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Abstract We study the problem of tracking multiple

moving targets using a team of mobile robots. Each

robot has a set of motion primitives to choose from

in order to collectively maximize the number of tar-

gets tracked or the total quality of tracking. Our fo-

cus is on scenarios where communication is limited and

the robots have limited time to share information with

their neighbors. As a result, we seek distributed algo-

rithms that can find solutions in a bounded amount

of time. We present two algorithms: (1) a greedy al-

gorithm that is guaranteed to find a 2–approximation

to the optimal (centralized) solution but requiring |R|
communication rounds in the worst case, where |R| de-

notes the number of robots; and (2) a local algorithm

that finds a O ((1 + ε)(1 + 1/h))–approximation algo-

rithm in O(h log 1/ε) communication rounds. Here, h
and ε are parameters that allow the user to trade-off

the solution quality with communication time. In ad-

dition to theoretical results, we present empirical eval-

uation including comparisons with centralized optimal

solutions.
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1 Introduction

We study the problem of assigning robots with limited

Field-Of-View (FOV) sensors to track multiple mov-

ing targets. Multi-robot multi-target tracking is a well-

studied topic in robotics [1–5]. We focus on scenar-

ios where the number of robots is large and solving

the problem locally rather than centrally is desirable.

The robots may have limited communication range and

limited bandwidth. As such, we seek assignment algo-

rithms that rely on local information and only require

a limited amount of communication with neighboring

robots.

Constraints on communication impose challenges for

robot coordination as global information may not al-

ways be available to all the robots within the network.
As a result, it may not be always possible to design al-

gorithms that operate on local information while still

ensuring global optimality. Recently, Gharesifard and

Smith [6] studied how limited information due to the

communication graph topology affects the global per-

formance. Their analysis applies for the case when the

robots are allowed only one round of communication

with their neighbors. If the robots are allowed multiple

rounds of communication, they can propagate the in-

formation across the network. Given sufficient rounds

of communication, all robots will have access to global

information, and therefore can essentially solve the cen-

tralized version of the problem. In this paper, we in-

vestigate the relationship between the number of com-

munication rounds allowed for the robots and the per-

formance guarantees. We focus on the problem of dis-

tributed multi-robot, multi-target assignment for our

investigation (Figure 1).

We assume that each robot has a number of mo-

tion primitives to choose from. A motion primitive is
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Fig. 1 Description of multi-robot task allocation for multi-
target tracking. In this example, three robots (r1, r2, r3) are
tracking two moving targets (t1, t2). Each robot has five mo-
tion primitives (pi

m) to choose from at each time step. c rep-
resents the cost of observing a target from a motion primitive.

a local trajectory obtained by applying a sequence of

actions [7]. A motion primitive can track a target if the

target is in the FOV of the robot. The set of targets

tracked by different motion primitives may be different.

The assignment of targets to robots is therefore coupled

with the selection of motion primitives for each robot.

Our goal is to assign motion primitives to the robots

so as to track the most number of targets or maximize

the quality of tracking. We term this as the distributed

Simultaneous Action and Target Assignment (SATA)

problem.

This problem can be viewed as the dual of the set

cover problem, known as the maximum (weighted) cover

[8]. Every motion primitive covers some subset of the

targets. Therefore, we would like to pick motion primi-

tives that maximize the number (or weight) of covered

targets. However, we have the additional constraint that

only one motion primitive per robot can be chosen at

each step. This implies that the relationship between

a robot and the corresponding motion primitives turns

out to be a packing problem [8] where only one motion

primitive can be “packed” per robot. The combination

of the two aforementioned problems is called a Mixed

Packing and Covering Problem (MPCP) [9].

We study two versions of the problem. The first ver-

sion can be formulated as a (sub)modular maximization

problem subject to a partition matroid constraint [10].

A sequential greedy algorithm, where the robots take

turns to greedily choose motion primitives, is known

to yield a 2–approximation for this problem [11]. We

evaluate the empirical performance of this algorithm

by comparing it with a centralized (globally optimal)

solution. The drawback of the sequential greedy algo-

rithm is that it requires at least as many communication

rounds as the number of robots. This may be too slow

in practice. Consequently, we study a second version

of the problem for which we present a local algorithm

whose performance degrades gracefully (and provably)

as a function of the number of communication rounds.

Fig. 2 Communication graph. The blue shaded region indi-
cates a radius–2 neighborhood of the red solid node. The red
solid node may be unaware of the entire communication graph
topology. A local algorithm that works for the red solid node
only requires local information of nodes in the blue shaded
region. The same local algorithm runs on all the nodes and
ensures bounded approximation guarantees on the global op-
timality.

A local algorithm [8] is a constant-time distributed

algorithm that is independent of the size of a network.

This enables a robot only to depend on local inputs in

a fixed-radius neighborhood of robots (Figure 2). The

robot does not need to know information beyond its lo-

cal neighborhood, thereby achieving better scalability.

Floréen et al. [12] proposed a local algorithm to solve

MPCP using max-min/min-max Linear Programming

(LP) in a distributed manner. We show how to lever-

age this algorithm to solve SATA. This algorithm has a

bounded communication complexity unlike typical dis-

tributed algorithms. Specifically, the algorithm yields a

O ((1 + ε)(1 + 1/h)) approximation to the globally op-

timal solution in O(h log 1/ε) synchronous communica-

tion rounds where h and ε are input parameters.1 We

verify the theoretical results through empirical evalua-

tion.

The contributions of this paper are as follows:

1. We present two versions of the SATA problem.

2. We show how to use the greedy algorithm and adapt

the local algorithm for solving the two versions of

the SATA problem.

3. We perform empirical comparisons of the proposed

algorithm with baseline centralized solutions.

1 An algorithm is called a O(x) approximation to a max-
imization problem if it guarantees a solution whose value is
at least c

x
of the optimal value, where c is some constant.
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4. We demonstrate the applicability of the proposed

algorithm through Gazebo simulations.

A preliminary version of this paper was presented

at ICRA 2018 [13]. This expanded paper extends the

preliminary version with a more thorough literature

survey, additional theoretical analysis, and significantly

expanded empirical analysis including a description of

how to implement the greedy algorithm in practice.

