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Abstract—Fast algorithms for optimal multi-robot path plan-
ning are sought after in real-world applications. Known methods,
however, generally do not simultaneously guarantee good solution
optimality and good (e.g., polynomial) running time. In this
work, we develop a first low-polynomial running time algorithm,
called SPLITANDGROUP (SAG), that solves the multi-robot path
planning problem on grids and grid-like environments, and
produces constant factor makespan optimal solutions on average
over all problem instances. That is, SAG is an average case O(1)-
approximation algorithm and computes solutions with sub-linear
makespan. SAG is capable of handling cases when the density
of robots is extremely high - in a graph-theoretic setting, the
algorithm supports cases where all vertices of the underlying
graph are occupied. SAG attains its desirable properties through
a careful combination of a novel divide-and-conquer technique,
which we denote as global decoupling, and network flow based
methods for routing the robots. Solutions from SAG, in a weaker
sense, are also a constant factor approximation on total distance
optimality.

I. INTRODUCTION

(a) (b)

Fig. 1. (a) Automated straddle carriers at the port of Los Angeles. Each
straddle carrier is capable of autonomously navigate to pick up or drop off
a shipping container at a designated location. (b) Amazon’s Kiva multi-robot
system working at its order fulfillment centers.

Fast methods for multi-robot path planning have found many
real-world applications including shipping container handling
(Fig. 1(a)), order fulfillment (Fig. 1(b)), horticulture, among
others, drastically improving the associated process efficiency.
While commercial applications have been able to scale quite
well, e.g., a single Amazon fulfillment center can operate
thousands of Kiva mobile robots, it remains unclear what
level of optimality is achieved by the underlying planning
and scheduling algorithms in these applications. As such,
there remains the opportunity of uncovering structural insights
and novel algorithmic solutions that substantially improve the
throughput of current production systems that contain some
multi-robot (or more generally, multi-body, where a single body
may be actuated using some external mechanism) sub-systems.

The disconnection that exists in applications regarding multi-
robot routing may be more formally characterized as an
optimality-efficiency gap that has been outstanding in the multi-
robot research domain for quite some time: known algorithms
for multi-robot path planning do not simultaneous guarantee
good solution optimality and fast running time. This is not
entirely surprising as it is well known that optimal multi-
robot path planning problems are generally NP-hard [1]–[3].
Nevertheless, whereas these negative results suggest that finding
polynomial-time algorithms that compute exact optimal solu-
tions for multi-robot path planning problems is impossible, they
do not preclude the existence of polynomial-time algorithms
that compute approximately optimal solutions.

Motivated by both practical relevance and theoretical signifi-
cance, in this work, we narrow this optimality-efficiency gap in
multi-robot path planning, focusing on a class of grid-like, well-
connected environments. Here, well-connected environments
(to be formally defined) include the container shipping port
scenario and the Amazon fulfillment center scenario. A key
property of these environments is that sub-linear time-optimal
solution is possible, which is not true for general environments.
Using a careful combination of divide-and-conquer and network
flow techniques, we show that constant factor makespan opti-
mal solutions can be computed in low-polynomial running time
in the average case, where the average is computed over all
possible problem instances for an arbitrary fixed environment.
We call the resulting algorithm SPLITANDGROUP (SAG). In
other words, SAG can efficiently compute O(1)-approximate
solutions on average. The current paper is devoted to establish-
ing the construction, correctness, and key properties of SAG;
we refer readers to [4] for implementations and performance
characteristics of SAG, where these issues are examined in
detail.

Intuitively, when the density of the robots are high in a given
environment, computing solutions for optimally routing these
robots will be more difficult. With this line of research, our ul-
timate goal is to achieve a fine-grained structural understanding
of the multi-robot path planning problem that allows the design
of algorithms to gracefully balance between robot density and
computational efficiency. As we know, when the density of
robots are low, planning can be rather trivial: paths may be
planned for individual robots first and because conflicts are rare,
they can be resolved on the fly. In the current work, we attack
the other end of the spectrum: we focus on the case of having a
robot occupy each vertex of the underlying discrete graph, i.e.,
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we work with the case of highest possible density under the
given formulation. Beside the obvious theoretical challenge that
is involved, we believe the study benefits algorithm design for
lower density cases. Regarding this, a particularly interesting
tool developed in this work is the global decoupling technique
that enables the SAG algorithm.

Contributions. The main contribution brought forth by this
work is a first low-polynomial time, deterministic algorithm,
SAG, for solving the optimal multi-robot path planning problem
on grids and grid-like, well-connected environments. Under the
prescribed settings, SAG computes a solution with sub-linear
makespan. Moreover, the solution is only a constant multiple of
the optimal solution on average. In a weaker sense, SAG also
computes solutions with total distance a constant multiple of the
optimal for a typical instance on average. The results presented
in this work expand over a conference publication [5]. Most
notably, this paper (i) provides a fuller account of the motivation
and relevance that underlie the work, covering both practical
and theoretical aspects, and (ii) includes complete proofs for
all theorems; many of these proofs are much improved versions
that are more clear than what appeared (as sketches) in [5].

Organization. The rest of the paper is organized as fol-
lows. Related works are discussed in Sec. II. In Sec. III,
the discrete multi-robot path planning problem is formally
defined, followed by analysis on connectivity for achieving
good solution optimality. This leads us to the choice of grid-
like environments. We describe the details of SAG in Sec. IV.
In Sec. V, complexity and optimality properties of SAG are
established. In Sec. VI, we show that SAG generalizes to
higher dimensions and (grid-like) well-connected environments
including continuous ones.

II. RELATED WORK

In multi-robot path and motion planning, the main goal
is for the moving bodies, e.g., robots or vehicles, to reach
their respective destinations, collision-free. Frequently, certain
optimality measure (e.g., time, distance, communication) is
also imposed. Variations of the multi-robot path and motion
planning problem have been actively studied for decades [6]–
[25]. As a fundamental problem, it finds applications in a
diverse array of areas including assembly [26], [27], evacua-
tion [28], formation [29]–[33], localization [34], micro droplet
manipulation [35], object transportation [36], [37], and search-
rescue [38]. In industrial applications pertinent to the current
work, centralized planners are generally employed to enforce
global control to drive operational efficiency. The algorithm
proposed in this work also follows this paradigm.

Similar to single robot problems involving potentially many
degrees of freedom [39], [40], multi-robot path planning is
strongly NP-hard even for discs in simple polygons [41] and
PSPACE-hard for translating rectangles [42]. The hardness of
the problem extends to unlabeled case [43] where it remains
highly intractable [44], [45]. Nevertheless, under appropriate
settings, the unlabeled case can be solved near optimally [17],
[46]–[48].

Because general (labeled) optimal multi-robot path planning
problems in continuous domains are extremely challenging,
a common approach is to start with a discrete setting from
the onset. Significant progress has been made on solving the
problem optimally in discrete settings, in particular on grid-
based environments. Multi-robot motion planning is less com-
putationally expensive in discrete domains, with the feasibility
problem readily solvable in O(|V |3) time, in which |V | is
the number of vertices of the discrete graph where the robots
may reside [49]–[52]. In particular, [52] shows that the setting
considered in this paper is always feasible except when the grid
graph has only four vertices (which is a trivial case that can be
safely ignored).

