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Abstract
We often specify tasks for a robot using temporal language that can include different levels of abstraction. For example,
the command “go to the kitchen before going to the second floor” contains spatial abstraction, given that “floor” consists
of individual rooms that can also be referred to in isolation (“kitchen”, for example). There is also a temporal ordering of
events, defined by the word “before”. Previous works have used syntactically co-safe Linear Temporal Logic (sc-LTL) to
interpret temporal language (such as “before”), and Abstract Markov Decision Processes (AMDPs) to interpret hierarchical
abstractions (such as “kitchen” and “second floor”), separately. To handle both types of commands at once, we introduce
the Abstract Product Markov Decision Process (AP-MDP), a novel approach capable of representing non-Markovian reward
functions at different levels of abstractions. The AP-MDP framework translates LTL into its corresponding automata, creates
a product Markov Decision Process (MDP) of the LTL specification and the environment MDP, and decomposes the problem
into subproblems to enable efficient planning with abstractions. AP-MDP performs faster than a non-hierarchical method of
solvingLTLproblems in over 95%of path planning tasks, and this number only increases as the size of the environment domain
increases. In a cleanup world domain, AP-MDP performs faster in over 98% of tasks. We also present a neural sequence-to-
sequence model trained to translate language commands into LTL expression, and a new corpus of non-Markovian language
commands spanning different levels of abstraction. We test our framework with the collected language commands on two
drones, demonstrating that our approach enables robots to efficiently solve temporal commands at different levels of abstraction
in both indoor and outdoor environments.
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1 Introduction

In an ideal human-robot interaction scenario, humans would
give robots tasks in the form of natural language utterances
and gestures. The variation in language used allows for spec-
ifying tasks at varying levels of spatial abstractions, while
specifying temporal constraints. Meaning can be conveyed
with language at different levels of spatial abstraction, in
terms of high-level goals (such as “fly to the end of the first
floor”), lower-level specifications (such as“fly east, go south,
go south and fly east again”), or mixed-level (such as “go to
the yellow room and the second floor”). Language can also
express explicit constraints on the path taken to reach the
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goal (for example, “fly to the red room first, without going
through the green room.”). The former category of com-
mands requires an agent to fluidlymovewithin an abstraction
hierarchy (that is, knowing that a floor is at a higher level
than individual rooms and directions), while the latter com-
mand restricts the space of possible paths that can be taken
and sometimes induces temporal constraints on the order in
which goals can be visited. It is crucial for robot systems
to portray an adequate understanding of such commands,
coupled with the ability to efficiently execute the underlying
task.

Given an environment, a goal condition and constraints,
robots can use planning to reach goal conditions while satis-
fying constraints. Existing approaches interpret language by
mapping to a reward function in a Markov Decision Pro-
cess (MDP) (MacGlashan et al., 2015b). However, these
models very quickly become intractable as the state space
of the world grows larger (Gopalan et al., 2017; Konidaris,
2016). Planning with abstractions in a hierarchical structure
(Gopalan et al., 2017;Konidaris, 2016;Konidaris et al., 2018;
Sutton et al., 1999), either by using anAbstractMarkovDeci-
sion Process (AMDP) (Gopalan et al., 2017) or with options
(Konidaris et al., 2018; Konidaris, 2016; Sutton et al., 1999)
can allow reduction of the state space. There has been previ-
ous work in interpreting natural language task specifications
at different levels of spatial abstraction and planning using
AMDPs (Arumugam et al., 2017). Separately, as shown in
Fig. 1, non-Markovian natural language commands can be
mapped to linear temporal logic (LTL) formulae (Boteanu
et al., 2016; Finucane et al., 2010; Kress-Gazit et al., 2008;
Lignos et al., 2015) to allow efficient planning with an MDP,
given the corresponding LTL task specifications (Ding et al.,
2011, 2014; Fu & Topcu, 2014; Gopalan et al., 2018; Kasen-
berg&Scheutz, 2017; Sadigh et al., 2014;Wolff et al., 2012).
Combining the interpretation of language using a hierarchical
structure and the mapping of commands to LTL expressions

Fig. 1 Our environment is a gridworldwith three floors, each consisting
of rooms that consist of grid cells. The white arrow shows an example
path the drone can take in the environment. We also include sample
natural language commands (and their LTL formulae) that the drone
successfully executed

is non-trivial, as the non-Markovian constraints might span
different levels of abstraction. Plans in a more abstract state
space could therefore lead to failure of constraints specified
in a less abstract space (that is, plans at a lower level in the
abstraction hierarchy).

