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Abstract Robotic fabric manipulation has applications in home robotics, textiles,
senior care and surgery. Existing fabric manipulation techniques, however, are de-
signed for specific tasks, making it difficult to generalize across different but related
tasks. We build upon the Visual Foresight framework to learn fabric dynamics that
can be efficiently reused to accomplish different sequential fabric manipulation tasks
with a single goal-conditioned policy. We extend our earlier work on VisuoSpatial
Foresight (VSF), which learns visual dynamics on domain randomized RGB images
and depth maps simultaneously and completely in simulation. In this earlier work,
we evaluated VSF on multi-step fabric smoothing and folding tasks against 5 base-
line methods in simulation and on the da Vinci Research Kit (dVRK) surgical robot
without any demonstrations at train or test time. A key finding was that depth sens-
ing significantly improves performance: RGBD data yields an 80% improvement in
fabric folding success rate in simulation over pure RGB data. In this work, we vary 4
components of VSF, including data generation, visual dynamics model, cost function,
and optimization procedure. Results suggest that training visual dynamics models us-
ing longer, corner-based actions can improve the efficiency of fabric folding by 76%
and enable a physical sequential fabric folding task that VSF could not previously
perform with 90% reliability. Code, data, videos, and supplementary material are
available at https://sites.google.com/view/fabric-vsf/.
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1 Introduction

Advances in robotic manipulation of deformable objects has lagged behind work
on rigid objects due to the far more complex dynamics and configuration space.
Fabric manipulation in particular has applications ranging from senior care [24],
sewing [64], ironing [42], bed-making [66] and laundry folding [49, 41, 87, 69] to
manufacturing upholstery [78] and handling surgical gauze [73]. However, prior work
in fabric manipulation has generally focused on designing policies that are only appli-
cable to a specific task via manual design [49, 41, 87, 69] or policy learning [67, 84].

The difficulty in developing accurate analytical models of highly deformable ob-
jects such as fabric motivates using data-driven strategies to estimate models, which
can then be used for general purpose planning. While there has been prior work in
system identification for robotic manipulation [37, 27, 5, 60, 8, 9], many of these
techniques depend on reliable state estimation from observations, which is especially
challenging for deformable objects. One recent alternative to system identification is
visual foresight [17, 20], which uses a large amount of self-supervised interactions to
learn a visual dynamics model directly from raw image observations and has shown
the ability to generalize to a wide variety of conditions [12]. This learned model can
then be used for planning to perform different tasks at test time. The technique has
been successfully applied to learning the dynamics of complex tasks such as push-
ing rigid objects [20] and basic fabric folding [17]. However, two limitations of prior
work in visual foresight are 1) the data requirement for learning accurate visual dy-
namics models is often very high, requiring several days of continuous data collection
on real robots [12, 17], and 2) experiments consider only relatively short horizon tasks
with a wide range of valid goal images [17].

This paper is an extended version of our prior work, Hoque et al. [29], which pre-
sented VisuoSpatial Foresight (VSF) by integrating RGB and depth sensing to learn
and plan over dynamics models in simulation using only random interaction data for
training and domain randomization techniques for sim-to-real transfer. That paper ap-
plied VSF to smoothing and folding tasks (see Figure 1 for example rollouts). In this
work, we explore modifications to all major stages of VisuoSpatial Foresight: the data
generation, visual dynamics, cost function, and optimization procedure. Specifically,
we make the following extensions:

1. A new dataset of 9,932 episodes for learning visual dynamics models for fabric
manipulation with a corner selection bias and increased range of motion.

2. New simulation experiments evaluating the tradeoffs between different datasets,
learned dynamics models, cost functions, and optimization procedures on system
performance.

3. New physical experiments demonstrating 90% reliability on fabric folding with a
da Vinci surgical robot, a task the robot was unable to perform successfully in the
prior work [29].

Results suggest that the most beneficial extension is the new dataset containing ac-
tions that have longer pull distances and bias towards picking at corners. This leads
to larger changes in the fabric configuration in regions more broadly relevant for ma-
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Fig. 1: Using VSF trained on simulated RGBD data, we learn a goal-conditioned fab-
ric manipulation policy without any task demonstrations. Top: Subsampled frames
from a smoothing episode on physical fabric with the da Vinci surgical robot. Mid-
dle: Subsampled frames from a double folding episode in simulation with a new
dataset, new optimizer, and new cost function. Bottom: Subsampled frames from a
new folding episode on physical fabric.

nipulation, and the learned dynamics models enable more reliable and efficient fabric
folding on the physical robotic system.

2 Related Work

2.1 Geometric Approaches for Robotic Fabric Manipulation

Manipulating fabric is a long-standing challenge in robotics. In particular, prior work
has focused on fabric smoothing, as it helps standardize the configuration of the fab-
ric for subsequent tasks such as folding [6, 63]. One popular approach in these works
is to first hang fabric in the air and allow gravity to “vertically smooth” it [56, 35,
36, 15]. Maitin-Shepard et al. [46], use this approach to achieve a 100% success rate
in single-towel folding over 50 trials. For tasks involving larger fabrics like blan-
kets [66], or those utilizing single-armed robots with a limited range of motion, such
vertical smoothing may be infeasible. An alternative approach is to perform fabric
smoothing on a flat surface using sequential planar actions as in [71, 72, 83], but
these works assume initial fabric configurations closer to fully smoothed than those
considered in this work. Similar work addresses both fabric smoothing and folding,
such as by Balaguer and Carpin [2] and Jia et al. [31, 32]. These works assume the
robot is initialized with the fabric already grasped, while we initialize the robot’s
end-effector away from the fabric.
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2.2 Learning Fabric Manipulation in Simulation and in Real

There has been recent interest in learning sequential fabric manipulation policies
with fabric simulators. For example, Seita et al. [67] and Wu et al. [84] learn fabric
smoothing in simulation, the former using DAgger [61] and the latter using model-
free reinforcement learning (MFRL). Similarly, Matas et al. [48] and Jangir et al. [30]
learn policies for folding fabrics using MFRL augmented with task-specific demon-
strations. All of these works obtain large training datasets from fabric simulators;
examples of simulators with support for fabric include ARCSim [54], MuJoCo [77],
PyBullet [11], Blender [10], and NVIDIA FLeX [44]. While these algorithms achieve
impressive results, they are designed or trained for specific fabric manipulation tasks
such as folding or smoothing, and do not reuse learned structure to generalize to a
wide range of tasks.

Ganapathi et al. [23, 22] generalize to multiple tasks by learning fabric correspon-
dences in simulation, but require a task demonstration at test time. Other recent work
such as [68], [44] and [19] also aim to learn generalizable fabric manipulation poli-
cies in simulation but focus more on rearrangement, transportation and dressing tasks
respectively rather than complex folding tasks. Lee et al. [40] successfully learn an
arbitrary goal-conditioned fabric folding policy in a model-free manner that is able
to achieve unseen fabric goal configurations at test time, but the policy is learned
entirely on a real robot which may cause wear-and-tear on the physical system.

2.2.1 Model-Based Fabric Manipulation

Combining model-predictive control (MPC) with learned dynamics is a popular ap-
proach for robotics control that has shown success in learning robust closed-loop
policies even with substantial dynamical uncertainty [3, 18, 70, 75, 74]. However,
many of these prior works require knowledge or estimation of underlying system
state, which can often be inaccurate, especially for highly deformable objects. As an
alternative to estimating the system state, Finn and Levine [20] and Ebert et al. [17]
introduce visual foresight, and demonstrate how MPC can plan over learned video
prediction models to accomplish a variety of robotic tasks, including deformable ob-
ject manipulation such as folding pants. However, the trajectories shown in Ebert
et al. [17] are limited to a single pick and pull, while we focus on longer horizon
sequential tasks that are enabled by a pick-and-pull action space rather than direct
end effector control. Furthermore, the fabric manipulation tasks reported have a wide
range of valid goal configurations, such as covering a utensil with a towel or moving
a pant leg upwards. In contrast, we focus on achieving precise goal configurations
via multi-step interaction with the fabric. Yan et al. [86] also take a model-based ap-
proach to fabric manipulation, and primarily focus on the fabric smoothing task using
latent dynamics models. Lippi et al. [45] generate action plans in a low-dimensional
latent space and evaluate on a single T-shirt folding task.

This paper is a direct extension of Hoque et al. [29], which learns a fabric dynam-
ics model from RGB and depth images entirely in simulation and performs model-
based planning over the learned dynamics model to achieve fabric smoothing and
limited fabric folding tasks. This paper modifies and ablates various components of
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the pipeline in [29] including the data generation process, video prediction model,
cost function, and action sampling method to improve the folding performance in
both simulation and on a physical robotic system.

2.2.2 Planning with Visual Dynamics Models

Prior work on visual foresight [20, 17, 12] generally collects data for training visual
dynamics models in the real world, which is impractical and unsafe for robots such
as the da Vinci surgical robot due to the sheer volume of data required for the tech-
nique (on the order of 100,000 to 1 million actions, often requiring several days of
physical interaction [12]). One recent exception is the work of Nair et al. [53], which
trains visual dynamics models in simulation for Tetris block matching. Finally, prior
work in visual foresight learns visual dynamics models with RGB images, but we
find that training with RBGD images improves performance, as depth data can pro-
vide valuable geometric information for fabric manipulation tasks involving multiple
layers.

3 Problem Statement

We consider learning goal-conditioned fabric manipulation policies that enable plan-
ning to specific fabric configurations given a goal image of the fabric in the desired
configuration. The fabric lies on top of a flat background plane. We assume that the
fabric shape is square and that the sides of the fabric are colored differently, where
each side is monochromatic. In this paper we test on three goals: a smooth configura-
tion, a triangular single-folded configuration, and a double-folded configuration with
three layers stacked in the center of the image, as shown in Figure 1.

We define the fabric configuration at time t as ξt, represented via a mass-spring
system with an N × N grid of point masses subject to gravity and Hookean spring
forces. Due to the difficulties of state estimation for highly deformable objects, we
consider overhead RGBD observations ot ∈ R56×56×4, which consist of three-
channel RGB and single-channel depth images.