The rest of the paper is organized as follows. We

begin by introducing the related work in Section 2. We

describe the problem setup in Section 3. Our proposed

distributed algorithms are presented in Section 4. We

present results from representative simulations in Sec-

tion 5 before concluding with a discussion of future

work in Section 6.

2 Related Work

A number of algorithms have been designed to im-

prove multi-robot coordination under limited bandwidth

[14–18] and under communication range constraints [19–

21]. This includes algorithms that enforce connectivity

constraints [22, 23], explicitly trigger when to commu-

nicate [24–26] and operate when connectivity is inter-

mittent [27, 28]. In this section, we focus on work that

is most closely related to the SATA problem and local

algorithms.

2.1 Multi-Robot Target Tracking

There have been many studies on cooperative target

tracking in both control and robotics communities. We

highlight some of the recent related work in this sec-

tion. For a more comprehensive overview of multi-robot

multi-target tracking, see the recent surveys [29,30].

Charrow et al. [31] proposed approximate represen-

tations of the belief to design a control policy for mul-

tiple robots to track one mobile target. The proposed

scheme, however, requires a centralized approach. Yu et

al. [32] worked on an auction-based decentralized algo-

rithm for cooperative path planning to track a moving

target. Ahmad et al. [33] presented a unified method of

localizing robots and tracking a target that is scalable

with respect to the number of robots. Zhou and Roume-

liotis [34] developed an algorithm that finds an opti-

mal trajectory of multiple robots for the active target

tracking problem. Capitan et al. [35] proposed a decen-

tralized cooperative multi-robot algorithm using auc-

tioned partially observable Markov decision processes.

The performance of decentralized data fusion under

limited communication was successfully shown but the-

oretical bounds on communication rounds were not cov-

ered. Moreover, theoretical properties presented in the

above references considered single target tracking, which

may not necessarily hold in the case of tracking multiple

targets in a distributed fashion.

Pimenta et al. [36] adopted Voronoi partitioning to

develop a distributed multi-target tracking algorithm.

However, their objective was to cover an environment

coupled with multi-target tracking. Banfi et al. [37] ad-

dressed the fairness issue for cooperative multi-robot

multi-target tracking, which is achieving balanced cov-

erage among different targets. One of the problems that

we define in Section 3 (i.e., Problem 1) has a similar

motivation. However, unlike the algorithm in Banfi et

al. [37], we are able to give a global performance guaran-

tee. Xu et al. [38] presented a decentralized algorithm

that jointly solves the problem of assigning robots to

targets and positioning robots using mixed-integer non-

linear programming. While they proved the complex-

ity in terms of computational time and communication

(i.e., the amount of data needed to be communicated),

the solution quality was only evaluated empirically. In-

stead, we bound the solution quality as a function of

the communication rounds. Furthermore, our formula-

tion takes as input a set of discrete actions (i.e., motion

primitives) that the robot must choose from, unlike the

previous work.

We study a problem similar to the one termed as

Cooperative Multi-robot Observation of Multiple Mov-

ing Targets (CMOMMT) proposed by Parker and Em-

mons [1]. The objective in CMOMMT is to maximize

the collective time of observing targets. Parker [2] de-

veloped a distributed algorithm for CMOMMT that

computes a local force vector to find a direction vec-

tor for each robot. We empirically compare this algo-

rithm with our proposed one and report the results in

Section 5. Kolling and Carpin [4] studied the behav-

ioral CMOMMT that added a new mode (i.e., help) to

the conventional track and search modes of CMOMMT.

The help mode asks other robots to track a target if the

target escapes from the FOV of some robot. Although

our work does not allow mode changes, previous works

regarding CMOMMT did not provide theoretical opti-

mality guarantees and did not explicitly consider sce-

narios where the communication bandwidth is limited.

Refer to Section IV(C) of Reference [29] for a more de-

tailed summary of CMOMMT.

In our prior work [11], we addressed the problem of

selecting trajectories for robots that can track the max-

imum number of targets using a team of robots. How-

ever, no bound on the number of communication rounds

was presented, possibly resulting in all-to-all commu-
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nication in the worst case. Instead, in this work, we

introduce a new version of the problem and also explic-

itly bound the amount of communication required for

target assignment.

2.2 Multi-Robot Task Assignment

Multi-robot task assignment can be formulated as a dis-

crete combinatorial optimization problem. The work by

Gerkey and Matarić [39] and the more recent work by

Korsah et al. [40] contain detailed survey of this prob-

lem. There exists distributed algorithms with provable

guarantees for different versions of this problem [41–

43]. There also exists various multi-robot deployment

strategies for task assignment under communication con-

straints. These constraints include limited available in-

formation [44], limited communication flows [45], and

connectivity requirement [46]. See the survey papers [47,

48] on these results. Ny et al. [45] studied a formulation

with a similar communication constraint as ours. How-

ever, their formulation assumed that the robots know

which targets to track. In this paper, we tackle the

challenge of simultaneously assigning robots to targets

by choosing motion primitives with limited commu-

nication bandwidth which might degrade task perfor-

mance when there are unreliable communication links

and communication delays.

Turpin et al. [49] proposed a distributed algorithm

that assigns robots to goal locations while generating

collision-free trajectories. Morgan et al. [50] solved the

assignment problem by using distributed auctions and

generating collision-free trajectories by using sequen-

tial convex programming. Bandyopadhyay et al. [51]

adopted the Eulerian framework for both swarm for-

mation control and assignment. However, these works

may not be suitable for target tracking applications as

the targets were assumed to be static. For more survey

results about SATA, see the work by Chung et al. [52].

Recently, Otte et al. [53] investigated the effect of com-

munication quality on auction-based multi-robot task

assignment. None of the above works, however, ana-

lyzed the effect of communication rounds on the solu-

tion quality, as is the focus of our work.

2.3 Local Algorithms

A local algorithm [54–56] is a distributed algorithm that

is guaranteed to achieve desired objective in a finite

(typically, fixed) amount of time. The typical approach

is to find approximate solutions with provable (and

global) performance guarantees while ensuring a bound

on the communication complexity that is independent

of the number of vertices in the graph. Local algorithms

have been proposed for a number of graph-theoretic

problems. These include, graph matching [57], vertex

cover [58, 59], dominating set [60], and set cover [61].