Optimal versions of the problem remain computationally
intractable in a graph-theoretic setting [1]–[3], [53], [54], but
the complexity has dropped from PSPACE-hard to NP-complete
in many cases. This has allowed the application of the intuitive
decoupling-based heuristics [55]–[57] to address several dif-
ferent costs. In [13], individual paths are planned first. Then,
interacting paths are grouped together for which collision-free
paths are scheduled using Operator Decomposition (OD). The
resulting algorithm can also be made complete (i.e., an anytime
algorithm). Sub-dimensional expansion techniques (M*) were
used in [58], [59] that actively restrict the search domain
for groups of robots. Conflict Based Search (CBS) [60]–[62]
maintains a constraint tree (CT) for facilitating its search
to resolve potential conflicts. With [63], efficient algorithms
are supplied that compute solutions with bounded optimality
guarantees. Robots with kinematic constraints are dealt with
in [64]. Beyond decoupling, other ideas have also been ex-
plored, including casting the problem as other known NP-hard
problems [65]–[67] for which high-performance solvers are
available. More recently, robustness, longer horizon, and other
related issues have been studied in detail [68], [69].

III. PRELIMINARIES

In this section, we state the multi-robot path planning prob-
lem and two important associated optimality objectives, in
a graph-theoretic setting. Then, we show that working with
arbitrary graphs may lead to rather sub-optimal solutions (i.e.,
super-linear with respect to the number of vertices). This
necessitates the restriction of the graphs if desirable optimality
results are to be achieved.

A. Graph-Theoretic Optimal Multi-Robot Path Planning

Let G = (V,E) be a simple, undirected, and connected
graph. A set of N labeled robots may move synchronously in a
collision-free manner on G. At integer time steps starting from
t = 0, each robot resides on a unique vertex of G, inducing
a configuration X of the robots. Effectively, X is an injective
map X : {1, . . . , N} → V specifying which robot occupies
which vertex (see Fig. 2). From step t to step t + 1, a robot
may move from its current vertex to an adjacent one under
two collision avoidance conditions: (i) the new configuration
at t + 1 remains an injective map, i.e., each robot occupies a



unique vertex, and (ii) no two robots may travel along the same
edge in opposite directions.
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(a) (b)

Fig. 2. Graph-theoretic formulation of the multi-robot path planning problem.
(a) A configuration of six robots on a graph (roadmap) with seven vertices. (b)
A configuration that is reachable from (a) in a single synchronous move.

A multi-robot path planning problem (MPP) is fully defined
by a 3-tuple (G,XI , XG) in which XI and XG are two
configurations. In this work, we look at the most constraining
case of |XI | = |XG| = |V |. That is, all vertices of G are
occupied. We are interested in two optimal MPP formulations.
In what follows, makespan is the time span covering the start
to the end of a task. All edges of G are assumed to have a
length of 1 so that a robot traveling at unit speed can cross it
in a single time step.

Problem 1 (Minimum Makespan (TMPP)). Given G,XI , and
XG, compute a sequence of moves that takes XI to XG while
minimizing the makespan.

Problem 2 (Minimum Total Distance (DMPP)). Given G,XI ,
and XG, compute a sequence of moves that takes XI to XG

while minimizing the total distance traveled.

These two problems are NP-hard and cannot always be
solved simultaneously [54].

B. Effects of Environment Connectivity

The well-known pebble motion problems, which are highly
similar to MPP, may require Ω(|V |3) individual moves to solve
[70]. Since each pebble (robot) may only move once per step, at
most |V | individual moves can happen in a step. This implies
that pebble motion problems, even with synchronous moves,
can have an optimal makespan of Ω(|V |2), which is super linear
(i.e. ω(|V |)). The same is true for TMPP under certain graph
topologies. We first prove a simple but useful lemma for a class
of graphs we call figure-8 graphs. In such a graph, there are
|V | = 7n + 6 vertices for some integer n ≥ 0. The graph is
formed by three disjoint paths of lengths n, 3n+2, and 3n+2,
meeting at two common end vertices. Figure-8 graphs with
n = 1 are illustrated in Fig. 3.

An interesting property of figure-8 graphs is that an arbitrary
MPP instance on such a graph is feasible.

Lemma 1. An arbitrary MPP instance (G,XI , XG) is feasible
when G is a figure-8 graph.

Proof: Using the three-step plan provided in Fig. 3, we
may exchange the locations of robots 1 and 2 without collision.
This three-step plan is scale invariant and applies to any n.
With the three-step plan, the locations of any two adjacent
robots (e.g., robots 4 and 5 in the top left figure of Fig. 3)

can be exchanged. To do so, we may first rotate the two
adjacent robots of interest to the locations of robots 1 and 2,
do the exchange using the three-step plan, and then reverse
the initial rotation. Let us denote such a sequence of moves as
a 2-switch (more formally known as a transposition in group
theory). Because the exchange of any two robots on the figure-8
graph can be decomposed into a sequence of 2-switches, such
exchanges are always feasible. As an example, the exchange of
robots 4 and 9 can be carried out using a 2-switch sequence
〈(3, 4), (2, 4), (1, 4), (4, 9), (1, 9), (2, 9), (3, 9)〉, of which each
individual pair consists of two adjacent robots after the previous
2-switch is completed. Because solving the MPP instance
(G,XI , XG) can be always decomposed into a sequence of
two-robot exchanges, arbitrary MPP instances are solvable on
figure-8 graphs.
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Fig. 3. A three-step plan for exchanging robots 1 and 2 on a figure-8 graph
with 7n+ 6 vertices (n = 1 in this case).

The introduction of figure-8 graphs allows us to formally
establish that sub-linear optimal solutions are not possible on
an arbitrary connected graph.

Proposition 2. There exists an infinite family of TMPP in-
stances on figure-8 graphs with ω(|V |) minimum makespan.

Proof: We will establish the claim on the family of figure-
8 graphs. By Lemma 1, there exists a sequence of moves that
takes arbitrary configuration XI to arbitrary configuration XG.
For a figure-8 graph with |V | vertices, there are |V |! possible
configurations. Starting from an arbitrary configuration XI , let
us build a tree of adjacent configurations (two configurations
are adjacent if a single move changes one configuration to the
other) with XI as the root and estimate its height hT , which
bounds the minimum possible makespan. In each move, only
one of the three cycles on the figure-8 graph may be used to
move the robots and each cycle may be moved in clockwise
or counterclockwise direction; no two cycles may be rotated
simultaneously. Therefore, the tree has a branching factor of
at most 6. Assume the best case in which the tree is balanced
and has no duplicate nodes (i.e., configuration), we can bound
hT as 6hT+1 ≥ |V |!. That is, the tree must have at least |V |!
unique configuration nodes derived from the root XI , because
all |V |! configurations are reachable from XI . With Stirling’s
approximation [71],

|V |! ≥
√

2π|V |( |V |
e

)|V |,



which yields
hT = Ω(|V | log |V |).