Each task is specified with a goal image observation o(g) ∈ R56×56×4 represent-
ing the goal g which indicates the appearance of the world the robot must achieve
after interacting with the fabric within some finite time horizon T . Thus, we only
consider tasks which can be defined with an image of the goal configuration of the
fabric. We further assume that the tasks can be achieved with a sequence of pick-and-
place actions with a single robot arm, which involve grasping a specific point on the
top layer of the fabric and pulling it in a particular direction. The above assumptions
hold for a variety of common manipulation tasks such as folding and smoothing. We
consider four-dimensional actions,

at = 〈xt, yt, ∆xt, ∆yt〉. (1)

Each action at at time t involves grasping the top layer of the fabric at coordi-
nate (xt, yt) with respect to an underlying background plane, lifting, translating by
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(∆xt, ∆yt) while keeping height fixed, and then releasing and letting the fabric settle.
When appropriate, we omit the time subscript t for brevity.

The objective is to learn a goal-conditioned policy which minimizes some goal-
conditioned cost function cg(τ ) defined on realized interaction episodes with goal g
and episode τ = (o1, . . . ,oT ), consisting of a sequence of image observations of the
fabric.

4 VisuoSpatial Foresight

We build on the visual foresight framework introduced by Finn and Levine [20] to
learn goal-conditioned fabric manipulation policies. In visual foresight, a video pre-
diction model (also called a visual dynamics model) is trained on random interaction
data of the robot in the environment. This model is trained to generate a sequence of
predicted images (i.e., frames) that would result from executing a sequence of pro-
posed actions in the environment given a history of observed images. Then, MPC is
used to plan over this visual dynamics model with some cost function evaluating the
discrepancy between predicted images and a desired goal image.

In Hoque et al. [29], we present VisuoSpatial Foresight, where 1) a visual dynam-
ics model is trained on RGBD images instead of RGB images as in [20], and 2) visual
dynamics are learned entirely in simulation. We find that these choices improve per-
formance on complex fabric manipulation tasks in simulation and real, accelerate data
collection, and limit wear-and-tear on a physical robot. In this work, we extend Hoque
et al. [29] and explore the tradeoffs involved in each of several different design deci-
sions for each core aspect of VisuoSpatial Foresight. As elaborated later in Section 6,
we use the term VSF-1.0 to refer to the specific settings used in [29]. In this section,
we review learning VisuoSpatial dynamics models (Section 4.1), model-based plan-
ning over the learned dynamics model (Section 4.2), and specifying planning costs
(Section 4.3). Each subsection discusses the methodology from our prior work [29]
and then new alternative techniques that we explore in this paper.

4.1 Learning VisuoSpatial Dynamics

To represent fabric dynamics, we train deep recurrent convolutional networks [25]
to predict a sequence of RGBD output images conditioned on a sequence of RGBD
context images and a sequence of actions. As noted in Babaeizadeh et al. [1], video
prediction is inherently stochastic due to incomplete information provided from con-
text images. For example, a pick-and-pull action applied on fabric will have different
effects based on unknown stiffness and friction parameters. Therefore, we leverage
two widely-used recurrent stochastic video prediction models: Stochastic Variational
Video Prediction (SV2P) from Babaeizadeh et al. [1], which we used in [29], and
Stochastic Video Generation (SVG) from Denton and Fergus [13], a more recent
model which we evaluate in this work. We describe details in Sections 4.1.1 and 4.1.2,
respectively.
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4.1.1 Stochastic Variational Video Prediction

SV2P is an action-conditioned video prediction model which can predict future im-
ages conditioned on a sequence of prior images and proposed actions. In [29], we
trained SV2P in a self-supervised manner on thousands of episodes of random inter-
action with the fabric from the simulation environment in Seita et al. [67], where an
episode consists of a contiguous trajectory of observations and pick-and-pull actions
(Equation 1).

Precisely, SV2P trains a generative model to predict a sequence of H output im-
ages conditioned on a context vector of m images and a sequence of actions starting
from the most recent context image. To handle stochasticity, SV2P uses latent vari-
ables to capture different modes in the distribution of predicted images, thus making
predictions conditioned on a vector of latent variables zt+m:t+m+H−1, each sampled
from a Gaussian prior distribution at inference time. For SV2P, the prior p(z) is fixed
at each time step t, resulting in the generative model parameterized by θ:

pθ(ôt+m:t+m+H−1|ât+m−1:t+m+H−2,ot:t+m−1)

= p(zt+m)

t+m+H−1∏
t′=t+m

pθ(ôt′ |ot:t+m−1, ôt+m:t′−1, zt′ , ât′−1).
(2)

Here ot:t+m−1 are image observations from time t up to and including t + m −
1, ât+m−1:t+m+H−2 is a candidate action sequence at timestep t + m − 1, and
ôt+m:t+m+H−1 is the sequence of predicted images. Since the generative model is
trained in a recurrent fashion, it can be used to sample an H-length sequence of
predicted images ôt+m:t+m+H−1 for any m > 0, H > 0 conditioned on a current
sequence of image observations ot:t+m−1 and an H-length sequence of proposed ac-
tions taken from ot+m−1, given by ât+m−1:t+m+H−2. For more details on model
architectures and training procedures for SV2P, we refer the reader to Babaeizadeh
et al. [1]. We build upon author-provided open-source code for SV2P from [79].

4.1.2 Stochastic Video Generation

As an alternative to SV2P, we test with SVG [13], which has been found to predict
sharper images on standardized benchmarks such as Stochastic Moving MNIST [13]
and the BAIR Robot Pushing dataset [16]. SVG, however, does not support action
conditioning, which is critical for model-based planning. We add support for action
conditioning to SVG, as described below, with a similar approach as in prior work
from Nair and Finn [52]. During training, similarly to SV2P, SVG samples latent
variables zt from a Gaussian posterior distribution; however, while SV2P samples zt
from the same distribution for each t, SVG samples from a different, time-dependent
posterior distribution qφ(zt|o1:t) with parameters φ (where the dependence on t
makes it time-dependent). At inference time, SVG samples zt from a Gaussian prior
distribution, similarly to SV2P. Unlike SV2P’s approach of sampling from a fixed
prior p(zt) for each t (see Equation 2), SVG uses a more flexible, time-varying prior
distribution pψ(zt|o1:t−1) with parameters ψ learned during training. Denton and



8 Ryan Hoque*, Daniel Seita* et al.

Fig. 2: Flow of data through the proposed action-conditioned SVG architecture dur-
ing training, described in Section 4.1.2. Given the most recent context image ot−1
and the action at−1 taken at that time (visualized with the overlaid arrow), the model
is trained to predict the next image ot via a Mean Square Error loss while simul-
taneously minimizing a KL divergence loss between the prior pψ and posterior qφ
Gaussian distributions. The encoder and decoder are convolutional networks with
architectures similar to DCGAN. The prior pψ , posterior qφ, and prediction pζ net-
works use LSTMs. Each action at−1 ∈ R4 is passed through a small learned network,
whose output is concatenated with the encoder output of ot−1. During training, the
latent variable zt is sampled from the output of the posterior distribution, but during
inference time, the posterior is removed and zt is sampled from the prior.

Fergus [13] argue that these more flexible distributions lead to better video prediction
quality. We refer the reader to [13] for further details.

Figure 2 shows the flow of image and action data through the proposed action-
conditioned SVG variant used in this work. We use DCGAN-style [59] encoders and
decoders to handle the image embedding, along with generic LSTMs [28] for the
prior pψ , posterior qφ, and frame predictor pζ components of SVG. To handle ac-
tion conditioning, at each time step we feed actions (see Equation 1) through a small
fully connected network with two layers, and then we concatenate the result with the
embedded image from the encoder. The dimension of each embedded image is 128
and the output dimension of the action network is 32, resulting in a concatenated
160-dimensional vector, which is then propagated through the prior and prediction
LSTMs. The action-conditioned SVG has a total of 12.6 million parameters, as com-
pared to about 7.9 million parameters for SV2P.

4.2 Model-Based Planning with Model Predictive Control

The goal of the planning stage is to determine which action the robot should take at
each time step t. At each step, VisuoSpatial Foresight minimizes a goal-conditioned
planning cost function cg(ôt+1:t+H) with goal g, which is a target image o(g). The
cost is evaluated over the H-length sequence of predicted images ôt+1:t+H sam-
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pled from the visuospatial dynamics model (see Section 4.1) conditioned on the cur-
rent observation ot and some proposed action sequence ât:t+H−1. As in prior Visual
Foresight work [12, 17, 20], we utilize MPC to plan action sequences to minimize
cg(ôt+1:t+H) over a receding H-step horizon at each time t. See Figure 3 for intu-
ition on the planning phase in the context of fabric manipulation using VSF-1.0 from
prior work [29].

There are a number of sampling-based, gradient-free methods to optimize the
MPC objective. In our prior work [29], we used the Cross Entropy Method (CEM) [62],
which we review in Section 4.2.1. In this work, we additionally test with the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [26] (see Section 4.2.2),
which allows for more rapid updates in the action sampling distribution. While the
Model-Predictive Path Integral (MPPI) has also been shown to be successful in recent
work [50], we find that its temporal smoothing is not well-suited for our action space,
in which we specify large pick-and-pull actions that are not expected to be similar to
prior actions in a given trajectory.

4.2.1 Cross Entropy Method (CEM)

In a high-dimensional space, sampling actions uniformly at random is unlikely to
yield a high-quality solution to an optimization problem. To mitigate this issue, we
use CEM, which samples from a multivariate Gaussian distribution and iteratively
re-fits the Gaussian to the best performing samples. Specifically, for each iterations,
CEM:
1. Samples N action sequences {â(1), â(2), . . . , â(N)} from some N (µi, Σi)
2. Finds the M best sequences {â(1), â(2), . . . , â(M)} according to cost cg(·)
3. Assigns µi+1 = mean({â(1), â(2), . . . , â(M)})
4. Assigns Σi+1 = var({â(1), â(2), . . . , â(M)})

where “mean(·)” and “var(·)” denote the sample mean and covariance. However,
CEM still scales poorly with dimensionality and can struggle with multimodal opti-
mization landscapes due to its Gaussian structure.