Suomela [8] gives a broad survey of local algorithms.

We build on this work and adapt a local algorithm for

solving SATA.

3 Problem Description

Consider a scenario where multiple robots are track-

ing multiple mobile targets. Robots can observe targets

within their FOV and predict the future states of tar-

gets. Based on predicted target states, robots decide

where to move (i.e., by selecting a motion primitive)

in order to keep track of targets. By discretizing time,

the problem becomes one of combinatorial optimiza-

tions — choose the next position of robots based on

the predicted position of the targets. Thus, we solve

the SATA problem at each time step.

We define sets, R and T , to denote the collection of

robot and target labels respectively:R = {1, ..., i, ..., |R|}
for robot labels and T = {1, ..., j, ..., |T |} for target la-

bels. Let r and t denote the set of robot states and pre-

dicted target states, respectively. In this paper, states

are given by the positions of the robots and the tar-

gets in 2- or 3-dimensional space. However, the algo-

rithms presented in this paper can be used for more

complex states (e.g., 6 degree-of-freedom pose). Here,

r(k) = {r1(k), ..., ri(k), ..., r|R|(k)} denotes the state of

the robots at time k. t(k) = {t1(k), ..., tj(k), ..., t|T |(k)}
denotes the state of the targets at the next time step

(i.e., at time k + 1) predicted at time k. We assume

that the targets can be uniquely detected and multi-

ple robots know if they are observing the same target.

Therefore, no data association is required. Each robot

independently obtains the predicted states, t(k), by fus-

ing its own noisy sensor measurements using, for exam-

ple, a Kalman filter.

We define the labels of available motion primitives

for the i-th robot as P i = {1, ...,m, ..., |P i|}. These la-

bels correspond to a set of motion primitive states of the

i-th robot at time k given by: pi(k) = {pi
1(k), ...,pi

m(k),

...,pi
|P i|(k)}. Note that the term motion primitives in

this paper represents the future state of a robot at the

next time step (i.e., at time k + 1) computed at time

k. We compute a set of the motion primitives a priori

by discretizing the continuous control input space. This

can be done by various methods such as uniform ran-

dom sampling or biased sampling based on predicted

target states. However, once a set of the motion prim-

itives is obtained, the rest of the proposed algorithms

(in Section 4) remain the same.
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We define RS(pi
m(k)) to be the set of targets that

can be observed by the m-th motion primitive of i-th

robot at time k. Specifically, the j-th target is said to

be observable by the m-th motion primitive of a robot

i, iff tj(k) ∈ RS(pi
m(k)). It should be noted that only

targets that were observed by robot i at time k− 1 are

candidates to be considered for time k because unob-

served targets at time k− 1 cannot be predicted by the

robot i. Note also that since RS is a set function, we

can model complex FOV and sensing range constraints

that are not necessarily restricted to 2D.

We make the following assumptions.2

Assumption 1. (Communication Range). If two

robots have a motion primitive that can observe the

same target, then these robots can communicate with

each other. This implies if there exists a target j such

that tj(k) ∈ RS(pi
m(k)) and tj(k) ∈ RS(pl

m(k)), then

i-th and l-th robots can communicate with each other.

Assumption 2. (Synchronous Communication).
All the robots have synchronous clocks leading to syn-

chronous rounds of communication.

From Assumption 1, neighboring robots can share

their local information with each other when they ob-

serve the same targets. For example, robots can use

techniques such as covariance intersection [62] to merge

their individual predictions of the target’s state into a

joint prediction T . This can be achieved in one round

of communication when each robot simply broadcasts

its own estimate of all the targets within its FOV. Note

that a robot does not need to know the prediction for all

the targets but only the ones that are within the FOV

of one of its motion primitives. In this sense, a com-
munication graph GC = (R,EC) can be created from a

sensing graph GS = (P ∪T,ES) at each time, where EC

and ES denote edges among robots and edges between

targets and motion primitives, respectively.

As shown in Figure 1, each robot is able to compute

feasible motion primitives of its own and detect multi-

ple unique targets within the FOV. Then, the objective

of the proposed problem is to choose one of the mo-

tion primitives for each robot, yielding either the best

quality of tracking or the maximum number of targets

tracked by the robots, depending on the application.

One possible quality of tracking can be measured by

the summation of all distances between selected primi-

tives and the observed targets.

Let xim be the binary variable which represents the

i-th robot selecting the m-th motion primitive. That is,

xim = 1 if a motion primitive m is selected by a robot i

2 After these assumptions, we omit the time index (i.e., k)
for notational convenience.

and 0 otherwise.3 Since each robot can choose only one

motion primitive, we have:∑
m∈P i

xim ≤ 1 ∀i ∈ R. (1)

Our objective is to find xim. We propose two follow-

ing problems.

Problem 1 (Bottleneck). The objective is to select

primitives such that we maximize the minimum tracking

quality:

argmax
xi
m

min
j∈T

(∑
i∈R

∑
m∈P i

cji,mx
i
m

)
, (2)

subject to the constraints in Equation (1). Here, cji,m
denotes weights on sensing edges ES between m-th mo-

tion primitive of i-th robot and j-th target.

Here, cji,m can represent the tracking quality given

by, for example, the inverse of the distance between

m-th motion primitive of i-th robot and j-th target.

Alternatively, ci,m can be binary (1 when the m-th mo-

tion primitive of robot i sees target j and 0 otherwise)

making the objective function equal to maximizing the

minimum number of targets tracked.

We term this as the Bottleneck version of SATA.

In the Bottleneck version, multiple robots may be as-

signed to the same target. We also define a Winner-

TakesAll variant of SATA where only one robot is as-

signed to a target.

We define additional binary decision variable, yji .

yji represents the i-th robot assigned to track the j-th

target. We have, yji = 1 if i-th robot is assigned to j-th

target and 0 otherwise.

Since we restrict only one robot to be assigned to

the target (unlike Bottleneck), we have:∑
i∈R

yji ≤ 1 ∀j ∈ T. (3)

Problem 2 (WinnerTakesAll). The objective is to max-

imize the total quality of tracking given by,

arg max
xi
m,yj

i

∑
j∈T

(∑
i∈R

yji

( ∑
m∈P i

cji,mx
i
m

))
, (4)

subject to the constraints in Equations (1) and (3).

