
ETH Library

A multiagent framework
for learning dynamic traffic
management strategies

Journal Article

Author(s):
Chung, Jen Jen ; Rebhuhn, Carrie; Yates, Connor; Hollinger, Geoffrey A.; Tumer, Kagan

Publication date:
2019-08

Permanent link:
https://doi.org/10.3929/ethz-b-000353410

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Autonomous Robots 43(6), https://doi.org/10.1007/s10514-018-9800-z

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-7828-0741
https://doi.org/10.3929/ethz-b-000353410
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10514-018-9800-z
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Autonomous Robots (2019) 43:1375–1391
https://doi.org/10.1007/s10514-018-9800-z

Amultiagent framework for learning dynamic traffic management
strategies

Jen Jen Chung1 · Carrie Rebhuhn2 · Connor Yates3 · Geoffrey A. Hollinger3 · Kagan Tumer3

Received: 21 February 2017 / Accepted: 9 August 2018 / Published online: 21 August 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
There is strong commercial interest in the use of large scale automated transport robots in industrial settings (e.g. warehouse
robots) and we are beginning to see new applications extending these systems into our urban environments in the form of
autonomous cars and package delivery drones. This new technology comes with new risks—increasing traffic congestion and
concerns over safety; it also comes with new opportunities—massively distributed information and communication systems.
In this paper, we present a method that leverages the distributed nature of the autonomous traffic to provide improved traffic
throughput while maintaining strict capacity constraints across the network. Our proposed multiagent-based dynamic traffic
management strategy borrows concepts from both air traffic control and highway metering lights. We introduce controller
agents whose actions are to adjust the robots’ perceived “costs” of traveling across different parts of the traffic network. This
approach allows each robot the flexibility of using its own (potentially proprietary) navigation algorithm, while still being
bound by the “rules of the road.” The control policies of the agents are defined as neural networks whose weights are learned
via cooperative coevolution across the entire traffic management team. Results in a real world road network and a simulated
warehouse domain demonstrate that our multiagent traffic management system provides substantial improvements to overall
traffic throughput in terms of number of successful trips in a fixed amount of time, as well as faster average traversal times.

Keywords Multiagent systems · Traffic management · Learning for coordination

1 Introduction

Autonomously piloted traffic such as self-driving cars, ware-
house robots and package delivery unmanned aerial vehi-

This work was conducted at Oregon State University and was
supported by NASA Grant NNX14AI10G.

B Jen Jen Chung
jenjen.chung@mavt.ethz.ch

Carrie Rebhuhn
crebhuhn@mitre.org

Connor Yates
yatesco@oregonstate.edu

Geoffrey A. Hollinger
geoff.hollinger@oregonstate.edu

Kagan Tumer
kagan.tumer@oregonstate.edu

1 Autonomous Systems Lab, ETH Zürich, Zürich, Switzerland

2 The MITRE Corporation, McLean, VA, USA

3 School of Mechanical, Industrial and Manufacturing
Engineering, Oregon State University, Corvallis, OR, USA

cles (UAVs) have the potential to substantially improve
safety, travel times and overall system throughput com-
pared to human-piloted traffic. Such massively distributed
autonomous traffic represents the availability of new sensing,
communication and data exchange mechanisms compared to
existing human-piloted traffic. To fully exploit these capa-
bilities requires a new traffic management paradigm, one
where adjustments to local traffic management strategies are
aimed directly at achieving globally beneficial traffic behav-
iors.

A particularly relevant example of automated traffic is
robotic package delivery. These services have the potential
to revolutionize the way that companies provide delivery
services to end users, both in the air and on the ground.
However, commercial use of UAVs is predicted to dras-
tically increase the traffic management burden in urban
airspaces. NASA NextGen has the goal of enabling safe
low-altitude UAV flight within the next 5years (Kopardekar
2015). Current methods, which rely on human controllers to
manage the airspace, become prohibitively costly or unsafe
due to constraints on human multitasking and communica-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9800-z&domain=pdf

1376 Autonomous Robots (2019) 43:1375–1391

tion. If we are to allow UAVs and self-driving cars into the
airspace and onto our roads on a massive scale, it is clear
that an automated approach is necessary. Indeed, whether
it is the urban airspace, in our warehouses or on our roads,
effective routing strategies will be necessary to manage the
large volumes of traffic that want access to these limited
spaces.

At the most basic level, traffic management can take
the form of metering lights or tollways. Both of these
mechanisms serve to influence traffic behavior by enforc-
ing additional time or monetary costs, respectively. Existing
implementations of these mostly run on constant time sched-
ules or require direct human intervention to modify, such
as in commercial air traffic management where human
controllers apportion delays to maintain separation times.
However, increasingly we are seeing more adaptive solu-
tions being introduced into real-world domains such as
dynamic electronic road pricing (Land Transport Author-
ity of Singapore 2017), autonomous aircraft routing (Prevot
et al. 2012; Kopardekar et al. 2016) and, perhaps most
commonly, traffic lights that use sensors to determine if
cars are waiting to enter an intersection. In their current
form, these methods attempt to optimize traffic behavior
in only a local region of the full system, and so there
remains a significant gap that must be bridged before we
can achieve a globally targeted scheme that can keep pace
with the highly dynamic demands of dense autonomous traf-
fic.

The key challenge in these types of traffic management
problems is to incentivize globally cooperative behaviors
from locally greedy entities that are competing for the same
resource. That is, we aim to produce smooth and congestion-
free travel with a high overall throughput for mobile robots
that are operating within the same physical space. In an ideal
scenario with a fully cooperative set of traffic, such as in
an automated warehouse where all robots act to achieve a
common goal, the need for a traffic management system
that is robust to a range of traffic profiles as well as poten-
tial failures in the system can make a centralized solution
intractable. Moreover, the difficulty of this task rises as we
relax the requirement for full intra-traffic cooperation and
move to domains where we do not assume any organized
behavior between individual robots in the system beyond
local collision avoidance procedures. For example, in UAV
package delivery or autonomous driving domains, the robots
in the system are non-cooperative decision makers and must
be treated as selfish actors.

The main contribution of our work is to introduce a traffic
management layer through which we can apply additional
costs to disincentivize robots from planning paths through
congested regions of the traffic network (see Fig. 1). By
abstracting the traffic network to a graph, we are able to
formulate the traffic management system as a distributed

Traffic Management
Agents

Robots

Define cost of travel across each directed
edge according to current traffic density

Plans across agent cost graph
High level planner

Low level planner Plans across obstacle map according to
high level graph traversal plan

Fig. 1 Hierarchical traffic management formulation, noting the separa-
tion between the multiagent traffic management system and the robots.
The travel space is first decomposed into a high level graph represent-
ing the connectivity of different regions in the map. The multiagent
system defines the cost of travel across this traffic graph, and the robots
use these costs to determine their sequence of edge traversals. A lower
level planner is then assumed to handle the local collision avoidance
procedures through the obstacle map

multiagent team in which each individual traffic manage-
ment agent observes the traffic along a single directed
edge in the graph and adaptively controls the costs applied
to robots that traverse that edge. The goal of the multi-
agent team is for each traffic management agent to learn
a custom costing strategy that is applied locally, but can
result in improvements in the traffic throughput across the
entire system. We show that by integrating a coevolu-
tionary approach into our framework we retain scalability
without sacrificing the global view of the overall team
goal.

We tested our multiagent traffic management framework
across a variety of graph structures and a range of traffic pro-
files. The results show that our proposed system produces
smoother overall throughput with shorter wait times com-
pared to existing approaches such as planning purely on the
known distances or using fixed costs (e.g. fixed tolls). Results
in a real-world traffic domain demonstrated up to 32.5%
faster average total travel times which includes 29.0% less
overall wait time. Furthermore, we also tested the multiagent
system in a high fidelity simulation of a physical traffic envi-
ronment using theROS-Gazebo interface to show the validity
of those costing strategies that are learned in the high level
problem abstraction.

In the following section we highlight existing work in
traffic routing and provide background on multiagent learn-
ing methods. We present our problem formulation in Sect. 3
and describe our proposed multiagent traffic management
framework in Sect. 4. Section 5 provides details on our
experimental setup with results presented in Sect. 6. Finally,
concluding remarks and suggestions for future research are
given in Sect. 7.

123

Autonomous Robots (2019) 43:1375–1391 1377

2 Related work

2.1 Traffic routing

The problemofmitigating traffic congestion has been tackled
by a large body of work in traffic management. Central-
ized approaches to this problem have considered congestion
pricing strategies that aim to strike a balance between the
generalized travel cost (a combination of travel time, tolls,
etc.) and the number of trips that are executed in the net-
work (Lindsey and Verhoef 2000; Pigou 1920). Many of
the dynamic tolling strategies that extend these static tolling
methods seek individualized tolls thatmatch the external cost
generated by each traveler (i.e. how much they contribute
to the delay and congestion in the system). However, these
methods rely on having strong models of individual prefer-
ences for arrival times and can be relatively complex since
they attempt to characterize all the indirect effects of varying
the tolls (Arnott andKraus 1998;Carey andSrinivasan 1993).

