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Abstract This paper presents a strategy for providing reli-
able state estimates that allow a group of robots to realize
a formation even when communication fails and the track-
ing data alone is insufficient for maintaining a stable for-
mation. Furthermore, the tracking information does not pro-
vide the identity of the robot, therefore a simple fusion of
tracking and communications data is not possible. We ex-
tend a Gaussian Mixture Probability Hypothesis Density fil-
ter to incorporate, firstly, absolute poses exchanged by the
robots, and secondly, the geometry of the desired formation.
Our method of combining communicated data, information
about the formation and sensory detections is capable of
maintaining the state estimates even when long-duration
occlusions occur, and improves awareness of the situation
when the communication is sporadic or suffers from short-
term outage. The proposed method is validated using a high-
fidelity simulator in scenarios with a formation of up to five
robots. The results show that the proposed tracking strategy
allows for sustaining formations in cluttered environments,
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with high measurement uncertainty and low quality commu-
nication.

Keywords Multi-Robot Tracking · Formation Control ·
Cooperative Positioning System · Probability Hypothesis
Density Filter · Cooperative Localization

1 Introduction

With the increasing interest in robotics, multi-robot ap-
proaches are providing solutions in a large variety of appli-
cations, ranging from industrial automation (Alonso-Mora
et al 2015) and building inspection (Saska et al 2017), to
cinematography (Nägeli et al 2017) and social applications
(Wasik et al 2017b). As the robots are becoming more
present in environments populated with humans, safety, ro-
bustness and reliability of the methods are of highest impor-
tance. While many of the multi-robot approaches do not re-
quire continuous coordination among agents, methods such
as formation control and other consensus-based algorithms
heavily depend on the state of all the robots, and the inter-
action involves constant information exchange between an
agent and all of its neighbors in the network (Olfati-Saber
et al 2007). For this reason, consensus-based methods re-
quire robust and reliable information flow among robots.

One of the most popular strategies for formation control
is the leader-follower method, where a leader agent defines
the team objective, guiding the formation through the en-
vironment, while the followers maintain desirable distances
from the leader and from the other followers. Therefore, to
keep a desired formation geometry, it is necessary that each
robot maintains a good estimate of the poses of the other
robots, called the formation state. A role of the robot in the
formation is usually associated to the robot’s unique identi-
fication (ID), not only to distinguish which robot is to be the
leader, but also where a particular robot should be located
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within the formation as a follower. Therefore the robots must
be capable of distinguishing each other.

To obtain the states and the IDs, the simplest solution
for the robots is to communicate the required information
to each other. Unfortunately, wireless communications suf-
fers from many problems, including message losses, de-
lays, and even temporal loss of connections. Volatile com-
munications threatens formation stability, while temporary
loss of communication during close proximity navigation
might even lead to collisions. While communication is of-
ten the only possible approach to formation control in dy-
namic and structured environments full of obstacles (Wasik
et al 2016a), it is necessary to provide a backup solution
for securing the formation when the communication fails.
An example of such situation is shown in Figure 1, where
a formation of two robots breaks temporarily due to faulty
communication.

Our goal is to maintain a robot formation in settings
which are by far not standard for the majority of the for-
mation methods, namely GNSS-denied, complex indoor en-
vironments populated with humans and obstacles, where
a positioning system based on direct inter-robot measure-
ment suffers from long-term occlusions and false detections
(Wasik et al 2016a). We have worked with ID-based robot
formations, where each robot is assigned a role in the forma-
tion, but laser-based sensory detection, proposed in Wasik
et al (2016b), does not provide robot IDs. It is important that
the desired formation geometry is maintained, but since the
robots are homogeneous, they can assume any role (target
position). Roles are important to determine the range and the
bearing that the robot has to keep with respect to the other
robots in the formation. Lack of ID information associated
with the measurements does not allow for simple fusion of
communication and tracking, especially when tracking is ex-
pected to sustain the formation dependably for some time,
even when communication fails. Methods without explicit
data association, such as PHD filters, require on-line role
assignment, where the robot dynamically estimates the op-
timal matching of the estimates with the roles (including its
own role that might change over time). When the assignment
is not shared, the robots might diverge to different guesses of
the assignments, making the formation ill-defined and lead-
ing to breaking of the formation. Wrong data association can
be caused by as little as one track missing, where detection
is not perfect and has several long term occlusions when the
formation is moving while following a path. This challenge
makes the tracking-only methods unsuitable for maintaining
the entire formation for long periods of time.

To overcome such difficulties, we have developed a sys-
tem that incorporates communication data, tracking infor-
mation, and knowledge about the desired formation geome-
try in the Gaussian Mixture Probability Hypothesis Density
(GM-PHD) filter (Vo and Ma 2006). The use of such filter

Fig. 1: Images from overhead cameras showing a forma-
tion of two robots navigating in a hospital environment (a).
During execution, the robots change access point (b), which
causes the formation to break temporarily (c) before it gets
corrected after the robots communicate again (d). Similar
problems could be solved if the robots used a combination
of communication and tracking based on onboard sensing.

allows us to combine data from multiple information sources
without the need to use heuristic methods for data associa-
tion. Moreover, a GM-PHD filter does not set the number of
tracks a priori, therefore additional data regarding a target
can be incorporated seamlessly (Vasic and Martinoli 2015).
Introduced in Wasik et al (2017a), our filter called Forma-
tion Information GM-PHD (FI-GM-PHD), to the best of
our knowledge, is the first approach attempting to improve
tracking estimates of the robot poses based on specification
of the desired formation geometry. Our method consists of
two main components added to the GM-PHD filter: i) the in-
ception step incorporates poses of the robots exchanged via
communication, when such information is available, ii) the
coalition step integrates the projection of the formation state
based on the desired formation geometry. The projected for-
mation state is either improving the current estimate or gen-
erating a new one, depending on the dissimilarity between
the estimated formation state and the projected formation
state.

An abbreviated conference version of this paper has
been presented in Wasik et al (2017a). The novelty of this
work compared to Wasik et al (2017a) is fourfold. First, we
lift an assumption that the formation always remains close to
the desired geometry, by modifying the coalition step, where
novelty now depends on the estimation of the performance
of coalition matching, so that the closer the robots are to the
perfect formation, the more likely a strong novelty is created
for a temporarily untracked robot. Second, we introduce an
improvement in the inception step, which is now performed
as a PHD update. Third, the formation has a real robot leader
instead of a virtual leader, therefore the pose of the leader
no longer has to be broadcasted to all the robots. Fourth, we
added a sensor model to determine the probability of detec-
tion.

The final goal of this work is to provide reliable robot
pose estimates to be used when communications through-
put is low or when communications fails. For safety rea-
sons, such backup system is necessary for establishing co-
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operative multi-robot navigation in human-populated envi-
ronments Wasik et al (2016a) (such as depicted in Figure 1),
which is the long-term goal of this work.

The rest of this paper is organized as follows. Section 2
presents an overview of related work. Section 3 provides the
background on multi-target methods and the GM-PHD fil-
ter. Section 4 states formally the problem while Section 5
describes the FI-GM-PHD filter. Section 6 explains how the
estimates obtained from the FI-GM-PHD are used in the for-
mation control algorithm. Experiments performed in a high-
fidelity simulator are introduced in Section 7, with the sce-
narios presented in Section 8 and the results presented in
Section 9. The paper is concluded in Section 10.

2 Related Work

The objective of multi-target tracking is to jointly estimate
the states of multiple targets, and sometimes the numbers
of targets themselves, from a sequence of noisy observation
sets. Existence of multiple targets and multiple measure-
ments necessitates data association, a computationally ex-
pensive procedure dealt with either explicitly or implicitly.
Therefore single-target tracking approaches are not read-
ily extensible to the multi-target problems. From among
many existing multi-target tracking algorithms that emerged
in recent years, Qiu et al (2015) classified the existing ap-
proaches in the following categories: a) Non-Bayesian Ap-
proaches, such as Nearest Neighbor (NN) data association,
b) Maximum A Posteriori approaches, such as Multiple Hy-
pothesis Tracking (MHT), c) Bayesian estimators, such as
Joint Probabilistic Data Association (JPDA) filter or Markov
Chain Monte Carlo data association (MCMCDA), and d) Fi-
nite Set Statistics (FISST)-based approaches, such as Ran-
dom Finite Sets (RFSs).

The NN methods deal with data association by assigning
each measurement to the closest target based on a distance
measure (Bar-Shalom and Fortmann 1988). The NN filters
assume one-to-one mapping between the measurements and
the targets, therefore cannot deal with multiple observations
of a single object, clutter nor occluded objects. The JPDA
filter is a sub-optimal Bayesian algorithm that calculates a
marginalized probability on the joint data association space.
To mitigate the computational burden, many of the heuristic
techniques to an approximate JPDA sacrifice the tracking
accuracy to make the algorithm computationally tractable
and, as a result, the application domain is restricted to sce-
narios with few, well separated targets (Bar-Shalom 1990).
MHT evaluates the likelihood that there is a target given
a sequence of measurements. To restrict the exponential
growth of the number of hypotheses, MHT requires prun-
ing out spurious hypotheses for each track independently
and discarding the deleted items, which makes it impossi-
ble for MHT to recover from errors (Blackman and Popoli

1999). The Probabilistic MHT (PMHT) uses soft association
methods, but assumes that the number of targets is known,
and that it is possible to initialize the states (Streit and Lug-
inbuhl 1994). MCMCDA filter is a true approximation for
the optimal Bayesian filter. However, the algorithm requires
specification of numerous parameters, the target creation is
accomplished heuristically and many particles are required
for the method to perform well (Oh et al 2009).