Both versions of the SATA problem are NP-Hard [63].

The WinnerTakesAll version can be optimally solved

using a Quadratic Mixed Integer Linear Programming

3 If all xim = 0 for a robot i, then it can choose any motion
primitives since the objective value will remain the same.
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(QMILP) in the centralized setting.4 Our main contri-

butions are to show how to solve both problems in a dis-

tributed manner: an LP-relaxation of the Bottleneck

variant using a local algorithm; and the WinnerTakesAll

variant using a greedy algorithm. The following theo-

rems summarize the main contributions of our work.

Theorem 1 Let 4R ≥ 2 be the maximum number of

motion primitives per robot and 4T ≥ 2 be the maxi-

mum number of motion primitives that can see a tar-

get. There exists a local algorithm that finds an 4R(1+

ε)(1 + 1/h)(1 − 1/4T ) approximation in O(h log 1/ε)

synchronous communication rounds for the LP-relaxation

of the Bottleneck version of SATA problem, where h

and ε > 0 are parameters.

The proof follows directly from the existence of the

local algorithm described in the next section. We show

how the local algorithm for MPCP can be modified to

solve SATA by means of a linear relaxation.

Theorem 2 There exists a 2–approximation greedy

algorithm for the WinnerTakesAll version of the SATA

problem for any ε > 0 in polynomial time.

This directly follows from the fact that the prob-

lem is a modular maximization problem subject to a

partition matroid constraint [10]. The algorithms are

described in the next section.

4 Distributed Algorithms

We begin by describing the local algorithm that solves

the Bottleneck version of SATA.

4.1 Local Algorithm

In this section, we show how to solve the Bottleneck ver-

sion of the SATA problem using a local algorithm. We

adapt the local algorithm for solving max-min LPs given

by Floréen et al. [12] to solve the SATA problem in a

distributed manner.

Consider the tripartite, weighted, and undirected

graph, G = (R ∪ P ∪ T,E) shown in Figure 3. Each

edge e ∈ E is either e = (ri,p
i
m) with weight 1 or e =

(tj ,p
i
m) with weight cji,m. The maximum degree among

robot nodes ri ∈ r is denoted by 4R and among target

nodes tj ∈ t is 4T . Each motion primitive pi
m ∈ pi

is associated with a variable xim. The upper two layers

4 Note that Problem 2 can also be converted into a simpler
Mixed Integer Linear Programming (MILP) by linearizing the
product of the binary variables in Equation (4), which is not
covered in this paper.

of G in Figure 3 are related with a packing problem

(Equation (4)). The lower two layers are related with

the covering problem.

Lemma 1 The Bottleneck version (Equation (2))

can be rewritten as a linear relaxation of ILP:

maximize w

subject to
∑

m∈P i

xim ≤ 1 ∀i ∈ R

∑
i∈R

∑
m∈P i

cji,mx
i
m ≥ w ∀j ∈ T

xim ≥ 0 ∀m ∈ P i.

(5)

The proof is given in Appendix A.

Fig. 3 One instance of a graph for MPCP when there are
three robot nodes, six motion primitive nodes and three tar-
get nodes.

Floréen et al. [12] presented a local algorithm to

solve MPCP in Equation (5) in a distributed fashion.

They presented both positive and negative results for

MPCP. We show how to adopt this algorithm for solv-

ing the Bottleneck version of SATA.

Fig. 4 Flowchart of the proposed local algorithm.

An overview of our algorithm is given in Figure 4.

We describe the main steps in the following.

4.1.1 Local Algorithm from Reference [12]

The local algorithm in Reference [12] requires 4R = 2.

However, they also present a simple local technique to



Distributed Assignment with Limited Communication 7

split nodes in the original graph with 4R > 2 into mul-

tiple nodes making 4R = 2. Then, a layered max-min

LP is constructed with h layers, as shown in Figure 5.

h is a user-defined parameter that allows to trade-off

computational time with optimality. If the number of

layers is set to h, then it means that a robot can commu-

nicate with another robot that is no more than h com-

munication edges (i.e., hops) away. The layered graph

breaks the symmetry that inherently exists in the orig-

inal graph. This layered mechanism is specifically de-

signed for solving MPCP and is covered in depth in

Section 4 of Reference [12]. We omit the details in this

paper due to limited space and redirect the readers to

Section 4 of Reference [12] for the construction of the

layered graph.

Fig. 5 Graph of the layered max-min LP with h = 2 that is
obtained from the original graph of Figure 3 after applying
the local algorithm. The details for constructing a layered
graph are given in Section 4 of Reference [12]. Each motion
primitive pi

m ∈ pi is colored either red or blue to break the
symmetry of the original graph. Squares, circles, and triangles
represent robot nodes, motion primitive nodes, and target
nodes, respectively, corresponding to Figure 3.

They proposed a recursive algorithm to compute a

solution of the layered max-min LP. The solution for

the original max-min LP can be obtained by mapping

from the solution of the layered one. The obtained so-

lution corresponds to values of xim. They proved that

the resulting algorithm gives a constant-factor approx-

imation ratio.

Theorem 3 There exists local approximation algorithms

for max-min and min-max LPs with the approximation

ratio 4R(1 + ε)(1 + 1/h)(1 − 1/4T ) for any 4R ≥ 2,

4T ≥ 2, and ε > 0, where h denotes the number of

layers.

Proof. Please refer to Corollary 4.7 from Reference [12]

for a proof.

Note that each node in the layered graph carries out

its local computation (details of the local computation

for solving SATA are included in Reference [12]). Each

node also receives and sends information from and to

neighbors at each synchronous communication round.

Constructing the layered graph is done in a local fashion

without requiring any single robot to know the entire

graph.