Other traffic management approaches shift the focus from
optimizing the joint objective over all travelers in the system
to simply managing the flow of traffic over the system. For
example, methods such as feedback control (Papageorgiou
et al. 1997; Stephanedes et al. 1992) or model predictive con-
trol (Bellemans et al. 2006;Hegyi et al. 2005a, b) for on-ramp
metering manage the rate of traffic entering onto highways
to maintain or optimize the traffic flow rate. With the steady
move towards intelligent vehicle highway systems, the goal
is to distribute intelligence between the roadside infrastruc-
ture and the vehicles to allow for a more connected traffic
management network (beyond independent ramp metering
controllers) while also achieving finer grained control of the
overall traffic flow (Baskar et al. 2011).

Existing techniques in automated centralized scheduling
and routing have also explored the problemofmitigating traf-
fic congestion. Recent work by Rossi et al. (2018) showed
how online fleet rebalancing can be used to mitigate conges-
tion for autonomous mobility on demand services. Qiu et al.
(2002) give a comprehensive survey of centralized schedul-
ing methods for automated vehicles. A centralized controller
tells every robot in the system when it can travel, and where
it can travel. Aubert et al. (2015) proposed a similar frame-
work specifically for UAVs to communicate potential flight
plans to a centralized air traffic management system that
determines whether to accept or reject the plan. In order to
compute a solution, these methods require full state infor-
mation and are often slow and computationally complex.
Dynamic routing methods (Bullo et al. 2011; Taghaboni-
Dutta and Tanchoco 1995) manage the time window of each
robot through time expanded graphs without needing full
state information (Gawrilow et al. 2008). However, these
methods become computationally expensive when applied
to a fast-changing system.

Other methods for traffic routing have focused on vehi-
cle negotiation to resolve conflicts in congested areas. Large
volumes of traffic can use these schemes to resolve local
conflicts resulting in improved system performance (Tomlin
et al. 1998). For example, peer-to-peer collision avoidance
protocols in a software called AgentFly apply an agent-based
distributed negotiation approach to the air traffic routing
problem (Pechoucek and Sislak 2009). These techniques
work well in domains with standardized communication and
vehicle abilities. However, robots are diverse in both hard-
ware and software. The method that we propose in this paper
allows for these characteristics of the domain and still leaves
open the possibility for future progression towards standard-
ization.

Perhapsmost similar to ourwork is the research conducted
by Digani et al. (2015, 2016) for managing autonomous
ground vehicles (AGVs) in industrial warehouse settings.
The authors apply a similar hierarchical approach to their
traffic management strategy whereby a roadmap is con-
structed across the warehouse space, which is then parti-
tioned into sectors. Individual robots use an online planner
to determine the sequence of sector traversals to reach their
goal and also handle low-level conflicts using negotiation
and resource allocation strategies. In our approach, instead
of attempting to directly compute the sector traversal costs
from the current global state of the traffic system, we allow
the multiagent architecture to learn the appropriate costs to
apply by observing only local state information and the resul-
tant traffic flow metrics, see Fig. 1.

Unlike previous research, we consider the problem of
dynamic traffic routing as amultiagent coordination problem
where multiple traffic controllers are simultaneously acting
to adjust the flow of traffic in distributed areas of the space.
The goal in our work is for this distributed multiagent team
to learn an incentivized routing strategy, removing the need
for a central controller or vehicle negotiation scheme. Our
proposed method does not assign paths to each robot nor
does it require the robots to act in a cooperative manner. Our
algorithm does not rely on complete knowledge of the indi-
vidual robot objectives, or high fidelity models of the robot
motion; it only assumes that each robot is using a cost-based
planner and that the agents are able to manipulate those costs
to incentivize the robots to avoid congested areas.

2.2 Multiagent learning approaches

Recent work in multiagent systems has focused on devel-
oping effective routing for commercial air traffic across
the national airspace. In air traffic, delays and congestion
can cascade throughout the system, and are difficult to
mitigate and control. Using reinforcement learning agents
to manage air traffic through geographical fixes, Agogino
and Tumer (2012) were able to reduce airspace conges-

123

1378 Autonomous Robots (2019) 43:1375–1391

tion by over 90% when compared to current traffic control
methods. Cooperative coevolutionary algorithms provided
similar demonstrations of the efficacy of a multiagent learn-
ing approach (Yliniemi et al. 2014). The setup presented in
Agogino and Tumer (2012) has agents control the separation
between planes in the airspace. These works provide decen-
tralized control of an airspace, but do not consider movement
around obstacles as in our approach.

Our prior work investigated a similar method of using sec-
tors to manage UAV traffic in an urban airspace (Rebhuhn
et al. 2015). Instead of applying strict fly/no-fly conditions,
the distributed system learned costing strategies to incen-
tivize traffic flow through or around certain sectors of the
airspace according to the current traffic profile. The targeted
objective was to reduce the overall congestion in the airspace
by allowing the agent team to learn policies that accounted for
potential cascading effects in the system. This architecture
modeled existing solutions in autonomous air traffic con-
trol that route airplanes through fixed geographical locations
(Agogino and Tumer 2012; Bongiorno et al. 2013; Emami
and Derakhshan 2012). Despite showing overall improve-
ments in the number of conflicts experienced across the total
airspace, our prior work in Rebhuhn et al. (2015) did not con-
sider physically delaying or separating traffic in the system to
prevent over-congestion and so could not provide safety guar-
antees regarding the density of traffic in any particular region
of the airspace. In our current work, we take a safety-critical
approach by applying strict capacity constraints and enforce
delays on to traffic wanting to enter regions that are cur-
rently full. Thus, we shift from optimizing over the number
of conflicts in the system to optimizing the system through-
put, that is, reducing the total travel time of all traffic in the
system.

3 Problem formulation

We consider the problem of routing multiple non-co-
operative autonomous robots across a traffic network that
can be represented as a complete directed graph G = (V, E).
Each edge e ∈ E defines a particular direction of travel
between two vertices, i.e. e = (u, v) is the edge from ver-
tex u to vertex v where u, v ∈ V . The time to traverse each
edge, costtravel, is fixed and known, however each edge has
an additional associated cost, costadd(t), that fluctuates over
time t . Individual robots in the system do not have access to
the cost functions,

coste(t) = costtravele + costadde (t) , (1)

but do receive the current costs across the graph. We assume
that each robot is using a cost-based planner such asA* orD*
to compute paths across the graph that will minimize their

Fig. 2 Each agent in the traffic management system controls the cost
of traversing a directed edge across the traffic network graph. The robot
traffic (depicted as quadrotor UAVs) form the state of each traffic man-
agement agent and must obey strict agent capacity constraints in their
motion across the graph

cost of travel given the current set of edge costs. That is,
given coste(t) ∀e ∈ E , each robot j plans its path according
to,

P j = argmin
P⊆E

∑

e∈P
coste (t), (2)

where P is a path from the robot’s current vertex to its goal
vertex.

Two additional motion constraints are applied online to
the robots as they attempt to traverse the graph. Both of
these constraints stem from the realization of a strict capacity
limit on each edge. The capacity cape represents the maxi-
mum number of robots that may be on edge e at any time
and can be derived from parameters of the physical traffic
space to maintain strict safety and congestion limits. Robots
that attempt to enter the traffic network along an edge that
is at capacity must wait until another robot has exited that
edge before beginning traversal. During this wait period,
which is incremented inwaitenter(t), the robot does not count
towards the capacity of any edge. On the other hand, a robot
already on an edge that is attempting to move onto a con-
necting edge that is at capacity must wait on its current edge
until there is space. During this wait period, which is incre-
mented in waitdelay(t), the robot counts towards the capacity
of its current edge, see Fig. 2. The total amount of time
robot j has spent in the system up to time t is computed
as,

total_time j (t) = travel j (t)+waitenterj (t)+waitdelayj (t) , (3)

where travel j (t) is the amount of time robot j has spent
moving along its path. The normalized total travel time of all
robots in the system can then be computed as,

123

Autonomous Robots (2019) 43:1375–1391 1379

G (t) =
∑

j∈J(t) total_time j (t)∑
j ′∈J ′(t) j

′ , (4)

whereJ (t) is the set of all robots that have entered the system
up until time t , and J ′(t) ⊆ J (t) represents the subset of
robots that have reached their destination.