The Random Finite Set (RFS) approach to multi-target
tracking is a novel and promising alternative to the tradi-
tional association-based methods. RFS is theoretically opti-
mal approach to multi-target tracking and a direct general-
ization of the single-target Bayes filter. Its main advantage
is that it treats the problem of clutter and association un-
certainty under a rigorous unified Bayesian filtering frame-
work Mahler (2003). Moreover, it incorporates track initia-
tion, a procedure that has mostly been performed separately
in traditional tracking algorithms. Based on the RFS theory,
the Probability Hypothesis Density (PHD) filter and its vari-
ations deal with the measurement-to-track association im-
plicitly, resulting in higher robustness and accuracy in sce-
narios where the number of targets is not known in advance
or changes over time.

Flexibility and ability to deal with challenging scenar-
ios makes the PHD filters and the variations thereof in-
creasingly popular in the robotics research. Among many
other notable examples, the PHD filter is used for Simul-
taneous Localization and Mapping (SLAM) in Adams et al
(2014), where it estimates vehicles trajectories and the en-
countered environment features, also in the multi-robot case
in Moratuwage et al (2012). In Vasic and Martinoli (2015),
collaborative tracking of multiple vehicles is achieved by
fusion of PHD hypotheses among the collaborative agents.
Cooperative multi-target tracking with the PHD filter is also
exploited in Dames and Kumar (2013). The output of the
PHD filter in Dames (2017) is used not only for tracking of
targets, but it also provides importance weighting so that the
robots are drawn towards areas that are more likely to con-
tain targets. Sapkota et al (2016) perform visual detection
and tracking with GM-PHD filter to estimate the aircraft’s
position and velocity in three dimensions. Melo and Matos
(2014) track multiple autonomous underwater vehicles us-
ing acoustic signals and a Monte Carlo PHD filter. Stegagno
et al (2013) is an example of application-driven modification
of a PHD filter, where the identities of the unmanned ground
vehicles are reconstructed by incorporating odometric data
collected by an aircraft in the PHD filter.

The problem of tracking for realization of multi-robot
formations has been addressed as early as the first ap-
proaches to formation control appeared. Among many ex-
isting formation control algorithms, the most common ones
rely on the pose estimates in the global reference frame
(Lewis and Tan 1997), on relative positions of the other
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robots (Falconi et al 2010), on range only (Cao et al 2011) or
bearing only information (Bishop 2011). While acquisition
of accurate state of the other team members has been ad-
dressed previously using communications as well as various
perception tools, including cameras (Monteiro and Bicho
2010), infrared sensors (Falconi et al 2010), sonars (Soares
et al 2013) or laser range finders (Wasik et al 2016b), track-
ing is significantly simplified in order to be reliable enough
for formation control. Simplification usually casts a multi-
target tracking problem to single-robot tracking by provid-
ing the robots with unique identifications (IDs) that can be
extracted by the tracking robot. Using the estimates with
known IDs is trivial, as long as not all the tracks are not
lost.

To realize an ID-based formation, multiple solutions
have been proposed in the literature. In Fredslund and
Matarić (2002), robots perform teammate detection using
combination of a LIDAR and a camera, where the camera
also provides the identity of the neighboring robot. In Alur
et al (2001), robots recognize themselves by extracting color
blobs from a camera image. Both approaches aim at local-
izing a single local leader distinguishable by a marker. In
Soares et al (2013), a follower vehicle maintains a forma-
tion with two leaders using acoustic ranging. The distinc-
tion between the leaders is ensured by an appropriate time-
multiplexing scheme of the acoustic relative positioning sig-
nals. For tracking multiple quadrotors, Dias et al (2016) use
active markers and an on-board camera. The markers pro-
vide 3D poses of the robots, and by pulsating at a prede-
fined frequency, provide a unique aircraft ID. ID-dependent
graph-based formation is achieved in Falconi et al (2010).
Robots use a dedicated infrared range-and-bearing system
and exchange messages containing robot IDs. In Ye et al
(2017), agents in a formation localize using bearing-only
measurements but are constrained to move with the motion
type that is known by all agents a priori.

Within the context of multi-robot coordination, the prob-
lem of role assignment has been addressed previously using
potential fields Zavlanos and Pappas (2008), market-based
algorithm Michael et al (2008) for task allocation, and the
Hungarian algorithm in Sun and Xia (2014) and in Zhang
et al (2013) for formation initialization. It was also applied
with graph-based formations (Falconi et al 2010). Those
works however consider only a static case, i.e. the roles must
be assigned only once, and are kept throughout the experi-
ment. Dynamic role assignment, where roles are updated on-
line by the robots as they navigate in the environment, can
be performed as part of the tracking algorithm. Panta et al
(2009) associate the state estimates within a GM-PHD filter
with unique track labels. In Stegagno et al (2013) the IDs of
the robots are reconstructed by incorporating odometric data
directly in the PHD filter. Both methods maintains the track-
label association, however assignment of the labels with for-

mation roles would require further manipulation. Franchi
et al (2013) tackle a problem of mutual multi-robot localiza-
tion with ID-less measurements, where robots are allowed to
communicate their IDs and the ID-less measurements of the
other robots. The robots self-localize in their individual co-
ordinate frames, the relative configuration of which has to be
estimated. The proposed method uses probabilistic data as-
sociation techniques, combinatorial in their nature, together
with multiple particle filters, one per each robot.

Cooperative object tracking, studied in Ahmad et al
(2017), which aims to localize a target of common inter-
est, and cooperative prediction of environmental boundaries,
studied in Saldaña et al (2017), are, in some sense, similar
to the problem of tracking the robots in the formation. The
objective of the above localization problems is to estimate
the coordinates of one or more targets or locations based
on available local information. The difference is that the lo-
calization problem studied here aims to localize all mov-
ing neighbors by each agent, while the cooperative tracking
problems studied in Ahmad et al (2017) and Saldaña et al
(2017) aim to localize a stationary or almost-stationary tar-
get by each agent.

Up to now, robot localization and multi-agent forma-
tion control are addressed as two separate problems in most
of the existing research. There exist very few works which
combine them as an integrated control problem. Jiang et al
(2017) study velocity and relative position estimation in-
tegrated with formation control, but each agent is forced
to carry out a combined circular and linear motion dur-
ing the entire process. Cao et al (2011) devise a method
called stop-and-go, to control the agents in the formation
that are not able to measure the relative positions of their
neighbors. This measurement restriction makes the control
problem significantly harder. Han et al (2018) develop a
consensus-like relative localization using measurements and
local communications and integrate it with leader-follower
formation control by combining the proposed relative lo-
calization scheme and a Laplacian-based formation control
method. ID data is available to the agents as they communi-
cate locally. The above methods mostly focus on the theo-
retical aspects of the problem and show only results in sim-
ulations with simplistic models. Assumptions on robot mo-
tion and availability of additional information make them
not suitable for ID-based formations with ID-less tracking
data.

3 Background

3.1 Multi-Target Tracking using Random Finite Sets

The Random Finite Sets (RFSs) are natural representations
of multi-target states and observations that provide a way to
directly extend single-sensor, single-target Bayes statistics
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to multi-sensor, multi-target problems (Mahler 2003). The
RFS formulation treats the collection of individual targets
as a set-valued state, and the collection of individual obser-
vations as a set-valued observation.

Let M(k) be the number of the targets at time k with the
states xk,1, ...,xk,M(k) ∈ X . At the next time step some targets
may die, surviving targets evolve to the updated states and
new targets may appear. Let N(k) be the number of mea-
surements zk,1, ...,zk,N(k) ∈ Z . Measurements can be gener-
ated by the targets or stem from the clutter (false positives).
Missed detections can occur due to sensing imperfections
(false negatives).

At time k, the collections of target states and the collec-
tions of measurements can be represented as finite sets:

Xk ={xk,1, ...,xk,M(k)} ∈ F(X )
Zk ={zk,1, ...,zk,N(k)} ∈ F(Z)

(1)

where F(X ) and F(Z) are the collections of all finite sub-
sets of targets X and measurements Z respectively1.

3.1.1 The RFS State Evolution Model

An RFS model for the time evolution of the multi-target state
can incorporate target motion, birth and death of a target (Vo
and Ma 2006). The targets may be temporarily occluded or
venture out of the field of view. Thus, given a multi-target
state Xk−1 at time k−1, the multi-target state Xk at time k is
given by the union of the surviving targets and the sponta-
neous births:

Xk =

 ⋃
ζ∈Xk−1

Sk|k−1(ζ )

∪Γk (2)

Sk|k−1(ζ ) is the model of the behavior of the state ζ at the
next time step and can take on either {xk} when the tar-
get survives or /0 when the target dies, corresponding to
the cases where the target xk−1 ∈ Xk−1 continues to exist
at time k with probability pS,k(xk−1) or dies with probabil-
ity 1− pS,k(xk−1) respectively. Targets that continue to exist
transition from a state xk−1 to xk with the multi-target tran-
sition density fk|k−1(xk|xk−1). Γk is the RFS of spontaneous
birth at time k.