4.1.2 Realization of Local Algorithm for SATA

To apply the local algorithm of Section 4.1.1 to a dis-

tributed SATA problem, each node and edge in a lay-

ered graph must be realized at each time step (i.e., gen-

erating a graph shown in Figure 5 which becomes the

input to the local algorithm [12]). In our case, the only

computational units are the robots. Nodes that corre-

spond to motion primitives, pi
m ∈ pi, can be realized

by the corresponding robot ri ∈ r. Moreover, nodes

corresponding to the targets must also be realized by

robots. A target j is realized by a robot i satisfying

tj ∈ RS(pi
m). If there are multiple robots whose mo-

tion primitives can sense the target (by Assumption 1),

they can arbitrarily decide which amongst them realizes

the target nodes in a constant number of communica-

tion rounds.

After applying the local algorithm of Section 4.1.1

to robots, each robot obtains xim on corresponding pi
m

at each time. However, due to the LP relaxation, xim
will not necessarily be binary, as in Equation (1). For

each robot we set the highest xim equal to one and all

others as zero. We shortly show that the resulting solu-

tion after rounding is still close to optimal in practice.

Furthermore, increasing the parameter h finds solutions

that are close to binary.

The following pseudo-code explains the overall scheme

of each robot for a distributed SATA. We solve the

SATA problem at each time step.

4.1.3 Advantages of the Local Algorithm

It is possible that there are some robots that are iso-

lated from the others. That is, the communication graph

or the layered graph may be disconnected. However,

each component of the graph can run the local algo-

rithm independently without affecting the solution qual-

ity. Furthermore, if a robot is disconnected from the

rest, then it can take a greedy approach as described
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Algorithm 1: Local algorithm

1 for ri(k) ∈ r(k) do
2 pi(k)←ComputeMotionPrimitives(ri(k)).
3 Find targets that can be sensed by m-th motion

primitive of i-th robot (pi
m(k)).

4 Construct a h-hop communication graph.
5 Apply local algorithm [12].

6 x̂im ← Rounding
(
xim
)
.

7 pi∗
m(k)← Motion primitive with x̂im = 1.

8 ApplyAction
(
pi∗
m(k)

)
.

9 k ← k + 1.

10 end

in Reference [11] before they reach any other robots to

communicate.

The algorithm also allows for the number of robots

and targets to change over time. Since each robot deter-

mines its neighbors at each time step, any new robots or

targets will be identified and become part of the time-

varying local layered graphs. The robots can also be

anonymous (as long as they can break the symmetry

to determine which robot, amongst a set, will realize

the target node, when multiple robots can observe the

same target).

The number of layers, h, directly affects the solution

quality and can be set by the user. Increasing h results

in better solutions at the expense of more communica-

tion. h = 0 is equivalent to the greedy approach where

no robots communicate with each other.

pi
m xim h = 2 h = 10 h = 30

p1
1 x11 = 0.5000 0.5000 0.5000

p1
2 x12 = 0.5000 0.5000 0.5000

p2
3 x23 = 0.6667 0.7591 0.7855

p2
4 x24 = 0.3333 0.2409 0.2145

p3
5 x35 = 0.3333 0.2409 0.2145

p3
6 x36 = 0.6667 0.7591 0.7855

Table 1 Solution returned by the local algorithm for the
example shown in Figure 3, with all edges’ weights set to 1,
as a function of h.

The above table shows the result of applying the

local algorithm to the graph in Figure 3 when all edge

weights were set to 1. Three different values for h were

tested: 2, 10, and 30. In all cases, p2
3 and p3

6 have larger

values of xp than other nodes. Thus, the robot 2 (r2)

and the robot 3 (r3) will select the motion primitive 3

(p2
3) and the motion primitive 6 (p3

6), respectively, after

employing a rounding technique to xp’s.

As the number of layers increases, the more distinct

the xip values returned by the algorithm. Another inter-

esting observation is that robot 1 has the same equal

value on both motion primitives of its own no matter

how many number of layers are used. This is because

all the targets are already observed by robots 2 and 3

with higher values.

4.2 Greedy Algorithm

The greedy algorithm requires a specific ordering of the

robots given in advance. The first robot greedily chooses

a motion primitive that can maximize the number of

targets being observed. Those observed targets are re-

moved from the consideration. Then, the second robot

makes its choice; this repeats for the rest of robots.

If the communication graph is disconnected and forms

more than one connected component, the greedy algo-

rithm can independently be applied to each connected

component without modifying the algorithm. Note again

that the greedy algorithm is for the WinnerTakesAll

version of SATA.

Algorithm 2: Greedy algorithm

Input : Order of robots R.
1 Initialize w(tj) = 0 ∀j ∈ T .
2 for i ∈ R do
3 for m ∈ P i do

4 Compute cji,m ∀j ∈ T .

5 w′(pi
m) =

∑
j max{w(tj), cji,m}.

6 end
7 Determine xim = argmaxw′(pi

m) ∀m ∈ P i.

8 Update w(tj) = max{w(tj), cji,m} ∀j ∈ T .

9 end

10 yji ← 0 ∀i ∈ R, j ∈ T .
11 for j ∈ T do

12 r∗i ← argmaxi∈R
∑

m cji,mx
i
m.

13 yji∗ ← 1.

14 end

As shown in Algorithm 2, the greedy algorithm runs

in |R| communication rounds at each time step. We

define two additional functions: w(tj) gives a quality

of tracking for j-th target; and w′(pi
m) gives the sum

of quality of tracking over all feasible targets using m-

th motion primitive of i-th robot. If, for example, cji,m
is used as a distance metric, the max ensures that the

quality of tracking for j-th target is only given by the

distance of the nearest robot/primitive. That is, even if

multiple primitives can track the same target j, when

counting the quality we only care about the closest one.

The total quality will then be the sum of qualities for

each target.
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The objective in Line 5 in Algorithm 2 appears, at

first sight, to be different than that given in Equation

(4). The following lemma, however, proves that the two

objectives are equivalent.

Lemma 2 Greedy algorithm of Algorithm 2 gives a

feasible solution for the WinnerTakesAll version of SA-

TA.

The proof is given in Appendix B. Since the objec-

tive in Line 5 in Algorithm 2 is submodular, the result-

ing algorithm yields a 2–approximation to WinnerTakes-

All [10].

The greedy algorithm can perform arbitrarily worse

than the optimal solution if it is applied to the Bottlene-

ck version of the problem. In Appendix C, we show an

example where the greedy yields an arbitrarily bad so-

lution for the Bottleneck version.