This shows that solving some instances on figure-8 graphs
requires Ω(|V | log |V |) steps, establishing that TMPP could
require a minimum makespan of ω(|V |).

Because n in the figure-8 graph is an arbitrary non-negative
integer, |V | has an infinite number of values. Hence, there is
an infinite family of such graphs.

Proposition 2 implies that if the classes of graphs are not
restricted, we cannot always hope for the existence of solutions
with linear or better makespan with respect to the number of
vertices of the graphs, i.e.,

Corollary 3. TMPP does not admit solutions with linear or
sub-linear makespan on an arbitrary graph.

Corollary 3 suggests that seeking general algorithms for
providing linear or sub-linear makespan that apply to all
environments will be a fruitless attempt. With this in mind, the
paper mainly focuses on a restricted but very practical class of
discrete environments: grid graphs.

IV. ROUTING ROBOTS ON RECTANGULAR GRIDS WITH A
SUB-LINEAR MAKESPAN

A. Main Result

We first outline the main algorithmic result of this work and
the key enabling idea behind it, a divide-and-conquer scheme
which we denote as global decoupling.

Assuming unit edge lengths, a rectangular grid is fully
specified by two integers m` and ms, representing the number
of vertices on the long and short sides of the grid, respectively.
Without loss of generality, assume that m` ≥ ms (see Fig. 4
for a 8× 4 grid). We further assume that m` ≥ 3 and ms ≥ 2
since an MPP on a smaller grid is trivial. These assumptions are
implicitly assumed in this paper whenever grid is mentioned,
unless otherwise stated. We note that an MPP problem on such
a grid is always feasible, as established formally in [52]. The
main result to be proven in this section is the following.

Theorem 4. Let (G,XI , XG) be an arbitrary TMPP instance
in which G is an m`×ms grid. The instance admits a solution
with O(m`) makespan.

Note that the O(m`) bound is sub-linear with respect to
the number of vertices, which is Ω(msm`) and Ω(m2

`) for
square grids. We name the algorithm, to be constructed, as
SPLITANDGROUP (SAG) and first sketch how the divide-
and-conquer algorithm works at a high level. In this section
we focus on the makespan property of SAG. We delay the
establishment of polynomial-time complexity and additional
properties of the algorithm to Section V.

Assume without loss of generality that m` = 2k1 ms = 2k2

for some integers k1 and k2 (we note that our algorithm does
not depend on m` and ms being powers of 2 at all; the
assumption only serves to simplify this high-level explanation).
In the first iteration of SAG, it splits the grid into two smaller
rectangular grids, G1 and G2, of size 2k1−1 × 2k2 each. Then,

robots are moved so that at the end of the iteration, if a
robot has its goal in G1 (resp., G2) in XG, it should be on
some arbitrary vertex of G1 (resp., G2). This is the group
operation. An example of a single SAG iteration is shown in
Fig. 4. We will show that such an iteration can be completed
in O(m`) = O(2k1) steps (makespan). In the second iteration,
the same process is carried out on both G1 and G2 in parallel,
which again requires O(m`) = O(2k1) steps. In the third
iteration, we start with four 2k1−1×2k2−1 grids and the iteration
can be completed in O(2k1−1) = O(m`

2 ) steps. After 2k1
iterations, the problem is solved with a makespan of

2O(m`) + 2O(
m`

2
) + 2O(

m`

4
) + . . .+ 2O(1) = O(m`).

G1 G2

Fig. 4. Illustration of a single iteration of SAG on an 8× 4 grid. Note that
the grid is fully populated with robots and some are not shown in the figure.
The overall grid is split in the middle by the dotted line to give two 4 × 4
grids, G1 and G2. The robots shown on G1 (resp., G2) have goal locations
on G2 (resp., G1). In the group operation, these robots must move across the
split line after the operation is complete. Other robots (not shown) on the grid
must be where they were after the operation. In the next iteration, the same
procedure is applied to G1 and G2 in parallel.

The divide-and-conquer approach that we use share similar-
ities with other decoupling techniques in that it seeks to break
down the overall problem into independent sub-problems. On
the other hand, it significant differs from previous decoupling
schemes in that the decoupling in our case is global. Therefore,
we denote the scheme as the global decoupling technique.

We proceed to describe an iteration of the SAG algorithm in
detail, which depends on following sub-routines, in a sequential
manner (i.e., a later sub-routine makes use of the earlier ones):
• Concurrent exchange of multiple pairs robots embedded

in a grid in a constant number of steps (Lemma 5).
• Exchange of two groups of robots on a tree embedded in

a grid in time steps linear with respect to the diameter
(i.e., length of the longest path) of the tree (Lemma 6,
Lemma 7, and Theorem 8).

• Partitioning a split problem into multiple exchange prob-
lems on trees and solving them concurrently.

Each of these steps is covered in a sub-section that follows.

B. Pairwise Exchanges In A Constant Number of Steps

To achieve O(m`) makespan, SAG needs to enable concur-
rent robot movements. This is challenging because of our worst
case assumption that there are as many robots as the number
of vertices. This is where the grid graph assumption becomes
critical: it enables the concurrent “flipping” or “bubbling” of
robots. Let G = (V,E) be an m` × ms grid graph whose
vertices are fully occupied by robots. Let E′ ⊂ E be a



set of vertex disjoint edges of G. Suppose for each edge
e = (v1, v2) ∈ E′, we would like to simulate the exchange
of the two robots on v1 and v2 without incurring collision. Let
us call this operation FLIP(E′). We use FLIP(·) to mean the
operation is applied to some unspecified set of edges, which is
to be determined for the particular situation.

Lemma 5. Let G = (V,E) be an m` ×ms grid. Let E′ ⊂ E
be a set of vertex disjoint edges. Then the FLIP(E′) operation
can be completed in a constant number of steps.

Proof: A 3×2 rectangular grid may be viewed as a figure-
8 graph with |V | = 6 vertices. Applying Lemma 1 to the 3×
2 grid tells us that any two robots on such a graph can be
exchanged without collision. Furthermore, all such exchanges
can be pre-computed and performed in O(1) (i.e., a constant
number of) steps.

To perform FLIP(E′) on an m` × ms grid G, we partition
the grid into multiple disjoint 3 × 2 blocks. Using up to 4
different such partitions, it is always possible to cover all
edges of G. Therefore, the FLIP(E′) operation can be broken
down into parallel two-robot exchanges on the 3× 2 blocks of
these partitions. Because of the parallel nature of the two-robot
exchanges, the overall FLIP(E′) operation can be completed
O(1) steps. As an example, Fig. 5 illustrates how a FLIP(E′)
operations can be carried out on a 7 × 5 grid. Note that two
partitions (the top two in Fig. 5) are sufficient to cover all edges
below the second row (including the second row). Then, two
more partitions (the bottom two in Fig. 5) can cover all edges
above the second row. In the figure, the solid edges represent
the edge set E′. After each partition starting from the top left
one, two-robot exchanges can be performed which allow the
removal of the edges covered by the partition, as shown in the
subsequent picture.