3.1.2 The RFS Measurement Model

The RFS measurement model accounts for the uncertainty
of detection and the clutter. Given a multi-target state Xk
at time k, the multi-target measurement Zk is given by the

1 Analogously to the single-target system, where uncertainty is ex-
pressed by modeling the state xk and the measurement zk as random
vectors, the uncertainty of the multi-target system is expressed by mod-
elling the multi-target state Xk and the multi-target measurement Zk as
RFS.

union of the measurements generated by the target and the
clutter:

Zk =

[ ⋃
x∈Xk

Θk(xk)

]
∪Kk. (3)

where Θk(xk) is an RFS generated by the target with a state
xk ∈ Xk at time k and can take on either {zk} when the target
is detected with probability pD,k(xk−1) or /0 when the tar-
get is not detected with probability 1− pD,k(xk−1). For the
detected targets, the probability density of obtaining an ob-
servation zk from xk is given by the multi-target likelihood
gk(zk|xk). Kk denotes the clutter.

3.1.3 The Optimal Multi-Target Bayes Filter

The optimal multi-target Bayes filter propagates the multi-
target posterior density pk(·|Z1:k) in time using recursion:

pk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)pk−1(X |Z1:k−1)µs(dX) (4)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)pk|k−1(Xk|Z1:k−1)µs(dX)
(5)

where µs(dX) is a reference measure on F(X ). Computing
(4)-(5) involves multiple integrals on the spaceF(X), which
is intractable.

3.2 Probability Hypothesis Filter

To deal with intractability, the Probability Hypothesis Den-
sity (PHD) filter, instead of propagating the multi-target pos-
terior density in time, propagates the posterior intensity, a
first order statistical moment of the multi-target posterior
(Mahler 2003).

For RFS X on the collection of all finite subsets X with
probability distribution P, the first order moment, called the
intensity, is a non-negative function v on X . In essence,
for each region S ⊆ X , the integral of v over that region,∫

S v(x)dx, gives the expected number of elements of X that
are in S2. The posterior intensity approximation of the multi-
target posterior, where vk and vk|k−1 are the approximations
of pk and pk|k−1 respectively, can be propagated in time via
the PHD recursion:

vk|k−1(x) =
∫

pS,k(ζ ) fk|k−1(x|ζ )vk−1(ζ )dζ + γk(x)

vk(x) = [1− pD,k(x)]vk|k−1(x)+ pD,k(x)vD
k|k−1(x)

(6)

2 The local maxima of the intensity v are the local concentrations
of the expected number of elements and can be used to estimate the
elements of X .



6 Alicja Wasik et al.

with

vD
k|k−1(x) = ∑

z∈Zk

gk(z|x)vk|k−1(x)
κk(z)+

∫
pD,k(ξ )gk(z|ξ )vk|k−1(ξ )dξ

(7)

where γk(x) is the intensity of the birth RFS Γk and κk(z) is
the intensity of the clutter RFS Kk. The PHD filter does not
involve combinatorial computations, nevertheless it does not
admit closed form solutions.

3.3 Gaussian Mixture Probability Hypothesis Filter

The Gaussian Mixture Probability Hypothesis Density
(GM-PHD) (Vo and Ma 2006) filter admits a closed form
solution to the PHD recursion. Under linear, Gaussian as-
sumptions on the target dynamics and birth processes, the
posterior intensity is a Gaussian mixture of the form:

vk(x) =
Jk

∑
i=1

w(i)
k N (x;m(i)

k ,P(i)
k ) (8)

where each Gaussian component i is associated with a
weight w(i)

k , Jk is the number of Gaussian components repre-
senting the intensity andN (·;m,P) denotes a Gaussian den-
sity with mean m and covariance P.

The GM-PHD filter involves four steps: 1) prediction,
where the previous intensity evolves according to the mo-
tion model and where new targets can appear 2) update,
where the intensity is updated with the acquired measure-
ments 3) selection, including merging and pruning, to reduce
the number of Gaussian components and 4) state extraction
from the posterior intensity.

3.3.1 Prediction

The predicted intensity at the time k is a Gaussian mixture
of the form:

vk|k−1(x) = vS,k|k−1(x)+ γk(x) (9)

where vS,k|k−1(x) is the survival intensity:

vS,k|k−1(x) = pS,k

Jk−1

∑
i=1

w(i)
k−1N (x;m(i)

k|k−1,P
(i)
k|k−1) (10)

with pS,k being the probability of survival, and γk(x) is the
birth intensity with Jγ,k components:

γk(x) =
Jγ,k

∑
i=1

w(i)
γ,kN (x;m(i)

γ,k,P
(i)
γ,k) (11)

The components of the survival intensity are computed from
the previous intensity components according to a linear
Gaussian motion model:

m(i)
k|k−1 = Fk−1m(i)

k−1 (12)

P(i)
k|k−1 = Qk−1 +Fk−1P(i)

k−1FT
k−1 (13)

and w(i)
k|k−1 = w(i)

k−1, where Fk−1 is the state transition ma-
trix and Qk−1 is the process noise covariance. The mean val-
ues of the birth intensity components, m(i)

γ,k, represent places,
where new targets are likely to appear.

3.3.2 Update

Given a set of measurements Zk, the posterior intensity is
updated as follows:

vk(x) = vT,k(x)+ ∑
z∈Zk

vD,k(x;z) (14)

where

vT,k(x) =
Jk|k−1

∑
i=1

(1− pD,k)w
(i)
k|k−1N (x;m(i)

k|k−1,P
(i)
k|k−1) (15)

vD,k(x,z) =
Jk|k−1

∑
i=1

w(i)
k (z)N (x;m(i)

k|k(z),P
(i)
k|k) (16)

where pD,k(m
(i)
k|k−1) is the state-dependent probability of

detection. Intuitively, vT,k(x) is the missed-detection term,
where the weight of each Gaussian component of the pre-
dicted intensity is discounted according to pD,k (see Equa-
tion 15). The vD,k(x;z) term, one for each measurement
z ∈ Zk, is the detection term, which provides closed form ex-
pressions for computing the means, covariances and weights
of vk from those of vk|k−1 when a new set of measurements
arrives. The complete expressions for w(i)

k , m(i)
k|k and P(i)

k|k in
Eq. (16) are:

w(i)
k (z) =

pD,kw(i)
k|k−1q(i)k (z)

κk(z)+ pD,k ∑
Jk|k−1
l=1 w(l)

k|k−1q(l)k (z)
(17)

m(i)
k|k(z) = m(i)

k|k−1 +K(i)
k (z−Hkm(i)

k|k−1) (18)

P(i)
k|k = [I−K(i)

k Hk]P
( j)
k|k−1 (19)

with

q(i)k (z) =N (z;Hkm(i)
k|k−1,Uk +HkP(i)

k|k−1HT
k ) (20)

K(i)
k = P(i)

k|k−1HT
k (HkP(i)

k|k−1HT
k +Uk)

−1 (21)

where Hk is the observation matrix, Uk is the observation
noise covariance and κk(z) is the expected clutter level.
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3.3.3 Selection

The update step yields a quadratic increase in the number
of Gaussian components the posterior intensity is composed
of. To keep the problem tractable, components with weak
weights are pruned: I = {i = 1, ...,Jk|w

(i)
k > TS}.

Furthermore, all Gaussian components close to each
other are merged into a single Gaussian as follows. At
first, a Gaussian component with the highest weight is se-
lected with j = argmaxi∈Iw

(i)
k . Then all Gaussian compo-

nents within the Mahalonobis distance U from j are forming
a set of Gaussian components:

L = {i ∈ I|(m(i)
k −m( j)

k )T (P(i)
k )−1(m(i)

k −m( j)
k )≤US} (22)

that are merged into a single component:

w̃(l)
k = ∑

i∈L
w(i)

k , m̃(l)
k =

1

w̃(l)
k

∑
i∈L

w(i)
k m(i)

k , (23)

P̃(l)
k =

1

w̃(l)
k

∑
i∈L

w(i)
k (P(i)

k +(m̃(l)
k −m(i)

k )(m̃(l)
k −m(i)

k )T )

Finally, the number of Gaussian components is truncated
to Jmax components with the highest weights, resulting in a
posterior intensity shaped as a Gaussian mixture:

vk(x) =
Jk

∑
i=1

w(i)
k N (x;m(i)

k ,P(i)
k ) (24)

3.3.4 State extraction

The means of the Gaussian components are the local max-
ima of the posterior intensity vk. Extraction of multi-target
state estimates comes down to selection of the Gaussian
means that have weights greater than a threshold TSE .

4 Problem Statement

We address the problem of multi-robot tracking to provide
absolute position estimates necessary for a team of robots to
control and keep a desired formation geometry. The multi-
robot system consists of ∆ robots R1, ...,R∆ . The formation
includes one leader robot, which moves on a pre-defined tra-
jectory, and ∆−1 follower robots, all of which know the de-
sired formation geometry, i.e. the desired range and bearing
they should keep with respect to their neighbors, including
the leader.