A centralized-equivalent approach is one where the

robots all broadcast their local information until some

robot has received information from all others. This

robot can obtain a centralized solution to the problem.

A centralized-equivalent approach for a complete GC
runs in 2 communication rounds for receiving and send-

ing data to neighbors. However, the greedy algorithm

and local algorithm have |R| and h log(1/ε) communica-

tion rounds, respectively, for a complete GC . Note that

h� |R| for most practical cases.

5 Simulations

We carried out four types of simulations to verify the

efficacy of the proposed algorithms under the condition

that the amount of time required for communication

is limited. First, we compare the performance of the

greedy and local algorithms with centralized, optimal

solutions. Second, we study the effect of varying the

parameters (i.e., the number of layers) for the local

algorithm. Third, we describe how to implement the

algorithms for sequential planning over multiple hori-

zons and evaluate their performance over time. Last,

we compare the greedy algorithm with a state-of-the-

art distributed tracking algorithm.

5.1 Comparisons with Centralized Solutions

We performed comparison studies to verify the perfor-

mance of the proposed algorithms. We compared the

greedy solution with the optimal, centralized QMILP

solution as well as a random algorithm as a baseline

for the WinnerTakesAll version. We compared the lo-

cal algorithm’s solution with the optimal ILP solution

as well as the LP with rounding for Bottleneck. For

these comparisons, we assumed that there are only two

primitives to choose from (making the random algo-

rithm a powerful baseline). We later analyzed the algo-

rithms with more primitives. We used TOMLAB [64] to

solve the QMILP and ILP problems. The toolbox works

with MATLAB and uses IBM’s CPLEX optimizer in

the background. On a laptop with processor configura-

tion of Intel Core i7-5500U CPU @ 2.40GHz x 4 and 16

GB of memory the maximum time to solve was around

3 seconds on a case with 150 targets. Most of our cases

were solved in less than 2 seconds.

We randomly generated graphs similar to Figure 3

for the comparison. To control the topology of the ran-

domly generated graphs, we defined φ : GS → R to be

the percentage of targets that are detected by a mo-

tion primitive. We denote the average degree of edges

by davg(·). Therefore:

φ(GS) :=
davg(T )∑|R|
i=1 |P i|

× 100 =
|ES |∑|R|

i=1 |P i||T |
× 100. (6)

We started with the upper half of the graph, con-

necting each robot to its two motion primitives. Then,

we iterated through each of motion primitive and ran-

domly chose a target node to create an edge. Next,

we iterated through target nodes and randomly chose

a motion primitive to create an edge. We also added

random edges to connect disconnected components (to

keep the implementation simpler). We repeated this in

order to get the required graph. If we needed to increase

the degree of target nodes in the graph, we created new

edges to random primitives till we achieved the desired

φ(GS). We generated cases by varying φ(GS), number

of targets, and number of robots using the method de-

scribed above. Here, the tracking quality was defined as

the number of targets, i.e., cji,m ∈ {0, 1} for all cases.

The comparative simulation results for WinnerTakes-

All are presented in Figure 6. The plots show min-

imum, maximum, and average of the targets covered

by the greedy algorithm and QMILP running 100 ran-

dom instances for every setting of the parameters. We

also show the number of targets covered when choosing

motion primitives randomly as a baseline. We observe

that the greedy algorithm performs comparatively to

the optimal algorithm, and is always better than the

baseline. In all the figures, ∆R = 2, making random

a relatively powerful baseline. The difference between

the greedy algorithm and the baseline becomes smaller

as φ(GS) increases. This could be because of the fact

that the baseline saturates at the maximum objective

value with fewer robots as φ(GS) increases. As φ(GS),

number of targets, and number of robots increase, the

performance of the greedy algorithm also improves.
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Fig. 6 Showing the comparative results of QMILP, greedy algorithm, and randomly choosing a motion primitive for
WinnerTakesAll. To generate the graphs, we varied number of robots, total number of targets, and φ(GS). We ran 100 trials
for each case.

Fig. 7 Comparison simulation for the Bottleneck version of the ILP, LP with rounding, local algorithm and randomly choosing
a motion primitive. We set h to 2 in the local algorithm, for all cases. Each case was obtained from 100 trials.
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Figure 7 shows the comparison results for Bottlene-

ck where the objective values were computed from the

w term of Equation (5). As the proposed local algo-

rithm is a linear relaxation of the ILP formulation, we

compared the local solution with the optimal ILP so-

lution. Note that both the ILP and LP with rounding

are centralized methods. If the solution value is 0, this

means that at least one target is not covered by any se-

lected motion primitives. The specific configuration of

input motion primitives and target states is such that

no matter what motion primitives are chosen, at least

one target will be left uncovered. This means that the

bottleneck objective (i.e., the optimal value of ILP) is

0. If the mean value is larger than 0, this implies that

all targets are covered by at least one motion primitive

on average. The ILP and LP with rounding outperform

the local algorithm in all cases. Nevertheless, we find

that the local algorithm performs comparably to the

centralized methods (and far better than the theoreti-

cal bound).

5.2 Effect of h for the Local Algorithm

(a) LP with rounding. (b) LP without rounding.

Fig. 8 Analysis of varying the number of layers (h) for
the local algorithm. The number of targets used is 50 and
φ(GS) = 15%. We ran 100 trials for each case.

We analyzed the performance of the local algorithm

for different number of layers (i.e., h), as shown in Fig-

ure 8. The LP value (without rounding) is the upper

bound on the optimal solution. We observed how much

the rounding sacrifices by comparing the LP with and

without the rounding. In the case where h was set to 5

and 8 for both with and without the rounding, there is

no evident difference between them. This implies that h

should not necessarily be large as it does not contribute

to the solution quality much (as also seen in Theo-

rem 1). In other words, the local algorithm does not

require a large number of communication hops among

robots, which is a powerful feature of the local algo-

rithm.

5.3 Multi-robot Multi-target Tracking over Time

The greedy and local algorithms find the motion prim-

itives to be applied over a single horizon. In order to

track over time, the SATA problem will need to be

solved repeatedly at each time step. In this section, we

describe how to address this and other challenges as-

sociated with a practical implementation. We demon-

strate a realistic scenario of cooperative multi-target

tracking in the Gazebo simulator using ROS (Figure 9).