Fig. 5. Illustration of how the FLIP(E′) operation can be completed in a
constant number of steps on an m`×ms grid, which requires up to 4 partitions
of the grid into 3× 2 blocks.

C. Exchange of Groups Robots on an Embedded Tree

Lemma 5, in a nutshell, allows the concurrent exchange of
adjacent robots to be performed in O(1) steps. With Lemma 5,
to prove Theorem 4, we are left to show that on an m` ×ms

grid, after splitting, the group operation in the first SAG

iteration can be decomposed into O(m`) FLIP(·) operations.
Because each FLIP(·) can be carried out in O(1) steps, the
overall makespan of the group operation is O(m`). To obtain
the desired decomposition, we need to maximize parallelism
along the split line. We achieve the desired parallelism by
partitioning the grid into trees with limited overlap. Each such
tree has a limited diameter and crosses the split line. The
group operation will then be carried out on these trees. Before
detailing the tree-partitioning step, we show that grouping
robots on trees can be done efficiently. We start by showing
that we can effectively “herd” a group of robots to the end of
a path.1 Note that we do not require a robot in the group to go
to a specific goal vertex; we do not distinguish robots within
the group.

Lemma 6. Let P be a path of length ` embedded in a grid. An
arbitrary group of up to b`/2c robots on P can be relocated to
one end of P in O(`) steps. Furthermore, the relocation may
be performed using FLIP(·) on P .

Proof: Because we are to do the relocation using parallel
two-robot exchanges on disjoint edges based on the FLIP(·)
operation, without loss of generality, we may assume that the
path is straight and we are to move the robots to the right end
of the path. An example illustrating the scenario is given in
Fig. 6. For a robot in the group, let its initial location on the
path be of distance k from the right end. We inductively prove
the claim that it takes O(k) steps from the beginning of all
moves to “shift” such a robot to its desired goal location.

Fig. 6. The initial and goal configurations of a group of 4 robots on a path,
before and after a herding operation.

At the beginning (i.e., t = 0), let the robot on P that is of
distance k to the right end be denoted as rk. The hypothesis
trivially holds for k = 0. Suppose it holds for k − 1 and we
need to show that the claim extends to k. If rk does not belong
to the group of robots to be moved, then there is nothing to
do. Otherwise, there are two cases.

In the first case, robot rk−1 does not belong to the group
of robots to be moved. Then at t = 0, rk and rk−1 may be
exchanged in O(1) steps. Now rk is of distance k − 1 to the
right and the inductive hypothesis yields that the rest of the
moves for rk can be completed in O(k − 1) steps. The total
number of steps is then O(k).

In the second case, robot rk−1 also belongs to the group of
robots to be moved. By the inductive hypothesis, rk−1 can be
moved to its desired goal in O(k − 1) steps. However, once
rk−1 is moved to the right, it will allow rk to follow it with a
gap between them of at most 2. Once rk−1 reaches its goal, rk,
whose goal is on the right of rk−1, can reach its goal in O(1)

1We emphasize that the group operation and groups of robots are related but
bear different meanings.



additional steps. The total number of steps from the beginning
is again O(k).

It is clear that all operations can be performed using FLIP(·)
on edges of P when embedded in a grid.

Using the herding operation, the locations of two disjoint
groups of robots, equal in number, can also be exchanged
efficiently.

Lemma 7. Let P be a path of length ` embedded in a grid.
Let two groups, equal in number, reside on two segments of
P that do not intersect. Then positions of the two groups of
robots may be exchanged in O(`) steps without net movements
of other robots. The relocation may be performed using FLIP(·)
on P .

Proof: We may again assume that P is straight. An implicit
assumption is that each group contains at most b`/2c robots.
Fig. 7 illustrates an example in which two groups of 4 robots
each need to switch locations on such a path.

Fig. 7. The initial (first row), goal (last row) and intermediate configurations
of two groups of 4 robots to be exchanged. Each group is marked with a
different color/shade. The unshaded discs do not belong to either of the two
group.

To do the grouping, we first apply a herding operation that
moves one group of robots to one end of P . In Fig. 7, this is
done to the group of lightly-shaded robots to move them to the
right side (the second row of Fig. 7). Then, another herding
operation is performed to move the other group to the other
end of P (the third row of Fig. 7). In the third and last step,
two parallel “reversed” herding operations are carried out on
two disjoint segments of P to move them to their desired goal
locations. This is best understood by viewing the process as
applying the herding operation to the goal configuration. As an
example, in Fig. 7, from the goal configuration (last row), we
may readily apply two herding operations to move two groups
of robots to the two ends of P as shown in the third row of
the figure. Because each herding operation takes O(`) steps,
the overall operation takes O(`) steps as well. It is clear that
in the end, a robot not in the two groups will not have any
net movement on P because the relative orders of these robots
(unshaded ones in Fig. 7) never change.

Next, we generalize Lemma 7 to a tree embedded in a grid.
On a tree graph T , we call a subgraph a path branch of T if
the subgraph is a path with no other attached branches. That
is, all vertices of the subgraph have degrees one or two in T .

Theorem 8. Let T be a tree of diameter d embedded in a grid.
Let P be a length ` path branch of T . Then, a group of robots
on P can be exchanged with robots on T outside P in O(d)

steps without net movement of other robots. The relocation may
be performed using FLIP(·) on T .

Proof: We temporarily limit the tree T such that, after
picking a proper main path that contains P and deleting this
main path, there are only paths left. That is, we assume all
vertices with degree three or four are on a single path containing
P . An example of such a tree T and the exchange problem is
given in the top row of Fig. 8. In the figure, the main path is the
long horizontal path and P is the path on the left of the dotted
split line. We call other paths off the main path side branches.
Once this version is proven, the general version readily follows
because all possible tree structures are considered in this special
example, i.e., there may be either one or two branches coming
out of a node on the main branch. The rest of the paper will
only use the less general version. For ease of reference, for the
two groups of robots, we denote the group fully on P as g1

and the other group as g2. In the example, g1 has a light shade
and g2 has a darker shade.

r21

r22

r23 r24

Fig. 8. The initial (first row) and three intermediate configurations in solving
the problem of switching the location of these robots on a tree.

To start, we first solve part of the relocation problem on
the main path, which can be done in O(d) steps by Lemma 7.
After the step, the robots involved in the first step are no longer
relevant. In the example, this is to exchange the robots marked
with small arrows in the first row of Fig. 8. After the relocation
of these robots is completed, we remove their shades.

In the second step, the relevant robots in g2 on the side
branch are moved so that they are just off the main path. We
also assign priorities to these robots based on their closeness to
P and break ties randomly. For a robot labeled i in a group gj ,
we denote the robot as rji . For our example, this current step
yields the third row of Fig. 8 with the priorities marked. Since
the moves are done in parallel and each branch is of length at
most d, only O(d) steps are needed.