Each robot Ri independently estimates its own position
pi = [xi,yi] and orientation αi in a two-dimensional, GNSS-
denied environment, based on a known map and onboard
sensing. Since all the robots share the same map, they all
share a common global coordinate frame IW . Each robot Ri

is equipped with sensors that provide range and bearing to
the other robots in its local reference frame IRi , but the mea-
surements do not include IDs of the detected robots. Since
the relation of IRi w.r.t. IW is known to Ri, the range and
bearing sensor measurement j can be expressed in the global
frame as z j to constitute the measurements set Zk. Because
of the lack of IDs, the followers do neither have the means
to distinguish among the neighbors, nor can they tell apart
a leader from a follower based on the measurements alone.
Therefore, the formation orientation is defined in IW , which
is the only frame known to all the robots. The frame of the
leader, IL, cannot be used for that purpose, as it is not known
to the robots at all times. Robots are capable of communicat-
ing with each other their global self-localization positions in
IW , but the communication is not reliable enough to be used
as the only means to maintain the formation.

The state x j = [x j,y j, ẋ j, ẏ j] of each target robot in the
global reference frame IW consists of its position and veloc-
ity. Each target follows the linear Gaussian dynamical model
with:

F =

[
I2 δ I2
02 I2

]
, Q = σ

2
f

[
δ 4

4 I2
δ 3

2 I2
δ 3

2 I2 δ 2I2

]
(25)

where In and 0n denote, respectively, the n× n identity
and zero matrices, δ is the time step, and σ2

f is the stan-
dard deviation of the process noise. The sensor measure-
ment z j = [zx

j,z
y
j]

T , expressed in the global frame IW is a
noisy version of the position of a target robot R j and fol-
lows a linear Gaussian observation model with H = [I2,02],
U = σ2

ε I2, where σ2
ε is the standard deviation of the mea-

surement noise. The communicated information sent by R j
to the receiving robot Ri includes a position p j in IW . Multi-
target tracking is performed in the global frame IW .

5 GM-PHD Filter with Formation Information

In this work we introduce the FI-GM-PHD filter. The FI-
GM-PHD filter consists of two steps for supplementing ad-
ditional Gaussian components to the filter intensity:

1. The inception step - incorporation of communication
data;

2. The coalition step - using spatial configuration of the for-
mation as a prior for the PHD filter.

To provide the robots with the necessary information to
maintain the formation, each follower robot Ri runs its own
FI-GM-PHD filter. The leader robot moves independently of
the other robots and therefore does not rely on other robot
estimates.

The filters are decentralized from the computational
viewpoint, as they are run locally and independently by
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the different follower robots. Role assignment and forma-
tion control procedures are also run individually by the fol-
lower robots. The filters are centralized from the information
viewpoint, because each follower runs the FI-GM-PHD fil-
ter with information about the locations of all its teammates.

5.1 Prediction in the FI-GM-PHD Filter

The components of the survival intensity vS,k|k−1(x) con-
stituting the predicted intensity vk|k−1(x) (Eq. 9) at the
time k are computed from the previous intensity com-
ponents according to a linear Gaussian motion model:
m(i)

k|k−1 = Fk−1m(i)
k−1 and P(i)

k|k−1 = Qk−1 +Fk−1P(i)
k−1FT

k−1 (Eq. 12
and Eq. 13 respectively). The motion model of a target with
the state x j = [x j,y j, ẋ j, ẏ j] composed of position and ve-
locity is a linear Gaussian dynamical model with the state
transition matrix F = [I2, δ I2;02, I2] and the process noise
covariance Q = [ δ 4

4 I2,
δ 3

2 I2; δ 3

2 I2, δ 2I2], described in detail
in Section 4. At initialization, the filter run by robot Ri is
supplied with a birth RFS γ0(x) at the initial detections. At
time k 6= 0, birth intensity in Eq. 9 is γk(x) = /0.

5.2 Update in the FI-GM-PHD Filter

The update step in the FI-GM-PHD filter differs from the
procedure of the original filter described in Sec. 3.3.2 with
regard to the source of the measurements. While in the
GM-PHD filter the set of measurements Zk consists of di-
rect measurements obtained from the sensors of the tracking
robot, the detection term vD,k in the FI-GM-PHD filter also
includes communicated state information, added in what we
refer to as the inception step.

5.2.1 Measurement Update

The missed-detection term vT,k(x) constituting the update
intensity in Eq. 14 is calculated using the predicted intensity
vk|k−1(x), discounted according to the probability of detec-
tion pD,k as shown in Eq. 15. The state-dependent probabil-
ity of detection used in this work is described in detail in
Sec. 5.2.3; it suggest how likely it is that the tracked robot
is detected given the occlusions and its position with respect
to the field of view of the tracking robot. The detection term
vD,k(x;z) (Eq. 16), one for each measurement of the posi-
tion z j = [zx

j,z
y
j]

T of the target R j, follows a linear Gaussian
observation model with the observation matrix H = [I2,02]

and the observation noise covariance U = σ2
ε I2. The sensor

measurements in Zk are obtained from onboard range and
bearing sensors described in Sec 7.2, where the range and
bearing data is used to determine the position of target R j in
the global frame IW as explained in Sec. 4.

5.2.2 Inception of the Communicated Data

Even when communication between the robots is possible,
it may suffer of message losses, be of low rate or break oc-
casionally. For the receiving robot Ri to perform inception
in the update step at time k, the communicated position in-
formation p j,k, one per each communicating neighbor robot
j = 1, ...,∆k, forms a measurement z( j)

k . The measurement is
added to Zk to form a new measurement set:

Zk := Zk ∪
∆k

∑
j=1

z( j)
k (26)

There is no need to associate the position messages with
the existing Gaussian components from the prediction step,
as the PHD filter does not require data association, but each
measurement generates a new set of components updated
from the predicted intensity (see Eq. 16). In the general case
including communicated measurements is not suitable for
the update step, because if only a fraction of the robots is ex-
changing the information, then performing the update would
delete from the output the tracks of the robots that did not
communicate. This can be prevented by ensuring that when
merging the Gaussian components generated by the trans-
mitted data of the robots that do communicate and the Gaus-
sian components from the prediction step that might corre-
spond to those robots, the weight of the merged component
always remaining between (0,1).

By curbing the merged weight, the predicted compo-
nents that are not strengthened by additional communicated
data are prevented from pruning. The selection step thus
includes an additional merging procedure. Now, after per-
forming the standard merging step (Eq. 22 to Eq. 23), we
again select a Gaussian component with the highest weight
j = argmaxi∈Iw

(i)
k . Then all the components within an Eu-

clidean distance U between the position part of the Gaussian
mean, m0:1, and the position part of the mean of j form the
set L′ = {i ∈ I|‖m(i)

0:1,k−m( j)
0:1,k‖ ≤ 2rr}, where 2rr is the robot

diameter. The set L′ is merged into a single component with
the weight w̃

′(l)
k = min

(
∑i∈L′ w

(i)
k ,1

)
. The calculation of m̃

′(l)
k

and P̃
′(l)
k proceeds as in Eq. 23.

Note that if the model for the communicated measure-
ments differed from the model of the sensor-based measure-
ments, Eqs. 17-19 would have to be applied with each mea-
surement updated according to its respective model.

5.2.3 Probability of Detection

In order to reduce the risk of losing track of a robot when
it enters an occluded area or escapes the field of view of
the detecting robot, the probability of detection pD,k(m

(i)
k|k−1)

is state dependent. Constant probability of detection would
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Fig. 2: Illustration of the occlusions and field of view model.
The detecting robot Ri determines the degree of occlusion
of the robot R j. Angles [α(o)

1 ,α
(o)
2 ] are the boundaries of the

region occluded by object o. The green region is the inter-
section of the occlusion regions of R j and Rk.

result in quick decrease of the weights of the components
without associated measurements.

The method for determining pD,k(m
(i)
k|k−1) is summarized

in Algorithm 1 and illustrated in Figure 2. If the estimated
position p̂ j of the tracked robot R j is outside the sensing
range rs of the detecting robot Ri, a minimum detection
probability pmin

D is assigned (line 4 in Algorithm 1). Addi-
tionally, the object of interest is considered occluded if any
other object k is located between the detecting robot and the
object of interest. In this case, the decrease in the probabil-
ity of detection is proportional to the weight of the occluding
object and proportional to the estimated degree of occlusion.

In the Inception step (Sec. 5.2.2), the probability of de-
tection associated with the components stemming from the
communicated measurements pInc

D is state-independent and
constant.

5.3 The Projected Formation State

Given the absolute position pi,k = [xi,k, yi,k] of the robot Ri at
time k, the position of the robot R j is projected in the global
frame IW based on the desired formation geometry:[

hx
i j,k

hy
i j,k

]
=

[
bx

i j

by
i j

]
+

[
xi,k

yi,k

]
(27)

where bi j is a bias, i.e. known desired spacing between the
robot Ri and R j. The collection of the projected positions
with respect to the robot Ri of all the other robots in the
formation is denoted by:

hi,k := {{hx
i j,k,h

y
i j,k}, | j = 1, ...,∆ ; j 6= i} (28)

where ∆ is the number of robots in the formation and so,
|hi,k|= ∆ −1.