4.2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Like CEM, CMA-ES is an evolutionary strategy based on sampling actions from an
iteratively re-fitted multivariate Gaussian distribution. However, in CEM, the standard
deviations of the sampling distribution in consecutive iterations are highly correlated,
making it difficult to rapidly adjust the variability of the sampling distribution. CMA-
ES mitigates this issue by fitting a full covariance matrix to the elite samples and
using it to tune the variance of the sampling distribution on each iteration in a more
fine-grained manner. CMA-ES also updates the mean to a weighted average over the
elites rather than a simple average. Additionally, while CEM updates a large popula-
tion over a small number of iterations, we run CMA-ES with a small population over
a large number of iterations, resulting in a more dynamic search of the optimization
landscape less prone to averaging over multiple modes. We refer the reader to [26]
for further details and to Appendix 10.3 for exact parameters used for both CEM and
CMA-ES.
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Fig. 3: Real plans generated by VSF-1.0 at test time for the smoothing task using
Fabric-Random (see Section 5.2) with predictions from SV2P. We generate action
sequences with the Cross Entropy Method (CEM) to approximately minimize the
cost function, which evaluates L2 distance between the final image in the predicted
trajectory and a provided goal image (see Section 4.3.1). Here we show the five CEM
trajectories with the lowest cost, where the image sequences in each row first show
the context image, followed by five outputs from the video prediction model. The
black arrows are the pick-and-pull actions projected onto the images.

4.3 Planning Costs

The remaining ingredient for model-based planning (Section 4.2) is the cost function
definition. A number of choices exist for the cost function cg(·) used for model-
based planning based on goal classifiers, optical flow, and learned distance measures
between images [17, 85]. In our prior work [29], we utilized a simple cost function
based on the Euclidean pixel distance between images (Section 4.3.1). In this work,
we additionally test with a learned cost function which encodes structure about the
underlying mesh of the fabric (Section 4.3.2).

4.3.1 Pixel L2 Cost

A simple cost function is the Euclidean (L2) pixel distance between the final predicted
RGBD image at timestep t and the goal image o(g) across all 4 channels. Precisely,
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the planning cost is defined as follows:

cg(ôt+1:t+H) = ‖o(g) − ôt+H‖2. (3)

Figure 3 shows example plans generated by the system for smoothing and indicates
the L2 cost between the final predicted image and the goal image in the rightmost
column. We use “Pixel L2” to refer to this cost function in this paper.

4.3.2 Learned Vertex L2 Cost

While the Pixel L2 distance cost function is easy to implement and may be sufficient
for simple goal images such as fully smooth fabric, it can fail to capture nuances
and may focus on irrelevant artifacts in more complex goal images. To this end, we
employ a data-driven approach to estimate the cost between two images. When col-
lecting data used to train the visuospatial dynamics model, we can access and store
the underlying state of the fabric due to the simulation environment. Therefore, we
utilize the same data to train a cost function which estimates the difference in the
underlying fabric state based on two images of the fabric in different configurations.
Precisely, we annotate pairs of fabric images with the total Euclidean distance be-
tween the 3D meshes that constitute the fabric (see Section 5.1) in each image. We
then train a convolutional neural network fmesh(·, ·) to predict the (normalized) mesh
distance from images by minimizing the Mean Squared Error (MSE) loss on the
dataset. The revised planning cost function takes a forward pass through this trained
network:

cg(ôt+1:t+H) = fmesh(o
(g), ôt+H), (4)

and since VisuoSpatial Foresight data is task-agnostic, as described in Section 5.2,
we use the same fmesh network for all three major tasks considered in this work:
smoothing, single folding, and double folding. We use “Vertex L2” to refer to this
cost function. See Appendix 10.3 for details on the supplemental dataset and network
architecture used for fmesh.

5 Practical Implementation Details

In this section, we provide additional details to practically instantiate VisuoSpatial
Foresight for goal-conditioned fabric manipulation. We discuss the fabric simulator
used for data collection (Section 5.1), how data is collected in this simulator (Sec-
tion 5.2), and how to train the visuospatial dynamics models (Section 5.3).

5.1 Fabric Simulator

VisuoSpatial Foresight requires a large amount of training data to predict full-resolution
RGBD images. Since getting real data is cumbersome and imprecise, we use a fabric
simulator to generate data quickly and efficiently. The fabric and robot simulator used
in [29] and this work is built on top of the simulator in Seita et al. [67], which was
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shown to be sufficiently accurate for imitation learning and sim-to-real transfer of
fabric smoothing policies. We briefly review details of the simulator that are shared
across both [29] and this work, while highlighting differences in Section 5.2.

The fabric is represented as a mass-spring system with a 25 × 25 grid of point
masses [58] with springs connecting each point to its neighbors. Verlet integration [81]
is used to update point mass positions using finite difference approximations, and
self-collision is implemented by adding a repulsive force between points that are too
close [4]. Damping is also applied to simulate friction. See Appendix 9 for further
discussion on alternative fabric simulators and the simulation used in this work.

We use the open-source software Blender [10] to render (top-down) image ob-
servations ot of the fabric. To facilitate sim-to-real transfer, we leverage domain ran-
domization [76] of the fabric color, background plane shading, image brightness, and
camera pose. We make a few changes to the observations relative to [67]. First, we
use four-channel images: three for RGB and one for depth. Second, we reduce the
size of observations to 56 × 56 from 100 × 100 to make it more computationally
tractable to train visuospatial dynamics models. Finally, to enable transfer of policies
from simulation to the real-world, we adjust the domain randomization techniques so
that color, brightness, and positional hyperparameters are fixed per episode to ensure
that the video prediction model learns to only focus on predicting changes in the fab-
ric configuration, rather than changes due to domain randomization. See Appendix 11
for more details on the domain randomization parameters.

5.2 Data Generation

For generating training data for VisuoSpatial Foresight, episode starting states are
sampled from four difficulty tiers with equal probability, where each tier differs in
the initial amount of fabric coverage on the underlying plane supporting it. Tiers 1
through 3 are the same as those in [67].

– Tier 0: Full Coverage. 100.± 0. initial coverage, i.e., fully smooth.
– Tier 1: High Coverage. 78.3± 6.9% initial coverage, all corners visible. Gener-

ated by two short random actions.
– Tier 2: Medium Coverage. 57.6 ± 6.1% initial coverage, one corner occluded.

Generated by a vertical drop followed by two actions to hide a corner.
– Tier 3: Low Coverage. 41.1±3.4% initial coverage, 1-2 corners occluded. Gen-

erated by executing one action very high in the air and dropping.

5.2.1 Fabric-Random Data

In the prior work (Hoque et al. [29]), we collected a dataset consisting of 7,003
episodes of length 15 each, for a total of 105,045 (ot,at,ot+1) transitions. Actions
(x, y,∆x,∆y) are sampled uniformly from [0,0,0,0] to [1,1,0.4,0.4], allowing a max-
imum pull of 40% of the plane width. Fabric color is randomized in a range around
blue, and the underside of the fabric is darker by a fixed RGB delta. Henceforth, we
refer to this data as Fabric-Random. Figures 3 and 6 provide examples of images
from Fabric-Random without domain randomization.
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All data is generated using the following policy: execute a randomly sampled
action, but resample if the grasp point (x, y) is not within the bounding box of the
2D projection of the fabric, and truncate ∆x and/or ∆y at the edge of the plane if
(x+∆x, y +∆y) is out of bounds.

5.2.2 New Fabric-CornerBias Data

While we showed promising smoothing and folding simulation results using Fabric-
Random in [29], we were unable to get a physical robot to successfully fold fabric. In
addition, the pull vector action magnitudes for VSF-1.0 were relatively small com-
pared to an imitation learning baseline from [67]. This meant VSF-1.0 was inefficient
and took several more actions than necessary to complete smoothing or folding tasks.
To address these issues, we propose and evaluate Fabric-CornerBias, a new fabric
dataset with several notable differences over Fabric-Random.

Fabric-CornerBias consists of 9,932 length-10 episodes for a total of 99,320
(ot,at,ot+1) data transitions, meaning that the data is about the same size as Fabric-
Random. For visual clarity, the fabric color in the new data is centered around brown
(as opposed to blue in Fabric-Random). During data generation, actions (x, y,∆x,∆y)
are sampled from [0,0,0,0] to [1,1,0.6,0.6], allowing a maximum pull of 60% of the
plane width. While this increased range of motion may make subsequent video pre-
diction more challenging, since longer pull vectors tend to result in larger relative
pixel changes in future images, we hypothesize that including longer pull vectors
in the training data will result in more accurate image predictions when considering
such actions during MPC planning (see Section 4.2).

Many fabric manipulation tasks, including the smoothing and folding tasks we
consider in this work, may be best approached by picking at fabric corners, as sug-
gested by results in [44, 66, 84]. Therefore, we set 30% of all pick points to be the
(x, y) coordinates of a randomly chosen corner, to which we have ground-truth ac-
cess in the simulator. This “corner bias” is not present in Fabric-Random, which may
have led VSF-1.0 to produce relatively less accurate future image predictions con-
ditioned on actions that pick at corners. Due to this extra feature, we name the data
“Fabric-CornerBias.”

Dataset curation is an interesting topic in its own right. In general, the dataset
should include states in regions that are relevant for the downstream tasks for reliable
video prediction. It is difficult to reach states that require a precise sequence of ac-
tions with a purely random policy. In this case, the corner bias can help provide data
broadly relevant for many smoothing and folding tasks. More complex tasks such as
twisting or rolling fabric would require more careful dataset engineering.

Finally, to provide training data for the learned cost function (Section 4.3.2) we
also collect the ground truth (x, y, z) coordinates of all 625 point masses for all time
steps in all collected episodes. From Fabric-CornerBias we create a dataset of 99,320
RGBD image pairs annotated with ground truth mesh distance to train the learned
cost function as described in Section 4.3.2.
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5.3 Model Training

When training a visuospatial dynamics model (either SV2P or SVG) on Fabric-
Random, as in [29] and following the notation from Equation 2, we set the number of
context frames to m = 3 and number of output frames to H = 7, so that the model
learns to predict 7 frames of an episode from the preceding 3 frames. On Fabric-
CornerBias, since the number of actions per episode in the training data is 10 (in-
stead of 15), we set the number of context frames to m = 2 and the number of output
frames toH = 5 to allow for sampling at multiple time ranges within one episode. At
test time, both models utilize only one context frame m = 1 and a planning horizon
of H = 5 output frames. This yields the generative model pθ(ôt+1:t+5|ât:t+4,ot), as
discussed in Section 4.1.

