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Abstract

Social robot capabilities, such as talking gestures, are best produced
using data driven approaches to avoid being repetitive and to show trust-
worthiness. However, there is a lack of robust quantitative methods that
allow to compare such methods beyond visual evaluation. In this paper
a quantitative analysis is performed that compares two Generative Ad-
versarial Networks based gesture generation approaches. The aim is to
measure characteristics such as fidelity to the original training data, but
at the same time keep track of the degree of originality of the produced
gestures. Principal Coordinate Analysis and procrustes statistics are per-
formed and a new Fréchet Gesture Distance is proposed by adapting the
Fréchet Inception Distance to gestures. These three techniques are taken
together to asses the fidelity/originality of the generated gestures.

Keywords: Social robots, Motion capturing and imitation, Gener-
ative Adversarial Networks, Gesture Generation, Principal Coordinate
Analysis, procrustes statistics, FID

1 Introduction

Advances in social robots are widespread in robotic conferences and newspapers.
Robots for entertainment and care need to show socially acceptable behavior
and, at the same time, must act in a non repetitive/boring manner and show
trustworthiness. An effective social interaction between humans and robots re-
quires these robots follow the social rules and expectations of human users.

∗*This work has been partially supported by the Basque Government (IT900-16 and Elka-
rtek 2018/00114), the Spanish Ministry of Economy and Competitiveness (RTI 2018-093337-
B-100, MINECO/FEDER,EU).
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That effectiveness largely depends on the non-verbal capabilities the robot is
able to show during such interaction and it can be crucial for the social connec-
tion with humans as it allows a more intuitive communication [10]. Gestures
(head, arms and hands movements) are used both to reinforce the meaning of
the words and to express feelings through non-verbal signs. Gestures can be
produced using a variety of approaches. They (a) can be “manually produced”
by manually editing trajectories, (b) can be learned by demonstration or (c)
data driven generative approaches can be used [3]. However, there is a lack of a
standardized method and quantitative metric for evaluating that social feature
of a robot. How do we evaluate the generated gestures? How do we compare
different approaches? Often authors make use of questionnaires that may help
to validate the acceptability of a robot behavior out of the laboratory. Indeed,
we think that visual validation is the first tool every robot behavior developer
uses, but it is far from being a neutral quantitative method. Besides, motion
analysis can help to detect jerky movements. But none of these give us two
properties that are desirable specially when using generative models for gesture
generation: the fidelity with respect to the original data used for acquiring the
model and the degree of novelty/originality the obtained model offers.

In this paper we want to present a quantitative analysis of generated gestures
according to several measures. It is not our goal to define a thorough method-
ology, but to give the researcher some tools, based in tested approaches, to help
her with the always difficult and presumably impossible task of assessing the
quality of generated gestures in an objective manner. In the experiment that
is described in this paper we use Generative Adversarial Networks (GAN) to
generate talking beat gestures from a set of captured samples for the Softbank’s
robot Pepper1, where two variables have to be taken into account: the capture
method (MoCap) and the length of the unit of movements (UM, a parameter
intrinsic to our system that will be defined later). The goal is to test if the gener-
ated gestures are similar to the original ones, but at the same time possess some
degree of originality. As it can be inferred, these two goals are contradictory, so
a trade-off is needed. To measure the fidelity of the generated samples to the
original ones we performed a Principal Coordinate Analysis (PCoA) over the
original and generated samples for the two types of MoCap and different length
of units of movements. To measure the originality, we calculated procrustes
statistics. Finally, we have defined a Fréchet Gesture Distance (FGD) which is
inspired in the Fréchet Inception Distance (FID). Assuming that the balance be-
tween fidelity and originality comes with the smaller FGD measure, this allows
us to select the most appropriate value for the parameter being analysed.

Thus, the contribution of the paper is as follows:

• Principal Coordinate Analysis (PCoA): a statistical tool for exploring the
structure of high dimensional data. We propose this analysis to measure
the degree of fidelity with respect to the training data.

• Procrustes statistics is applied to ensure that the model is able to offer

1https://www.softbankrobotics.com/us/pepper
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some originality to the gestures generated. The adequateness of the new
movements is corroborated by motion measures such as jerk and path
lenghts.

• A new Fréchet Gesture Distance (FGD) is defined by adapting the Fréchet
Inception Distance (FID) to the problem of GAN generated gestures.

The rest of the paper is structured as follows: Section 2 introduces the need
for robot gesticulation and summarizes the different social skills evaluation al-
ternatives found in the literature. Section 3 describes the experimental baseline,
the two GAN based gesture generation approaches that will be quantitatively
analysed later on. The fidelity analysis is performed in Section 4 while the orig-
inality analysis is described in Section 5. The definition of the FGD measure
is introduced in Section 6 and this section also shows how the trade off has
been conducted by calculating the distance between the generated gestures and
the Gaussian Mixture Model (GMM) generated from a set of synthetic gestures
created using Choregraphe, a software that allows to create robot animations.
A qualitative visual evaluation is provided in Section 7. Finally, Section 8 is
dedicated to the conclusions and to outline further work.