Algorithm 1: PROBABILITY OF DETECTION

1: given the position of the detecting robot pi = [xi, yi], the
estimated position of the object of interest p̂ j = [x̂ j, ŷ j]

and the set of all object estimates {x̂k}N
k=1 with weights w(k)

2: denote range rab = ‖p(a)−p(b)‖
3: denote bearing γab = tan−1((y(a)− y(b))/(x(a)− x(b)))
4: p( j)

D = p0
D

5: βTOT = Ø (total occluded region)
6: 1) Check if object within the sensing range
7: if ri j > rs (outside sensing range)

8: p( j)
D = pmin

D
9: else

10: α( j) = tan−1(rr/ri j)

11: [α
( j)
1 ,α

( j)
2 ] = γ ji±α( j) (region where R j can be occluded)

12: for k = 1, ...,N
13: if rik < ri j

14: [α
(k)
1 ,α

(k)
2 ] = γki±α (region which Rk can occlude)

15: 2) Check if object k occludes the object of interest
16:

[
β
( jk)
1 ,β

( jk)
2

]
=
[
α
( j)
1 ,α

( j)
2 ]∩ [α(k)

1 ,α
(k)
2

]
17: if

[
β
( jk)
1 ,β

( jk)
2

]
6= Ø (R j is occluded by Rk)

18: 3) Check if not double counting occlusion
19:

[
β
( jk)
1 ,β

( jk)
2

]
=
[
β
( jk)
1 ,β

( jk)
2

]
−βTOT

20: βTOT = βTOT ∪
[
β
( jk)
1 ,β

( jk)
2

]
21: 4) Decrease the probability of detection

22: p( j)
D = p( j)

D

[
1−w(k)(1−

∣∣∣[β ( jk)
1 ,β

( jk)
2

]∣∣∣∣∣∣[α( j)
1 ,α

( j)
2

]∣∣∣ )]
23: end if
24: end if
25: end for
26: end if
27: return p( j)

D

5.4 Coalition of the Projected Formation States

The coalition step extends the GM-PHD filter with an ad-
ditional block, added after the update step. It combines the
intensities obtained during the update step with the coalition
intensity derived from the projected formation states. Thus,
the Gaussian components constituting the coalition intensity
serve as an outline of where the tracked robots are to be ex-
pected.

The coalition step is detailed in Algorithm 2. The set of
states hi,k projected by the robot Ri is used to approximate
the means of the components of the coalition intensity vζ ,k
as follows. For each tracked robot R j the mean is placed at
the projected position of that robot m( j)

ζ ,k = [hx
i j,k, hy

i j,k, 0, 0]T ,
where j = 1, ...,∆ ; j 6= i and so Jζ ,k = ∆ −1. Each compo-
nent j = 1, ...,Jζ ,k of the coalition intensity vζ ,k at time k is
given an initial budget Φ

( j)
ζ ,k = Φζ ,0. Then, all the components

forming the posterior intensity vk(x), l = 1, ...,Jk, are com-
pared against j to find the matching that maximizes some
criteria (line 7 of Algorithm 2). We choose to put emphasis
on minimizing the distance between the position part of the
component means (m0:1 corresponds to the position part of
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Fig. 3: Illustration of the coalition step. Three posterior in-
tensity components, m(1)

k ,m(2)
k ,m(3)

k are compared against two
coalition components, m(1)

ζ ,k,m
(2)
ζ ,k with the corresponding bud-

gets Φ
(1)
ζ ,k ,Φ

(2)
ζ ,k . Closeness of the m(1)

ζ ,k to the m(1)
k decreases

significantly its budget, while for m(2)
ζ ,k, the budget does not

become depleted and a novelty is created.

the state, while m2:3 corresponds to the velocity part of the
state), while choosing components of the posterior intensity
with significant weights. By sorting the posterior intensity
components according to the o( j,l)

k measure, we first evalu-
ate the best candidates for good matching.

The components are coalesced as follows. Lines 16- 18
calculate a temporary budget for the posterior component
(Φ (l)

k ) using a sigmoid function f ∈ 〈0,1〉 of the distance
between the means of the components (line 15). If the dis-
tance is small, the possibility that both components corre-
spond to the same target is high and the components j and l
are coalesced to form a new Gaussian component, with a
mean of intensity being a combination of the means of the
two, the covariance and the weight being the covariance and
the weight of l modified as a function of the divergence.
If the distance between j and l is large, the likeliness that
l is associated with j is small and l is propagated further
with little change. This diverse behavior is assured by using
a sigmoid-shaped function of the distance when comparing
the components.

The budget of the coalition component is decreased with
every posterior component that has been found close to it,
and has two major advantages. Firstly, it limits the number
of new components that can originate around it. Secondly,
a budget left at the end of iteration indicates that one of the
coalition components did not have a corresponding compo-
nent in the posterior, whether because of the missed detec-
tion, occlusion, or field of view limits. In that case, a new
component, called the novelty is created with the mean at
the area where a robot is expected to be. Only the coalition
components are allocated the initial budget; the components

Algorithm 2: THE COALITION STEP

1: given the components means approximating the projected

formation states {m( j)
ζ ,k}

Jζ ,k
j=1 and the components of the posterior

intensity {w(l)
k ,m(l)

k ,P(l)
k }

Jk
l=1

2: n = 0
3: for j = 1, ...,Jζ ,k

4: Φ
( j)
ζ ,k = Φζ ,0

5: for l = 1, ...,Jk
6: 1) (Evaluate best-matching criteria)
7: o( j,l)

k = exp(‖m(l)
k −m( j)

ζ ,k‖)+(w(l)
k + ε)−1

8: d( j,l)
k = ‖m(l)

0:1,k−m( j)
0:1,ζ ,k‖

9: end for
10: 2) (Sort posterior components)

11: sort({w(l)
k ,m(l)

k ,P(l)
k }

Jk
l=1

,o( j,l)
k )

12: for l = 1, ...,Jk

13: if Φ
( j)
ζ ,k > Φζ ,min

14: 3) (Coalesce components)
15: Φ

(l)
k = f ((d( j,l)

k )−1)

16: m̄(n)
k := Φ

(l)
k m(l)

k +(1−Φ
(l)
k )m(i)

ζ ,k

17: P̄(n)
k := (Φ

(l)
k + ε)−1P(l)

k

18: w̄(n)
k := Φ

(l)
k w(l)

k
19: n := n+1

20: 4) (Update budget)
21: Φ

( j)
ζ ,k = Φ

( j)
ζ ,k−Φ

(l)
k

22: 5) (Estimate association error)
23: êS,k = (1−Φ

(l)
k )(w(l)

k + ε)−1

24: end if
25: end for
26: end for
27: êS = median(êS,k)

28: 6) (Novelty)
29: for j = 1, ...,Jζ ,k

30: if Φ
( j)
ζ ,k > 0 :

31: m̄(n)
k := m( j)

ζ ,k

32: P̄(n)
k := êSP( j)

ζ ,k

33: w̄(n)
k := (êS + ε)−1

34: n := n+1
35: end if
36: end for
37: J̄k = n

38: return {w̄(n)
k , m̄(n)

k , P̄(n)
k }

J̄k
n=1

of the posterior intensity come with an associated weight
and their budget is computed during the coalition process
(line 15).

While in our previous work Wasik et al (2017a) we as-
sumed that the formation always stays close-to-desired, here
we relax this assumption by moderating the importance of
the novelty components according to how well the match-
ing between the posterior and the coalition components has
been performed on the whole. The matching is estimated us-
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ing the association error êS, calculated in line 23 of Alg. 2,
where a good matching means that a posterior component
with a substantial weight is found close to a coalition com-
ponent. The quality of the overall matching is used to deter-
mine the weight of the novelty components in line 33. The
larger the error, the lower the weight of the novelty compo-
nent. In case the overall matching is poor, the weights of the
coalition components are negligible and become discarded
in the prediction step of the next iteration. This property
modulates the impact of the coalition step on the role assign-
ment procedure, making the latter rely on a) the Gaussian
components of the full FI-GM-PHD filter when the match-
ing is good or b) the Gaussian components created based on
communicated and sensed data otherwise, for example when
formation shape is not perfect.

As an example, depicted in Figure 3, consider three pos-
terior intensity components, m(1)

k ,m(2)
k ,m(3)

k compared against
two coalition components, m(1)

ζ ,k,m
(2)
ζ ,k with the corresponding

budgets Φ
(1)
ζ ,k ,Φ

(2)
ζ ,k initially set to Φζ ,0. Closeness of m(1)

k to

m(1)
ζ ,k decreases significantly its budget Φ

(1)
ζ ,k , and a new com-

ponent is created as a combination of the two. For m(2)
ζ ,k, the

budget does not become depleted and a novelty is created.
Finally, component m(3)

k has no close correspondence in vζk

and it is propagated with no modification.

The coalition step and the inception step supplement the
intensity with additional Gaussian components. In case the
robot has not been tracked, adding a new Gaussian compo-
nent creates a new target based on the high probability that
the target is there. This is analogous to the birth process of
the GM-PHD filter in Vo and Ma (2006). In case the robot
has already been tracked, adding a new Gaussian component
that corresponds to that robot increases the likelihood of the
robot being present at that position, provided that the state
extraction takes into account the fact that multiple targets
cannot occupy the same physical position, i.e. the compo-
nents with weight above one are extracted as single targets.