In our previous work (Oh et al., 2019), we have introduced
the Abstract Product MDP (AP-MDP) framework to com-
bine the benefits of LTL and AMDP, thus enabling a robot
to interpret non-Markovian commands at different levels of
abstraction. There is a hierarchical approach in planning for
LTL tasks using options (Liu & Fu, 2018). However, the
AMDPapproach suits our task better, as its hierarchical struc-
ture closely resembles the hierarchies formed by humans
when planning to solve complex tasks that can be decom-
posed into subtasks (Gopalan et al., 2017). In our approach,
task specifications are first given as natural language utter-
ances that are then translated into LTL expressions by a
supervised neural sequence-to-sequence model. This LTL
expressionφ is converted into a finite state representation that
accepts infinite inputs, or a Büchi automaton (Büchi, 1990).
Since our planning problem considers only finite sequence of
actions, we limit the translated LTL to syntactically co-safe
LTL (sc-LTL). This representation allows us to decompose
the problem into sub-problems (organized around sub-parts
of the input LTL expression). Edges of the Büchi automa-
ton consist of atomic propositions in expression φ and a
sub-problem induces a state transition of the automaton. To
further deal with different levels of abstraction, if atomic
propositions in the same edge are from different levels, we
solve the sub-problemusing the lower levelAMDP.The robot
must then forgo the computational benefits of the AMDP to
guarantee that the policy satisfies all the constraints present
in the LTL expression. This entire pipeline (shown in Fig. 2)
thereforefluidly allows complex task specificationswith non-
Markovian constraints to be specified using natural language
and solved at different levels of the goal hierarchy.

In this paper, we provides in-depth evaluation of AP-MDP
by applying the method in several domains. We evaluate
our approach by reporting the performance of AP-MDP in

Fig. 2 Complete pipeline for the translation of a natural language
instruction to an LTL formula, then to a Büchi automaton, and to a
plan that gives us action sequences to correctly reach the goal location
specified by the task
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two simulation domains and on two drone platforms, one
indoor and one outdoor. We also present a new corpus of
non-Markovian natural language commands at different lev-
els of abstraction, a neural sequence-to-sequence model that
translates human-uttered natural language commands to their
corresponding LTL counterparts, and demonstrates the solv-
ing of complex natural language task specifications using
AP-MDP on two drones.

2 Related work

LTL has been used tomodel agent behavior in planning prob-
lemswith non-Markovian task specifications. Consider a task
that requires an agent to visit regions of interest in a specific
order (for example, “visit the red room first, then the blue
room, and the green room last”). These kinds of expressions
have intrinsic temporal information that must be taken into
account when determining the kind of path that has to be
taken to achieve the goal. LTL allows us to formally describe
these kinds of task specifications as logical functions, thus
allowing robots to then execute these behaviors.

When the goal for a task is defined as an LTL expression,
previous works have often formulated the problem as a prod-
uct of an MDP and an automaton of the LTL formula (Ding
et al., 2011, 2014; Fu & Topcu, 2014; Sadigh et al., 2014;
Wolff et al., 2012). Some previous works model dynamic
systems of agents as MDPs and developed methods to gen-
erate a control policy that satisfies LTL constraints (Ding et
al., 2014, 2011). The LTL formula is converted into a Deter-
ministic Rabin Automaton (DRA), and the dynamic system is
formulated as a product of a DRA andMDP. The goal is then
to search for a policy that satisfies the acceptance condition.
Along the same lines, Kasenberg and Scheutz (2017) show
that the reverse is also true, that is, the product of a DRA
and an MDP can be considered to infer an LTL specification
from demonstrations. However, this approach does not scale
well for large MDPs.