2 Robot gesticulation. Evaluation alternatives

Talking involves spontaneous gesticulation; postures and movements are rele-
vant for social interactions even if they are subjective and culture dependent.
As co-thought (movements related to thinking activity) supports complex prob-
lem solving, co-speech implies communication [11]. Lhommet and Marsella [25]
discuss body expression in terms of postures, movements and gestures. Ges-
tures, defined as movements that convey information intentionally or not, are
categorised as emblems, illustrators and adaptors. Emblems are gestures delib-
erately performed by the speaker that convey meaning by themselves and are
again culture dependent. Illustrators are gestures accompanying speech, that
may (emblems, deictic, iconic and metaphoric) or may not (beats) be related
to the semantics of the speech [28]. Lastly, adaptors or manipulators belong to
the gesture class that does not aid in understanding what is being said, such as
ticks or restless movements. Aiming at building trust and making people feel
confident when interacting with them, socially acting humanoid robots should
show human-like talking gesticulation.

Problems arise when it comes to evaluate the behavior or a particular skill,
e.g., the gesticulation ability, of a social robot. Usually robot behaviour is qual-
itatively evaluated. Often questionnaires are defined so that participants can
rank several aspects of the robot’s performance. There seems to be a consen-
sus in presenting the questions using Likert scale and analyzing the obtained
responses using some statistical test like analysis of variance, chi-square and so
on. For instance, in [42] social engagement with a robot can be evaluated by
observing expressed emotions during the conversation. Humans participate in
conversations with a NAO robot in different intonation conditions. As objective
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measures they use number of turns between actors, number of re-prompts, num-
ber of interruptions and the average silence length between turns. These mea-
sures are complemented with other subjective data such as the conversational
naturalness, measured using questionnaires. In [38] authors propose a method
for modifying affective robot movements using neural networks. Again, the ap-
proach is evaluated using an online survey and Two one-sided tests (TOST).
Wolfert et al. [22] replicate the evaluation approach in [17] and assess the nat-
uralness, semantic consistency and time consistency of the gestures generated
by a speech driven encoder-decoder DNN performing a user-study. Once more,
Becker-Asano and Ishiguro [4] use questionnaires to investigate if facial displays
of emotions with Geminoid F can be recognized and to find intercultural dif-
ferences in the perception of those facial displays. Confusion matrices of the
recognition rates are shown as measure.

Carpinella et al. [9] go one step further by developing a 18-item scale (based
on psychological literature on social perception) to measure people’s judgment
of the social attributes of robots. This scale is also used in [31] to examine how
human collaborators perceive their robotic counterparts from a social perspec-
tive during object handovers.

When it comes to compare different approaches, data driven approaches are
confronted to the original data that was used to learn the model and ranked
results are then compared using some statistical tests. For instance, in [43]
generated beat gestures are compared with designed beat gestures, timed beat
gestures and noisy gestures using such approach.

Qualitative methods are essential but are difficult to perform because a large
number of evaluators is required and their subjective perceptions might be dif-
ferent. Moreover, when a large number of gestures must be evaluated the human
eye becomes used to what is observing and it gets hard to remark the differences.
Thus, such methods are prone to result in subjective evaluation. Besides, the
evaluation is cultural dependent.

On the contrary, quantitative methods can handle a huge number of data
as input, what makes them more appropriate to evaluate the robustness of a
feature. However, subtle and subjective properties might not be easily measured
with numerical methods. They cannot answer questions like ”which one do
you like it more?” neither can take into account the impact or effect a gesture
system might have on a specific target audience. Both evaluation methods have
strengths and weaknesses and are complementary.

Rare are the references that use quantitative evaluation methods. In [36]
gestures generated by a GAN network are compared with gestures obtained by
GMM, Hidden Markov Model (HMM) and gestures obtained by randomly or-
dering the training data. Principal coordinates analysis was used to extract the
similarities between the generated gestures and the original ones. Other features
such as 3D space coverage, path length and motion jerk were also used for eval-
uation purposes. Similar motion statistics were used in [23]. More specifically,
the average values of the root-mean-square error and speed histograms of the
produced motion are shown as new measures.

Social behavior must be socially acceptable above all and questionnaires
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are very valuable tools that need to be considered. But when it comes to
compare several approaches objective tools are needed. We have focused on
three characteristics (from the seven ones stated in [5]) as desirable when using
a data-driven gesture generation approach:

• Ability to generate high fidelity samples

• Ability to generate diverse samples

• Agreement with human perceptual judgments and human rankings of
models

These characteristics could be in contradiction among them, particularly the
fidelity and diversity constraints. We have tried our best to try to reconcile them
and after the quantitative analysis we have returned the human to the loop for
the test of the third condition: human judgement. Therefore, in the research
described in this paper we perform an analysis based on several methods for
quantitatively measuring the degree of fidelity as well as originality a gesture
generation method offers with respect to the properties of the data used for
training the system.