Using this construction, we define a multiagent team con-
sisting of N = |E | agents in which each agent i is assigned
to control the advertised cost of travel along a single directed
edge e ∈ E . The state of each agent, si (t), is defined as the
current number of robots moving along the corresponding
edge e summed with the total number of robots waiting to
transition off e. The output action of each agent’s policy is
therefore πi (si (t)) = costadde (t). The task of the multiagent
team is to learn the set of policies, Π∗ = {π0, . . . , πN−1},
for which the normalized total travel time at the end of an
episode is minimized. That is,

min
Π

G
(
tfinal

)
(5)

s.t. si (t) ≤ cape ∀e ∈ E, ∀t ∈ {
0, . . . , tfinal

}
(6)

where Eq. (6) enforces the capacity constraints of the graph.
The multiagent policies change the graph costs on which

the robots compute their paths and this in turn alters the exe-
cuted path and therefore the total time a robot spends in
the system. In this work we use Eqs. (1) and (2) to com-
pute the graph costs and robot paths; however, our proposed
framework only requires the robot paths to be computed as a
function of the agent output costs. Thus, other robot planning
methods can be substituted provided this assumption is not
violated.

It is worth noting that in decomposing the space into a
graph we make a number of assumptions about the interac-
tions between the robots and the physical environment. By
stating that the time it takes to traverse an edge is fixed and
known, we are making two assumptions. First, that the low-
level collision avoidance procedures used by the robots when
interactingwith obstacles andother robots in the environment
have a negligible effect on the travel time along an edge. Sec-
ond, that all paths between two fixed regions of space take
the same amount of time to traverse. The traversal of an edge
in the graph can be considered equivalent to a trajectory that
begins anywhere in one region and crosses a boundary into a
second region (each region being represented by a vertex of
the graph). This means that the travel time along the path is
dependent on the start location in the region and the end loca-
tion along the boundary, and is therefore not fixed but can be
bounded. This problem is exacerbated if multiple homotopy
classes of paths exist between the same two regions, e.g. due
to obstacles, as the range of paths that are all represented
by the same edge in the graph can have very different travel
times. The effect of this can be minimized by careful selec-

tion of region boundaries for the construction of the traffic
graph. In Sect. 6.3 we demonstrate that the agent policies
learned on the graph abstraction are robust to variations in
the low level plans of the robot traffic by applying the learned
traffic management policies to a high fidelity simulation of a
physical robot system.

4 Multiagent trafficmanagement

In this work, we approach the traffic management problem
by devising a distributedmultiagent team inwhich individual
agents are trained to adaptively assign travel costs according
to their locally observed traffic. In order to meet global traffic
throughput objectives, we use a distributed multiagent learn-
ing algorithm such that while agents sense and act locally,
they learn to collectively apply a coordinated traffic manage-
ment strategy.

4.1 Agent definition

Each traffic management agent applies the cost of travel,
costadd , along a single directed edge of the high level traffic
graph. In this way, each agent defines the traversal cost for all
robots currently under its jurisdiction (on its directed edge).
To compute these costs, we construct each agent as a neural
network controller that takes in instantaneous state informa-
tion and evaluates a corresponding cost to apply to the system.
Neural networks are capable of approximating any function
to arbitrary accuracy and so have the representational ability
to encode continuous state-action control policies while only
requiring a coarse representation of the system state (Hornik
et al. 1989; Huang et al. 2014). Training a neural network
involves setting network weights to encode a control policy
that accepts the current state as an input and returns the action
that maximizes a particular utility function. In this work, we
train the agents with a cooperative coevolutionary algorithm
using the normalized travel times computed from Eq. (4) as
the fitness evaluation signal. We will discuss coevolution in
more detail in the next subsection.

Note that our multiagent traffic management framework
does not require agents to be neuro-controllers, nor does it
necessitate the use of an evolutionary algorithm to train the
team. Any distributed multiagent learning algorithm, such as
multiagent reinforcement learning (Panait and Luke 2005),
can be applied in conjunction with any valid control policy
representation, provided that the learning algorithm can be
trained using coarse reward signals. Note that in the traffic
management domain, there is no target value from which
we can compute an error term and therefore it is difficult to
formulate a gradient for optimization purposes. Evolutionary
methods are ideally suited to learning in such domains, thus
motivating our agent control policy and learning formulation.

123

1380 Autonomous Robots (2019) 43:1375–1391

In this work, each control policy was defined as a single
hidden layer neural network with 1 input, 1 output and 20
hidden nodes, along with sigmoidal activation functions at
each layer.Weuse relatively simple neural network structures
to encode our control policies with the aim of demonstrating
the ability for a multiagent traffic management team made
of simple individual agents to learn complex coordination
strategies with only locally available information.

By assigning individual agents to each directed edge, we
are able to control the traffic at the resolution of the traf-
fic graph. While this provides us with finer control over the
system as compared to, say, having agents control all the out-
going traffic from a single vertex (Rebhuhn et al. 2015), it
does raise a challenging multiagent learning problem since
the number of agents concurrently learning is now very large.
In distributed multiagent learning, each agent must optimize
its control policy in a non-stationary environment where at
each learning epoch, all agents concurrently update their poli-
cies, thereby continually shifting the goal posts for learning
coordinated strategies. At the same time, within each epoch,
all agents receive the same global reward signal, which does
not disambiguate between the individual contributions of
each agent. Thus, agents that may be performing well, but
are teamed up with poor collaborators will receive a low
reward, while the converse is also true. In this paper, we show
that despite these challenges, our proposed multiagent traf-
fic management framework is capable of learning distributed
control policies that improve the overall traffic throughput. In
future work we will investigate how reward shaping methods
(Agogino and Tumer 2004) can be used to address some of
these issues to further improve upon our current work.

4.2 Cooperative coevolution

Cooperative coevolutionary algorithms (CCEAs) are an
extension of EAs and have been shown to perform well in
cooperative multiagent domains (Ficici et al. 2005). Algo-
rithm 1 provides the pseudo-code for our implementation

Algorithm 1 Cooperative coevolutionary algorithm
1: Initialize N populations of k neural networks
2: for each Population do
3: Produce k successor solutions
4: Mutate successor solutions
5: for each Generation do
6: for i = 1 → 2k do
7: Randomly select one agent from each population
8: Add agents to team Ti
9: G = SimulateTraffic (Ti) 	 Equation (4)
10: Each agent j ∈ Ti is assigned fitness G
11: for each Population do
12: Retain k best networks
13: Produce k successor solutions
14: Mutate successor solutions

of CCEA. CCEAs evolve multiple populations in parallel;
in our case, each agent maintains a population of k = 10
neural networks which represent its pool of potential control
policies. At the start of evolution, each control policy in the
population produces a mutated successor, resulting in a total
population of 2k neural networks (lines 2–4).

At each generation, a multiagent team is formed by select-
ing, without replacement, one control policy from each
agent’s population (lines 7–8). This team is then evaluated by
simulating their performance in the domain (line 9). For our
experiments, this involves stochastically spawning robots in
the environment that then plan and execute paths based on
the output traversal costs from themultiagent trafficmanage-
ment team that is currently being tested. More details on the
traffic simulation are provided in the following subsection.
At the end of the simulation, the performance of the entire
team, computed according to Eq. (4), is then assigned as the
fitness of each of the control policies that made up the team
(line 10). Once all 2k teams are evaluated, each agent then
applies the selection step by retaining the k control policies
with the best fitness (line 12). In our case, these are the con-
trol policies that resulted in the minimal normalized robot
travel time, G. These k control policies then undergo muta-
tion and the process repeats (lines 13–14). For our work, we
applied a mutation rate of 10%, that is, at every generation,
each network weight had a 10% probability of undergoing
mutation, with mutation noise drawn from N (0, 1).

4.3 Robot traffic simulation

We train and test each multiagent traffic management team
in a simulated traffic scenario described in Algorithm 2. At
each timestep of each simulation round, up to maxrob new
robots are randomly spawned at each source vertex with a
given probability prate (lines 5–7). Agents then compute their
local state and associated cost action according to the current
distribution of robots in the traffic graph (lines 8–10). These
costs are added to the fixed travel costs along each edge of
the graph to form the final graph costs over which the robots
plan their paths (lines 11–12). Robots that have completed
the traversal of their current edge are able to replan their path
based on the latest graph costs (lines 14–15). All robots then
attempt to move along their path but must obey edge capac-
ity constraints when attempting to transition to a new edge,
i.e. if the edge they want to transition to is at capacity, they
must wait and continue to occupy a position on their current
edge. Newly spawned robots that cannot enter an edge, must
also wait, but do not count towards the capacity of any edge
(line 16). Robots that reach their goal are removed from the
system (line 17). Finally, the traffic metrics are logged and
used to compute the global system performance of the tested
multiagent traffic management team (lines 18–19).