6 Tracking for Formation Control

6.1 Graph-Based Formation Control

Details of the formation control algorithm can be found in
Wasik et al (2016a). The formation is comprised of ∆ holo-
nomic robots including one leader robot that moves on a pre-
defined trajectory. In contrast with our previous work on
FI-GM-PHD filter (Wasik et al 2017a), the position of the
leader is not known globally to all the robots, but the robots
must track the leader in order to follow it in the formation.

Fig. 4: Illustration of the role assignment step. Center of the
estimates c∆ and center of the formation cb are brought to a
common reference frame at the origin, where the translated
position estimates are p̂c

∆
, and the bias, translated and rotated

according to the formation orientation αW , is br
∆

. Dni is the
cost of associating bias bn with estimate x̂i.

For a robot Ri, the formation control is achieved as:

ẋi =
1

|∑ jLi j|∑i∼ j

[
−Li j(ri j(t)cos(γi j(t))−bx

i j(t))
]

ẏi =
1

|∑ jLi j|∑i∼ j

[
−Li j(ri j(t)sin(γi j(t))−by

i j(t))
] (29)

where L is a non-stationary Laplacian, ri j and γi j are the
Euclidean relative range and the bearing between the robots
Ri and R j respectively. The bias vectors bx

i , by
i ∈ R∆ L

i de-
fine the desired robot-leader and inter-robot distances along
the x and y axes respectively. Finally, the robots are omni-
directional, so the followers heading is decoupled from the
velocity control. Since the pose of the leader is not globally
shared, the followers align their orientation to the positive
y-axis of the map frame IW 3.

6.2 Role Assignment

The role assignment procedure finds a permutation that as-
signs the estimates and the position of the detecting robot to
the target positions in the formation. Although we use the
graph-based framework notation, the method can be gen-
eralized to other formation algorithms. The procedure is
sketched in Algorithm 3. Consider a formation with its ge-
ometry uniquely determined by a bias matrix b∆ , a set of
desired inter-robot distances. The heading of the formation
is defined in a global reference frame and is assumed to be
known by all the robots. In our case the formation orien-
tation αW is along the y-axis of the world frame. The bias
and the estimates are brought to a common reference frame
by matching the center of the rotated global bias br

∆
with

3 The robots self-localize on a known map, therefore the orientation
of the body with respect to the map frame is estimated online.
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Algorithm 3: ROLE ASSIGNMENT

1: given formation orientation αW , position of detecting robot Ri,
pi = [xi,yi], estimated positions p̂∆−i = {[x j,y j]}∆̂−1

j=1 and bias
bi

∆
= {[bx

i j,b
y
i j]}∆

j=1

2: 1) Find common coordinate frame
3: p̂∆ = [pi, p̂∆−i]
4: c∆ = mean(p̂∆ ) (find center of the robots)
5: p̂c

∆
= p̂∆ − c∆ (robot positions w.r.t the origin)

6: cb = mean(bi
∆
) (find center of the formation)

7: br
∆
= R(αW )(bi

∆
− cb) (rotated global bias)

8: 2) Find best assignment
9: D = cost(p̂c

∆
,br

∆
) (find assignment cost)

10: A∆ = hungarian(D) (choose best assignment)
11: return A∆ = {link εL = (p̂ j,s)}∆

j=1,s=1

the center of the estimated positions p̂c
∆

(see Fig. 4). The
combination of the estimates and the roles resulting in the
smallest cost is computed using the Hungarian algorithm
(Kuhn 1955). The role assignment procedure, run by the
robot Ri, provides a set of links, A∆ = {εL = (p̂i,s),}∆

s=1. The
link εL = (p̂ j,s) is used for correct matching of the bias
bis(t) with ri j(t) and γi j(t) in Eq. 29, while its cost gives the
confidence about the assignment. More precisely, estimate
x̂ j (akin to position p̂ j) is associated with role “s” and its
subscript is changed to x̂s, with the range ris and the bearing
γis with respect to the robot Ri. The estimate x̂s is coupled
with bias bis that corresponds to the “sth” place in the for-
mation.

The role assignment procedure provides the tracking
robot Ri with its own role. In the next iteration of the FI-
GM-PHD filter this role is used to determine the projected
formation state that affects the coalition step, which in turn
after state extraction is used for the next role assignment.
Since the coalition step introduces novelty components for
robots that can neither be communicated with nor tracked,
it is important to note that without the fundamental assump-
tion of our work, namely that only a subset of robots expe-
riences communications outage at the same time, errors are
likely to occur and have a tendency to escalate. With rel-
atively small teams of robots, the formation recovers from
sporadic inconsistencies.

7 Experiments

Experiments are performed in the high-fidelity robotic sim-
ulator Webots (Michel 2004), with holonomic MBot robots
of diameter 0.65 m shown in Fig. 5. The robots are equipped
with two LIDARs providing 360◦ field of view and sensing
range 4 m, which are accurately simulated and calibrated us-
ing real data. Robots self-localize using the AMCL4 pack-
age from ROS, with the accuracy of approximately 10 to

4 AMCL (http://wiki.ros.org/amcl)

Fig. 5: A screenshot from the Webots simulator. The MBot
robot (right) and the simulated indoor environment (left).

20 cm of position, and around 5deg of orientation. Path plan-
ning performed by the leader robot is achieved using the
Fast Marching Method (FMM) (Ventura and Ahmad 2015).
Each robot uses a Dynamic Window Approach (DWA) for
low-level reactive collision avoidance. The method finds a
velocity candidate that is the closest to the desired output
velocity, in this case closest to the formation control out-
put in Eq. 29, but also guarantees collision-free trajectory.
See Wasik et al (2016a) for details.

7.1 Implementation

The tracking filter is run in a global frame IW . The track-
ing parameters of the filter are as follows. State of the target
is x j = [x j,y j, ẋ j, ẏ j]. Each target has the survival probabil-
ity pS,k = 0.95, and follows the linear Gaussian dynamical
model (see Sec. 4) with σ2

f = 1.0, which accounts for motion
uncertainty associated with holonomic motion of robots, and
δ = 0.5s. The measurement zi = [zx

i ,z
y
i ]

T is a noisy version
of the position and follows a linear Gaussian observation
model with the standard deviation of the position σ2

ε = 0.2,
determined empirically in simulation.

At initialization, the filter run by robot Ri is supplied
with a birth RFS at the initial detections with the covari-
ance Pγ,0 = diag([σ2

ε , σ2
ε , σ2

γ , σ2
γ ]

T ), where σ2
γ = 1.0, and

the weight wγ,0 = 1.0. We choose σ2
ε as it is the expected

measurement error and σ2
γ as the measurements do not in-

clude the velocity. The parameters for merging and pruning
are: Jmax = 10, US = 0.3, TS = 10−4 and we select Gaussian
components above TSE = 0.5. Furthermore, to take into ac-
count physical dimensions of the robots, the selection step
(see Eq. 22) additionally merges components if their means
are closer than twice the radius of the robot, 2rr = 0.65 m,
L = {i ∈ I|‖m(i)

k −m( j)
k ‖ ≤ 2rr}. Poisson distributed clutter

level is κk(z) = 0.015 within the sensing range of the robot.
Parameters for finding detection probability are p0

D = 0.9,
pmin

D = 0.02. The sensing radius rs = 4.0 m is range of the
laser scan used in the simulation.
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Inception Given that the sending robot Ri at time k commu-
nicates its estimated position pi,k = [xi,k, yi,k] and the orienta-
tion, this information is used in the inception step in the form
of a measurement, where z(i)k = [xi,k, yi,k]. Robot orientation
is not included in the state estimation as our current laser
detection cannot provide orientation information. Constant
probability of detection used in the model is pInc

D = 0.9.

Coalition The coalition mean intensity is based on the pro-
jected formation state m( j)

ζ ,k = [hx
i j,k, hy

i j,k, 0, 0]T , j = 1, ...,Jζ ,k.
The initial budget is Φζ ,0 = 0.5 and the minimal budget is
Φζ ,min = 0.1. The function used for coalescing the compo-
nents is f (x) = 1

1+exp(−10(x−0.5)) .

7.2 Measurement Model

For robot detection we use an on-board relative localization
system originally presented in Wasik et al (2016b). At each
time step, the laser range finder point cloud points are clus-
tered using a DBSCAN algorithm5 (Ester et al 1996). For
the robot with a circular model of the base with a diameter
of approximately 0.65 m, the clusters are subject to circle
fitting using a least squares solver, where the center of the
circle corresponds to the center of the base of the detected
robot. The coordinates are compared against a known occu-
pancy grid map to filter out false positives stemming from
known obstacles. The measurement is a position returned in
the form zi = [zx

i ,z
y
i ]

T .