6 Simulation Experiments

In this section, we report experimental results on the fabric simulation environment.
In Section 6.1, we qualitatively and quantitatively analyze the performance of visu-
ospatial dynamics models on predicting images in held-out test episodes, for all com-
binations of datasets (Fabric-Random and Fabric-CornerBias) and models (SV2P and
SVG). Section 6.2 presents results from our prior work [29] using VSF-1.0 settings:
Fabric-Random data, SV2P, CEM, and Pixel L2 cost. We then introduce new results
in Section 6.3 to test whether changing any set of parameter settings from those in
Section 6.2 lead to better performance in downstream fabric manipulation tasks.

6.1 VisuoSpatial Dynamics Prediction Quality

An advantage of training visual dynamics models, as done in visual foresight meth-
ods, is that it enables inspection of models to see if predictions are accurate. We
perform qualitative and quantitative analysis of action-conditioned video prediction
model quality. For both Fabric-Random and Fabric-CornerBias data, we generate 400
episodes using the same data-generating procedure from Section 5.2, but with differ-
ent random seeds to ensure that the test set contains novel images. We train separate
SV2P and SVG models for both Fabric-Random and Fabric-CornerBias and evaluate
each of these four models on the appropriate test set.

The models are trained to directly generate RGBD predictions, and we separate
the color and depth components for qualitative analysis. Figures 4 and 5 show the
ground truth as well as the predicted color and depth image sequences from SV2P
and SVG, applied on examples of test-set episodes from Fabric-CornerBias. A promi-
nent distinction between SV2P and SVG is that the former tends to produce blurrier
images when predicting 4 or 5 images in the future as compared to SVG. However,
SVG may be more susceptible to producing disjointed segments of the fabric. We
hypothesize that this is because SV2P relies on an architecture which constrains the
flow of predicted pixels [21] while SVG does not.

For a more quantitative measure of prediction quality, we calculate the average
Structural SIMilarity (SSIM) index [82] over corresponding predicted and ground
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Fig. 4: Two comparisons between ground truth and predicted color images in simu-
lation from SV2P and SVG models on held-out, domain-randomized test data from
Fabric-CornerBias. SV2P and SVG are provided a single context ground truth image
(indicated with the blue border) and a sequence of 5 actions. For each example, the
first row has the ground truth image sequence, the second shows SV2P predictions,
and the third shows SVG predictions. While quality gets blurrier across time, the
predicted images may be sufficiently accurate for planning.

truth image pairs for the tested models. The SSIM is a scalar quantity between -1 and
1, where higher values correspond to greater image similarity. SSIM is commonly re-
ported in prior video prediction research [1, 13, 21, 38, 39] for quantitatively bench-
marking model quality. Tables 1 and 2 report the performance of the two models on
each of the two datasets. We report the average SSIM across predicted images as a
function of the time horizon. As expected, SSIM decreases with a longer time hori-
zon, due to the difficulty in long-horizon frame prediction. The results also suggest
that SV2P tends to produce more accurate predictions for a shorter time horizon, typ-
ically the first 1-2 future images, while SVG may be more accurate for longer horizon
predictions (4-5 images in the future).
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Fig. 5: Depth components of the examples in Figure 4, showing a similar trend. Depth
values are scaled into [0, 255] to make images readable.

Overall, the qualitative inspections and quantitative SSIM metrics suggest that us-
ing SV2P or SVG as the learned dynamics model may generate sufficiently accurate
action-conditioned predictions for multiple images.

6.2 Prior Results from Smoothing and Folding in Simulation

All results presented in this section are from our prior work [29]. We report the per-
formance of VSF with the Fabric-Random dataset, SV2P model, CEM optimizer,
and Pixel L2 cost function. We refer to these particular choices of the data, model,
optimizer, and cost function of VSF as VSF-1.0, to distinguish these settings from
different ablations we test in new experiments in Section 6.3. We first evaluate VSF-
1.0 on the smoothing task: maximizing fabric coverage, defined as the percentage of
an underlying plane covered by the fabric. The plane is the same area as the fully
smoothed fabric. We evaluate smoothing on three tiers of difficulty as reviewed in
Section 5.2 (i.e., tiers 1, 2, and 3). Following our prior work [29], episodes can ter-



VisuoSpatial Foresight for Physical Sequential Fabric Manipulation 17

Table 1: SSIM measurements for Fabric-Random, over ground truth versus predicted
images from SV2P and SVG models. Conditioned on one image and five actions
starting from that image, the models must predict the next five images. We separate
SSIM measurements for color (C) and depth (D) images and by time horizon (i.e. 1-5
time steps into the future). Results suggest that SV2P is more effective at predicting
the first 1-2 images, but SVG may produce more accurate predictions beyond that.

(Data) Model 1 2 3 4 5
(C) SV2P 0.822 0.710 0.638 0.611 0.598
(C) SVG 0.755 0.682 0.648 0.633 0.624
(D) SV2P 0.790 0.631 0.527 0.470 0.433
(D) SVG 0.648 0.574 0.540 0.523 0.511

Table 2: SSIM measurements for Fabric-CornerBias, over ground truth versus pre-
dicted images from SV2P and SVG models. The table is formatted in a similar man-
ner to Table 1 and shows a similar trend.

(Data) Model 1 2 3 4 5
(C) SV2P 0.774 0.706 0.639 0.616 0.605
(C) SVG 0.741 0.667 0.642 0.631 0.625
(D) SV2P 0.758 0.657 0.577 0.529 0.493
(D) SVG 0.679 0.602 0.577 0.563 0.554

minate earlier if a threshold of 92% coverage is triggered, or if any fabric point falls
sufficiently outside of the fabric plane.

To see how VisuoSpatial Foresight performs against existing smoothing tech-
niques, for each difficulty tier, we execute 200 episodes of VSF-1.0 and 200 episodes
of each baseline policy discussed in Section 6.2.1. Note that VSF-1.0 does not ex-
plicitly optimize for coverage and only optimizes the Pixel L2 cost function from
Equation 3, which measures Euclidean distance to a target image. In this case, we
provide VSF-1.0 with a goal image of a fully smooth fabric. See Figure 6 for an
example smoothing episode.

6.2.1 Baseline Methods

For fabric smoothing in simulation, we compare VSF-1.0 with the following 5 base-
lines as in Hoque et al. [29]. Further details about the implementation and training of
VSF-1.0 and the last two baselines listed here are in Appendix 10.

(1) Random Randomly sample the pick point and pull direction.

(2) Highest Using ground truth state information, pick the fabric vertex with the
maximum z-coordinate and set the pull direction to point to where the vertex would
be if the fabric were perfectly smooth. This is straightforward to implement with
depth sensing and was shown to work reasonably well for smoothing in [66].
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Fig. 6: A simulated episode executed by the VSF-1.0 policy on a Tier 3 starting state,
given a smooth goal image (shown in the far right). The first row shows RGB images
and the second shows the corresponding depth maps. The images are from the distri-
bution specified in the Fabric-Random data and do not have domain randomization.
In this example, the policy is able to successfully cross the coverage threshold of 92%
after executing 7 actions. Actions are visualized with the overlaid arrows.

(3) Wrinkle As in Sun et al. [72], find the largest wrinkle and then pull perpendicular
to it at the edge of the fabric to smooth it out. We use the ground truth state infor-
mation in the implementation of this algorithm (as done in [67]) rather than image
observations.

(4) Imitation Learning (IL) As in Seita et al. [67], train an imitation learning agent
using DAgger [61] with a simulated corner-pulling demonstrator that picks and pulls
at the fabric corner furthest from its target. DAgger can be considered as an oracle
with “privileged” information as in Chen et al. [7] because during training, it queries
a demonstrator which uses ground truth state information. For a fair comparison, we
run DAgger so that it consumes roughly the same number of data points (we used
110,000) as VisuoSpatial Foresight during training, and we give the policy access
to four-channel RGBD images. We emphasize that this is a distinct dataset from the
one used for VSF-1.0 or any other VisuoSpatial Foresight variant in this subsection
(Fabric-Random), which uses no demonstrations during data generation.

(5) Model-Free RL We run DDPG [43] and extend it to use demonstrations and a pre-
training phase as suggested in Vecerik et al. [80]. We also use the Q-filter from Nair
et al. [51]. We train with a similar number of data points as in IL and VisuoSpatial
Foresight for a reasonable comparison. We design a reward function for the smooth-
ing task that, at each time step, provides reward equal to the change in coverage
between two consecutive states. Inspired by OpenAI et al. [55], we provide a +5
bonus for triggering a coverage success, and −5 penalty for pulling the fabric out of
bounds.

6.2.2 Smoothing and Folding Results with VSF-1.0

Results in Table 3 indicate that VSF-1.0 significantly outperforms the analytic and
model-free reinforcement learning baselines for fabric smoothing in simulation. It
has similar performance to the IL agent, a “smoothing specialist” that rivals the per-
formance of the corner pulling demonstrator used in training (see Appendix 10). See
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Table 3: Simulated smoothing experimental results for VSF-1.0 and the baselines in
Section 6.2. We report final coverage and number of actions per episode, averaged
over 200 simulated episodes per tier, and use the same random seeds for a fair com-
parison. VSF-1.0 performs well even for difficult starting states. It attains similar final
coverage as the Imitation Learning (IL) agent from [67] and outperforms the other
baselines. The VSF-1.0 and IL agents were trained on equal amounts of domain-
randomized RGBD data, but the IL agent has a demonstrator for every training state,
whereas VSF-1.0 is trained with data collected from a random policy.