In the third step, robots from g2 will move out of the side



branches in the order given, one immediately after the other
(when possible). For the example (third row of Fig. 8), r21
will move first. r22 will follow. Then r23 , followed by r24 . Using
the same inductive argument from the proof of Lemma 6, we
observe that all robots from g2 on the side branch can be moved
off the side branches (and reach their goals on the main path)
in O(d) time. As the relevant robots from g1 also move across
the split line, they will fill in side branches in opposite order
to when the robots from g2 are moved out of the branches.
In the example, this means that the branch where r23 and r24
were on will be populated with robots from g1 first, followed
by the branch where r22 was, and finally the branch where r21
was. This ensures that at the end of this step, any robot not in
g1 and g2 will have no net movement. The number of steps for
this is again O(d).

In the last step, we simply reverse the second step, which
takes another O(d) steps. Putting everything together, O(d)
steps are sufficient for completing the task.

Combining all steps, only O(d) steps are required to com-
plete the desired exchange. To see that the same conclusion
holds for more general trees with side branches that are not
simple paths, we simply need to do the second step and
third step more carefully. But, because we are only moving
at most O(d) robots, using an amortization argument, it is
straightforward to see that the O(d) bound does not change.

We note that many of the operations used to prove Lemma 6,
Lemma 7, and Theorem 8 can be combined without changing
the outcome. However, doing so will make the proofs less
modular. Given the focus of the current paper which is to
construct a polynomial time algorithm with constant factor
optimality guarantee, we opt for clarity instead of pursuing a
smaller asymptotic constant.

D. Tree Forming and Robot Routing

We proceed to prove Theorem 4 by showing in detail how
to carry out a single iteration of SAG, which boils down to
partitioning the robot exchanges into robot exchanges on trees,
to which Theorem 8 can then be applied. The proof itself can
be subdivided into three steps:
• Splitting and initial tree forming, where a grid is parti-

tioned into two roughly equal halves and trees are initial
formed across the partition line for facilitating exchanging
of two groups of robots.

• Tree post-processing, which addresses the issue where
two initial trees might have “+” like crossovers.

• Final robot routing, which actually carries through the
robot routing process and resolve some final issues.
Proof of Theorem 4: Splitting and initial tree forming.

In a split, we always split along the longer side of the current
grid. Since m` ≥ ms, the m` ×ms grid is split into two grids
of dimensions dm`/2e ×ms and bm`/2c ×ms, respectively.
For convenience, we denote the two split grids as G1 and G2,
respectively. Recall that in the group operation, we want to
exchange robots so that a robot with goal in G1 (resp., G2)
resides in G1 (resp., G2) at the end of the operation. To do

this efficiently, we need to maximize the parallelism. This is
achieved through the computation of a set of ms trees with
which we can apply Theorem 8. We will use the example from
Fig. 9 to facilitate the higher level explanation.

G2

G1

(a) (b)
Fig. 9. (a) A 9×7 grid is split into two grids G1 and G2 of sizes 4×7 and
5×7, respectively. The dark-shaded robots’ final goals are in G2. (b) The grid
is partitioned into (possibly non-disjoint) trees to allow the dark-shaded robots
that are not already in G2 to exchange with robots (lightly-shaded ones) that
should be moved to G1.

Assume that the grid is oriented so that ms is the number
of columns and m` is the number of rows (see Fig. 9). The
trees that will be built will be based on the columns of one
of the split graphs, say G2. A column i of G2 is a path of
length bm`/2c − 1 with bm`/2c robots on it. Suppose ki of
these robots have goals outside G2 (the lightly-shaded ones in
Fig. 9 (b)), then it is always possible to find ki robots (the
dark-shaded ones in Fig. 9(b)) on G1 that must go to G2. A
tree Ti is built to allow the exchange of these 2ki robots such
that the part of Ti in G2 is simply column i. That is, the ms

trees to be built do not overlap in G2.
For a column i in G2 with ki robots to be moved to G1, it is

not always possible to find exactly ki robots on column i of G1.
This makes the construction of the trees in G1 more complex.
The construction is done in two steps. In the first step, robots
to be moved to G2 are grouped in a distance optimal manner,
which induces a preliminary tree structure. Focusing on G1,
we know the number of robots that must be moved across the
split line in each column (see Fig. 10). For each robot to be
moved across the split line, the distance between the robot and
all the possible exits of G1 is readily computed. Once these
distances are computed, a standard matching procedure can be
run to assign each robot an exit point that minimizes the total
distance traveled by these robots [48], [72]. The assignment
has a powerful property that we will use later. For each robot,
either a straight or an L shaped path can be obtained based on
the assignment. Merging these paths for robots exiting from the
same column then yields a tree for each column (see Fig. 9(b)).
Note that each tree has a single vertical segment.
Tree post-processing. In the second step, the trees are post-
processed to remove crossings between them. Example of such
a crossing we refer to is illustrated in Fig. 11(a) (dotted lines).
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Fig. 10. For the example given in Fig. 9, this figure highlights G1, the robots
that must be moved to G2, and how many robot need to be moved through
the top of G1 along each column. Regarding distance, the bottom left robot
needs to travel 4 edges to exit G1 through the left most column. It needs to
travel 4 + 7− 1 = 10 edges to exit from the right most column.

Formally, we say two trees T1 and T2 has a crossover if a
horizontal path of T1 intersects with a vertical path of T2, with
the additional requirement that one of the involved horizontal
path from one tree forms a + with the vertical segment of the
other tree. For example, Fig. 11(b) is not considered a crossover.

(a) (b) (c)
Fig. 11. (a) Example of a tree crossover (dotted paths) and its removal (solid
paths) without increasing the total distance. Note that only the relevant paths of
the two trees are shown. (b) An intersection that is not considered a crossover.
(c) An impossible crossover scenario.

For each crossover, we update the two trees to remove the
crossover, as illustrated in Fig. 11(a). The removal will not
change the total distance traveled by the two (or more) affected
robots but will change the path for these robots. To see that
the process will end, note that one of the two involved paths
is shortened. Since there are finite number of such paths and
each path can only be shortened a finite number of times, the
crossover removal process can get rid of all crossovers. We
will show later this can be done in polynomial computation
time when we perform algorithm analysis. We note here that
the crossover scenario in Fig. 11(c) cannot happen because a
removal would shorten the overall length, which contradicts the
assumption that these paths have the shortest total distance.
Final robot routing. At the end of the crossover removal
process, we may first route all robots on a tree branch that
do not have overlaps with other trees. However, this does not
route all robots because it is possible for the tree structures
for different columns to overlap horizontally (see Fig. 12). For
two trees that partially overlap with each other (e.g., the left
and middle two trees in Fig. 12), one of the trees does not
extend lower (row wise) than the row where the overlap occurs.
Otherwise, this yields a crossover, which should have already

been removed. For two overlapping trees T1 and T2, we say T1
is a follower of T2 if a robot going to T2 must pass through
the vertical path of T1. In the example from Fig. 12, T1 is a
follower of T2. Similarly, the right (green) tree is a follower of
T1.

1 2 1

T2

T1

Fig. 12. Illustration of overlaps between tree structures for different columns.
For the four shaded robots to be moved, one must be moved through the left
most vertical path, two must be moved through the middle vertical path, and
the last must be moved through the right most vertical path.