7.3 Performance Evaluation

We study the tracking performance using the Optimal Sub-
Pattern Assignment (OSPA) metric (Schuhmacher et al
2008). OSPA is comprised of two components, one account-
ing for localization accuracy and the other for the cardinality
error:

ō(c)p (X ,Y ) =
( 1

δ

[
min
π∈Π

∑
(i, j)∈π

min(‖xi,y j‖,c)p+cp(|n−m|)
])1/p

where n = |X |, m = |Y | and δ = max(m,n). Π is the best
permutation between X and Y found using Hungarian algo-
rithm, p penalizes the estimated position error and c is the
cut-off parameter for penalizing cardinality errors. In our ex-
periments, OSPA is computed between the ground truth po-
sitions and the estimated positions, unless stated otherwise.
Each robot calculates the OSPA metric individually based
on the outcome of its own instance of the filter. We present
the mean results of the robots, averaged over the runs.

5 Wasik et al (2016b) uses sliding window, nearest neighbor classi-
fication for that purpose.

The formation error is the average difference between
the desired distances and the actual distances between the
robots in the formation:

eF = (|∑
j
Li j|)−1

∑
i∼ j
|(xi−x j)−bi j| (30)

8 Scenarios

With four scenarios, we conduct a thorough evaluation of
the FI-GM-PHD filter, and present a comparison with re-
spect to the full-communication-no-tracking situation and
with respect to the standard GM-PHD filter. We study the
performance of the methods under the following four sce-
narios: I) for tracking purposes only, i.e. the robots do not
use the tracking data for control; II) for formation initializa-
tion and convergence; III) in challenging situations, where
the robots navigate around obstacles scattered in the envi-
ronment or the measurement error is large; IV) in realistic
scenario where communications suffers from the periods of
outage. For videos of the experiments, please refer to Sec-
tion 11.

8.1 Scenario I: Multi-Robot Tracking

The dataset is collected when five robots, one leader and
four followers, move in a cross-shaped formation on a circu-
lar trajectory. Robots maintain the formation using commu-
nicated self-localization information, while simultaneously
collecting sensory data. With the collected data we perform
multi-robot tracking with i) the standard GM-PHD filter, and
with the variations of the FI-GM-PHD method: ii) with in-
ception step only, with iii) the coalition step only, and with
iv) the full FI-GM-PHD system (both inception and coali-
tion steps). We test the methods that combine communica-
tions (ii and iv) with message drop probabilities pmd = 0.0,
pmd = 0.5 and pmd = 0.9 and in a situation when two robots
are not communicating and the other robots communicate
with pmd = 0.0, pmd = 0.5 and pmd = 0.9. For each experi-
ment we perform 10 sequential runs, each lasting approxi-
mately 180 s.

8.2 Scenario II: Initialization

We generate ten worlds (corresponding to ten experimen-
tal runs) with four robots placed at random initial positions
and with random orientations. The sensing network is ini-
tially connected. In the experiments, both the tracking and
the control steps of our method are applied, which means
that the tracking data is used for initialization (bringing
the robots from random initial positions to positions in the
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Fig. 6: Scenario I. The OSPA metric. Note that the Std and
Col do not use the communicated data. Std stands for the
standard GM-PHD filter; Inc stands for FI-GM-PHD filter
with inception step only; Col stands for FI-GM-PHD filter
with the coalition step only; FSys stands for the full FI-GM-
PHD system; (P) stands for a situation, when a subset of
robots is not communicating.

formation) and maintenance of a diamond formation. As a
baseline for comparison, we use an experiment where robots
rely on i) only communication, but where robot roles are
given a priori, ii) only communication with dynamic role as-
signment, so that the robots take optimal paths to the forma-
tion. We study the performance of iii) the standard GM-PHD
filter, iv) the inception step only, v) the coalition step only,
and vi) the full FI-GM-PHD system. The methods (i-ii, iv
and vi) are tested with message drop probabilities pmd = 0.0,
pmd = 0.5 and pmd = 0.9 and in a situation when two robots
are not communicating (and where pmd = 0.0). For each of
the ten worlds we allow maximally three trials for testing
whether a method can complete successfully.

8.3 Scenario III: Limitations

Limitations of our methods are studied with regard to two
aspects, A) challenging environments with obstacles and B)
precision of robot detection.

Scenario III-A: Challenging Environments The leader robot
guides a diamond-shaped formation of four robots in an en-
vironment populated with obstacles of various shapes and
sizes. We use experiment with i) perfect communication
with dynamic role assignment as a baseline for comparison.
We study the performance of ii) the standard GM-PHD fil-
ter and iii) the full FI-GM-PHD system. In iii), only three
robots communicate. For each experiment, 5 sequential runs
of approximately 400 s are performed.

Fig. 7: Scenario II. Failure rate r f . NT stands for experiment
where robots do not perform tracking, but use only commu-
nicated data; RA stands for experiment where dynamic role
assignment is used (indicated only for NT).

Scenario III-B: Measurement Error Three robots move on a
circular trajectory in a triangle-shaped formation. We com-
pare i) perfect communication with dynamic role assign-
ment, ii) the standard GM-PHD filter and iii) the full FI-
GM-PHD system. For ii-iii, we add a random uniform er-
ror to the original measurement, with the magnitude of a)
eM = 0.0 m, b) eM = 0.3 m, c) eM = 0.6 m, d) eM = 1.0 m
and e) eM = 1.5 m. For iii, only the leader robot communi-
cates. We perform 10 sequential runs of around 120 s.

8.4 Scenario IV: Final Demonstration

The goal of the final experiments is to showcase the nom-
inal situation for which our methods are targeted, namely
when the communications has temporary problems that can
be overcome by taking advantage of the tracking. Four robot
move on a circular trajectory. At t1 = 10 s, one of the robots
loses communication for 20 s. At t2 = 50 s, there is no com-
munication between any pair of robots, for a period of 10 s.
Finally, at t3 = 110 s, one robot loses communication for
10 s. The total length of the run is 120 s, and we perform 10
sequential runs. A i) perfect communication with dynamic
role assignment is the baseline for comparison. We study
the performance of ii) the standard GM-PHD filter and iii)
the full FI-GM-PHD system.

9 Results

In the following section we use the following acronyms for
labeling the methods. Std stands for the standard GM-PHD
filter; Inc stands for FI-GM-PHD filter with inception step
only; Col stands for FI-GM-PHD filter with the coalition
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Table 1: Scenario II: OSPA metrics

Std Col FSys
pmd 0.0 0.5 0.9 (P)

OSPA mean 0.4 0.4 0.20 0.22 0.26 0.32
OSPA std 0.07 0.3 0.05 0.05 0.10 0.03

step only; FSys stands for the full FI-GM-PHD system; NT
stands for experiment where robots do not perform tracking,
but use only communicated data; RA stands for experiment
where dynamic role assignment is used (indicated only for
NT); (P) stands for a situation when a subset of robots is not
communicating.

9.1 Scenario I: Multi-Robot Tracking

Figure 6 shows the average OSPA results calculated be-
tween the ground truth and the estimates of the five robots.
The results suggest that the standard GM-PHD filter and the
Col method achieve the best performance, irrespectively of
whether the other methods use additional data. This is coun-
terintuitive, as one might expect that when communicated
self-localization information is added to the tracking data,
this additional source of information should improve the es-
timates. Since the poses shared by the robots and used in
the methods Inc and FSys are the self-localization poses,
this data inherently incorporates the self-localization error
of the tracked robots (in addition to the self-localization er-
ror of the tracking robot), so the above methods naturally
perform worse than the methods that do not incorporate the
error. However, even though according to the ground truth
the tracking data in methods Inc and FSys appears to be infe-
rior when communication is sparse (with high message drop
probability and when not all the robots communicate), in
reality the robots perform formation control based on their
own self-localization data and have no access to ground
truth, neither of their own nor of the neighboring robots.
Therefore, formation control based on estimates that include
the self-localization data in practice does not perform worse
than if it relied purely on tracking. Moreover in Scenario I
the robots do not rely on the tracking data for navigation, but
only passively collect it. The FI-GM-PHD filter has been de-
signed to be used for active use in formation control, where
collective motion control and tracking have mutual influence
on each other. It the ensuing experiments it will be shown
that the proposed approach exceeds the performance of the
original method in its designated applications.

9.2 Scenario II: Initialization

Figure 7 shows the failure rates r f for each of the tested
methods. An experimental run is labeled as failed if the

Fig. 8: Scenario II. Formation error.

robots are not capable of converging to a stable formation
state, caused by the lack of data or collisions. We consider
a formation to be stable when the formation error falls be-
low a pre-established threshold and attains a steady state.
If the robots are not capable of converging to a formation
after initialization, or if the formation breaks after conver-
gence without external disturbance, the formation is consid-
ered unstable. It is clear that when robots do not use track-
ing (NT, NT+RA) and some of the robots are not communi-
cating (P), the robots always fail, hence r f = 1.0. The lack
of dynamic role assignment in NT leads to frequent colli-
sions, as the robots must shuffle when moving to designated
places in the formation. In general, methods Inc and FSys
perform at least as well as the baseline NT, but they also al-
low for formation initialization even when not all the robots
communicate (P). Additionally, using the formation prior
in FSys leads to higher change of success than not using
it in Inc. Using the formation prior but no communication
in Col leads to slightly worse performance than FSys, with
r f = 0.36, however Col still significantly outperforms the
standard GM-PHD filter (Std) in terms of its success rate.