Tier Method Coverage Actions
1 Random 25.0 ± 14.6 2.4 ± 2.2
1 Highest 66.2 ± 25.1 8.2 ± 3.2
1 Wrinkle 91.3 ± 7.1 5.4 ± 3.7
1 DDPG and Demos 87.1 ± 10.7 8.7 ± 6.1
1 Imitation Learning 94.3 ± 2.3 3.3 ± 3.1
1 VSF-1.0 92.5 ± 2.5 8.3 ± 4.7
2 Random 22.3 ± 12.7 3.0 ± 2.5
2 Highest 57.3 ± 13.0 10.0 ± 0.3
2 Wrinkle 87.0 ± 10.8 7.6 ± 2.8
2 DDPG and Demos 82.0 ± 14.7 9.5 ± 5.8
2 Imitation Learning 92.8 ± 7.0 5.7 ± 4.0
2 VSF-1.0 90.3 ± 3.8 12.1 ± 3.4
3 Random 20.6 ± 12.3 3.8 ± 2.8
3 Highest 36.3 ± 16.3 7.9 ± 3.2
3 Wrinkle 73.6 ± 19.0 8.9 ± 2.0
3 DDPG and Demos 67.9 ± 15.6 12.9 ± 3.9
3 Imitation Learning 88.6 ± 11.5 10.1 ± 3.9
3 VSF-1.0 89.3 ± 5.9 13.1 ± 2.9

Figure 6 for an example Tier 3 VSF-1.0 episode. Furthermore, we find that coverage
values are statistically significant compared to all baselines other than IL, and that
performance is not notably impacted by the use of domain randomization. Results
from the Mann-Whitney U test [47] and a domain randomization ablation study are
reported in Appendix 11. VSF-1.0, however, requires more actions than DAgger, es-
pecially on Tier 1, with 8.3 actions per episode compared to 3.3 per episode. Attempt-
ing to mitigate this by increasing the variance of CEM results in poor performance, as
actions are sampled outside the truncated action distribution used to generate data. In-
deed, this is one of the motivations for the design of Fabric-CornerBias, as described
in Section 5.2.2.

We proceed to study the effect of the input modality (i.e. RGB, D, and RGBD)
in VSF-1.0. See Figure 7 for a histogram of coverage values obtained on the simu-
lated smoothing task. Here RGBD performs the best but only slightly outperforms
RGB, which is perhaps unsurprising due to the relatively low depth variation in the
smoothing task. We also vary the input modality in a fabric folding task. For fold-
ing, we use the same video prediction model, trained only with random interaction
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Fig. 7: Final coverage values on 50 VSF-1.0 simulated smoothing episodes from Tier
3 starting states. We fix the random seed so that each input modality (RGB, D and
RGBD) begins with the same starting states.

Table 4: Simulated single folding (1-Fold) results. We run VSF-1.0 with the goal
image in Figure 8 for 20 episodes when L2 is taken on the depth, RGB, and RGBD
channels. The results suggest that adding depth allows us to significantly outperform
RGB-only Visual Foresight on this task.

Cost Function Successes Failures % Success
L2 Depth 0 20 0%
L2 RGB 10 10 50%
L2 RGBD 18 2 90%

data, and keep planning parameters the same besides the initial CEM variance (see
Appendix 10.3). We change the goal image to the triangular, folded shape shown in
Figure 8 and change the initial state to a smooth state (which can be interpreted as
the result of smoothing). The two sides of the fabric are shaded differently, with the
darker shade on the bottom layer. Due to the action space bounds (Section 5.2), get-
ting to this goal state directly is not possible in less than two actions and requires a
precise sequence of pick-and-pull actions.

We visually inspect the final states in each episode, and classify them as successes
or failures, as done in other work on fabric folding [40]. For RGBD images, this
decision boundary empirically corresponds to an L2 threshold of about 8000; see
Figure 8 for a typical success case. In Table 4 we compare performance of L2 cost
taken over RGB, depth, and RGBD channels. RGBD significantly outperforms the
other modes, which correspond to Visual Foresight and “Spatial Foresight” (depth
only) respectively, suggesting the usefulness of augmenting Visual Foresight with
depth maps.

6.3 Simulation Results from Variations of VSF Settings

This section contains newer results not in prior work [29]. Here, we study the choice
of dataset, visual dynamics model, optimization method, and planning cost function
on performance in simulation. We evaluate 20 trials of smoothing, folding (“1-Fold”),
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Fig. 8: RGB observations of successful folding episodes in simulation. Top: A rollout
using VSF-1.0. The goal image is boxed in green, while the final frame in the episode
is boxed in black. Here it takes 7 actions (left-to-right, top-to-bottom) from smooth to
approximately folded. Bottom: A rollout using VisuoSpatial Foresight trained on the
new dataset Fabric-CornerBias (Section 6.3). Here it only takes 2 actions and results
in a higher quality fold. There are several areas of the fabric simulator which have
overlapping layers due to the difficulty of accurately modeling fabric-fabric collisions
in simulation, which explain the light patches in the figure.

and double folding (“2-Fold”), on each of 12 possible settings. See Figure 1 for ex-
amples of these goals. Note that “1-Fold” refers to the structure of the goal image, not
the minimum number of actions it requires to reach (which is 2 with the current action
space). Recall that VSF-1.0 in prior work [29] and the previous section represents 1
of these 12 settings (namely, Fabric-Random, SV2P, CEM, and Pixel L2) for Visu-
oSpatial Foresight. Note that we consider 12 settings instead of 16 because we did not
record the fabric mesh state when generating Fabric-Random, which makes combi-
nations of Fabric-Random and the learned cost function from Equation 4 impossible.
See Table 5 for quantitative results, which contains all 3× 12 = 36 combinations of
choices for VSF. We find that no single combination achieves the best performance
on all three tasks, suggesting tradeoffs in the selection of each component of VSF.
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Table 5: Success rate (or mean coverage for smoothing) and number of actions
(among successful episodes, or “N/A” if no successful episodes) of smoothing
(“Smooth”), single folding (“1-Fold”), and double folding (“2-Fold”) on all possi-
ble settings of dataset, visual dynamics model, optimization method, and planning
cost (see Section 4). We run 20 trials for each row. All smoothing results are from
Tier 3 starting states.

Dataset Model Optimizer Cost Task Success # Actions
1 Fabric-Random SV2P CEM Pixel L2 Smooth 86.5 10.7 ± 4.1
2 Fabric-Random SV2P CMA-ES Pixel L2 Smooth 50.0 5.0 ± 4.0
3 Fabric-Random SVG CEM Pixel L2 Smooth 71.3 10.8 ± 3.9
4 Fabric-Random SVG CMA-ES Pixel L2 Smooth 41.0 5.2 ± 4.1
5 Fabric-CornerBias SV2P CEM Pixel L2 Smooth 84.4 12.4 ± 3.9
6 Fabric-CornerBias SV2P CEM Vertex L2 Smooth 88.0 10.9 ± 3.9
7 Fabric-CornerBias SV2P CMA-ES Pixel L2 Smooth 44.2 6.4 ± 4.7
8 Fabric-CornerBias SV2P CMA-ES Vertex L2 Smooth 48.3 6.8 ± 5.6
9 Fabric-CornerBias SVG CEM Pixel L2 Smooth 67.0 12.3 ± 3.6
10 Fabric-CornerBias SVG CEM Vertex L2 Smooth 72.8 10.1 ± 4.0
11 Fabric-CornerBias SVG CMA-ES Pixel L2 Smooth 39.3 6.8 ± 4.7
12 Fabric-CornerBias SVG CMA-ES Vertex L2 Smooth 44.3 6.7 ± 4.8
13 Fabric-Random SV2P CEM Pixel L2 1-Fold 90 8.3 ± 1.2
14 Fabric-Random SV2P CMA-ES Pixel L2 1-Fold 5 6.0 ± 0.0
15 Fabric-Random SVG CEM Pixel L2 1-Fold 0 N/A
16 Fabric-Random SVG CMA-ES Pixel L2 1-Fold 0 N/A
17 Fabric-CornerBias SV2P CEM Pixel L2 1-Fold 95 2.0 ± 0.0
18 Fabric-CornerBias SV2P CEM Vertex L2 1-Fold 90 2.1 ± 0.2
19 Fabric-CornerBias SV2P CMA-ES Pixel L2 1-Fold 15 1.3 ± 0.5
20 Fabric-CornerBias SV2P CMA-ES Vertex L2 1-Fold 10 3.0 ± 2.0
21 Fabric-CornerBias SVG CEM Pixel L2 1-Fold 10 8.5 ± 2.1
22 Fabric-CornerBias SVG CEM Vertex L2 1-Fold 10 2.5 ± 0.7
23 Fabric-CornerBias SVG CMA-ES Pixel L2 1-Fold 0 N/A
24 Fabric-CornerBias SVG CMA-ES Vertex L2 1-Fold 0 N/A
25 Fabric-Random SV2P CEM Pixel L2 2-Fold 30 5.2 ± 1.7
26 Fabric-Random SV2P CMA-ES Pixel L2 2-Fold 30 3.3 ± 0.9
27 Fabric-Random SVG CEM Pixel L2 2-Fold 0 N/A
28 Fabric-Random SVG CMA-ES Pixel L2 2-Fold 0 N/A
29 Fabric-CornerBias SV2P CEM Pixel L2 2-Fold 10 7.5 ± 2.5
30 Fabric-CornerBias SV2P CEM Vertex L2 2-Fold 10 5.5 ± 0.5
31 Fabric-CornerBias SV2P CMA-ES Pixel L2 2-Fold 15 3.3 ± 1.3
32 Fabric-CornerBias SV2P CMA-ES Vertex L2 2-Fold 40 2.4 ± 0.5
33 Fabric-CornerBias SVG CEM Pixel L2 2-Fold 0 N/A
34 Fabric-CornerBias SVG CEM Vertex L2 2-Fold 5 8.0 ± 0.0
35 Fabric-CornerBias SVG CMA-ES Pixel L2 2-Fold 0 N/A
36 Fabric-CornerBias SVG CMA-ES Vertex L2 2-Fold 0 N/A

6.3.1 Dataset Comparison

Keeping all VSF-1.0 settings constant besides dataset choice indicates that Fabric-
CornerBias has no noticeable impact on smoothing performance (Row 5), improves
folding performance (Row 17), and hurts double folding performance (Row 29).
However, the best setting for double folding performance includes Fabric-CornerBias
(Row 32). The most dramatic improvement from Fabric-CornerBias is in the effi-
ciency of the folding rollouts. In particular, with SV2P, CEM, and Pixel L2, switch-
ing the dataset alone decreases the mean number of actions from 8.3 to 2.0 and yields
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higher quality rollouts (see Figure 8). This increase in efficiency suggests that physi-
cal fabric folding will be more feasible, as the sim-to-real dynamics mismatch is not
able to compound over time (Section 7.2).

