and host the on-

board functionalities which concern decision and pro-

cessing aspects both at topological level and at metric

level. According to Sect. 4.5, each robot maintains and

updates an instance of the patrolling graph and of the

metric map in its internal memory.

The core services, hosted in the main central com-

puter, manage the multi-robot system persistence data-

base and allow specific modules to load/save map, tra-

jectories and patrolling graphs from/into the central

database (for re-using relevant data along different mis-

sions).

The core modules, also hosted in central computer,

include the patrolling graph builder and the patrolling

monitor. The first builds a patrolling graph from a user

assigned set of waypoints or from a saved history of
robot trajectories. The built patrolling graph is then

distributed to all the robots and saved in the central

persistence database. The patrolling monitor contin-

uously checks the current status of the patrolling ac-

tivities and records relevant data for monitoring and

benchmarking.

The multi-robot 3D GUI, hosted on one OCU (Op-

erator Control Unit), is based on RVIZ and allows the

user (i) to select multiple waypoints which can be fed

to the path planners or to the patrolling graph builder

(ii) to visualize relevant point cloud data, maps, and

robot models (iii) to stop/restart robots when needed

(iv) to trigger the loading/saving of maps and robot

trajectories (v) to realign the current map of a selected

robot to a loaded map.

The architecture is fully distributed without cen-

tralized coordination mechanisms. In particular, each

27 https://gitlab.com/luigifreda/3dpatrolling.

robot hosts an instance of the patrolling agent and of

the path-planner.

As shown in Fig. 14, the various modules in the

architecture exchange different kind of messages. These

are grouped in the following types.

– Coordination messages: these are exchanged amongst

robots for sharing knowledge and decisions, in order

to attain cooperation and coordination. For con-

venience, the patrol monitor records an history of

these messages.

– GUI messages: these are exchanged with the 3D

GUI and include both control messages and visu-

alization data.

– Load/save messages: these are exchanged with the

core services and contain both loaded and saved

data.

References

1. Acevedo, J.J., Arrue, B.C., Daz-Bez, J.M., Ventura, I.,
Maza, I., Ollero, A.: Decentralized strategy to ensure in-
formation propagation in area monitoring missions with
a team of uavs under limited communications. In: 2013
International Conference on Unmanned Aircraft Systems
(ICUAS), pp. 565–574 (2013)

2. Acevedo, J.J., Arrue, B.C., Maza, I., Ollero, A.: A dis-
tributed algorithm for area partitioning in grid-shape and
vector-shape configurations with multiple aerial robots.
Journal of Intelligent & Robotic Systems 84(1), 543–557
(2016)

3. Agmon, N., Kaminka, G.A., Kraus, S.: Multi-robot ad-
versarial patrolling: Facing a full-knowledge opponent.
CoRR abs/1401.3903 (2014)

4. Agmon, N., Kraus, S., Kaminka, G.A.: Multi-robot
perimeter patrol in adversarial settings. In: ICRA, pp.
2339–2345 (2008)

5. Agmon, N., Sadov, V., Kaminka, G.A., Kraus, S.: The
impact of adversarial knowledge on adversarial planning
in perimeter patrol. In: Proceedings of the 7th Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 1, AAMAS ’08, pp. 55–
62. International Foundation for Autonomous Agents and
Multiagent Systems (2008)

6. Ahmadi, M., Stone, P.: A multi-robot system for con-
tinuous area sweeping tasks. In: ICRA, pp. 1724–1729
(2006)

7. Aksaray, D., Leahy, K., Belta, C.: Distributed multi-
agent persistent surveillance under temporal logic con-
straints. IFAC-PapersOnLine 48(22), 174–179 (2015)

8. Andrade, R.d.C., Macedo, H.T., Ramalho, G.L., Ferraz,
C.A.: Distributed mobile autonomous agents in network
management. In: Proceedings of International Confer-
ence on Parallel and Distributed Processing Techniques
and Applications (2001)

9. Baran, P.: On distributed communications networks.
IEEE transactions on Communications Systems 12(1),
1–9 (1964)

10. Barraquand, J., Langlois, B., Latombe, J.C.: Numerical
potential field techniques for robot path planning. IEEE
transactions on systems, man, and cybernetics 22(2),
224–241 (1992)

https://gitlab.com/luigifreda/3dpatrolling

32 Luigi Freda et al.

11. Bereg, S., Caraballo, L.E., Dı́az-Báñez, J.M., Lopez,
M.A.: Resilience of a synchronized multi-agent system.
ArXiv e-prints (2016)