We state some readily observable properties of overlapping
trees: (i) two trees may have at most one overlapping horizontal
branch (otherwise, there must be a path crossover), (ii) because
of (i), any three trees cannot pair wise overlap at different rows,
and (iii) there must be at least one tree that is not a follower,
e.g., the left (purple) tree in Fig. 12. We call this tree a leader.
From a leader tree, we can recursively collect its followers, and
the followers of these followers, and so on so forth. We call
such a collection an interacting bundle (e.g., Fig. 12).

With these properties in mind, the group operation in a SAG
iteration is carried out as follows. Because robots to be moved
from G2 to G1 are on straight vertical paths, there are no
interactions among them between different trees. Therefore, we
only need to consider interactions of robots on G1. For trees
that have no overlap with other trees, Theorem 8 directly applies
to complete the robot exchange on these trees in O(m`) steps
because each tree has diameter at most 2m`. In parallel, we can
also complete the movement of all robots that should go from
G1 to G2 which are not residing on a horizontal tree branch
that overlaps with other trees, also in O(m`) steps. After these
robots are exchanged, we can effectively forget about them.

After the previous step, we are left to deal with robots on
overlapping horizontal tree branches that must be moved (e.g.,
the shaded robots in Fig. 12). It is clear that different interacting
bundles do not have any interactions; we only need to focus
on a single bundle. This is actually straightforward; we use the
example from Fig. 13 to facilitate the proof explanation. The
routing of robots in this case follows a greedy approach starting
from the left most tree, i.e., we essentially try to “flush” the
shaded robots in the left-up direction, which can always be
realized in two phases, each of which using at most O(m`)
makespan.

Observe that the problem can be solved for the leader tree
(left most tree in Fig. 13). At the same time, for each successive
follower tree, the movement of robots can be partially solved
for these follower trees. The middle row of Fig. 13 shows how
this can be done for each tree. Formally, if a horizontal branch
is shared by two trees, say T2 and its follower T1, then we
obtain a simple exchange problem of moving a few robots
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Fig. 13. An example interacting bundle in detail. The top row is the initial
configuration of the robots on the overlapping horizontal tree branches to be
moved through the vertical paths. The numbers on the top of the vertical paths
mark how many robots should be moved through that path. For example, 3
of the shaded robots must be routed through the left most vertical path. The
middle row and the bottom rows mark how the exchanges can be completed
in two steps or phases.

through a path on T2. In the figure, these are the first and fourth
trees from the left, with the dotted lines marking the path. If
a horizontal branch is shared by three or more trees, we get
an exchange problem on a tree. In the figure, the middle three
trees create such a problem. For this, Theorem 8 applies with
minor modifications. All the exchange problems can be carried
out in parallel because there is no further interaction between
them. It takes O(m`) steps to complete, after which we are
left with another set of exchange problems, each of which is
on a path (e.g., the three problems in the last row of Fig. 13).
Lemma 7 applies to yield O(m`) required steps.

Stitching everything together, the first iteration of SAG on
an m` × ms grid can be completed in O(m`) steps. In the
next iteration, we are working with grids of sizes dm`/2e ×
ms, which requires O(max{dm`/2e,ms}) steps. Following the
simple recursion, which terminates after O(logm`) iterations,
we readily obtain that O(m`) steps are sufficient for solving
the entire problem.

V. COMPLEXITY AND SOLUTION OPTIMALITY PROPERTIES
OF THE SAG ALGORITHM

In this section, we establish two key properties of SAG,
namely, its polynomial running-time and asymptotic solution
optimality.

A. Time Complexity of SAG

The SAG algorithm is outlined in Algorithm 1, which
summarizes the results from Section IV in the form of an
algorithm. At Lines 1-2, a partition of the current grid G is

made, over which initial path planning is performed to generate
the trees for grouping the robots into the proper subgraph. Then,
at Line 3, crossovers are resolved. At Line 4, the final paths
are scheduled, from which the robot moves can be extracted.
This step also yields where each robot will end up at in the end
of the iteration, which becomes the initial configuration for the
next iteration (if there is one). After the main iteration steps are
complete, at Lines 5-10, the algorithm recursively calls itself
on smaller problem instances. The special case here is when the
problem is small enough (Line 7), in which case the problem
is directly solved without further splitting.

Algorithm 1: SPLITANDGROUP (G, XI , xG)
Input : G = (V,E): an m` ×ms grid graph

XI : initial robot configurations
XG: goal robot configurations

Output: M = 〈M1,M2, . . .〉: a sequence of moves

%Run matching and construct initial trees

1 (G1, G2)← SPLIT(G)
2 P← MATCHANDPLANPATH(G,XI , XG)

%Remove crossovers

3 P′ ← RESOLVECROSSOVERS(P)

%Schedule the sequence of moves

4 (M,X ′I)← SCHEDULEMOVES(P′)

%Recursively solve smaller sub-problems

5 foreach Gi, i = 1, 2 do
6 if row(Gi) ≤ 3 and col(Gi) ≤ 3 then
7 M = M + SOLVE(Gi, X

′
I |Gi

, XG|Gi
)

8 else
9 M = M + SAG(Gi, X

′
I |Gi

, XG|Gi
)

10 end
11 end

12 return M

We now proceed to bound the running time of SAG. It is
straightforward to see that the SPLIT routine takes O(|V |) =
O(m`ms) running time. MATCHANDPLANPATH can be im-
plemented using the standard Hungarian algorithm [72], which
runs in O(|V |3) time.

For RESOLVECROSSOVERS, we may implement it by start-
ing with an arbitrary robot that needs to be moved across the
split line and check whether the path it is on has crossovers
that need to be resolved. Checking one path with another
can be done in constant time because each path has only
two straight segments. Detecting a crossover then takes up
to O(|V |) running time. We note that, as a crossover is
resolved, one of the two paths will end up being shorter (see,
e.g., Fig. 11). We then repeat the process with this shorter
path until no more crossover exists. Naively, because the path
keeps getting shorter, this process will end in at most O(|V |)
steps. Therefore, all together, RESOLVECROSSOVERS can be
completed in O(|V |3) time.



The SCHEDULEMOVES routine simply extracts information
from the already planned path set P′ and can be completed in
O(|V |) running time. The SOLVE routine takes constant time.

Adding everything up, an iteration of SAG can be carried
out in O(|V |3) time using a naive implementation. Summing
over all iterations, the total running time is

O(|V |3) + 2O((
|V |
2

)3) + 4O((
|V |
4

)3) + . . . = O(|V |3),

which is low-polynomial with respect to the input size.

B. Optimality Guarantees
Having established that SAG is a polynomial time algorithm

that solves MPP with sub-linear makespan, we now show that
SAG is an O(1)-approximate makespan optimal algorithm for
MPP in the average case. Moreover, SAG also computes a
constant factor distance optimal solution in a weaker sense.
To establish these, we first show that for fixed m`ms that is
large, the number of MPP instances with o(m`+ms) makespan
is negligible.

Lemma 9. The fraction of MPP instances on a fixed graph G
as an m` ×ms grid with o(m` + ms) makespan is no more
than ( 1

2 )
m`
4 for sufficiently large m`ms.