6.3.2 Visual Dynamics Model Comparison

In all smoothing and folding experiments, results suggest that planning using the
action-conditioned SVG video prediction model from Figure 2 leads to lower quality
results compared to SV2P. The best smoothing result with SVG (row 10, 72.8% cov-
erage, with CEM and Vertex L2 on Fabric-CornerBias) lags behind the best SV2P
smoothing result (row 6, 88.0% coverage, also with CEM and Vertex L2 on Fabric-
CornerBias). We hypothesize that the lower performance metrics with SVG as com-
pared to SV2P may be partially explained from the model architectures plus the
amount of data available. The architecture of SV2P [1], based on [21], involves pre-
dicting transformations of pixels which are constrained to avoid moving too much
in predicted future images, whereas SVG [13] does not apply a similar constraint
when predicting images. This may cause it to predict images of highly disjoint fab-
ric, which we qualitatively observe in the image predictions during MPC. While the
constraints imposed on SV2P may cause it to be less expressive than SVG given suffi-
cient data, the data size of Fabric-CornerBias, containing 99,320 data transitions (see
Section 5.2) may not be large enough to show benefits for SVG.

6.3.3 Optimization Method Comparison

In all smoothing and folding experiments involving CMA-ES, performance is far be-
low that of CEM. However, CMA-ES improves performance and efficiency in double
folding, especially among the experiments involving Fabric-CornerBias. To better un-
derstand why this is the case, we inspect VSF plans for single folding in Figure 9 and
double folding in Figure 10. Despite the poor performance on folding, we find that
CMA-ES actually arrives at a lower cost solution, indicating that CMA-ES may be
exploiting inaccuracies in the visual dynamics model. The CMA-ES solution gener-
ally involves larger action deltas that can cause resulting states to deviate from the
predictions, which may be due to the smaller population size during optimization.
However, for the double-folding experiments (Figure 10), CEM is unable to find a
high quality solution, while CMA-ES is able to find one. We hypothesize that this
behavior is due to averaging over a multimodal optimization landscape with a large
population size. Due to the structure of the double folding goal image, the order in
which the top right corner and bottom left corner are folded toward the center does not
impact the quality of the solution. Since we run CMA-ES with many fewer samples
per iteration, it is less likely to reach both optima at the same time.

6.3.4 Cost Function Comparison

In smoothing and folding experiments, changing the cost function to the learned ver-
tex distance estimator does not have significant impact on performance in either di-
rection, though Vertex L2 does slightly boost coverage for smoothing. This is perhaps
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Fig. 9: Top: A VSF folding plan with Fabric-CornerBias, SV2P, Pixel L2 cost and the
CEM optimizer. Bottom: A VSF folding plan with Fabric-CornerBias, SV2P, Pixel
L2 cost and the CMA-ES optimizer. As in Figure 3, the five images after the current
image are generated by the visual dynamics model. CMA-ES arrives at a lower cost
solution but converges on more drastic actions that are more liable to result in states
that deviate from predictions, and may cause the fabric to go out of bounds.

unsurprising, as Pixel L2 is likely sufficient for goal images with simple visual struc-
ture (i.e., a square or triangle with a single color). However, with the more complex
double folding goal image, comparison of Rows 31 and 32 (where dataset is Fabric-
CornerBias, visual dynamics model is SV2P, and optimizer is CMA-ES) indicates
that the learned Vertex L2 significantly outperforms Pixel L2. In Figure 10 we see
that minimizing the Vertex L2 cost appropriately guides CMA-ES to a trajectory with
a final predicted image similar to the double folding goal image.

7 Physical Experiments

We evaluate VisuoSpatial Foresight on a physical da Vinci surgical robot [33]. We use
the same experimental setup as in Seita et al. [67], including the calibration procedure
to map pick points (x, y) into positions and orientations with respect to the robot’s
base frame. The sequential tasks we consider are challenging due to the robot’s impre-
cision [65]. We use a Zivid One Plus camera mounted 0.9 meters above the workspace
to capture RGBD images. We manipulate a 5” by 5” piece of fabric (blue for smooth-
ing, brown for folding) and apply some damping to mitigate stiffness due to its small
size. In Section 7.1, we report results from our prior work [29]. In Section 7.2, we
show new results with physical fabric folding using a set of parameters which we
refer to as “VSF-2.0.”
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Fig. 10: Top: A VSF double folding plan with Fabric-CornerBias, SV2P, Vertex
L2 cost and the CEM optimizer. Bottom: A VSF double folding plan with Fabric-
CornerBias, SV2P, Vertex L2 cost and the CMA-ES optimizer. CMA-ES is able to
find a much better plan for achieving the goal state.

Table 6: Physical smoothing robot experiment results for Imitation Learning (IL), i.e.
DAgger, and VSF-1.0. For both methods, we choose the policy snapshot with highest
performance in simulation, and each are applied on all tiers (T1, T2, T3). We show
results across 10 episodes of IL per tier and 5 episodes of VSF-1.0 per tier, and show
average starting and final coverage, maximum coverage at any point per episode, and
the number of actions. Results suggest that VSF-1.0 attains final coverage comparable
to or exceeding that of IL despite not being trained on demonstration data, though
VSF-1.0 requires more actions per episode.

(Tier) Method (1) Start (2) Final (3) Max (4) Actions
(1) IL 74.2 ± 5 92.1 ± 6 92.9 ± 3 4.0 ± 3
(1) VSF-1.0 78.3 ± 6 93.4 ± 2 93.4 ± 2 8.2 ± 4
(2) IL 58.2 ± 3 84.2 ± 18 86.8 ± 15 9.8 ± 5
(2) VSF-1.0 59.5 ± 3 87.1 ± 9 90.0 ± 5 12.8 ± 3
(3) IL 43.3 ± 4 75.2 ± 18 79.1 ± 14 12.5 ± 4
(3) VSF-1.0 41.4 ± 3 75.6 ± 15 76.9 ± 15 15.0 ± 0

7.1 Physical Fabric Smoothing

Results in this section are from our prior work [29]. We evaluate the Imitation Learn-
ing and VSF-1.0 policies from Section 6.2. We do not test with the model-free DDPG
policy baseline, as it performed significantly worse than the other two methods. For
IL, this is the final model trained with 110,000 actions based on a corner-pulling
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Fig. 11: A qualitative comparison of physical da Vinci episodes with an Imitation
Learning policy (top row) and a VisuoSpatial Foresight policy (bottom row) from our
prior work [29] using VSF-1.0 settings. The rows show screen captures taken from the
third-person video view for recording episodes; these are not the input to VisuoSpatial
Foresight. To facilitate comparisons among IL and VSF-1.0, we manually make the
starting fabric state as similar as possible. Over the course of several actions, the IL
policy sometimes takes actions that are highly counter-productive, such as the 5th and
11th actions above. Both pick points are reasonably chosen, but the large deltas cause
the lower right fabric corner to get hidden. In contrast, VSF-1.0 takes shorter pulls
on average, with representative examples shown above for the 2nd and 5th actions.
At the end, the IL policy gets just 48.8% coverage (far below its usual performance),
whereas VSF-1.0 gets 75.8%. See Table 6 for more results.

demonstrator with access to state information. This uses slightly more than the 105,045
actions used for training VSF-1.0. To match the simulation setup, we limit each
episode to a maximum of 15 actions. For both methods, we initialize the fabric
in highly rumpled states which mirror those from the simulated tiers. We run ten
episodes per tier for IL and five episodes per tier for VSF-1.0, for 45 episodes in
all. Within each tier, we attempt to make starting fabric states reasonably comparable
among IL and VSF-1.0 episodes (see Figure 11). We present quantitative results in
Table 6 that suggest that VSF-1.0 gets final coverage results comparable to that of
IL, despite not being trained on any corner-pulling demonstration data. However, it
sometimes requires more actions to complete an episode and takes significantly more
time to plan an action (on the order of 20 more seconds per action), since the Cross
Entropy Method requires thousands of forward passes through a deep neural network
while IL requires only a single pass.

As an example, Figure 11 shows a time lapse of a subset of actions for one episode
from IL and VSF-1.0. Both begin with a fabric of roughly the same shape to facilitate
comparisons. On the fifth action, the IL policy has a pick point that is slightly north of
the ideal spot. The pull direction to the lower right fabric plane corner is reasonable,
but due to the pull length, combined with a slightly suboptimal pick point, the lower
right fabric corner gets covered. This makes it harder for a policy trained from a
corner-pulling demonstrator to get high coverage. In contrast, the VSF-1.0 policy
takes actions of shorter magnitudes and does not fall into this trap.
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Fig. 12: We evaluate the VSF-2.0 policy on a fabric folding task on the physical
surgical robotic system with Fabric-CornerBias, SV2P, CEM, and Pixel L2 cost. Each
of the three rows depicts top-down RGB images of one of the 9 out of 10 successful
2-step rollouts with a square piece of brown fabric.

7.2 Physical Fabric Folding

We next evaluate VisuoSpatial Foresight on a fabric folding task, starting from a
smooth state. In our prior work [29], we were unable to successfully perform folding
on the physical system with VSF-1.0. When comparing the real fabric with simulated
fabric, we found a gap between the physics of our simulator and that of the real
fabric, as fabric dynamics are notoriously difficult to model [54]. Unlike smoothing,
folding can require more nuanced actions such as reversing the surface normals of
the fabric. Since VSF-1.0 took 8.3 actions on average to fold the fabric in simulation,
in real episodes this dynamics gap compounded over time and was exacerbated by
the imprecision of cable-driven robots like the dVRK [65]. In this work, we find that
training visual dynamics on Fabric-CornerBias makes it possible for VisuoSpatial
Foresight to successfully fold fabric in simulation with just 2 actions in 19 out of the
20 successful trials (Row 17 in Table 5), which may be short enough to prevent the
dynamics gap from building to irrecoverable levels. We refer to this new set of VSF
parameters using Fabric-CornerBias, SV2P, CEM, and Pixel L2 as “VSF-2.0.”

To test this hypothesis, we perform a VSF-2.0 plan on the physical system in an
open-loop fashion. Such an approach is viable only if it is possible to register the
initial fabric state into simulation; in the fabric folding case, this is trivial, as the
fabric starts fully smooth. To correct for near misses, the system moves the pick point
to the nearest point on the fabric, which it computes by color masking the real RGB
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observations. In 9 of 10 trials, the robot successfully folds using two actions, with the
only failure case due to picking multiple layers of the fabric when intending to pick
the top layer. See Figure 12 for 3 of these trials and the project website for videos.