12. Cabrita, G., Sousa, P., Marques, L., De Almeida, A.:
Infrastructure monitoring with multi-robot teams. In:
IROS, pp. 18–22 (2010)

13. Caccamo, S., Parasuraman, R., Freda, L., Gianni, M.,
Ögren, P.: Rcamp: A resilient communication-aware mo-
tion planner for mobile robots with autonomous repair
of wireless connectivity. In: Intelligent Robots and Sys-
tems (IROS), 2017 IEEE/RSJ International Conference
on. IEEE (2017)

14. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scara-
muzza, D., Neira, J., Reid, I., Leonard, J.: Past, present,
and future of simultaneous localization and mapping: To-
wards the robust-perception age. IEEE Transactions on
Robotics 32(6), 13091332 (2016)

15. Chen, H., Cheng, T., Wise, S.: Developing an online co-
operative police patrol routing strategy. Computers, En-
vironment and Urban Systems 62, 19–29 (2017)

16. Chevaleyre, Y.: Theoretical analysis of the multi-
agent patrolling problem. In: Proceedings of the
IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, pp. 302–308 (2004)

17. Colas, F., Mahesh, S., Pomerleau, F., Liu, M., Siegwart,
R.: 3d path planning and execution for search and res-
cue ground robots. In: Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on,
pp. 722–727. IEEE (2013)

18. Diankov, R., Kuffner, J.: Randomized statistical path
planning. In: Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, pp. 1–6.
IEEE (2007)

19. Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V.,
Quadros, A., Morton, P., Frenkel, A.: On the segmenta-
tion of 3d lidar point clouds. In: ICRA (2011)

20. Du, T.C., Li, E.Y., Chang, A.P.: Mobile agents in dis-
tributed network management. Commun. ACM 46(7),
127–132 (2003)

21. Dubé, R., Dugas, D., Stumm, E., Nieto, J., Siegwart, R.,
Cadena, C.: Segmatch: Segment based place recognition
in 3d point clouds. In: ICRA, pp. 5266–5272. IEEE (2017)

22. Dubé, R., Gawel, A., Sommer, H., Nieto, J., Siegwart,
R., Cadena, C.: An online multi-robot slam system for
3d lidars. In: IROS (2017)

23. E. Rohmer S. P. N. Singh, M.F.: V-rep: a versatile and
scalable robot simulation framework. In: Proc. of The
International Conference on Intelligent Robots and Sys-
tems (IROS) (2013)

24. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot
area patrol under frequency constraints. In: ICRA, pp.
385–390 (2007)

25. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot
area patrol under frequency constraints. Annals of Math-
ematics and Artificial Intelligence 57(3), 293–320 (2009)

26. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot
area patrol under frequency constraints. Annals of
Mathematics and Artificial Intelligence 57(3-4), 293–320
(2009)

27. Farinelli, A., Iocchi, L., Nardi, D.: Multirobot systems:
a classification focused on coordination. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 34(5), 2015–2028 (2004)

28. Farinelli, A., Iocchi, L., Nardi, D.: Distributed on-line
dynamic task assignment for multi-robot patrolling. Au-
tonomous Robots 41(6), 1321–1345 (2017)

29. Ferri, F., Gianni, M., Menna, M., Pirri, F.: Point cloud
segmentation and 3d path planning for tracked vehicles
in cluttered and dynamic environments. In: Proc. of the
3rd IROS Workshop on Robots in Clutter: Perception
and Interaction in Clutter (2014)

30. Franchi, A., Freda, L., Oriolo, G., Vendittelli, M.: The
sensor-based random graph method for cooperative robot
exploration. IEEE/ASME Transaction on Mechatronics
14(2), 163–175 (2009)

31. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.:
A tutorial on graph-based slam. Intelligent Transporta-
tion Systems Magazine, IEEE 2(4), 31–43 (2010)

32. Häıt, A., Simeon, T., Täıx, M.: Algorithms for rough ter-
rain trajectory planning. Advanced Robotics 16(8), 673–
699 (2002)