Proof: Let (G,XI , XG) be an MPP instance wth G being
a m` × ms grid. Without loss of generality, we may assume
that XI is arbitrary and XG is a row-major ordering of the
robots, i.e., with the i-th row containing the robots labeled (i−
1)m` + 1, (i − 1)m` + 2, . . . , im`, in that order. Then, over
all possible instances, 1

4 of instances have XI with robot 1
having a distance of 1

4 (m`+ms) or less from robot 1’s location
in XG (note that the number is 1

4 instead of 1
16 because ms

maybe as small as 2). Let these 1
4 instances be P1. Among P1,

again about 1
4 of instances have have XI with robot 2 having a

distances of 1
4 (m`+ms) or less from robot 2’s location in XG.

Following this reasoning and limiting to the first m`

4 robots, we
may conclude that the fraction of instances with o(m` + ms)
makespan is no more than ( 1

2 )
m`
4 for sufficiently large m`ms.

Lemma 9 is conservative but sufficient for establishing
that SAG delivers an average case O(1)-approximation for
makespan. That is, since only an exponentially small number
of instances have small makespan, the average makespan ratio
is clearly constant, that is,

Theorem 10. On average and in polynomial time, SAG com-
putes O(1)-approximate makespan optimal solutions for MPP.

Proof: For a fixed G as an m` ×ms grid, Lemma 9 says
that no more than a ( 1

2 )
m`
4 fraction of instances have sub-linear

makespan (the minimum possible makespan is 1). For the rest
of the instances, their makespan is linear, i.e., Ω(m` + ms).
On the other hand, Algorithm 1 guarantees a makespan of
O(m`+ms). We may then compute the expected (i.e., average)
makespan ratio over all instances of MPP for the same G as
no more than (for sufficiently large m`)

(
1

2
)

m`
4
O(m` +ms)

1
+ (1− (

1

2
)

m`
4 )

O(m` +ms)

Ω(m` +ms)
= O(1).

This establishes the claim of the theorem.
SAG can also provide guarantees on total distance optimality.

In this case, because every robot contributes to the total dis-
tance, a weaker guarantee is ensured (in the case of makespan,
one robot’s makespan dominates the makespan of all other
robots). This leads us to work with a typical (i.e., average)
MPP instance instead of working with averages of makespan
optimality ratio over all instances. That is, for the makespan
case, we first compute the optimality ratio for each instance,
which is subsequently averaged. For total distance, we work
with a typical random instance and compute the optimality ratio
for such a typical instance.

Theorem 11. For an average MPP instance, SAG computes
an O(1)-approximate total distance optimal solution.

Proof: For an average MPP instance, each robot incurs
a minimum travel distance of Ω(m`); therefore, the minimum
total distance for all robots, in expectation, is Ω(msm

2
`) be-

cause there are msm` robots. On the other hand, because
SAG produces a solution with an O(m`) makespan, each robot
travels a distance of O(m`). Summing this over all robots,
the solution from SAG has a total distance of O(msm

2
`). This

matches the lower bound Ω(msm
2
`) .

VI. EXTENSIONS

In this section, we show that SAG readily generalizes to
environments other than 2D rectangular grids, including high
dimensional grids and continuous environments.

A. High Dimensions

SAG can be extended to work for grids of arbitrary dimen-
sions. For dimensions d ≥ 2, let the grid be m1 × . . . ×md.
Two updates to SAG are needed to make it work for higher
dimensions. First, the split line should be updated to a split
plane of dimension d − 1. In the case of d = 2, two
iterations will halve all dimensions. In the case of general
d, d iterations are required. Thus, the approach produces a
makespan of O(d(m1 + . . .md)) where mi is the side length
of i-th dimension. Second, the crossover check becomes more
complex; each check now takes O(d) time instead of O(1)
time because each path, though still having up to two straight
pieces, requires O(d) coordinates to describe. Other than these
changes, the rest of SAG continues to work with some minor
modifications to the scheduling procedure (which can again
be proven to be correct using inductive proofs). The updated
SAG algorithm for dimension d therefore runs in O(d2|V |3)
time because d iterations of split and group are need to halve
all dimensions and each iteration takes O(d|V |3) time. The
optimality guarantees, e.g., Theorems 10 and 11, also carry
over.

B. Well-Connected Environments

The selection of G as a grid plays a critical role in proving
the desirable properties of SAG. In particular, two features
of grid graphs are used. First, grids are composed of small
cycles, which allow the 2-switch operation to be carried out



locally. This in turn allows multiple 2-switch operations to
be carried out in parallel. Second, restricting to two adjacent
rows (or columns) of a rectangular grid (e.g., row 4 and row
5 in Fig. 9(a)), multiple 2-switches can be completed between
these two rows in a constant number of steps. As long as the
environment possesses these two features, SAG works. We call
such environments well-connected.

More precisely, a well-connected environment, E, is one with
the following properties. Let G be an m`×ms rectangular grid
that contains E. Unlike earlier grids, here, G is not required to
have unit edge lengths; a cell of G is only required to be of
rectangular shape with O(1) side lengths. Let r1 and r2 be two
arbitrary adjacent rows of G, and let c1 ∈ r1, c2 ∈ r2 be two
neighboring cells (see, e.g., Fig. 14). The only requirement over
E is that a robot in c1 and a robot in c2 may exchange residing
cells locally, without affecting the configuration of other robots.
In terms of the example in Fig. 14, the two shaded robots
(other robots are not drawn) must be able to exchange locations
in constant makespan within a region of constant radius. The
requirement then implies that parallel exchanges of robots
between r1 and r2 can be performed with a constant makespan.
The same requirement applies to two adjacent columns of G.
Subsequently, given an arbitrary well-connected environment E

G

E r1

r2

c1

c2

Fig. 14. Illustration of a well-connected non-grid graph.

and an initial robot configuration XI , the steps from SAG can
be readily applied to reach an arbitrary XG that is a permutation
of XI . As long as pairwise robot exchanges can be computed
efficiently, the overall generalized SAG algorithm also runs
efficiently while maintaining the optimality guarantees. We
note that the definition of well-connectedness can be further
generalized to certain continuous settings. Fig. 15 provides a
discrete example and a continuous example of well-connected
settings, which include both the environment and the robots.

As mentioned in Sec. I, well-connected environments are
frequently found in real-world applications, e.g., automated
warehouses at Amazon and road networks in cities like Man-
hattan. Our theoretical results imply that such environments are
in fact quite optimal in their design in terms of being able to
efficiently route robots.

Fig. 15. Examples of well-connected settings, with both environments and
robots.

VII. CONCLUSION AND FUTURE WORK

In this work, we developed a low-polynomial time algorithm,
SAG, for solving the multi-robot path planning problem in
grids and grid-like, well-connected environments. The solution
produced by SAG is within a constant factor of the best possible
makespan on average. In a weaker sense, SAG also provide
a constant factor approximation on total distance optimality.
SAG applies to problems with the maximum possible density in
graph-based settings and supports certain continuous problems
as well.