123

Autonomous Robots (2019) 43:1375–1391 1381

Algorithm 2 SimulateTraffic(Ti)
1: Initialize traffic graph G = (V, E)

2: Initialize probabilistic traffic generation parameters for each v ∈ V:
maxrob, prate

3: Initialize robot traffic M ← ∅
4: for t = 0 → tfinal do
5: for each vsource ∈ V do 	 Generate new traffic
6: Generatem ∼ U (

1,maxrob
)
new robots with probability prate

7: M ← M⋃
m

8: for each agent ∈ Ti do 	 Compute state-actions
9: agent.s ← count of robots on assigned edge e
10: agent.a ← π (agent.s) 	 costadde (t)

11: for each e ∈ E do 	 Update graph costs
12: coste(t) ← costtravele + costadde (t) 	 Equation (1)

13: for each m ∈ M do
14: if m.edge_transition then 	 Robot m is waiting

to transition to a new edge
15: m.path ← A* (cost (t)) 	 Recompute path
16: Increment robots along their path, obeying capacity con-

straints (Equation (6))
17: M ← M \ m.at_goal 	 Remove robots that

reach their goal
18: Log travel (t) ,waitdelay (t) ,waitenter (t) according to robots in

the system
19: Compute G (t) 	 Equation (4)
20: return G

(
tfinal

)

5 Experimental setup

In this section, we discuss the traffic simulation setup that
we used to test our multiagent traffic management system.
There are a number of parameters that we investigated in this
work to probe the sensitivity of the system to different traffic
profiles and graph structures. To control the parameters under
scrutiny for each set of experiments, consider the basic traffic
graph shown in Fig. 3.

For this traffic graph, the edges between vertices 0 and 1
are analogous to a “highway” between two sources of traffic.
Over a single simulation epoch, vertex 0 and vertex 1 each
randomly spawn robots that attempt to reach the opposite
corner of the graph. That is, robots that spawn from vertex
0 aim to reach vertex 1 and vice versa. The shortest path
between the two vertices is across the direct edges (0, 1) and
(1, 0), however these edges have a fixed capacity of 16 and
take 28 timesteps to cross. Thus, once an edge is at capac-
ity, a newly spawned robot will have to wait for any of the
existing traffic on that edge to reach their destination before
it may enter. Alternatively, the robot may choose to take a
different path across the graph, such as via edge (0, 2). This
is analogous to taking a detour via the “small roads”.

In this problem, it is clear that all robots choosing to take
the shortest path will result in severe congestion along the
“highway”. The goal of the multiagent traffic management
system is to apply additional costs to the graph that will
incentivize traffic to avoid the “highway”, and instead take

0

1

2 3 4

5 6 7

8 9 10

cost travel = 28, capacity = 16
cost travel = 15, capacity = 10
cost travel = 14, capacity = 10
cost travel = 3, capacity = 5

Fig. 3 The basic traffic graph that we consider. Robot traffic is ran-
domly spawned at vertices 0 and 1, traveling to the opposite vertex, i.e.
vertex 1 or vertex 0, respectively. Edges (0, 1), and (1, 0) are analo-
gous to a “highway” between the two vertices. They have the highest
capacity, carrying up to 16 robots each, and represent the shortest path,
costtravel = 28. The goal of the multiagent traffic management system
is to incentivize traffic to take detours via the “small roads” to alleviate
congestion

the detours via vertices 2 through 10 to alleviate congestion.
Notice, however, that the base travel costs of taking the “small
roads” is higher than the direct “highway” route. In addition,
the capacity of these edges is also lower than the “highway”
edges. Thus, computing the magnitude of additional costs to
apply that will successfully divert traffic is a non-trivial opti-
mization problem, especially when coupled with a dynamic
system with randomly spawning traffic.

Note that a robot that is ready to transition to a connecting
edge may always replan its path given the latest graph cost
data. For example, say a robot initially plans to travel along
the sequence of vertices {0, 5, 2, 1}, however after traveling
for 14 timesteps along edge (0, 5), it discovers that there is
a now a large cost to traverse edge (2, 1). At this point, the
robot can replan and divert its path along vertices {6, 3, 1}.
Similarly, at any timestep that the robot is delayed frommak-
ing an edge transition, it may continue to replan based on
incoming data from the multiagent traffic management sys-
tem. However, in our setup once a robot has entered an edge,
it is committed to continuing along that edge until it is able
to make its next transition. In each of the following exper-
iments, and for all tested traffic management strategies, the
robots use A* to find paths to their assigned goals that mini-
mize traversal cost according to the current graph costs from
Eq. (1).

123

1382 Autonomous Robots (2019) 43:1375–1391

Table 1 Simulation experiment
sets for the source and sink
traffic profile case study

Set maxrob prate

1 10 0.33

2 5 0.33

3 4 0.33

4 3 0.33

5 2 0.33

6 1 0.33

7 1 0.25

8 1 0.20

9 1 0.167

10 1 0.10

5.1 Case study: traffic profiles

In our first case study, we explored the impact of different
traffic profiles on the ability of ourmultiagent trafficmanage-
ment system to improve overall throughput. We tested two
types of traffic profiles: a source and sink model, where all
traffic is spawned at vertices {0, 1} going to vertices {1, 0},
respectively; and a distributed traffic profile, where traffic
can be spawned from any vertex, going to any other vertex.

5.1.1 Source and sink traffic profile

For the source and sink traffic experiments, we investigated
varying the severity and rate of traffic. To vary the traffic
severity, we ran 6 sets of trials where at each timestep, up
to maxrob = {10, 5, 4, 3, 2, 1} new robots were spawned at
each source vertex with a probability of prate = 0.33; that
is, approximately every 3 timesteps, up to {20, 10, 8, 6, 4, 2}
new robots were introduced into the system. To investigate
the effect of varying traffic rates, we ran 4 additional sets
of trials where, at each timestep, a new robot was spawned
at either of the source vertices with a given probability
prate = {0.33, 0.25, 0.20, 0.167, 0.10}. This can be thought
of as spawning approximately 2 new robots in the system
every {4, 5, 6, 10} timesteps. Table 1 summarizes the simu-
lation experiments that we run for this case study.

In these experiments we compared the resulting traffic
throughput against three baseline scenarios:

1. Robots only have access to the known traversal costs
(known costs),

2. Robots have access to the expected traversal costs, i.e.
fixed costs summed with expected delay due to other
robots ahead in the queue to enter an edge (expected
costs),

3. Robots observe fixed tolls in the system that are designed
to equalize the cost of the four major routes between the

0

1

2 3 4

5 6 7

8 9 10

cost travel = 28, costadd = 12
cost travel = 15, costadd = 5
cost travel = 14, costadd = 2
cost travel = 14, costadd = 0
cost travel = 3, costadd = 1
cost travel = 3, costadd = 0

Fig. 4 The graph costs used for the comparative fixed tolls scenario.
The costadd values for each edge were hand designed to approximately
equalize the cost of traversing each of the four major routes between
the source and sink vertices

two source and sink vertices (fixed tolls) (Arnott et al.
1993; Beria et al. 2015; Pigou 1920), see Fig. 4.

We tested twoversions of our proposedneuro-evolutionary
multiagent trafficmanagement system.One inwhich the edge
traversal costs broadcast to the robots is the sum of the known
costs and the output of the agent control policies (multia-
gent system with known costs). The second version sums
the expected costs with the agent outputs (multiagent system
with expected costs).

5.1.2 Distributed traffic profile

In addition to the source and sink traffic profile experiments,
we also ran a series of experiments to investigate the per-
formance of the multiagent traffic management system when
exposed to a distributed traffic profile. In these experiments,
robots were able to spawn from any vertex, going to any
other vertex in the system. Given the more distributed nature
of the traffic in these simulations, we only tested a subset
of the higher traffic congestion scenarios at maxrob = {4, 5}
with prate = 0.33 (experiment sets 11 and 12, respectively).

Again, we compared against the known costs and expected
costs scenarios described in the previous subsection. For this
set of experiments, since robots were spawning randomly
across the graph, there were no simple hand-designed tolls
that could be generally applied to evenly distribute the traffic,
and so we omit that set of comparative trials for this study.

123

Autonomous Robots (2019) 43:1375–1391 1383

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18
19

20

Fig. 5 The Sydney orbital network and adjoining highways [original
underlying figure from NSW (2017b)]. The expanded inset shows the
traffic graph we derived from the major motorways and highways in
the network. The thickness of the edges represent the relative capacities

of each edge. The red-centered vertices show the eight possible goal
vertices. The cluster on the right is situated at four major intersections
in Sydney city, and the cluster on the left consists of the four major
highway exits into Parramatta (Color figure online)

5.2 Case study: Sydney orbital network

In our second case study, we investigated the performance
of our proposed multiagent traffic management system on a
real-world traffic domain. The robots in this system would
be self-driving cars on the road network. For this set of
experiments, we derived the traffic graph from the Syd-
ney orbital network (NSW 2017c) and used data provided
by the NSW Government Roads and Maritime Services to
assign road capacities and the fixed travel costs for each
edge in the graph (NSW 2017a). Specifically, we computed
the capacity of each edge according to Level of Service
(LOS) E which “describes operation at capacity. Opera-
tions at this level are volatile, because there are virtually
no usable gaps in the traffic stream. Vehicles are closely
spaced leaving little room to manoeuvre within the traffic
stream. At capacity, the traffic stream has no ability to dis-
sipate even the most minor disruption and any incident can
be expected to produce a serious breakdown with extensive
queuing (NSW 2017c).” We expect autonomously piloted
vehicles to be able to operate at these capacities better than
human-piloted vehicles and so we aim to design our traf-
fic management system to also handle these conditions. The
maximum density for LOS E is 28 passenger vehicles per
kilometer per lane and for our experiments we round the
edge capacities to the nearest 100 vehicles. See Fig. 5 and
Appendix A for details on the full traffic graph configura-
tion.