8 Conclusion and Future Work

Our prior work [29] presented VisuoSpatial Foresight, which leverages a combination
of RGB and depth information to learn goal conditioned fabric manipulation policies
for a variety of sequential tasks. In [29], we train a video prediction model on purely
random interaction data with fabric in simulation, and demonstrate that planning over
this model with MPC results in a policy that achieves 90% success rate for fabric
smoothing and folding tasks.

In this work, we investigate new alternatives to the four core aspects of Visu-
oSpatial Foresight: data generation, visuospatial dynamics model, cost function, and
optimization procedure. To improve data, we introduce Fabric-CornerBias as a new
dataset with longer action pull vector magnitudes and a bias towards picking at cor-
ners. We propose and test an action-conditioned version of SVG for modeling visu-
ospatial dynamics. To optimize the MPC objective during planning, we test Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES). Finally, we train a learned
cost function as an alternative to L2 pixel differences in images. Smoothing and fold-
ing results in simulation suggest that the new data, Fabric-CornerBias, is the most
promising route to improving results. Using this new data for VisuoSpatial Foresight
allows us to learn more accurate visual dynamics models because the dataset con-
tains actions that are more broadly relevant for fabric manipulation. These actions
are biased towards picking fabric corners and have magnitudes more reflective of the
actions required to do fabric manipulation tasks such as smoothing and folding. The
resulting improvement in efficiency led to successful fabric folding on the physical
robotic system in 9 out of 10 trials, while in our prior work [29] we were unable to
successfully fold fabric in physical trials.

In light of these results, future work will attempt to understand the effect of the
distribution and magnitude of the dataset used to train visual dynamics models on
VisuoSpatial Foresight. We plan to generate orders of magnitude more data, and will
benchmark performance as a function of data size and other properties. In addition,
we will test VisuoSpatial Foresight on different fabric shapes, and investigate ways
to incorporate bilateral manipulation or human-in-the-loop policies.
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We structure this Appendix as follows:

– Appendix 9 compares and contrasts various fabric simulators.
– Appendix 10 lists hyperparameters and provides details for training policies.
– Appendix 11 provides more details on the smoothing experiments.

9 Fabric Simulators

As in the prior paper [29], we use the fabric simulator originally developed in Seita
et al. [67]. This simulator possesses an ideal balance between ease of code implemen-
tation, speed, and accuracy, and was able to lead to reasonable smoothing policies in
prior work. We considered using simulators from ARCSim [54], MuJoCo [77], Py-
Bullet [11], Blender [10], or NVIDIA FLeX [44], but did not use them for several
reasons outlined below.

High-fidelity simulators, such as ARCSim, take too long to simulate to get suffi-
cient data for training visual dynamics models. Furthermore, it is difficult to simulate
rudimentary grasping behavior in ARCSim because it does not represent fabric as a
fixed grid of vertices, which means grasping cannot be simulated by pinning vertices.

Blender includes a new fabric simulator, with substantial improvements after
2017 for more realistic shearing and tensioning. These changes, however, are only
supported in Blender 2.8, not Blender 2.79, and we used 2.79 because Blender 2.8
does not allow background processes to run on headless servers, which prevented us
from running mass data collection. Additionally, Blender does not allow the dynamic
re-grasping of mesh vertices during simulation which makes long horizon cloth ma-
nipulation and data collection difficult.

MuJoCo is a widely utilized physics simulator for deep reinforcement learning
benchmarks [77]. The first MuJoCo version providing full support for fabric manip-
ulation was released in October 2018. Currently, the only work that integrates the
fabric simulator with simulated robot grasps is from Wu et al. [84], which was de-
veloped concurrently with the prior work [29]. Upon investigating the open-source
code, we found that MuJoCo’s fabric simulator did not handle fabric self-collisions
better than the simulator from [67], and hence did not pursue it further.

The PyBullet simulator code from Matas et al. [48] showed relatively successful
fabric simulation, but it was difficult for us to adapt the author’s code to the proposed
work, which made significant changes to the off-the-shelf PyBullet code. PyBullet’s
fabric simulator was upgraded and tested for more fabric-related tasks in Seita et al.
[68], but still suffers from self-collisions and fabric which tends to get crumpled.

In concurrent work, SoftGym [44] benchmarks deep reinforcement learning algo-
rithms on deformable object manipulation tasks, including those with fabrics. Soft-
Gym provides fabric simulation environments utilizing NVIDIA FLeX, which mod-
els deformable objects in a particle and position based dynamical system similar to
the mass-spring system used in the fabric simulator from [29, 67] and also incor-
porates self-collision handling. SoftGym is concurrent work, and future work will
investigate the feasibility of utilizing Flex. Additionally, we will compare the perfor-
mance of the model-based policies presented in this work to the model-free policies
evaluated in [44] on similar smoothing and folding tasks.
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Fig. 13: Average coverage over 50 simulated test-time episodes at checkpoints
(marked “X”) during the behavior cloning and DAgger phases. For each setting of
no action truncation and action truncation, we deploy a single DAgger policy de-
ployed on all tiers. Using dashed lines, we annotate the average starting coverage and
the corner pulling demonstrator’s average final coverage.

10 Details of Learning-Based Methods

We describe implementation and training details of the three learning-based methods
tested: imitation learning, model-free reinforcement learning, and model-based Visu-
oSpatial Foresight. The other baselines tested — random, highest point, and wrinkles
— are borrowed unmodified from prior open-source code [67].

10.1 Imitation Learning Baseline: DAgger

This section contains details and results from our prior work [29]. DAgger [61] is
implemented directly from the open source DAgger code in Seita et al. [67]. This
was originally based on the open-source OpenAI baselines [14] library for parallel
environment support to overcome the time bottleneck of fabric simulation.

We ran the corner pulling demonstrator for 2,000 trajectories, resulting in 6,697
image-action pairs (ot,a′t), where the notation a′t indicates the action is labeled and
comes from the demonstrator. Each trajectory was randomly drawn from one of
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the three tiers in the simulator with equal probability. We then perform a behavior
cloning [57] “pre-training” period for 200 epochs over this offline data, which does
not require environment interaction.

After behavior cloning, each DAgger iteration rolls out 20 parallel environments
for 10 steps each (hence, 200 total new samples) which are labeled by the corner
pulling policy, the same policy that created the offline data and uses underlying state
information. These are inserted into a replay buffer of image-action samples, where
all samples have actions labeled by the demonstrator. The replay buffer size is 50,000,
but the original demonstrator data of size 6,697 is never removed from it. After en-
vironment stepping, we draw 240 minibatches of size 128 each for training and use
Adam [34] for optimization. The process repeats with the agent rolling out its updated
policy. We run DAgger for 110,000 steps across all environments (hence, 5,500 steps
per parallel environment) to make the number of actions consumed to be roughly
the same as the number of actions used to train the video prediction model. This is
significantly more than the 50,000 DAgger training steps in prior work [67]. Table 7
contains additional hyperparameters.

The actor (i.e., policy) neural network for DAgger uses a design based on Seita
et al. [67] and Matas et al. [48]. The input to the policy are RGBD images of size
(56 × 56 × 4), where the four channels are formed from stacking an RGB and a
single-channel depth image. The policy processes the input through four convolu-
tional layers that have 32 filters with size 3 × 3, and then uses four fully connected
layers with 256 nodes each. The actor network has 0.8 million parameters.

The result from the actor policy is a 4D vector representing the action choice
at ∈ R4 at each time step t. The last layer is a hyperbolic tangent which makes each
of the four components of at within [−1, 1]. During action truncation, we further
limit the two components of at corresponding to the deltas into [−0.4, 0.4].

A set of graphs representing learning progress for DAgger is shown in Figure 13,
where for each marked snapshot, we roll it out in the environment for 50 episodes
and measure final coverage. Results suggest the single DAgger policy, when trained
with 110,000 total steps on RGBD images, performs well on all three tiers with per-
formance nearly matching the 95-96% coverage of the demonstrator.

We trained two variants of DAgger, one with and one without the action truncation
to [−0.4, 0.4] for the two deltas ∆x and ∆y. The model trained on truncated actions
outperforms the alternative setting, and it is also the setting used in VSF-1.0, hence
we use it for physical robot experiments. We choose the final snapshot as it has the
highest test-time performance, and we use it as the policy for simulated and real
benchmarks in the main part of the paper.

10.2 Model-Free Reinforcement Learning Baseline: DDPG

This section contains details and results from our prior work [29]. To provide a sec-
ond competitive baseline, we apply model-free reinforcement learning. Specifically,
we use a variant of Deep Deterministic Policy Gradients (DDPG) [43] with several
improvements as proposed in the research literature. Briefly, DDPG is a deep re-
inforcement learning algorithm which trains parameterized actor and critic models,
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Table 7: DAgger hyperparameters.

Hyperparameter Value
Parallel environments 20
Steps per env, between gradient updates 10
Gradient updates after parallel steps 240
Minibatch size 128
Discount factor γ 0.99
Demonstrator (offline) samples 6697
Policy learning rate 1e-4
Policy L2 regularization parameter 1e-5
Behavior Cloning epochs 200
DAgger steps after Behavior Cloning 110000

Table 8: DDPG hyperparameters.

Hyperparameter Value
Parallel environments 20
Steps per env, between gradient updates 10
Gradient updates after parallel steps 240
Minibatch size 128
Discount factor γ 0.99
Demonstrator (offline) samples 6697
Actor learning rate 1e-4
Actor L2 regularization parameter 1e-5
Critic learning rate 1e-3
Critic L2 regularization parameter 1e-5
Pre-training epochs 200
DDPG steps after pre-training 110000

each of which are normally neural networks. The actor is the policy, and the critic is
a value function.