The development of SAG opens up many possibilities for
promising future work. On the theoretical side, SAG gets us
closer to the goal of a finding a PTAS (polynomial time
approximation scheme) for optimal multi-robot path planning.
Also, it would be desirable to remove the probabilistic element
(i.e., the “in expectation” part) from the guarantees. On the
practical side, noting that we have only looked at the case
with the highest robot density, it is promising to exploit the
combination of global decoupling and network flow techniques
to seek more optimal algorithms for cases with lower robot
density.
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[36] M. J. Matarić, M. Nilsson, and K. T. Simsarian, “Cooperative multi-
robot box pushing,” in Proceedings IEEE/RSJ International Conference
on Intelligent Robots & Systems, 1995, pp. 556–561.

[37] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in Proceedings IEEE/RSJ International Conference
on Intelligent Robots & Systems, 1995, pp. 235–242.

[38] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and
rescue with a team of mobile robots,” in Proceedings IEEE International
Conference on Robotics & Automation, 1997.

[39] J. H. Reif, “Complexity of the generalized mover’s problem.” DTIC
Document, Tech. Rep., 1985.

[40] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1988.

[41] P. Spirakis and C. K. Yap, “Strong NP-hardness of moving many discs,”
Information Processing Letters, vol. 19, no. 1, pp. 55–59, 1984.

[42] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; PSPACE-hardness of
the “warehouseman’s problem”,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[43] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[44] R. A. Hearn and E. D. Demaine, “PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic
model of computation,” Theoretical Computer Science, vol. 343, no. 1,
pp. 72–96, 2005.

[45] K. Solovey and D. Halperin, “On the hardness of unlabeled multi-robot
motion planning,” in Robotics: Science and Systems (RSS), 2015.

[46] M. Katsev, J. Yu, and S. M. LaValle, “Efficient formation path planning on
large graphs,” in Proceedings IEEE International Conference on Robotics
& Automation, 2013, pp. 3606–3611.

[47] A. Adler, M. De Berg, D. Halperin, and K. Solovey, “Efficient multi-robot
motion planning for unlabeled discs in simple polygons,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 1–17.

[48] K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion planning for
unlabeled discs with optimality guarantees,” in Robotics: Science and
Systems, 2015.

[49] V. Auletta, A. Monti, M. Parente, and P. Persiano, “A linear-time
algorithm for the feasbility of pebble motion on trees,” Algorithmica,
vol. 23, pp. 223–245, 1999.

[50] G. Goraly and R. Hassin, “Multi-color pebble motion on graph,” Algo-
rithmica, vol. 58, pp. 610–636, 2010.

[51] J. Yu, “A linear time algorithm for the feasibility of pebble motion on
graphs,” arXiv:1301.2342, 2013.

[52] J. Yu and D. Rus, “Pebble motion on graphs with rotations: Effi-
cient feasibility tests and planning,” in Algorithmic Foundations of
Robotics XI, Springer Tracts in Advanced Robotics, vol. 107. Springer
Berlin/Heidelberg, 2015, pp. 729–746.

[53] D. Ratner and M. Warmuth, “The (n2−1)-puzzle and related relocation
problems,” Journal of Symbolic Computation, vol. 10, pp. 111–137, 1990.

[54] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Proceedings AAAI National Conference
on Artificial Intelligence, 2013, pp. 1444–1449.

[55] R. Alami, F. Robert, F. Ingrand, and S. Suzuki, “Multi-robot cooperation
through incremental plan-merging,” in Robotics and Automation, 1995.
Proceedings., 1995 IEEE International Conference on, vol. 3. IEEE,
1995, pp. 2573–2579.

[56] S. Qutub, R. Alami, and F. Ingrand, “How to solve deadlock situations
within the plan-merging paradigm for multi-robot cooperation,” in In-
telligent Robots and Systems, 1997. IROS’97., Proceedings of the 1997
IEEE/RSJ International Conference on, vol. 3. IEEE, 1997, pp. 1610–
1615.

[57] M. Saha and P. Isto, “Multi-robot motion planning by incremental
coordination,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2006, pp. 5960–5963.



[58] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in Proceedings IEEE/RSJ Interna-
tional Conference on Intelligent Robots & Systems, 2011, pp. 3260–3267.

[59] C. Ferner, G. Wagner, and H. Choset, “Odrm* optimal multirobot path
planning in low dimensional search spaces,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp. 3854–
3859.

[60] G. Sharon, R. Stern, A. Felner, and N. Sturtevant, “Conflict-Based Search
for Optimal Multi-Agent Path Finding,” in Proc of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[61] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost
tree search for optimal multi-agent pathfinding,” Artificial Intelligence,
vol. 195, pp. 470–495, 2013.

[62] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin,
and E. Shimony, “Icbs: The improved conflict-based search algorithm for
multi-agent pathfinding,” in Eighth Annual Symposium on Combinatorial
Search, 2015.

[63] L. Cohen, T. Uras, T. Kumar, H. Xu, N. Ayanian, and S. Koenig,
“Improved bounded-suboptimal multi-agent path finding solvers,” in
International Joint Conference on Artificial Intelligence, 2016.

[64] W. Hönig, T. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, and
S. Koenig, “Multi-agent path finding with kinematic constraints.” in
ICAPS, 2016, pp. 477–485.

[65] P. Surynek, “Towards optimal cooperative path planning in hard setups
through satisfiability solving,” in Proceedings 12th Pacific Rim Interna-
tional Conference on Artificial Intelligence, 2012.

[66] E. Erdem, D. G. Kisa, U. Öztok, and P. Schueller, “A general formal
framework for pathfinding problems with multiple agents.” in AAAI, 2013.

[67] J. Yu and S. M. LaValle, “Optimal multi-robot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[68] H. Ma, J. Li, T. Kumar, and S. Koenig, “Lifelong multi-agent path finding
for online pickup and delivery tasks,” in Proceedings of the 16th Con-
ference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2017, pp.
837–845.

[69] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F.
Zhou, “Robust multi-agent path finding,” in Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Sys-
tems. International Foundation for Autonomous Agents and Multiagent
Systems, 2018, pp. 1862–1864.

[70] D. M. Kornhauser, “Coordinating pebble motion on graphs, the di-
ameter of permutation groups, and applications,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1984.

[71] B. Bollobás, Modern graph theory. Springer Science & Business Media,
2013, vol. 184.

[72] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.


	I Introduction
	II Related Work
	III Preliminaries
	III-A Graph-Theoretic Optimal Multi-Robot Path Planning
	III-B Effects of Environment Connectivity

	IV Routing Robots on Rectangular Grids with a Sub-Linear Makespan
	IV-A Main Result
	IV-B Pairwise Exchanges In A Constant Number of Steps
	IV-C Exchange of Groups Robots on an Embedded Tree
	IV-D Tree Forming and Robot Routing

	V Complexity and Solution Optimality Properties of the SaG Algorithm
	V-A Time Complexity of SaG
	V-B Optimality Guarantees

	VI Extensions
	VI-A High Dimensions
	VI-B Well-Connected Environments

	VII Conclusion and Future Work
	References