There are 21 vertices in the Sydney orbital network traffic
graph and 70 directed edges. We tested a distributed traffic

profile with 8 possible destination vertices situated around
the two major central business districts in Sydney (Sydney
city and Parramatta), see Fig. 5. This traffic profile is used to
represent the typical morning rush hour traffic as commuters
travel from various suburbs in the greater Sydney region to
the main business districts for work. Given the larger num-
ber of source vertices, experiment sets 13 and 14 use traffic
generation parameters maxrob = 1 and prate = {0.25, 0.2},
respectively.

6 Results

We first present the results from our case study on the basic
traffic graph and analyze the observed learning performance
and achieved traffic throughput trendswith respect to varying
traffic profiles. Following that, we present the results from
our second case study on the Sydney orbital network traf-
fic graph. Finally, we verify the performance of our trained
multiagent traffic management system on a full physics sim-
ulation using the ROS-Gazebo environment. In the latter
set of experiments, we apply the trained agents to manage
the cost of travel for a set of five robots moving through
a simulated warehouse environment. These results demon-
strate that improvements to traffic throughput observed in
the high level traffic graph experiments are transferable to
a real-world traffic environment where robots may take a
variable amount of time to cross each edge due to noisy actua-
tion and previously unmodelled low level collision avoidance
manoeuvres.

123

1384 Autonomous Robots (2019) 43:1375–1391

Experiment set
0 1 2 3 4 5 6 7 8 9 10 11

A
ve
ra
ge

tr
av
er
sa
l
ti
m
e
(t
im

es
te
ps
)

0

10

20

30

40

50

60

70
Known costs
Expected costs
Fixed tolls
Multiagent system with expected costs
Multiagent system with known costs

Fig. 6 Basic traffic graph: traffic throughput when robots plan on
learned multiagent traffic management system costs, compared to plan-
ning on known costs, expected costs, and fixed tolls. The experiment

sets correspond to those described in Table 1. Error bars show standard
error in the mean over 20 statistical runs

6.1 Case study: traffic profiles

6.1.1 Source and sink traffic profile

Thecollated results fromall ten experiment sets for the source
and sink traffic profile, as outlined in Table 1, are shown in
Fig. 6. The bar chart demonstrates the strong influence of
traffic severity and rate on the average throughput with a gen-
eral trend in decreasing travel time as the number of robots
introduced into the systemdecreases.Bothmultiagent system
variants (trained over 1000 learning epochs) produced supe-
rior performance when traffic severity was high (experiment
sets 1 through 3), however as fewer robots were spawned
and were spawned more infrequently, the multiagent system
combined with the expected costs produced poorer through-
put performance compared to having the robots plan purely
on the known costs. The multiagent system combined with
just the known costs produced the best performance overall,
demonstrating that when the potential for congestion is high,
the agents are able to influence the graph costs to effectively
spread out the traffic. At the same time, when traffic is sparse,
it allows the robots to take direct routes to their goal.

It is interesting to note that simply having the robots
plan on the expected costs or fixed tolls can very effectively
improve traffic throughput when congestion is high. How-
ever, the influence of these costs is simply to spread out the
traffic. Thus, when traffic is sparse, this results in robots exe-
cuting lengthier paths since spreading out is unnecessary.
This effect is carried through to themultiagent system variant
that combines the agent output costs with the expected costs,
resulting in a small but persistent bias in the average travel
time when compared to just using the known costs or the
multiagent system outputs combined with the known costs.

In this set of experiments, each of the multiagent teams
were trained over 1000 learning epochs. The performance
of the multiagent traffic management system over sequential
evolutionary generations is shown in Fig. 7. Both combina-
tions of multiagent costs with known or expected costs are
shown as the dashed or solid lines, respectively. In general,
convergence is achieved after approximately 200 evolution-
ary epochs, with the system achieving faster convergence
for lighter traffic profiles. Only in the highest traffic severity
case (33% chance of up to 10 new robots at each spawn point
at each timestep) did the CCEA require approximately 500
epochs to fully converge.

The results from the first six sets of experiments, investi-
gating the effect of traffic severity, are shown in Fig. 7a, while
the learning performance of the final five experiments, which
vary the traffic rate, are shown in Fig. 7b. The plots show that
there is a distinct benefit to only applying the known costs
in addition to the agent output costs. Apart from the case
with most severe traffic profile, the experiments in which
the expected cost is incorporated produced travel times that
were on average 15% longer than just using the known costs.
The trade-off is that in cases of very severe traffic congestion
(maxrob = {3, 4, 5, 10} and prate = 0.33), using only the
known costs results in very poor initial performance. These
results show that the learned output costs of the multiagent
system are able to compensate for the inadequacy of only
using the known costs.

The plots in Fig. 7 also show that at traffic conditions
lighter thanmaxrob = 2 and prate = 0.33, themultiagent sys-
tem does not provide significant improvements to the overall
traffic throughput. This is to be expected since at this level
of traffic, the expected number of spawned robots at each
source vertex is 14 every 28 timesteps (the time it takes to

123

Autonomous Robots (2019) 43:1375–1391 1385

Epochs
0 100 200 300 400 500 600 700 800 900 1000

A
ve
ra
g e

t r
a v
er
s a
l
ti
m
e

25

30

35

40

45

50

55

60

65

70
maxrob = 10, prate = 0.33
maxrob = 5, prate = 0.33
maxrob = 4, prate = 0.33
maxrob = 3, prate = 0.33
maxrob = 2, prate = 0.33
maxrob = 1, prate = 0.33

(a)

Epochs
0 100 200 300 400 500 600 700 800 900 1000

A
ve
ra
ge

tr
av
er
sa
l
ti
m
e

28

29

30

31

32

33

34

35

36
maxrob = 1, prate = 0.33
maxrob = 1, prate = 0.25
maxrob = 1, prate = 0.20
maxrob = 1, prate = 0.167
maxrob = 1, prate = 0.10

(b)

Fig. 7 Basic traffic graph: the progression in traffic management per-
formance of the multiagent team over sequential evolutionary epochs.
The solid lines plot the performance of the multiagent team combined
with expected costs while the dashed lines plot the performance of the

multiagent team combined with known costs, error bars show standard
error in the mean over 20 statistical runs. The results for the first six
experiment sets are shown in a, while the final five experiments are
shown in b, note the differences in the y axis scale

cross the “highway”). Since the capacity of the highway edge
is 16, then on average, all spawned robots are able to take the
direct edge to their destination vertex and there is little need
for the agents to incentivize diverse routes.

6.1.2 Distributed traffic profile

The results from the distributed traffic profile experiments
are shown in Fig. 8. Since the multiagent traffic management
system combined with known edge costs provided superior
performance in the source and sink traffic profile experi-
ments, we only tested this multiagent configuration with the
distributed traffic profile. Given the learning profiles shown
in Fig. 7, we also restricted the number of training epochs
to 200 for this set of experiments. Furthermore, as noted in
Sect. 5.1.2, since robots are spawning randomly across the
graph, there exists no simple hand-designed tolls that can be
generally applied to evenly distribute the traffic, and so we
also omit the set of fixed tolls comparative trials for this study.

The general trends seen in Fig. 8 are similar to those
observed in the source and sink traffic profile experiments.
The multiagent traffic management system combined with
known edge costs resulted in improved average traversal
timeswhen compared to robots planning purely on the known
costsor the expected costs. Robots planningon themultiagent
costs resulted in average traversal times that were 45.1% and
16.3% faster than planning only on the known costs (exper-
iment sets 11 and 12, respectively). However, the difference
between using the expected costs and those broadcast by the
multiagent systemwas less pronounced in these experiments

Experiment set
11 12

A
ve
ra
ge

tr
av
er
sa
l
ti
m
e
(t
im

es
te
ps
)

0

5

10

15

20

25
Known costs
Expected costs
Multiagent system with known costs

Fig. 8 Basic traffic graph: average traversal times for a distributed traf-
fic profilewhere robots are spawned randomly across the graph and plan
to randomly allocated goal vertices. Error bars show standard error in
the mean over 20 statistical runs

(1.9% and 2.5% for experiment sets 11 and 12, respectively),
suggesting that under a distributed traffic profile, applying
any costing strategy that encourages diverse paths may be
sufficient for alleviating congestion.