3 Experimental baseline

In this section the two GAN based gesture generation methods that will be
quantitatively analysed later on are explained. Both methods can generate
human-like motion in a humanoid robot that includes arms, head and hands
motion mapping (upper-body part) since legs are not involved in talking beats,
and only differ in the 3D MoCap system (OpenNI vs OpenPose[8]) being used
to capture human motion and create the databases for acquiring the generative
models. The motion capturing alternative over already existing robot animation
software clearly allows to better capture the nature of the talking movements we
do, but it requires the capability to (1) Capture good features of the motion (2)
Map those captured features into the robot joints [34]. This mapping process
can be done by inverse kinematics [1], calculating the necessary joint positions
given a desired end effector’s pose as in [29]. Alternatively, we adopt the direct
kinematics option that straightforwardly adapts the captured arms and head
angles to the robot joints [48] [35].

The mapping process leads to the capability of human motion imitation as
depicted in Figure 1.

3.1 Mapping human joints to robot joints: OpenNI vs

OpenPose

As mentioned before, arms, head and hands are involved in the gesture gen-
eration process. The MoCap systems being used show different features and
limitations and thus, the mapping process differs from one to the other in some
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Figure 1: Human motion imitation process

joints. More specifically, head and hands need to be differently mapped. Fig-
ure 2 reflects the main differences between these two systems. OpenNI can only
detect 15 keypoints while OpenPose detects 25 for the body plus the 42 hands’
keypoints (hands are not displayed in the figure aforementioned). The following
subsections detail how those elements are translated from human captured 3D
cartesian coordinates to the joints of Softbank’s robot Pepper.

Arms mapping The literature reveals different approaches to calculate the
robot arm joint positions [48][21]. This mapping process depends upon the
robot’s degrees of freedom and joints range. For the Pepper robot arms we are
dealing with, some upper-body link vectors are built through the skeleton points
in the human skeleton model, and joint angles are afterwards extracted from
the calculation of the angles between those vectors. For the sake of simplicity,
since the calculation of the angles is similar for both approaches, the complete
formulas involved in that process will not be described here (see [46] for more
detailed information).

Head mapping The OpenNI skeleton tracking program employed for head
mapping gives us the neck and head 3D poses. The approach taken for mapping
the yaw angle to the robot’s head consists of applying a gain K1 to the human’s
yaw value, once transformed into the robot space by a −π

2
rotation (Eq. 1).
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(a) OpenNI (b) OpenPose

Figure 2: OpenNI and OpenPose skeleton models

Figure 3: Left arm joints and angle limits
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Hrobot
γ = K1 ×Hβ (1)

In order to approximate head’s pitch angle, the head to neck vector (HN)
is calculated and rotated −π

2
and then, its angle is obtained (Eq. 2). Note

that robot’s head is an ellipsoid instead of an sphere. To avoid unwanted head
movements a lineal gain is applied to the final value.

Hrobot
β = arctan (rotate(HN,−

π

2
)) + |K2 ∗Hγ | (2)

On the contrary, OpenPose detects basic face features such as the nose, the
eyes and the ears (see Figure 7(b)) and thus, allows for a more realistic tracking
of the robot head. To map humans head position into the robot, we use the
nose position as reference. Head’s pitch (Hrobot

φ ) is proportional to the distance
between the nose and the neck joint (see Eq. 3). Instead, the yaw orientation of
the head itself (Hrobot

ψ ) can be calculated by measuring the angle between the
vector joining the nose and the neck, and the vertical axis (see Eq. 4).

NN = dist(Nose,Neck)

Hrobot
φ = rangeConv(NN, robotRange)

(3)

Hrobot
ψ = rangeConv(− arcsin (NNx), robotRange) (4)

Hands mapping The OpenNI skeleton tracking program used for hands map-
ping can not detect the operator’s hands’ yaw motion and thus, LWγ joints
cannot be reproduced using the skeleton information. The developed solution
forces the user to wear coloured gloves to detect the hand orientation. In our
implementation, the gloves are green in the palm of the hand and red in the
back. While the human talks, hands coordinates are tracked and those positions
are mapped into the image space and a subimage is obtained for each hand. An-
gular information is afterwards calculated by measuring the number of pixels
(max) of the outstanding color in a subimage. Eq. 5 shows the procedure for
the left hand. N is a normalizing constant and maxWγ stands for the maximum
wrist yaw angle of the robot.