33. Hernández, E., Barrientos, A., Cerro, J.D.: Selective
smooth fictitious play: An approach based on game the-
ory for patrolling infrastructures with a multi-robot sys-
tem. Expert Syst. Appl. 41(6), 2897–2913 (2014)

34. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss,
C., Burgard, W.: OctoMap: An efficient probabilistic
3D mapping framework based on octrees. Autonomous
Robots 34(3), 189–206 (2013)

35. Iocchi, L., Marchetti, L., Nardi, D.: Multi-robot pa-
trolling with coordinated behaviours in realistic environ-
ments. In: IROS, pp. 2796–2801 (2011)

36. Jung, M.F., Beane, M., Forlizzi, J., Murphy, R., Vertesi,
J.: Robots in group context: Rethinking design, devel-
opment and deployment. In: Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors
in Computing Systems, pp. 1283–1288. ACM (2017)

37. Karaman, S., Frazzoli, E.: Incremental sampling-based
algorithms for optimal motion planning. Robotics Science
and Systems VI 104, 2 (2010)

38. Kleiner, A., Heintz, F., Tadokoro, S.: Special issue on
safety, security, and rescue robotics (ssrr), part 2. Journal
of Field Robotics 33(4), 409–410 (2016)

39. Kruijff, G.J.M., Kruijff-Korbayová, I., Keshavdas, S.,
Larochelle, B., Jańıček, M., Colas, F., Liu, M., Pomer-
leau, F., Siegwart, R., Neerincx, M.A., et al.: Designing,
developing, and deploying systems to support human–
robot teams in disaster response. Advanced Robotics
28(23), 1547–1570 (2014)

40. Kruijff, G.J.M., Pirri, F., Gianni, M., Papadakis, P., Piz-
zoli, M., Sinha, A., Tretyakov, V., Linder, T., Pianese,
E., Corrao, S., et al.: Rescue robots at earthquake-hit
mirandola, italy: A field report. In: Safety, security, and
rescue robotics (SSRR), 2012 IEEE international sympo-
sium on, pp. 1–8. IEEE (2012)

41. Kruijff-Korbayová, I., Colas, F., Gianni, M., Pirri, F.,
Greeff, J., Hindriks, K., Neerincx, M., Ögren, P., Svo-
boda, T., Worst, R.: Tradr project: Long-term human-
robot teaming for robot assisted disaster response. KI-
Künstliche Intelligenz 29(2), 193–201 (2015)

42. Kruijff-Korbayová, I., Freda, L., Gianni, M., Ntouskos,
V., Hlaváč, V., Kubelka, V., Zimmermann, E., Surmann,
H., Dulic, K., Rottner, W., et al.: Deployment of ground
and aerial robots in earthquake-struck amatrice in italy
(brief report). In: Safety, Security, and Rescue Robotics
(SSRR), 2016 IEEE International Symposium on, pp.
278–279. IEEE (2016)

43. Krüsi, P., Furgale, P., Bosse, M., Siegwart, R.: Driving
on point clouds: Motion planning, trajectory optimiza-
tion, and terrain assessment in generic nonplanar en-
vironments. Journal of Field Robotics 34(5), 940–984
(2017)

3D Multi-Robot Patrolling with a Two-Level Coordination Strategy 33

44. Kubelka, V., Oswald, L., Pomerleau, F., Colas, F., Svo-
boda, T., Reinstein, M.: Robust data fusion of multi-
modal sensory information for mobile robots. Journal of
Field Robotics 32(4), 447–473 (2015)

45. LaValle, S.M.: Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K. (2006). Available at
http://planning.cs.uiuc.edu, accessed December-2018

46. Machado, A., Ramalho, G., Zucker, J.D., Drogoul, A.:
Multi-agent patrolling: An empirical analysis of alterna-
tive architectures. In: International Workshop on Multi-
Agent Systems and Agent-Based Simulation, pp. 155–
170. Springer (2002)

47. Menna, M., Gianni, M., Ferri, F., Pirri, F.: Real-time
autonomous 3d navigation for tracked vehicles in rescue
environments. In: IROS, pp. 696–702 (2014)