The tracking performance, summarized in Table 1 shows
that communications always improves tracking in the FI-
GM-PHD method (FSys) as compared to when communi-
cations is not included (Std and Col). The formation con-
vergence as well as the precision of the formation can be
deduced from Figure 8, which shows the average time-wise
evolution of the formation error eF for pmd = 0. The con-
vergence rate is slower for the tracking methods (Std, Inc,
Col and FSys) than for the baseline NT methods. Among
the tracking methods, the steady state with eF ∼ 0 is only
achieved by the full FI-GM-PHD (FSys), while lack of com-
munication (Std and Col) leads to slight deformation of the
final formation shape.

9.3 Scenario III: Limitations

Scenario III-A: Challenging Environments The trajectories
of the robots using the FI-GM-PHD tracker in challenging
environment can be seen in Figure 9. Even though a compar-
ison between the FI-GM-PHD filter and the GM-PHD filter
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Fig. 9: Scenario III-A. Simulation screenshot (top). Trajec-
tories of the robots at t = 62 s (A), t = 114 s (B), t = 190 s
(C) and t = 270 s (D).

was not the aim of the experiment, the tests performed with
the standard GM-PHD filter give a better insight as of why
a tracking-only method (Std) is not sufficient for robust nav-
igation of multi-robot formation in realistic environments.
Figures 10 and 11 show that for the GM-PHD filter (Std) the
eF and OSPA metrics on average keep rising until the point
when the formation breaks apart at around t = 80 s (caused
by the robots losing track of the leader or drifting apart form
each other until they move out of field of view). This is
not the case for the FI-GM-PHD (FSys) method, which en-
ables periodic correction of the tracker with the communica-
tions data, even when only a subset of robots communicates.
Note, that presence of obstacles that are close to the path of
the robots forces deformation of the formation shape, which
in turn leads to lowering the weights of the filter components
that stem from the formation prior, so the coalition step of
the FI-GM-PHD has a small effect on improving the track-
ing performance. Therefore in challenging environments the
FI-GM-PHD filter with no communications is expected to
perform very similarly to the standard GM-PHD filter.

Scenario III-B: Measurement Error Results summarized in
Table 2 indicate, that even though larger measurement error
has a negative impact on the performance of the FI-GM-
PHD filter, the method is still capable of providing good
enough estimates to sustain the robot formation even with
the measurement error of up to 1 meter. Precision of the
formation, expressed by the formation error eF , deteriorates
steadily with the increase of the measurement error eM , how-
ever it remains within reasonable bounds of less than half of
robot radius. There is a similar trend in the tracking perfor-
mance. For eM = 1 m the robots, however, begin to have a

Fig. 10: Scenario III-A. Formation error.

Fig. 11: Scenario III-A. OSPA.

large offset from the desired places in the formation, so the
likelihood of collision increases, up to the point where for
eM > 1 m the formation is no longer guaranteed. One can
also notice that even though the values of OSPA in Table 2,
in the range ∼ (0.7− 0.8) are significantly larger than in
Scenarios I to III-A, the robots are still capable of maintain-
ing the formation based on the estimates.

9.4 Scenario IV: Final Demonstration

Similarly as in Scenario III-B, the GM-PHD tracker alone
is not capable of providing robots state information reliable
enough for maintaining a formation for extended amount of
time. Even in an environment free of obstacles, rotation of
the formation and the associated temporary loss of neighbor
tracks causes divergence in the local robot perception of the
optimal assignment, which when uncorrected, leads to insta-
bility of the formation (see Figures 12 and 13, t = 42 s). The
performance of the FI-GM-PHD method (FSys) remains sta-
ble even when one robot is disconnected and when none of
the robots communicates. The tracking error, shown in Fig-
ure 13, stays around a constant value, irrespectively of the
communications status. The formation error in Figure 12 is
comparable to the baseline error of formations that rely on
perfect communication (NT+RA). Slightly divergent behav-
ior between NT+RA and FSys at times t = 80−120 s occurs
due to the fact that during this part of the experiment the
robots are navigating closely to a wall. The NT+RA method
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Table 2: Scenario III-B: Metrics

NT+RA FSys
eM [m] 0.0 0.3 0.6 0.75 1.0

eF mean 0.2 0.27 0.32 0.36 0.32 0.34
eF std 0.03 0.1 0.1 0.1 0.16 0.1

OSPA mean - 0.7 0.67 0.76 0.77 0.83
OSPA std - 0.04 0.04 0.05 0.07 0.05

leads to higher temporary formation distortion, while the
FSys method results in the formation staying closer to the
desired shape, but taking longer to recover.

9.5 Discussion

Highly dynamic scenarios with multiple robots moving
close-by in a coordinated fashion are decidedly challenging
for tracking. While the multi-target tracking methods work
well with well-separated targets and reliable measurements
(Vo and Ma 2006), long-term occlusions, convoluted tracks,
and sensor-induced clutter hardly distinguishable from the
real tracks cause deterioration of tracking performance up to
a point, where the reliability of estimates is insufficient for
maintaining a formation. Structured indoor environments,
where the robots must navigate along complex paths and
around obstacles increase the difficulty of the problem even
further.

Furthermore, in the particular situation, when the esti-
mates must be matched with the formation roles, and when
the role assignment is necessary, any tracking errors are es-
calated. If the assignment is inconsistent among the robots,
the different perception of the overall formation state may
not allow the consensus methods to converge. For this rea-
son only a subset of robots can maintain formation with
tracking-only data for longer periods of time. With a small
numbers of robots, the complexity of association and prob-
ability of wrong assignment is low, therefore larger propor-
tion of non-communicating robots is allowed. With increas-
ing numbers of robots, this proportion becomes smaller.
Therefore for groups of robots larger than the size demon-
strated in this paper, one should consider anonymous (ID-
less) formations (e.g. potential fields), where each robot
keeps a constant distance from each estimated neighbor irre-
spective of the identity of that robot. Such methods are much
less prone to tracking errors, at the expense of the precision
of the formation shape.

Incorporating communicated data in the tracking filter
can provide reliable data used for reinforcing the existing
targets or for adding targets that cannot be tracked using
other means. In the conference version of this paper (Wasik
et al 2017a) the communicated data is included as inten-
sity in the prediction step (analogously to the birth inten-

Fig. 12: Scenario IV. Formation error.

Fig. 13: Scenario IV. OSPA.

sity), while in this work the communicated data is inte-
grated as measurements in the update step. In preparation
for this publication we compared the two approaches in a
series of tests (they are not included in the final version of
the manuscript), the results of which show that the second
method, where communicated data is used as measurements,
systematically yields moderately better performance. More
importantly, this method is simple and intuitive. It does not
require complex parametrization that depends on the experi-
mental setup, as it is the case with the first method. Irrespec-
tive of the method, when adding communicated data in the
filter it is important to adapt the selection step of the PHD
filter to discourage double-counting of the targets and pre-
vent inconsistencies in the targets weights.

Finally, incorporating formation geometry in the tracker
might lead to worse performance than if such information
was not used. While the posterior enforcement stage of the
coalition step (step 1-4 in Algorithm 2) is robust to chal-
lenging scenarios, and in the worst case it does not improve
performance of tracking, the novelty stage (step 6 in Algo-
rithm 2) can create a virtual robot in place of a robot that
singles out from the formation. This can happen when all the
robots except one are close to desired places in the forma-
tion, and is common with leader-follower formations, when
the leader moves too fast for the formation to converge. One
possible solution to this problem is to reinforce the follower-
leader edges with higher weights. However, in some envi-
ronments characterized by high clutter, where the followers
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might get stuck behind an obstacle, one might have to con-
sider disabling the novelty step. Using formation geometry
is particularly advantageous in situations where a subset of
robots cannot communicate and measurements are unreli-
able, but the formation is capable of physically maintaining
a close-to-desired formation. In such instances, the coalition
step can determine whether the formation continues to func-
tion or if it fails.

10 Conclusions and Future Work

The paper presented a strategy for providing reliable and
robust robot state estimates to be used for formation con-
trol. The aim of our work was to build a backup system for
situations, when the primary source of information, namely
communication, is of low rate or when it fails. For safety rea-
sons, such backup system is necessary for establishing coop-
erative multi-robot navigation in human-populated environ-
ments, which is the long-term goal of this work. Our method
combined absolute positions exchanged by the robots, in-
formation about the formation geometry and sensory detec-
tions in an extension of the GM-PHD filter. The experiments
showed that our approach, the FI-GM-PHD method, is ca-
pable of maintaining the state estimates even when long-
duration occlusions occur, and improves awareness of the
situation when the communications is sporadic or suffers
from short-term outage. Moreover, the results showed that
the proposed tracking strategy allows for sustaining forma-
tions in cluttered environments, with high measurement un-
certainty and low quality of communication. We studied the
limitations of the method, focusing on the performance in
situations, where spatial configuration of the robot is far off
from the desired formation geometry, including initializa-
tion and cluttered environments. The proposed system not
only outperformed the standard tracking, but also proved
comparable to situation with perfect communications.

In future work, we will test the scalability of the method
with larger number of simulated robots. We plan to better
analyze the sensor model, to reduce the measurement error
and amount of clutter stemming from sensor imperfections.
The FI-GM-PHD method will be validated with real robots
and tested in an indoor arena populated with obstacles.

11 Additional Material

Videos accompanying this paper can be
found at: https://disal.epfl.ch/research/

InstitutionalRoboticsFormations.
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