Additional trafficmetrics are reported in Table 2. Columns
2–4 show the breakdown of total traffic traversal time into
the percentage of time traffic spent moving along an edge
(travel), waiting to transition from one edge to another [wait
(delay)], and waiting to enter the system from an origin ver-

123

1386 Autonomous Robots (2019) 43:1375–1391

Table 2 Traffic metrics from the distributed traffic simulation experiments

%travel %wait (delay) %wait (enter) # robots %goal reached

Experiment set 11

Known costs 44.7 ± 4.4 16.6 ± 8.4 38.7 ± 25.6 2164.3 ± 93.8 92.7 ± 0.7

Expected costs 94.2 ± 3.4 3.4 ± 0.4 2.4 ± 0.4 2134.8 ± 73.3 94.3 ± 0.6

Multiagent system 94.7 ± 3.2 2.8 ± 0.5 2.4 ± 0.5 2116.3 ± 53.1 94.3 ± 1.0

Experiment set 12

Known costs 83.7 ± 2.7 7.4 ± 3.1 8.9 ± 6.6 1796.5 ± 67.1 93.5 ± 0.7

Expected costs 97.5 ± 2.9 1.5 ± 0.3 1.0 ± 0.2 1813.2 ± 58.9 94.4 ± 0.6

Multiagent system 97.3 ± 2.0 1.5 ± 0.3 1.2 ± 0.3 1766.0 ± 33.8 94.8 ± 0.8

tex [wait (enter)]. These results also support the hypothesis
that encouraging diverse paths can significantly reduce con-
gestion. Robots that planned on either the expected costs or
the multiagent costs spent far less time waiting and substan-
tiallymore timemoving towards their goal compared to those
robots that planned on the known costs.

6.2 Case study: Sydney orbital network

For this case study, we again assessed the traffic throughput
when robots planned using the known costs, the expected
costs or the combined costs from the multiagent system with
known costs. The results after 200 learning epochs are shown
in Fig. 9.As demonstrated in the previous case study, themul-
tiagent traffic management system out-performed all other
fixed-cost methods. Robots that planned on the multiagent
costs resulted in 32.5% and 27.1% faster traversal times com-
pared to those that planned purely on the known costs, they
were also 6.6% and 4.8% faster when compared to those that

Experiment set
13 14

A
ve
ra
ge

tr
av
er
sa
l
ti
m
e
(t
im

es
te
ps
)

0

10

20

30

40

50

60
Known costs
Expected costs
Multiagent system with known costs

Fig. 9 Sydney orbital network: average traversal times for a distributed
traffic profile where robots are spawned randomly across the graph and
plan to one of eight randomly allocated goal vertices. Error bars show
standard error in the mean over 20 statistical runs

planned on the expected costs (experiment sets 13 and 14,
respectively).

The additional traffic metrics, given in Table 3, show that
robots that planned on the multiagent system costs spent less
time waiting, either to enter the system or while delayed
en route. In total, robots that used the multiagent system
costs spent 38.9% of their time waiting compared to 67.9%
(known costs) and 45.6% (expected costs) for experiment set
13. For the lighter traffic profile in experiment set 14, these
numbers are 23.1% (multiagent system) compared to 49.3%
(known costs) and 28.3% (expected costs). The difference in
the distribution of total traversal time between Tables 2 and 3
shows that in a more complex domain such as the Sydney
orbital network, applying diverse routes can still result in
significant delay and congestion in the system.

6.3 ROS-Gazebo experiments

The simulatedwarehouse environment constructed inGazebo
and used in the following experiments is shown in Fig. 10.
The graph topology of this environment is equivalent to the
basic traffic graph shown in Fig. 3, however, given the relative
size of the robots and the available free space, we reduced
the capacity of the edges such that all edges stemming from
vertices 0 or 1 had a capacity of 2 robots, except for those
edges that connected to vertex 2 for which the capacity was
set to 1 robot. All other edges also had a capacity of 1 robot.

As in the earlier case studies. the multiagent traffic man-
agement team was first trained via CCEA in the high level
simulator using only the high level graph abstraction of the
problem. The evolved neural network weights that defined
the champion team at the end of learning were then output
and stored for later use in the ROS-Gazebo simulator.

We combined several of the basic ROS packages for
localization (Open Source Robotics Foundation 2017) and
waypoint navigation (Open Source Robotics Foundation
2016) with our custom packages for instantiating the dis-
tributed multiagent traffic management team as well as the
robot planning routines over the high level traffic graph. All

123

Autonomous Robots (2019) 43:1375–1391 1387

Table 3 Traffic metrics from the Sydney orbital network simulation experiments

%travel %wait (delay) %wait (enter) # robots %goal reached

Experiment set 13

Known costs 32.1 ± 0.8 31.2 ± 3.0 36.7 ± 5.5 1039.3 ± 36.2 83.2 ± 0.5

Expected costs 54.4 ± 1.5 22.0 ± 1.8 23.6 ± 4.0 1045.5.3 ± 33.6 86.1 ± 0.7

Multiagent system 61.1 ± 1.3 21.3 ± 1.6 17.6 ± 2.6 1022.2 ± 21.0 85.5 ± 0.9

Experiment set 14

Known costs 50.7 ± 1.4 29.1 ± 3.9 20.2 ± 4.8 826.5 ± 25.5 82.9 ± 0.9

Expected costs 71.7 ± 1.6 18.7 ± 2.5 9.6 ± 3.0 824.9 ± 20.9 86.1 ± 0.8

Multiagent system 76.9 ± 1.7 16.9 ± 2.0 6.2 ± 1.5 809.6 ± 19.6 86.2 ± 0.7

Fig. 10 Aerial view of theGazebowarehouse environment in whichwe
tested our multiagent traffic management system. Each Pioneer P3-DX
robot is equipped with a 180◦ field of view 2D lidar, range-limited to
6m. Robots are tasked to deliver packages between the top right and
bottom left of the simulation world

packages necessary to run these experiments can be found
at Chung (2018). In these experiments, we tested the sce-
nario with eight simulated Pioneer P3-DX robots initially in
the configuration shown in Fig. 10. Each robot was tasked
to travel between the two diagonal corners of the world, for
example to deliver packages, simulating the source and sink
scenario described in Sect. 5.1.1. We report the number of
delivery missions completed by the robots and the average
time for eachdelivery inTable 4.We tested robot teamsizes of
five and eight robots over a fixed time period of 5 and 11min,
respectively, to see how well the multiagent system scales to
high levels of congestion. In these experiments, the robot
velocities were scaled to a maximum velocity of 0.35m/s.
Thus, executing the straight line path for each robot (ignor-

Table 4 ROS-Gazebo experiments with eight robots delivering pack-
ages between two fixed locations in the warehouse

robots With agents No agents

Average time 5 72.6 s 81.6 s

Deliveries in 5min 5 27 16

Average time 8 78.5 s 95.5 s

Deliveries in 11min 8 61 51

ing obstacles) would take at least 68.7 s. Using themultiagent
trafficmanagement system,we are able to achieve an average
traversal time of 72.6 s for the five robot team, and 78.5 s for
the eight robot team.

As a comparison, we simulated the same set of delivery
missions in the absence of traffic management. In this latter
experiment, the robots completed significantly fewer delivery
missions; 16 compared to 27 for the five robot team, and 51
compared to 61 for the eight robot team. In addition, there
were two cases during the latter experiment when a robot
was forced to abandon its delivery mission and turn back
to its previous waypoint due to congestion levels that their
low level collision avoidance planners were unable to handle.
See Fig. 11 for a comparison between the paths executed by
the robots with and without the multiagent traffic managers.
For thosemissions that were successful, the average traversal
time was significantly higher at 81.6 s and 95.5 s for the five
and eight robot experiments, respectively.

7 Conclusions and future work

Massively distributed autonomous traffic networks provide
a challenging optimization problem in terms of routing
robots to maximize throughput while maintaining safety
requirements. In this work, we applied a multiagent neuro-
evolutionary approach to train a team of traffic management
agents to manipulate the cost space in which the robots
planned their paths. Our results demonstrate that the multia-

123

1388 Autonomous Robots (2019) 43:1375–1391

Fig. 11 Snapshot of the robots and their planned paths at approximately
100s into the experiment. In a themultiagent costs incentivize the robots
to plan paths that go around the bottom and right side of the circular
obstacle even though they may be longer than going around the left of

the obstacle. In comparison, b shows the resulting paths when no traffic
management is applied and robots greedily plan and attempt to execute
their shortest paths. The robots tend to get stuck while passing through
the narrow corridor

gent team incentivizes robots to take diverse paths. Although
these paths may be considered suboptimal in terms of dis-
tance, robots that executed these paths not only completed
more successful traversals, but they also resulted in faster
average traversal timeswhen compared to robots that planned
solely on the distance costs. This is because the multia-
gent team was able to synthesize data from a range of
traffic profiles and learn to adjust the costs to account for
potential congestion that would cascade throughout the sys-
tem.