48. Murphy, R.R.: Trial by fire [rescue robots]. IEEE
Robotics & Automation Magazine 11(3), 50–61 (2004)

49. Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K.,
Yoshida, K., Tadokoro, S., Nishimura, T., Yoshida, T.,
Koyanagi, E., Fukushima, M., et al.: Emergency response
to the nuclear accident at the fukushima daiichi nuclear
power plants using mobile rescue robots. Journal of Field
Robotics 30(1), 44–63 (2013)

50. Panagou, D., Stipanovi, D.M., Voulgaris, P.G.: Dis-
tributed coordination control for multi-robot networks
using lyapunov-like barrier functions. IEEE Transactions
on Automatic Control 61(3), 617–632 (2016)

51. Park, C.H., Kim, Y.D., Jeong, B.: Heuristics for deter-
mining a patrol path of an unmanned combat vehicle.
Comput. Ind. Eng. 63(1), 150–160 (2012)

52. Pasqualetti, F., Durham, J.W., Bullo, F.: Cooperative
patrolling via weighted tours: Performance analysis and
distributed algorithms. IEEE Transactions on Robotics
28(5), 1181–1188 (2012)

53. Pippin, C., Christensen, H.: Trust modeling in multi-
robot patrolling. In: ICRA, pp. 59–66 (2014)

54. Portugal, D.: patrolling sim - Multi-Robot Patrolling
Stage/ROS Simulation Package. http://wiki.ros.org/

patrolling_sim (2017). [Online; accessed 20-February-
2017]

55. Portugal, D., Rocha, R.: Msp algorithm: Multi-robot
patrolling based on territory allocation using balanced
graph partitioning. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 1271–1276.
ACM, New York, NY, USA (2010)

56. Portugal, D., Rocha, R.: A survey on multi-robot pa-
trolling algorithms. Technological innovation for sustain-
ability pp. 139–146 (2011)

57. Portugal, D., Rocha, R.P.: Distributed multi-robot pa-
trol: A scalable and fault-tolerant framework. Robotics
and Autonomous Systems 61(12), 1572 – 1587 (2013)

58. Portugal, D., Rocha, R.P.: Multi-robot patrolling algo-
rithms: examining performance and scalability. Advanced
Robotics 27(5), 325–336 (2013)

59. Portugal, D., Rocha, R.P.: Retrieving Topological Infor-
mation for Mobile Robots Provided with Grid Maps, pp.
204–217. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

60. Portugal, D., Rocha, R.P.: Scalable, fault-tolerant and
distributed multi-robot patrol in real world environ-
ments. In: IROS, pp. 4759–4764 (2013)

61. Portugal, D., Rocha, R.P.: Cooperative multi-robot pa-
trol with bayesian learning. Autonomous Robots 40(5),
929–953 (2016)

62. Robin, C., Lacroix, S.: Multi-robot target detection and
tracking: taxonomy and survey. Autonomous Robots
40(4), 729–760 (2016)

63. Sak, T., Wainer, J., Goldenstein, S.K.: Probabilistic Mul-
tiagent Patrolling, pp. 124–133. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2008)

64. Santana, H., Ramalho, G., Corruble, V., Ratitch, B.:
Multi-agent patrolling with reinforcement learning. In:
Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems - Vol-
ume 3, AAMAS ’04, pp. 1122–1129. IEEE Computer So-
ciety (2004)

65. Schwarz, M.: nimbro network - ROS transport for high-
latency, low-quality networks. https://github.com/

AIS-Bonn/nimbro_network (2017). [Online; accessed 20-
February-2017]

66. Sempé, F., Drogoul, A.: Adaptive patrol for a group of
robots. In: Intelligent Robots and Systems, 2003.(IROS
2003). Proceedings. 2003 IEEE/RSJ International Con-
ference on, vol. 3, pp. 2865–2869. IEEE (2003)

67. Shahriari, M., Biglarbegian, M.: A new conflict resolu-
tion method for multiple mobile robots in cluttered en-
vironments with motion-liveness. IEEE Transactions on
Cybernetics PP(99), 1–12 (2016)

68. Song, C., Liu, L., Feng, G., Xu, S.: Optimal control for
multi-agent persistent monitoring. Automatica 50(6),
1663–1668 (2014)