{

LW robot
γ = max/N ×maxWγ if max is palm

LW robot
γ = max−N

N
×maxWγ otherwise

(5)

In addition, LEγ is modified when humans palms are up to ease the move-
ment of the robot.

Regarding the fingers, as they cannot be tracked, their position is randomly
set at each skeleton frame to make the movement more realistic.

Alternatively, OpenPose differentiates left and right sides without any cali-
bration and gives 21 keypoints per hand, four per finger plus wrist (see Figure 4).
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Figure 4: OpenPose hand model (21 keypoints)

To determine if the hand shows the palm or the back the angle between the
horizontal line and the line joining the thumb and the pinky fingertips (keypoints
4 and 20) is required. This calculation is expressed in Eq. 6, where FT stands
for fingertip and OFT represents the new origin of a fingertip. Afterwards, the
fingers’ points are rotated in such a way that the pinky lies at the right of the
thumb and the number of fingers over the Y = 0 line is calculated (Eq. 7). For
the right hand, at least two fingers should lie over that line to consider the palm
is being showed as shown if Eq. 8 (the opposite condition for the left hand).

∀iFT i OFT ix,y = FT ix,y − Thumbx,y

α = arctan(OFT pinkyy , OFT pinkyx )
(6)

∀i FT ′i
x = OFT ix ∗ cos (−α)−OFT iy ∗ sin (−α)

∀i FT ′i
y = OFT ix ∗ sin (−α)−OFT iy ∗ cos (−α)

(7)

HandSide =

{

Back ((
∑

3

i=1
FT ′i

y ) > 0) ≥ 2

Palm otherwise
(8)

In addition, each hand’s yaw angle (Hψ) must be calculated by measuring
the distance between the thumb and the pinky fingertips (Eq. 9). The minimum
and maximum values are adjusted according to the wrist’s height so to avoid
collisions with the touch screen on the chest of the robot.

TP = dist(FT ′Thumb, FT ′Pinky)

Hψ = rangeConv(TP, robotRange)
(9)

9



Finally, the hand’s opening/closing is defined as a function of the distance
between wrist (keypoint 0) and middle fingertip (keypoint 12) as in Eq. 10.

MW = dist(FTMiddle,Wrist)

ClosedOpen = rangeConv(MW, [0.0− 1.0])
(10)

3.2 GAN based gesture generation

GAN networks are composed by two different interconnected networks. The
Generator (G) network generates possible candidates so that they are as similar
as possible to the training set. The second network, known as the Discriminator

(D), judges the output of the first network to discriminate whether its input
data are “real”, namely equal to the input data set, or if they are “fake”, that
is, generated to trick with false data.

As we are interested in generating movements, i.e., a sequence of poses, the
input to the learning process to any generative model has to take into account
the temporal sequence of poses. The training dataset given to the D network
contains K unit of movements (UM), being each UM a sequence of µ consecutive
poses, and each pose 14 float numbers corresponding to joint values (Ji) of head,
arms, wrists (yaw angle) and hands (finger opening value).

Table 1 describes more in detail the aspect of a single entry of the database
for the case of µ = 4. These samples were recorded by using two different
MoCap systems and by registering 10 different person talking about 18 minutes
overall. Therefore, two datasets have been obtained: OpenNI DB is built from
a recording about nine minutes long and contains five people’s skeleton data
captured using OpenNI as MoCap system, while OpenPose DB is built from
another recording also about nine minutes long that contains other different
five people’s skeleton data captured using OpenPose. After sampling with a
frequency of 4 Hz, two datasets of a slightly different number of poses are
created. The shorter one has 2018 poses, and the last poses of the longer one
have been deleted to make their lengths match.

J1(t) · · · J14(t), J1(t+∆t) · · · J14(t+∆t), J1(t+ 2∆t) · · ·J14(t+ 2∆t), J1(t+ 3∆t) · · · J14(t+ 3∆t)

Table 1: Characterization of a unit of movement for µ = 4 consecutive poses.
∆t depends of the data sampling frequency

The D network is thus trained using that data to learn its distribution space;
its input dimension is µ ∗ 14. On the other hand, the G network is seeded
through a random input with a uniform distribution in the range [−1, 1] and
with a dimension of 100. The G network intends to produce as output gestures
that belong to the real data distribution and that the D network would not be
able to correctly pick out as generated.