The current work uses a direct implementation of CCEA
where each agent in the team trains directly based on the
global team reward. This assumes that all agents in the team
contributed equally, or indeed, have the ability to contribute
equally to the final reward. However, we can see in some
cases, such as in the basic traffic graph, that this is clearly
not the case. The agents managing traffic along the diagonal
edges have a higher impact on the system performance, espe-
cially in the case of the source and sink traffic profile. For a
distributed traffic profile, it is not as simple to analyze since
we cannot easily point to an edge, or set of edges, that repre-
sent the system bottleneck. An interesting direction of future
research is to incorporate this impactfulness analysis into the
training such that each agent can receive a more accurate and
precise reward signal. Combining this more generally with
ideas regarding the structural credit assignment problem in
multiagent learning can provide unique solutions to the chal-
lenges of concurrent learning in large distributed multiagent
systems.

The neural network control policies that we use in this
work have a very basic architecture. This design choice was
motivated by our aim to demonstrate the ability of the mul-
tiagent team to learn complex traffic management strategies
despite individual agents only having access to local informa-
tion. We believe that more sophisticated network structures
with access to more traffic information, such as neighboring
congestion states, could potentially capture more complex
patterns in the traffic flow. However, we are also cognizant of
the learning challenges that arise from increasing the dimen-
sionality of the state-action space. Nevertheless, we believe
that this would be a valuable and promising area for future
work.

Finally, in our experiments, we have only explored a lim-
ited set of robot planning behaviors. Namely, the robots use
A* to plan paths according to the current known costs, where
those costs are defined by the agents. Furthermore, robots
were triggered to replan en route whenever they finished
traversing their current edge. These behaviors are not made
explicit to the multiagent traffic management team, indeed
the multiagent framework is agnostic to the underlying plan-
ners used by the robots; however, this does limit the scope
of traffic profiles that are observed during training, which
in turn can hinder the performance of the trained agents
when managing robots that use different path planning pro-
tocols.

The fundamental assumption that we make is that the
agents are able to exert some influence over the robot plans
through their actions, that is, we assume that the robots’ plan-

123

Autonomous Robots (2019) 43:1375–1391 1389

ning objectives are a function of the graph costs assigned
by the agents. The controllability of the traffic system can
be described as the sensitivity of the robot motion to the
actions of the agents. For example, compare the current case
where robots replan at edge transitions to one where robots
must execute their first plan. The controllability of these two
systems is quite different. In general, we expect the ability
of the multiagent team to learn an effective traffic manage-
ment strategy to decrease as controllability decreases. The
extreme case of this is where all robots in the system are
non-compliant, that is, where they ignore the traversal costs
assigned by the agents. It would be a valuable exercise to
investigate the change in traffic management performance as
controllability is reduced as this could lead to strategies that
are more robust to non-compliance as well as stochasticity
and uncertainty in the traffic environment.

Appendix A Sydney orbital network traffic
graph configuration

The fixed travel cost of each edge is the distance of each
highway section between the defined vertices rounded to the
nearest kilometer. Edges with common end vertices are taken
to have the same travel costs and capacities, e.g. edges (0, 1)
and (1, 0) have the same parameters and so only edge (0, 1)
is listed below (Table 5).

Table 5 Sydney orbital network
traffic graph configuration

v0 v1 costtravel capacity

0 1 18 10

0 3 10 8

0 5 35 20

1 2 5 3

1 6 10 6

2 3 3 3

2 7 8 4

3 4 13 9

3 8 8 7

4 5 3 3

4 9 13 11

5 10 12 10

6 7 7 4

6 11 9 8

7 8 3 3

7 12 5 3

8 9 8 7

8 13 3 3

9 10 4 2

9 14 4 3

10 15 4 3

Table 5 continued
v0 v1 costtravel capacity

11 12 5 4

11 17 13 11

12 13 6 5

12 16 10 6

13 14 4 3

13 16 11 6

14 15 7 6

14 19 13 9

15 20 7 4

16 18 3 3

17 18 3 3

17 20 17 14

18 19 2 1

19 20 8 7

References

Agogino, A. K., & Tumer, K. (2004). Efficient evaluation functions
for multi-rover systems. In Genetic and evolutionary computation
conference (pp. 1–11).

Agogino, A. K., & Tumer, K. (2012). A multiagent approach to manag-
ing air traffic flow. Autonomous Agents and Multi-Agent Systems,
24(1), 1–25.

Arnott, R., De Palma, A., & Lindsey, R. (1993). A structural model of
peak-period congestion: A traffic bottleneck with elastic demand.
The American Economic Review, 83, 161–179.

Arnott, R., & Kraus, M. (1998). When are anonymous congestion
charges consistent with marginal cost pricing? Journal of Public
Economics, 67(1), 45–64.

Aubert, M. C., Üzümcü, S. C., Hutchins, A. R., & Cummings, M. L.
(2015). Toward the development of a low-altitude air traffic con-
trol paradigm for networks of small, autonomous unmanned aerial
vehicles. In AIAA infotech @ aerospace (pp. 1110–1117).

Baskar, L. D., De Schutter, B., Hellendoorn, J., & Papp, Z. (2011).
Traffic control and intelligent vehicle highway systems: A survey.
IET Intelligent Transport Systems, 5(1), 38–52.

Bellemans, T., De Schutter, B., & De Moor, B. (2006). Model predic-
tive control for ramp metering of motorway traffic: A case study.
Control Engineering Practice, 14(7), 757–767.

Beria, P., Ramella, F., & Laurino, A. (2015). Motorways economic
regulation: A worldwide survey. Transport Policy, 41, 23–32.

Bongiorno, C., Gurtner, G., Lillo, F., VAlori, L., Ducci, M., Mon-
echi, B., & Pozzi, S. (2013). An agent based model of air traffic
management. In Proceedings of the 3rd SESAR innovation days.
Stockholm.

Bullo, F., Frazzoli, E., Pavone, M., Savla, K., & Smith, S. L. (2011).
Dynamic vehicle routing for robotic systems. Proceedings of the
IEEE, 99(9), 1482–1504.

Carey, M., & Srinivasan, A. (1993). Externalities, average and marginal
costs, and tolls on congested networks with time-varying flows.
Operations Research, 41(1), 217–231.

Chung, J. J. (2018). Git repository. https://github.com/JenJenChung.
Accessed 21 February 2018.

Digani, V., Sabattini, L., & Secchi, C. (2016). A probabilistic eulerian
traffic model for the coordination of multiple AGVs in automatic
warehouses. IEEE Robotics and Automation Letters, 1(1), 26–32.

123

https://github.com/JenJenChung

1390 Autonomous Robots (2019) 43:1375–1391

Digani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2015). Ensemble
coordination approach in multi-AGV systems applied to indus-
trial warehouses. IEEE Transactions on Automation Science and
Engineering, 12(3), 922–934.

Emami, H., & Derakhshan, F. (2012). An overview on conflict detec-
tion and resolution methods in air traffic management using multi
agent systems. In 16th CSI international symposium on artificial
intelligence and signal processing (AISP) (pp. 293–298). IEEE.

Ficici, S. G., Melnik, O., & Pollack, J. B. (2005). A game-theoretic and
dynamical-systems analysis of selection methods in coevolution.
IEEE Transactions on Evolutionary Computation, 9(6), 580–602.

Gawrilow, E., Köhler, E., Möhring, R. H., & Stenzel, B. (2008).
Dynamic routing of automated guided vehicles in real-time. In
H.-J. Krebs & W. Jäger (Eds.), Mathematics—Key technology for
the future (pp. 165–177). Berlin: Springer. (Chapter 5).

Hegyi, A., De Schutter, B., & Hellendoorn, H. (2005a). Model predic-
tive control for optimal coordination of rampmetering and variable
speed limits.TransportationResearchPart C:Emerging Technolo-
gies, 13(3), 185–209.

Hegyi, A., De Schutter, B., & Hellendoorn, J. (2005b). Optimal coordi-
nation of variable speed limits to suppress shock waves. IEEE
Transactions on Intelligent Transportation Systems, 6(1), 102–
112.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-
forward networks are universal approximators. Neural Networks,
2(5), 359–366.

Huang, P.-C., Lehman, J., Mok, A. K., Miikkulainen, R., & Sentis,
L. (2014). Grasping novel objects with a dexterous robotic hand
through neuroevolution. In IEEE symposium on computational
intelligence in control and automation (CICA) (pp. 1–8). IEEE.

Kopardekar, P. (2015). Safely enabling low-altitude airspace oper-
ations: Unmanned aerial system traffic management (UTM).
Technical Report ARC-E-DAA-TN22234, NASA, April 2015.

Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., & Robinson,
J. E. III (2016). Unmanned aircraft system traffic management
(UTM) concept of operations. In AIAA aviation technology, inte-
gration, and operations conference (pp. 1–16).

Lindsey, C. R., & Verhoef, E. T. (2000). Traffic congestion and conges-
tion pricing. In Handbook of transport systems and traffic control
(pp. 77–105).

Land Transport Authority of Singapore (2017). Electronic road
pricing (ERP). https://www.lta.gov.sg/content/ltaweb/en/roads-
and-motoring/managing-traffic-and-congestion/electronic-road-
pricing-erp.html. Accessed 11 October 2017.

NSW Government Roads and Maritime Services (2017a). Motor-
way design guide: Capacity and flow analysis. http://www.rms.
nsw.gov.au/business-industry/partners-suppliers/documents/
motorway-design/motorway-design-guide-capacity-flow-
analysis.pdf. Accessed: 22 December 2017.

NSW Government Roads and Maritime Services (2017b). Syd-
ney route number map. http://www.rms.nsw.gov.au/documents/
roads/using-roads/alpha-numeric/sydney-map.jpg. Accessed: 22
December 2017.

NSW Government Roads and Maritime Services (2017c). Your guide
to using the Sydney motorway network. http://www.rms.nsw.gov.
au/sydney-motorways/documents/sydney-motorways-map.pdf.
Accessed: 22 December 2017.

Open Source Robotics Foundation. (2016). move_base. http://wiki.ros.
org/move_base. Accessed 21 February 2018.

Open Source Robotics Foundation (2017). amcl. http://wiki.ros.org/
amcl. Accessed 21 February 2018.

Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: The
state of the art. Autonomous Agents and Multi-Agent Systems,
11(3), 387–434.

Papageorgiou, M., Hadj-Salem, H., & Middelham, F. (1997). ALINEA
local ramp metering: Summary of field results. Transportation
Research Record: Journal of the Transportation Research Board,
1603, 90–98.

Pechoucek, M., & Sislak, D. (2009). Agent-based approach to free-
flight planning, control, and simulation. IEEE Intelligent Systems,
24(1), 14–17.

Pigou, A. C. (1920). The economics of welfare. London: Macmillian
and Co.

Prevot, T., Homola, J. R., Martin, L. H., Mercer, J. S., & Cabrall, C. D.
(2012). Toward automated air traffic controlinvestigating a funda-
mental paradigm shift in human/systems interaction. International
Journal of Human–Computer Interaction, 28(2), 77–98.

Qiu, L., Hsu, W.-J., Huang, S.-Y., & Wang, H. (2002). Scheduling and
routing algorithms for AGVs: A survey. International Journal of
Production Research, 40(3), 745–760.

Rebhuhn, C., Skeele, R., Chung, J. J., Hollinger, G. A., & Tumer,
K. (2015). Learning to trick cost-based planners into cooperative
behavior. In 2015 IEEE/RSJ international conference on intelli-
gent robots and systems (pp. 4627–4633).

Rossi, F., Zhang, R., Hindy, Y., & Pavone, M. (2018). Routing
autonomous vehicles in congested transportation networks: Struc-
tural properties and coordination algorithms. Autonomous Robots,
42, 1–16.

Stephanedes, Y. J., Kwon, E., & Chang, K. (1992). Control emulation
method for evaluating and improving traffic-response rampmeter-
ing strategies. Transportation Research Record, 1360, 42–45.

Taghaboni-Dutta, F., & Tanchoco, J. M. A. (1995). Comparison of
dynamic routeing techniques for automated guided vehicle system.
International Journal of ProductionResearch, 33(10), 2653–2669.

Tomlin, C., Pappas, G. J., & Sastry, S. (1998). Conflict resolution for air
traffic management: A study in multiagent hybrid systems. IEEE
Transactions on Automatic Control, 43(4), 509–521.

Yliniemi, L., Agogino, A. K., & Tumer, K. (2014). Evolutionary agent-
based simulation of the introduction of new technologies in air
trafficmanagement. In Proceedings of the 2014 annual conference
on genetic and evolutionary computation (pp. 1215–1222).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jen Jen Chung is a Senior
Researcher in the Autonomous
Systems Lab at ETH Zürich. Her
current research interests include
multi-robot coordination methods
and risk-aware planning for aerial
and ground robots. Her past
research includes multiagent
learning methods at Oregon State
University and information-based
exploration–exploitation strategies
for autonomous soaring platforms
at the Australian Centre for Field
Robotics in the University of Syd-
ney. She received her Ph.D. (2014)

and B.E. (2010) from the University of Sydney.

123

https://www.lta.gov.sg/content/ltaweb/en/roads-and-motoring/managing-traffic-and-congestion/electronic-road-pricing-erp.html
https://www.lta.gov.sg/content/ltaweb/en/roads-and-motoring/managing-traffic-and-congestion/electronic-road-pricing-erp.html
https://www.lta.gov.sg/content/ltaweb/en/roads-and-motoring/managing-traffic-and-congestion/electronic-road-pricing-erp.html
http://www.rms.nsw.gov.au/business-industry/partners-suppliers/documents/motorway-design/motorway-design-guide-capacity-flow-analysis.pdf
http://www.rms.nsw.gov.au/business-industry/partners-suppliers/documents/motorway-design/motorway-design-guide-capacity-flow-analysis.pdf
http://www.rms.nsw.gov.au/business-industry/partners-suppliers/documents/motorway-design/motorway-design-guide-capacity-flow-analysis.pdf
http://www.rms.nsw.gov.au/business-industry/partners-suppliers/documents/motorway-design/motorway-design-guide-capacity-flow-analysis.pdf
http://www.rms.nsw.gov.au/documents/roads/using-roads/alpha-numeric/sydney-map.jpg
http://www.rms.nsw.gov.au/documents/roads/using-roads/alpha-numeric/sydney-map.jpg
http://www.rms.nsw.gov.au/sydney-motorways/documents/sydney-motorways-map.pdf
http://www.rms.nsw.gov.au/sydney-motorways/documents/sydney-motorways-map.pdf
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl

Autonomous Robots (2019) 43:1375–1391 1391

Carrie Rebhuhn is a Senior
Autonomous Intelligent Systems
Engineer at MITRE. She com-
pleted her Ph.D. with a minor in
Computer Science (2017) at Ore-
gon State University. Her research
focused on ways to coordinate
robot trajectories in an obstacle-
filled environment. She received
her M.S. (2013) and B.S. (2011)
in Mechanical Engineering from
Oregon State University.

Connor Yates is a Robotics Ph.D.
student at Oregon State University
in the Collaborative Robotics and
Intelligent Systems (CoRIS) Insti-
tute. His primary research focuses
on multiagent coordination in
complex tasks, and representing
and explaining the intent of
autonomous robotic teams. He
received his B.S. in Computer Sci-
ence from Oregon State Univer-
sity where he focused on leverag-
ing intent in multiagent decision
making.

Geoffrey A. Hollinger is an Assis-
tant Professor in the School of
Mechanical, Industrial and Man-
ufacturing Engineering at Oregon
State University. His current
research interests are in planning,
decision making, and learning for
robotic systems in marine, air, and
ground environments. He has
served as PI and co-PI on research
grants from ONR, NSF, USDA,
and NASA. His past research
includes networked marine
robotics at the University of
Southern California, multi-robot

search at Carnegie Mellon University, personal robotics at Intel
Research Pittsburgh, active estimation at the University of Pennsyl-
vania’s GRASP Laboratory, and miniature inspection robots for the
Space Shuttle at NASA’s Marshall Space Flight Center. He received
his Ph.D. (2010) and M.S. (2007) in Robotics from Carnegie Mellon
University and his B.S. in General Engineering along with his B.A.
in Philosophy from Swarthmore College (2005). He has been a Guest
Editor for the Autonomous Robots journal, Associate Editor for the
ICRA and IROS conferences, and Area Chair for the RSS conference.

Kagan Tumer is a Professor of
Robotics, and the Director of the
Collaborative Robotics and Intel-
ligent Systems Institute at Ore-
gon State University. Dr. Tumer’s
research interests are control,
coordination and optimization in
large complex systems with a par-
ticular emphasis on multiagent
coordination. Applications of his
work include coordinating mul-
tiple robots, optimizing large
sensor networks, controlling
autonomous vehicles, reducing
traffic congestion and managing

air traffic. His work has led to over one hundred and fifty publi-
cations, including three edited books, one patent, and several best
paper awards. He is an associate editor of the Journal on Autonomous
Agents and Multiagent Systems, and was the program co-chair of
the 2011 Autonomous Agents and Multiagent Systems Conference
(AAMAS 2011). Dr. Tumer received his Ph.D. (1996) in Electrical and
Computer Engineering at The University of Texas, Austin, and is a
member of AAAI and a senior member of IEEE.

123