A bounded environment consists of dynamic targets

that move in a straight line and change their heading

direction randomly after a certain period. The motion

model is not known to the robots.

Fig. 9 Gazebo simulator showing ten robots tracking thirty
randomly moving targets. We set the sensing and communi-
cation ranges to 5m and 10m, respectively.

Greedy Algorithm. We implemented the greedy algo-

rithm to solve the WinnerTakesAll variant in a fully

distributed fashion. There was no centralized algorithm

and each robot was a separate ROS node that only had

access to the local information. Each robot had its lo-

cal estimator that estimated the state of targets within

its FOV. We simulated proximity-limited communica-

tion range such that only robots that can see the same

target can exchange messages with each other.

A sketch for the implementation of the greedy algo-

rithm is as follows. Each robot has a local timer which

is synchronized with the others. Each robot also knows

its own ID which is also the order in which the sequen-

tial decisions are made. We partition the planning hori-

zon into two periods. In the first selection period, the

robots choose their own primitives sequentially using

the greedy algorithm. In the second execution period,

the robots apply their motion primitives and obtain

measurements of the target.

In the selection period, a robot waits for the pre-

decessor robots (of lower IDs) to make their selections.

Every robot knows when it is its turn to select a mo-

tion primitive (since the order is fixed). Before its turn,

a robot simply keeps track of the most recent w(tj)
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vector received from a predecessor robot within com-

munication range. During its turn, the robot chooses

its motion primitive using the greedy algorithm, and

updates the w(tj) vector based on its choice. It then

broadcasts this updated vector to the neighbors, and

waits for the selection period to end. Then, each robot

applies its selected motion primitive till the end of the

horizon. The process repeats after each planning hori-

zon. The selection period can be preceded by a sensor

fusion period, where the robots can execute, for exam-

ple, the covariance intersection algorithm [62].

For simulations we set the selection and execution

periods times to 0.2|R|s and 6s, respectively, where |R|
is the number of robots. Each robot made its choice af-

ter 0.2s within the selection period. Each robot had a

precomputed library of 21 motion primitives including

staying in place. It should be noted that our algorithms

do not require a motion primitive of stay in place. Each

robot had a disk-shaped FOV. The sensing and commu-

nication ranges were set to 5m and 10m, respectively.

We tested both the inverse of the distance and the num-

ber of targets as tracking quality (which defines cji,m).

We carried out simulations using ten robots track-

ing thirty moving targets, as shown in Figure 9. Initial

positions of robots and targets were randomly chosen

in a 30 × 30m square environment. It may be possible

that some targets were outside the FOV of any robots

in the beginning.

Fig. 10 Change in the number of targets over time when ten
robots are tracking thirty moving targets.

Figure 10 shows the change in the number of targets

over time from a randomly generated instance where

the objective was to track the most number of targets.

We show both the estimated number of targets and the

actual number of targets. The estimated number is the

(a) Actual number of targets. (b) Estimated number of tar-
gets.

Fig. 11 Histogram of the number of targets.

value of the solution found at the end of the selection

period (obtained every 8s). This is based on the pre-

dicted trajectory of the targets.5 The actual number of

targets was found by counting the target that is within

the FOV of any robots during the execution period.

Figure 11 shows the histogram of the actual and esti-

mated number of targets for 10 trials, each lasting three

minutes.

Fig. 12 Change in the inverse of the distance over time when
ten robots are tracking thirty moving targets.

Figures 12 and 13 show the corresponding plots when

the objective was to maximize the total quality of track-

ing (inverse distance to the targets). Here, we saw that

the estimated and the actual values differed much more

than the previous case. We conjectured that this was

due to the fact that the uncertainty in the motion model

of the robots, targets, and measurements had a larger

effect on the actual quality of tracking as compared to

the number of targets tracked. For instance, even if the

actual state of the target deviates from the predicted

5 Although we model linear motion for the targets, more
sophisticated models for the prediction of target states can
also be employed.
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(a) Actual inverse distance. (b) Estimated inverse dis-
tance.

Fig. 13 Histogram of the inverse distance.

state, it is still likely that the target will be in the FOV.

However, the actual distance between the robot and the

target may be much larger than estimated.

Fig. 14 Snapshot of the Gazebo simulator that shows when
five robots are tracking thirty stationary and moving targets.
The sensing and communication ranges were set to 3m and
6m, respectively.

Local Algorithm. We also implemented the proposed lo-

cal algorithm as shown in Figure 14. Five mobile robots

were deployed to track thirty targets (a subset of which

were mobile) with a FOV of 3m on the xy plane. For

each robot two motion primitives were used: one was to

remain in the same position and the other one was ran-

domly generated between −30◦ and 30◦ of the robot’s

heading traveling randomly up to 1m.

The objective of this simulation is to show the per-

formance of the proposed algorithm for the Bottleneck

version. At each time step, the local algorithm was

employed to choose motion primitives that maximize

the minimum number of targets being observed by any

robots.

Figure 15 shows the resultant trajectories of robots

and targets obtained from the simulation. Figure 16

presents the (total/average) number of targets tracked

by the local algorithm for a specific instance. Although

the local algorithm has a sub-optimal performance guar-

antee, we observe that in practice, it performs compa-

rably to the optimal path.

Fig. 15 Plot of trajectories of robots and targets applying
the local algorithm to the simulation given in Figure 14. Black
lines represent trajectories of thirty targets. ◦ denotes the end
position of trajectories. The algorithm was performed for 40
seconds.

(a) Total number of targets
observed.

(b) Average number of tar-
gets observed over time.

Fig. 16 Change in the total and average number of targets
being observed by any robots over time.