10



4 Fidelity analysis

Dimension Reduction techniques are very widely used in very different areas,
such as in genomics, image classification or in natural language processing tasks.
The most well known is the Principal Component Analysis (PCA) [19] and it
can help to explore the structure of high dimensional data. It is a technique
that displays the structure of complex data in a high dimensional space into a
lower dimensional space without too much loss of information. In robotics, par-
ticularly when studying motions or movements, PCA has also extensively been
applied. [32] used PCA to build motions within an imitation learning frame-
work; [44] used PCA to increase the interpretability of upper limb’s movements
registered by a robotic technology for different tasks; and in [20] data acquired
with a dataglove was summarized with PCA to extract the coordination pat-
terns available for handgrasps. Principal Coordinates Analysis [15] (PCoA),
also known as Classical Multidimensional Scaling, is an extension of the PCA
and therefore it allows to explore and visualize similarities or dissimilarities of
data. Given n units and distances dij between each pair of units i and j, all the
distances are gathered in a n × n distance matrix D. The PCoA builds a new
matrix Y containing the coordinates of the n units in l dimensions such that the
Euclidean distance between the i-th and j-th units is equal to dij for all i and
j. The columns of matrix Y are given basically by the eigenvectors of the inner
product matrix (I− 1 · 1′/n)D̃(I− 1 · 1′/n), where D̃ is the matrix with value
(dij)

2 in position (i, j), 1 = (1, . . . , 1)′ and I is the identity matrix. The related
eigenvalues show the variability decomposition in the original data. When the
distance matrixD is the Euclidean distance built on the original features, PCoA
and PCA give the same results. In summary, the columns of matrix Y along
with the eigenvalues allow to analyse the internal structure of the original high
dimensional data.

4.1 Measuring similarity with PCoA

Let OpenNI DB and OpenNI+GAN be the databases captured and generated re-
spectively with the OpenNI capture method. The same holds for OpenPose DB
and OpenPose+GAN. The databases OpenNI DB, OpenNI+GAN, OpenPose
DB, OpenPose+GAN were calculated for different length of UM (µ = 4, 6, 8).
This gives a N × (14 × µ) data matrix for each method where columns rep-
resent the positions of the joints along the sequence of µ consecutive poses
(Ji(t + k∆t) , i = 1, . . . , 14, k = 0, . . . µ − 1, µ = 4, 6, 8). The structure un-
derlying the movements was analyzed considering the relationship between the
joints. First, correlation distances [14] between joints were calculated. In order
to get comparable results the distance matrices were scaled so that their geo-
metric variability were equal to 1. Then, a Principal Coordinates Analysis was
carried out on each distance matrix. In order to assess whether the underly-
ing structures of original movements and generated movements are similar, the
corresponding eigenvalues were compared. Figure 5 shows the decomposition
of the variance (first 28 dimensions) for different lengths of UM and different
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methods of data acquisition. It can be seen that, in general terms, the struc-
ture of the original movements are preserved by the GAN generated samples,
independently of the MoCap system being used. Furthermore, in order to assess
quantitatively the fidelity between GAN generated samples and its originals, the
principal coordinates YO of the originals and the principal coordinates YG of
the GAN generated samples were compared. Particularly, we measured the abil-
ity to recover each of the first 10 principal coordinates YO = [y1O, . . . ,y10O]
from the first 10 principal coordinates YG based on linear regression models.
We considered the linear regression model for the jth principal coordinate of
the originals based on the 10 principal coordinates of GAN generated samples
(yjO = β0+

∑

10

i=1
βiyiG, j = 1, . . . , 10) and calculated the explained variance by

the coefficient of determination R2 (see Figure 6). Broadly, very high values of
R2 are obtained assessing the fidelity of GAN models in concordance with what
the eigenvalue decompositions showed. Nevertheless, we gained some insight
and it can be observed that the recovery of the originals is bigger with Open-
Pose as MoCap. Furthermore, the recovery for 8 UM is the poorer. It can be
seen that first 6 and 7 principal coordinates of OpenPose DB can be recovered
by the GAN principal coordinates (R2 ≥ 0.85) for µ 4 and 6, respectively.

5 Originality analysis

Nothing has been said about the degree of originality of the generated motion.
As mentioned in the introduction, robot gesticulation should not result repeti-
tive/boring.

In order to analyze it, we considered Procrustes Analysis. Procrustes meth-
ods analyze the matching between two or more configurations. That is, given
some units measured in different contexts or by different features, the main aim
of procrustes methods [16] is to measure the degree of similarity among the
configurations. Procrustes methods are widely applied. For instance, in [26] the
authors extend procrustes statistic to get transfer learning techniques to learn
robot kinematic and dynamic models; in [12] applied procrustes techniques as
an effective robot base frame calibration; more recently, [27] proposed a method
to increase efficiency and to identify potential issues of the assembly process in
robotized assembly as a variation of the classical procrustes analysis.