First, as with DAgger, we use demonstrations [80] to improve the performance
of the learned policy. We use the same demonstrator data of 6,697 samples from
DAgger, except this time each sample is a tuple of (ot,a′t, rt,ot+1), including a scalar
reward rt (to be described) and a successor state ot+1. This data is added to the replay
buffer and never removed. We use a pre-training phase (of 200 epochs) to initialize
the actor and critic. We also apply L2 regularization for both the actor and critic
networks. In addition, we use the Q-filter from Nair et al. [51] which may help the
actor learn better actions than the demonstrator provides, perhaps for cases when
naive corner pulling might not be ideal. For a fairer comparison, the actor network
for DDPG uses the same architecture as the actor for DAgger. The critic has a similar
architecture as the actor, with the only change that the action input at is inserted and
concatenated with the features of the image ot after the four convolutional layers, and
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Fig. 14: Average coverage over 50 simulated test-time episodes at checkpoints
(marked “X”) during the pre-training DDPG phase, and the DDPG phase with agent
exploration. This is presented in a similar manner as in Figure 13 for DAgger. Results
suggest that DDPG has difficulty in training a policy that can achieve high coverage.

before the fully connected portion. As with the imitation learning baseline, the inputs
are RGBD images of size (56× 56× 4).

We design a dense reward to encourage the agent to achieve high coverage. At
each time, the agent gets reward based on:

– A small negative living reward of -0.05
– A small negative reward of -0.05 for failing to grasp any point on the fabric (i.e.,

a wasted grasp attempt).
– A delta in coverage based on the change in coverage from the current state and

the prior state.
– A +5 bonus for triggering 92% coverage.
– A -5 penalty for triggering an out-of-bounds condition, where the fabric signifi-

cantly exceeds the boundaries of the underlying fabric plane.

We designed the reward function by informal tuning and borrowing ideas from
the reward in OpenAI et al. [55], which used a delta in joint angles and a similar
bonus for moving a block towards a target, or a penalty for dropping it. Intuitively,
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Table 9: Visual MPC hyperparameters for CEM and CMA-ES. The notation (·)×H
indicates tiling the preceding array H = 5 times to fill the planning horizon.

Hyperparameter Value
Number of CEM iterations 10
CEM population size 2000
CEM α 0.1
CEM planning horizon 5
CEM initial mean µ (0, 0, 0, 0) ×H
CEM initial variance Σ (0.25, 0.25, 0.08, 0.08) ×H
Number of CMA-ES iterations 250
CMA-ES population size 12
CMA-ES initial mean µ (0, 0, 0, 0) ×H
CMA-ES initial variance Σ (0.25, 0.25, 0.25, 0.25) ×H

an agent may learn to take a slightly counter-productive action which would decrease
coverage (and thus the delta reward component is negative), but which may enable an
easier subsequent action to trigger a high bonus. This reward design is only suited for
smoothing. As with the imitation learning baseline, the model-free DDPG baseline is
not designed for non-smoothing tasks.

Figure 14 suggests that the pre-training phase, where the actor and critic are
trained on the demonstrator data, helps increase coverage. The DDPG portion of
training, however, results in performance collapse to achieving no net coverage. Upon
further inspection, this is because the actions collapsed to having no “deltas,” so the
robot reduces to picking up but then immediately releasing the fabric. Due to the
weak performance of DDPG, we do not benchmark the policy on the physical robot.

10.3 VisuoSpatial Foresight

The main technique considered in this paper and our prior work [29] is VisuoSpa-
tial Foresight (VSF), an extension of Visual Foresight [17]. It consists of a training
phase followed by a planning phase. An overview of VisuoSpatial Foresight is pro-
vided in Section 4, and practical implementation details are in Section 5. For the
planning phase described in Section 4.2, we tuned the hyperparameters in Table 9.
The CEM variance reported is the diagonal covariance used for folding and dou-
ble folding. We found that for smoothing, a lower CEM variance (0.25, 0.25, 0.04,
0.04) results in better performance, though it may encourage the policy towards tak-
ing shorter actions. For CMA-ES, we use the open source Python implementation
PyCMA (https://pypi.org/project/cma/), changing only the number of
iterations, initial mean, and initial variance from default parameters. CMA-ES and
CEM take a similar amount of computation time.

As described in Section 4.3, we evaluate with a Pixel L2 and learned Vertex L2
cost function. For the Pixel L2 cost function (Equation 3), we remove the 7 pixels
on each side of the image to get rid of the impact of the dark border, using only
the inner 42 × 42 region of the 56 × 56 image. For the Vertex L2 cost function, as

https://pypi.org/project/cma/
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described in Section 4.3.2, we generate a second dataset from the primary dataset
collected. Each of the 9,932 episodes in Fabric-CornerBias can contribute up to

(
10
2

)
image pairs to use in the second dataset, but we sample only 10 of these possible
pairs from each episode to keep the dataset size modest (and the same size as the
primary dataset). Specifically, we use the following 10 pairs, chosen for their variable
gaps in temporal distance: {(o1,o2), (o1,o3), (o1,o5), (o1,o9), (o6,o8), (o6,o10),
(o6,o7), (o3,o4), (o3,o7), (o3,o9)}. During training, we flip the order of half of the
data points to encourage the network to ignore the direction of time in its estimation
of mesh distance. As mentioned in Section 4.3.2, we annotate all data points with the
sum of the distances between corresponding points in the ground truth mesh states,
i.e.

625∑
i=0

||p(i)1 − p
(i)
2 ||22

where p(i)1 is the (x, y, z) coordinates of the i-th point of the mesh shown in the
first image and p(i)2 is the (x, y, z) coordinates of the i-th point of the mesh in the
second image. We divide all labels by the maximum value for more stable training.
Finally, for the network architecture, we use the same CNN as the actor in the DAgger
baseline as described in Section 10.1. However, to accommodate the second image
input, we pass both images through the same convolutional layers and concatenate
the outputs to a 5184-dimensional vector before applying the fully connected layers.
The resulting network has about 1.5 million parameters.

11 Supplementary Smoothing Results

11.1 Statistical Significance Tests

We run the Mann-Whitney U test [47] on the coverage and number of action results
reported in Table 3 for VSF-1.0 against all baselines other than Imitation Learning,
to which we wish to perform similarly. See Table 10 for computed p-values. We
conclude that we can confidently reject the null hypothesis that the values are drawn
from the same distribution for all metrics except Tier 2 coverage for Wrinkle and the
Tier 1 and Tier 3 number of actions for DDPG (p < 0.02). Note that Tier 3 results are
most informative, as it is the most difficult tier.

11.2 Domain Randomization Ablation

For Fabric-Random, we run 50 simulated smoothing episodes per tier with a pol-
icy trained without domain randomization and compare with the 200 episodes from
Table 3. In the episodes without domain randomization, we keep fabric color, cam-
era angle, background plane shading, and brightness constant at training and testing
time. In the episodes with domain randomization, we randomize these parameters
in the training data and test in the same setting as the experiments without domain
randomization, which can be interpreted as a random initialization of the domain
randomized parameters. In particular, we vary the following:
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Table 10: Mann-Whitney Test p-values for coverage and number of actions of VSF-
1.0 compared with Random, Highest, Wrinkle and DDPG baselines across all tiers
of difficulty for smoothing.

Tier Policy Coverage p-value Actions p-value
1 Random 0.0000 0.0000
1 Highest 0.0000 0.0002
1 Wrinkle 0.0040 0.0015
1 DDPG 0.0044 0.3670
2 Random 0.0000 0.0000
2 Highest 0.0000 0.0000
2 Wrinkle 0.2323 0.0091
2 DDPG 0.0000 0.0000
3 Random 0.0000 0.0000
3 Highest 0.0000 0.0000
3 Wrinkle 0.0030 0.0199
3 DDPG 0.0000 0.0674

– Fabric color RGB values uniformly between (0, 0, 128) and (115, 179, 255),
centered around blue.

– Background plane color RGB values uniformly between (102, 102, 102) and
(153, 153, 153).

– RGB gamma correction with gamma uniformly between 0.7 and 1.3.
– A fixed amount to subtract from the depth image between 40 and 50 to simulate

changing the height of the depth camera.
– Camera position (x, y, z) as (0.5+ δ1, 0.5+ δ2, 1.45+ δ3) meters, where each δi

is sampled from N (0, 0.04).
– Camera rotation with Euler angles sampled from N (0, 90

◦
).

– Random noise at each pixel uniformly between -15 and 15.

From the results in Table 11, we find that final coverage values are similar whether
or not we use domain randomization on training data, suggesting our domain random-
ization techniques do not have an adverse effect on performance in simulation.

To analyze robustness of the policy to variation in the randomized parameters, we
also evaluate the former two policies (trained with and without domain randomiza-
tion) with randomization in the test environment on Tier 3 starting states. Specifically,
we change the color of the fabric in fixed increments from its non-randomized setting
(RGB (25, 89, 217)) until performance starts to deteriorate. In Table 12, we observe
that the domain randomized policy maintains high coverage within the training range
(RGB (0, 0, 128) to (115, 179, 255)) while the policy without domain randomization
suffers as soon as the fabric color is slightly altered.
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Table 11: Coverage and number of actions for simulated smoothing episodes from
Fabric-Random, with and without domain randomization on training data, where the
domain randomized results are from Table 3.

Tier Domain Randomized? Coverage Actions
1 Yes 92.5 ± 2.5 8.3 ± 4.7
1 No 93.0 ± 3.0 6.9 ± 4.1
2 Yes 90.3 ± 3.8 12.1 ± 3.4
2 No 91.2 ± 9.2 8.7 ± 3.6
3 Yes 89.3 ± 5.9 13.1 ± 2.9
3 No 85.1 ± 12.8 9.9 ± 3.9

Table 12: Coverage and number of actions for Tier 3 simulated smoothing episodes
with and without domain randomization on Fabric-Random training data, where we
vary fabric color in fixed increments. (26, 89, 217) is the default blue color and (128,
191, 115) is slightly outside the domain randomization range. Values for the default
setting are repeated from Table 11 and all other data points are averaged over 20
episodes.

RGB Values DR? Coverage Actions
(26, 89, 217) Yes 89.3 ± 5.9 13.1 ± 2.9

(51, 115, 191) Yes 89.3 ± 10.3 11.7 ± 3.5
(77, 140, 166) Yes 91.4 ± 3.1 11.7 ± 3.1

(102, 165, 140) Yes 85.6 ± 10.1 13.2 ± 2.7
(128, 191, 115) Yes 54.7 ± 6.5 10.3 ± 4.0

(26, 89, 217) No 85.1 ± 12.8 9.9 ± 3.9
(51, 115, 191) No 60.7 ± 13.6 7.4 ± 2.4
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