69. Tardioli, D., Sicignano, D., Riazuelo, L., Romeo, A., Vil-
larroel, J.L., Montano, L.: Robot teams for intervention
in confined and structured environments. Journal of Field
Robotics 33(6), 765–801 (2016)

70. Walcott-Bryant, A., Kaess, M., Johannsson, H., Leonard,
J.J.: Dynamic pose graph slam: Long-term mapping in
low dynamic environments. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Confer-
ence on, pp. 1871–1878. IEEE (2012)

71. Weinmann, M., Jutzi, B., Mallet, C.: Semantic 3d scene
interpretation: a framework combining optimal neighbor-
hood size selection with relevant features. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 2(3), 181 (2014)

72. Worst, R., Dubé, R., Svoboda, T., Freda, L.,
et al.: Dr 6.3: Multi-robot task adaptation.
http://www.tradr-project.eu/wp-content/uploads/

dr.6.3.main_public.pdf (2017). [TRADR deliverable;
Online; accessed 15-April-2018]

73. Worst, R., Zimmermann, E., Reuter, D., et al.: Dr 6.4:
Persistence in long-term human-robot teaming for robot
assisted disaster response. http://www.tradr-project.

eu/wp-content/uploads/dr.6.4.main_public.pdf

(2018). [TRADR deliverable; Online; accessed 13-
October-2018]

74. Yan, C., Zhang, T.: Multi-robot patrol: A distributed
algorithm based on expected idleness. Interna-
tional Journal of Advanced Robotic Systems 13(6),
1729881416663,666 (2016)

75. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and anal-
ysis of multi-robot coordination. International Journal of
Advanced Robotic Systems 10(12), 399 (2013)

76. Yehoshua, R., Agmon, N., Kaminka, G.A.: Robotic ad-
versarial coverage: Introduction and preliminary results.
In: IROS, pp. 6000–6005 (2013)

77. Zimmermann, K., Zuzanek, P., Reinstein, M., Hlavac, V.:
Adaptive traversability of unknown complex terrain with
obstacles for mobile robots. In: Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference on, pp.
5177–5182. IEEE (2014)

http://planning.cs.uiuc.edu
http://wiki.ros.org/patrolling_sim
http://wiki.ros.org/patrolling_sim
https://github.com/AIS-Bonn/nimbro_network
https://github.com/AIS-Bonn/nimbro_network
http://www.tradr-project.eu/wp-content/uploads/dr.6.3.main_public.pdf
http://www.tradr-project.eu/wp-content/uploads/dr.6.3.main_public.pdf
http://www.tradr-project.eu/wp-content/uploads/dr.6.4.main_public.pdf
http://www.tradr-project.eu/wp-content/uploads/dr.6.4.main_public.pdf

	1 Introduction
	2 Problem Overview
	3 Related Work
	4 The Patrolling Model
	4.1 3D Environment, Terrain and Robot Configuration Space
	4.2 Patrolling Graph and Patrolling Agent
	4.3 Metric Map and Path-Planning
	4.4 Network Model and Broadcast Messages
	4.5 Shared Knowledge Representation
	4.6 Team Model
	4.7 System Architecture

	5 Two Level Coordination Strategy
	5.1 Topological and Metric conflicts
	5.2 Two Level Coordination Strategy

	6 Distributed Patrolling
	6.1 Data Update
	6.2 Node Conflict Management
	6.3 Next Node Planning and Selection

	7 Multi-robot Traversability and Path Planning
	7.1 Point Cloud Segmentation
	7.2 Multi-robot Traversability
	7.3 Path Planning and Windowed Search Strategy
	7.4 Mixed Cost Function
	7.5 Coordinated Path Planning and Message Protocol

	8 3D Mapping and Localization
	8.1 3D Pose-Graph SLAM
	8.2 OctoMap representation
	8.3 Multi-robot localization

	9 Patrolling Graph Building
	9.1 Patrolling Graph from a User-assigned Set of Waypoints
	9.2 Patrolling Graph from a Saved History of Robot Trajectories

	10 Results
	10.1 Simulation Experiments
	10.2 Real-world Experiments

	11 Discussion
	11.1 Network Resilience
	11.2 Scalability
	11.3 Lesson Learnt in Real World Deployment

	12 Main Characteristics of the Strategy
	13 Conclusions
	14 Appendix
	14.1 Code Implementation
	14.2 Software Design