5.1 Measuring originality with procrustes statistic

In our particular context, we considered pairs of configurations given by the
first 10 principal coordinates YO of the originals and the 10 principal coordi-
nates YG of the GAN generated samples for each combination of MoCap and
UM. The rows of those matrices represent the joints along the unit of move-
ment and the matrices can be considered as configurations for the joints. Based
on the percentage of the explained variances (see Table 2) the aforementioned
configurations are capturing the essence of the joints along the units of move-
ment. The classical orthogonal procrustes statistic (ss) between configurations
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YO (DB) and YG (GAN) is the residual sum of squares between both config-
urations, once a scaling factor and rotation movement are allowed. That is,
ss = ||YO − sQYG||

2, where s is a scaling factor and Q is a rotation matrix
that minimize the sum of squares. The underlying idea is to consider YO as
the target configuration and to scale and rotate the second configuration YG

so that it is as similar as possible to the target configuration. The remaining
residuals build the procrustes statistic ss. The bigger is ss the more different
are the joints along the units of movements, or in our context, the bigger is
the originality of the movements. Since ss depends on the number of rows, we
normalize it so that we obtain a commeasurable statistics for different length of
UM. Taking into account Table 2, in terms of originality it seems that MoCap
OpenPose obtains slightly bigger values.

Table 2: Explained variance along the first 10 dimensions for different length of
UM and different systems of movement. Differences between joints along UM
measured by the commeasurable procrustes statistic ss/(14µ).

Explained variance (%)
µ Original OpenNi ss/(14× µ)
4 81.3 85.6 0.0857
6 75.0 83.7 0.1723
8 70.1 82.9 0.1932
µ Original OpenPose
4 83.2 86.2 0.1054
6 77.6 83.8 0.1307
8 74.4 83.4 0.2369

The originality should not come at the cost of rough or uneven movements.
Tables 3 to 5 show the mean values of the norm of jerk [7] (equation 11) and
the length of the path (described as the increment in the positions over time in
equation 12) for 1000 generated movements. Head position does not shift in the
space, and thus only jerk values are calculated. Overall, motion analysis shows
that OpenPose based gesture generation is smoother than the OpenNI based
one, independent of the length of the unit of movement selected.

jerk =
1

T

T
∑

t=1

|| ˙accelt|| (11)

lpath =

T
∑

t=2

||xt − xt−1|| (12)

6 Trade off between fidelity and originality

As mentioned in the introduction, the fidelity and the originality features are
contradictory and a trade-off is desirable. Looking for that balance, we have
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Figure 5: Decomposition of the variance for different length of units and different
systems of movement (λOl, λGl, l = 1 . . . , 28). The columns are ordered by
length of UM (µ = 4, 6, 8). The first and second rows correspond with data
acquisition by OpenNI and OpenPose, respectively.
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Figure 6: Determination coefficients (R2) for lineal models yjO = β0 +
∑10

i=1
βiyiG, j = 1, . . . , 10. The columns are ordered by length of UM

(µ = 4, 6, 8). The first and second rows correspond with data acquisition by
OpenNI and OpenPose, respectively.

15



Table 3: Mean values for each measure (φ: pitch, ψ: yaw) µ = 4
OpenPose based OpenNI based

Lhand
Ejerk 0.0266 0.0232
Elpath 25.8314 21.7854

Rhand
Ejerk 0.0232 0.0231
Elpath 23.4980 21.2495

Lelbow
Ejerk 0.0108 0.0118
Elpath 10.8245 11.9210

Relbow
Ejerk 0.0086 0.0110
Elpath 9.1785 10.6696

Head
Eψjerk 0.0428 0.0334

Eφjerk 0.0201 0.0153

Table 4: Mean values for each measure (φ: pitch, ψ: yaw) µ = 6
OpenPose based OpenNI based

Lhand
Ejerk 0.0240 0.0285
Elpath 22.4936 25.0769

Rhand
Ejerk 0.0220 0.0273
Elpath 22.7787 26.0431

Lelbow
Ejerk 0.0094 0.0132
Elpath 9.5669 11.6939

Relbow
Ejerk 0.0083 0.0142
Elpath 9.1389 13.2678

Head
Eψjerk 0.0389 0.0436

Eφjerk 0.0198 0.0131

defined a Fréchet Gesture Distance, inspired by the Fréchet Inception Distance,
a distance widely used in the area of image generation to measure the similarity
between original images and GAN generated images.

6.1 GAN performance metrics

Evaluation of the performance of GAN networks is not a straightforward process.
Several approaches have been proposed, among them average log-likelihood [40],
Parzen window estimates [6] or visual fidelity of samples [13] when suitable. In
[41] the authors show that these three criteria are largely independent of each
other when the data is high-dimensional. In particular, they state that average
likelihood is not a good measure.