5.4 Comparison of the Greedy Algorithm with Other

CMOMMT Algorithm

We compared the greedy algorithm with an algorithm

proposed by Parker [2] following the CMOMMT ap-

proach. This algorithm addresses the same objective

as the WinnerTakesAll. Parker’s algorithm computes

a local force vector for all robots (attraction by nearby

targets and repulsion by other nearby robots). It does

not require any central unit to determine their motion

primitives and considers limited sensing and communi-

cation ranges, similar to this paper. Parker’s algorithm

determines the moving direction of robots by using the

local force vector and moves the robots along this di-

rection until they meet the available maneuverability at

each time step. However, no theoretic guarantee with

respect to the optimal solution was provided by this

algorithm.
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We created an environment of 200 × 200m square

for comparison using MATLAB. The robots can move

10m per time step while the targets can move 5m per

time step and randomly changed their direction every

25 time steps. If the targets met the boundary of the

environment, they picked a random direction that kept

them within the environment. In each instance, robots

and targets were randomly located initially. The sensing

and communication ranges were set to 40m and 80m,

respectively.

We empirically studied two cases: the first is to eval-

uate the objective value of the proposed greedy algo-

rithm and Parker’s algorithm for the same problem in-

stance at a given time step; and the second is to apply

the two algorithms over 200 time steps starting from

the same configuration.

When both algorithms were applied to the same

problem setup (Figure 17(a)), the objective values for

both algorithms increased as the number of targets in-

creased. Nevertheless, the greedy algorithm outperformed

Parker’s algorithm. This can be attributed to the fact

that Parker’s algorithm computes the local force vec-

tor based on a heuristic (get closer to the targets) but

does not explicitly optimize the objective function of

WinnerTakesAll. In Figures 17(b) and 17(c), similar

results can be seen when both algorithms generate dif-

ferent trajectories for robots after 200 time steps. The

comparison measure used in Figure 17(c) is the aver-

age of the objective value over time, first proposed by

Parker [2]. These empirical simulations show the su-

perior performance of the greedy algorithm over the

existing method.

In summary, we find that our algorithms perform

comparably with centralized, optimal algorithms and

outperform the baseline algorithm. We also find that

greedy algorithm has better performance than the de-

centralized algorithm from Parker [2]. In theory, the

performance bound for the local algorithm worsens as

h, the amount of communication available, decreases.

However, in practice, we find that the local algorithm

does not require a large number of layers to yield good

performance, which reduces the computational and com-

munication burden.

6 Conclusion

This paper gives a new approach to solve the multi-

robot multi-target assignment problem using greedy and

local algorithms. Our work is motivated by scenarios

where the robots would like to reduce their communi-

cation to solve the given assignment problem while at

the same time maintaining some guarantees of track-

ing. We used powerful local communication framework

employed by Floréen et al. [12] to leverage an algo-

rithm that can trade-off the optimality with communi-

cation complexity. We empirically evaluated this algo-

rithm and compared it with the baseline greedy strate-

gies.

Our immediate future work is to expand the scope

of the problem to solve both versions of SATA over mul-

tiple horizons. In principle, we can replace each motion

primitive input with a longer horizon trajectory and

plan for multiple time steps (say, H time steps). How-

ever, this comes at the expense of increased number of

trajectories |P i|H to choose from which will result in

increased computational time. Furthermore, planning

for a longer horizon will require prediction of targets’

states far in the future which can lead to poorer tracking

performance. We are also working on implementing the

resulting algorithms on actual aerial robotic systems to

carry out real-world experimentation.
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A Proof of Lemma 1

Equation (5) of a max-min linear program is equivalent to
the following max-min problem if the scalar variable w which
represents the inner minimization is eliminated:

max
xi

m

min
j∈T

∑
i∈R

∑
m∈P i

cji,mx
i
m


subject to

∑
m∈P i

xim ≤ 1 ∀i ∈ R

xim ≥ 0 ∀m ∈ P i.

(7)

From Equations (5) and (7), the following relationship is
satisfied:

w∗ = min
j∈T

∑
i∈R

∑
m∈P i

cji,mx
i
m
∗

 . (8)

Since Equation (2) does not require xim to be a linear
value, Equation (2) is equivalent to Equation (5) with addi-
tional integer constraints.

B Proof of Lemma 2

Considering cji,m, which is a weight between m-th motion
primitive of i-th robot and j-th target on graph GS , a quality
of tracking (w(tj)) for j-th target can be defined as follows:

w(tj) , max{cji,m
∣∣xim = 1, ∀i ∈ R,m ∈ P i}. (9)

Therefore, the sum of quality of tracking over all targets
is:∑
j∈T

w(tj) =
∑
j∈T

max{cji,m
∣∣xim = 1, ∀i ∈ R,m ∈ P i}

=
∑
j∈T

(∑
i∈R

yji

( ∑
m∈P i

cji,mx
i
m

))
.

(10)

Equation (10) is obtained by taking into account the con-
ditional term of the first equation explicitly. The last equation
follows from the property that yji chooses the maximum value

of
∑

m∈P i c
j
i,mx

i
m among all robots, which is shown in lines

10-14 of Algorithm 2. Therefore, the last equation is equal to
the inner term of Equation (4).

C Greedy Performs Poorly for the Bottleneck

Variant

We present an example of instance that shows an arbi-
trary poor performance of the greedy algorithm when applied
to the Bottleneck variant. Consider the following case where
there are two robots (ri) having two motion primitives (pi

m)
for each and two targets. The realization of the communi-
cation and sensing graphs are as in the following table. The
tracking quality in this example corresponds to the number
of targets being tracked.

p1
1, p2

1 p1
2, p2

2

r1 t1 ∅
r2 ∅ t2

Let’s apply the Bottleneck version of greedy algorithm
to this case. Since the objective of the Bottleneck variant
is to maximize the minimum tracking quality, the robot 1
(r1) chooses motion primitive 2 (p1

2) because choosing mo-
tion primitive 1 (p1

1) gives the value of 1 while choosing mo-
tion primitive 2 (p1

2) gives the value of 0. For the same rea-
son, the robot 2 (r2) chooses motion primitive 1 (p2

1). This
gives the total value of 0, whereas the optimal solution is 2
as the first robot and second robot choose motion primitive

http://tomopt.com/docs/quickguide/quickguide006.php
http://tomopt.com/docs/quickguide/quickguide006.php
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1 (p1
1) and motion primitive 2 (p2

2), respectively. The similar
case is reproducible with a larger number of robots, motion
primitives, and targets. Thus, the simple greedy performs ar-
bitrarily badly for the Bottleneck variant.
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