In the field of image generating GANs, some more recently defined measures
are the Inception Score (IS) [37] and the Fréchet Inception Distance (FID) [18].
Both approaches measure the distance between the original and the generated
images. The Inception Score is computed as exp(ExKL(p(y|x) ‖ p(y))), where
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Table 5: Mean values for each measure (φ: pitch, ψ: yaw) µ = 8
OpenPose based OpenNI based

Lhand
Ejerk 0.0244 0.0286
Elpath 24.2394 25.4619

Rhand
Ejerk 0.0282 0.0374
Elpath 29.2930 33.4755

Lelbow
Ejerk 0.0109 0.0145
Elpath 11.3923 13.7295

Relbow
Ejerk 0.0131 0.0190
Elpath 13.7552 17.2916

Head
Eψjerk 0.0513 0.0527

Eφjerk 0.0267 0.0122

the Inception model [39] is applied to every image to get the conditional label
distribution p(y|x). Images that contain meaningful objects are expected to have
a conditional label distribution p(y|x) with low entropy. On the other hand, it
is expected that the images generated by the model have a degree of variation
among them, so the marginal

∫

p(y|x = G(z))dz should have high entropy. The
Inception score is obtained from the combination of these two requirements,
where the results are exponentiated so the values are easier to compare. KL
stands for Kullback-Leibler divergence [24]. The Fréchet Inception Distance is

computed as d2((Mr,Σr), (Mg,Σg)) = ||Mr–Mg||
2 + Tr(Σr +Σg − 2(ΣrΣg)

1

2 ),
where (Mr,Σr) and (Mg,Σg) are the mean vectors and covariance matrices
of the feature vectors for real and generated images, respectively. The feature
vectors are computed as the values of the activation layer of the Inception model.

In layperson’s terms, given two sets of images IA and IB , the FID measures
the similarity of the predictions of the Inception model over Ia and Ib. FID is
widely used as a performance measure in the image generation community, as
in [33][45][47][30].

In [5] the author analyzes the pros and cons of several GAN performance
measures. His work is focused on GAN applied to images, and arrives to the
conclusion that FID score looks more plausible than others. Although it has
its drawbacks, as to rely on pre-trained networks, which could pose problems
when translated to other domains. However, as it is pointed out in a recent
article [2], “there are no universally agreed-upon performance metrics for un-
supervised learning, and people have already pointed out many shortcomings
of these Inception-based methods. Until something better comes along though,
they’re going to show up in every paper so it’s worth knowing what they are.”

Taken into account the relative quality of the FID score when applied to the
image domain, one of the goals of this research is to find a way of adapting that
score, based in a pre-trained model over a set of images, to sets of gestures.
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6.2 Applying Fréchet Gesture Distance to the baseline

When trying to adapt the FID for gestures, the first problem is that, to the
best of our knowledge, there is no model that could play the role of the Incep-
tion model. Let us remember that the Inception model has been created by a
supervised deep learning algorithm and, when presented an input image, it out-
puts a set of probabilities of that image belonging to any of a thousand possible
classes. For gestures, there is no such model. A possible approach could be
to manually label a set of gestures, apply a supervised model over it, and then
use it with the same role than the Inception model. As in our domain there
is not a clear-cut classification of the gestures generated by the robot, we have
chosen another alternative: to build a Gaussian Mixture Model (GMM) in an
unsupervised fashion from a set of synthetic gestures created by Choregraphe2,
a software designed to create robot animations. It includes different type of
predefined animations, such us body talk gestures, reactions and emotions, that
are used to bring the robot to life. In a previous work [36], we chose a set of
animations from original Choregraphe’s animation library that could be used as
beat gestures, and we created a database with those animations. After sampling
selected animations with a frequency of 4 Hz we obtained a database built up
from 1502 poses. From now on we will refer to this database as Choregraphe ges-
tures database (ChDB). In this approach, Choregraphe gestures play a similar
role as the data from which the Inception model was created. As in the image
domain a model independent from the analyzed data was created (Inception),
in the gesture domain we create a model independent from the analyzed data
(Choregraphe-based GMM). The data used by the GAN for training is different
from Choregraphe data, as it is captured by a MoCap system.

The GMM election is supported by previous motion work by the authors
[36], where they show that this model ranks second after GANs in the quality
of generated gestures, when used as generative models. When evaluating the
quality of the gestures created by the GAN, the computed GMM model can be
used to classify new gestures, and thus return the set of probabilities needed to
compute the FID.

The process to define the Fréchet Gesture Distance (FGD) between two sets
of gestures GA and GB is the following:

• Create a database GM from Choregraphe gestures.

• Build a GMM from GM .

• Compute the probabilities P (GA) and P (GB) returned by that GMM over
GA and GB, respectively.

• Compute the Fréchet distance over P (GA) and P (GB).

The GMM has been built with 24 components sharing the same covariance
matrix. After a initial Choregraphe gestures database (ChDB) of K = 1502

2http://doc.aldebaran.com/2-5/software/choregraphe/index.html
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poses is built, it needs to be adapted for the different sizes of the unit of move-
ment. When µ = 1 the length of the pose and the unit of movement are the
same, and the Choregraphe gestures database can be used without further pro-
cessing. Therefore, if we denote as ChDB-n the Choregraphe database used
when µ = n, we find that ChDB-1 and ChDB are the same. But, in the general
case, with an arbitrary value of µ = n, the dimensionality of ChDB-n is 14× n.
To achieve this, n consecutive poses are joined together in ChDB-n, thus bring-
ing the number of units of movement in ChDB-n to K/n. Therefore, the GMM
is trained with the Chdb-µ associated to each value of the µ parameter.

Table 6 shows the FGD distance values for the different µ values. According
to these values µ = 4 shows the shortest distance and thus it seems the most
adequate value.

Table 6: FGD values for the different comparisons
UM OpenNI GAN OpenPose GAN

µ = 4
E 0.1309 0.1231
σ 0.0117 0.0108

µ = 6
E 0.2452 0.1773
σ 0.0154 0.0131

µ = 8
E 0.5425 0.2399
σ 0.0209 0.01457

7 Visual evaluation of the behavior

Visual inspection of the robot behavior can be somewhat subjective, specially
when variations are subtle. However, the robot behavior must be perceived as
acceptable by humans in any circumstance. The two approaches compared in
this work are very similar in nature, the only difference being the MoCap system
used to generate the learning data. The main differences between them were
the difficulties to accurately track the head and hands positions with OpenNI.
Figure 7 shows those differences. The reader is invited to pay attention to how
the head and hand positions differ.

These difficulties are therefore reflected in the generated gestures, as can be
appreciated in this video3. The executions of both systems correspond to the
models trained to generate movements using µ=4 as unit of movement. Notice
that the temporal length of the audio intended to be pronounced by the robot
determines the number of UM required to the generative model. Thus, the exe-
cution of those UMs, one after the other, defines the whole movement displayed
by the robot. On the one hand, head information provided by the OpenNI
skeleton tracking package was not enough for preserving head movements and
thus, the resulting motion was poor. On the other hand, the tracker only offered

3https://www.youtube.com/watch?v=h9wpMEH8JQc
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(a) OpenNI

(b) OpenPose

Figure 7: Reproduction of poses in the simulated robot
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wrist positions and as a consequence, a vision based alternative was developed
by segmenting red/green colors of the gloves wore by the speaker for tracking
palms and backs of both hands. The opening/closing of the fingers was made
at random for each generated movement. Lastly, the robot elbows tended to be
too separated from the body and raised up. At a glance, it can be seen that the
OpenPose based approach overcomes these three main drawbacks.

8 Discussion and further work

In this paper an approach to quantitatively measure the degree of fidelity/origi-
nality of a gesture generating method is presented. Two beat gestures generation
approaches are compared: OpenNI based GAN model and OpenPose based
GAN model. These two systems basically differ in the MoCap system being
used for acquiring the database used for learning the generative model.

To measure the fidelity of the generated samples to the original ones we
performed a PCoA over the original and generated samples for the two types
of MoCap and different length of units of movements. The visual analysis, as
well as the decomposition of the variances in this step support the hypothesis
that the generated gestures indeed are similar to the original ones. We also
discovered that the explained variances by the regression models to recover the
original units are bigger in OpenPose, which could point to bigger fidelity to
the original. In the same vein UM 4 and 6 appear to have higher degree of
fidelity. To measure the originality, we calculated procrustes statistics and we
observed that in general terms, the originality seems bigger in OpenPose and at
the same time this approach generates smoother movements according to two
motion measures: jerk and length path.

Finally, we have defined a Fréchet Gesture Distance (FGD) which is inspired
in the Fréchet Inception Distance (FID) to be able to see how far are the gener-
ated gestures from the original ones. The Fréchet distance is a measure of the
similarity between two distributions and in our context those two distributions
are the probabilities assigned by a classifier over all the possible classes when
presented a new instance. Therefore, FGD is generator-agnostic, in the sense
that it is irrelevant how the objects have been created, only their predicted
probabilities when applying some model (as with Inception in the case of FID)
are taken into account.

Let us remember that we want the generated gestures to be similar, but
not too much. We could wonder if, given the data collected so far (PCoA,
jerk), the similarity constraint has been already fulfilled (let us remember that
the difference in variance composition tips the balance in the other direction),
and the FGD will be bigger (more different). To pursue this analysis, we have
computed FGD for the two MoCaps (OpenNI and OpenPose) and three types
of number of units of movements (4, 6 and 8). We see that FGD for OpenPose is
smaller than for OpenNI, so it seems reasonable to suppose that in the balance
between similarity and originality, the smaller the FGD measure the better.
This leads us also to the conclusion that 4 units of movements are better than
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6 or 8.
Visual inspection reflected that although subtle the difficulties to track hands

and head positions were translated to the GAN generated gestures. And subtle
are also the differences among the measured values, probably because the two
systems being compared are equal in nature. Thus, as further work we plan to
repeat the analysis to observe if the results of these different quantitative tech-
niques are translatable when comparing, for instance, GAN based approaches
to other motion generation approaches such as variational autoencoders.
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