Decision making with an MDP often becomes intractable
as the size of the state space increases. In order to overcome
intractability, hierarchical frameworks (Gopalan et al., 2017;
Konidaris, 2016; Konidaris et al., 2018; Kulkarni et al., 2016)
are commonly used. The options framework (Konidaris,
2016; Konidaris et al., 2018), for example, models tempo-
rally abstract macro-actions as options that can be adopted
to build abstraction hierarchies. Similarly, AMDPs (Gopalan
et al., 2017) can be used for abstraction by decomposing tasks
into series of subtasks, thus allowing planning to take place
more efficiently. However, these methods do not address the
problem of solving LTL specifications with abstractions.

Hierarchical frameworks are powerful when an agent is
facedwith the task of planning a sequence of actions for com-
plex LTL tasks. Several works (Cho et al., 2017; Fainekos et

al., 2009; McMahon & Plaku, 2014; Oh et al., 2017) pro-
pose incorporating both the robot dynamics and the given
LTL constraints in a continuous space. A continuous state
space can be abstracted into a discrete state space and a con-
tinuous path is derived by sampling guided by the high-level
discrete plan (Cho et al., 2017;McMahon& Plaku, 2014; Oh
et al., 2017). Other works have focused on grounding natural
language to LTL expressions (Boteanu et al., 2016; Gopalan
et al., 2018; Lignos et al., 2015) to further allow a robot to
make use of these LTL specifications. Previous work in hier-
archical planning using options can accelerate planning for
LTL tasks (Liu & Fu, 2018). However, the AMDP frame-
work (Gopalan et al., 2017) is better suited for our task than
options, by virtue of encoding a goal hierarchy rather than
learning a policy over goals.

To the best of our knowledge, this work is the first to
propose a hierarchical framework for planning for LTL tasks
using the structure of anAMDP.AnAMDP provides abstract
states, actions, and transition dynamics in multiple layers
above a base-level MDP, thus decomposing problems into
subtasks with local rewards and local transition functions for
policy generation. Moreover, as shown in our robot demon-
strations, we start from human input given in the form of
speech that is then converted to text. This textual input of
the natural language command is translated to its LTL repre-
sentation, and atomic propositions are directly mapped into
propositions in each layer of a multi-level AMDP. We can
then plan at levels higher than the lowest level whenever pos-
sible, and find a policy in a more efficient way than previous
approaches.

3 Problem formulation

We consider a planning problem for a robot, when the task
that the robot is required to interpret and solve is given
through a natural language command. Our environment is
a 3D grid world consisting of three floors as shown in Fig. 1.
Eachfloor is composedof colored rooms, a room is composed
of a set of grid cells, a landmark (such as a charging station)
indicates a cell at position (x,y,z). Landmarks (or cells) are
therefore the lowest level of abstraction, rooms are abstract
expressions of landmarks, and floors are abstract expressions
of rooms and form the highest level of abstraction. A natu-
ral language command (such as “first go to the red room
through landmark 1 and then go to the blue room.”) is given
to the robot by virtue of observable visual elements in our
abstraction hierarchy (landmarks, rooms, and floors). This
natural language utterance is grounded to its LTL counter-
part (F (landmark_1 ∧ F (red_room ∧ F (blue_room))))
which forms the task specification. The agent is required to
accomplish the task by correctly finding a path to the correct
location and following the determined path by executing a
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sequence of actions from the action set (north, south, east,
west, up, down).

We formulate this problem as anMDP that aims to accom-
plish the task as few actions as possible. Crucially, we make
use of abstractions over the MDP state space for more effi-
cient planning in large environments, and for the robot to
efficiently find policies for commands at different levels of
abstraction. Consider the example task above of “first go to
the red room through landmark 1 and then go to the blue
room.” This is an expression that spans different levels in
the abstraction hierarchy (that is, rooms and landmarks) and
can be translated into its equivalent LTL formula φ over
atomic proposition sets AP L for each level L in the hier-
archy. For example, “landmark 1” occupies one grid cell in
the environment and corresponds to an atomic proposition
(denoted by α0

0) in AP0 and “red room” and “blue room”
correspond to atomic propositions (denoted by α1

0 and α1
1,

respectively) in AP1. The expression can be translated into
φ = F(α0

0 ∧ F(α1
0 ∧ Fα1

1)) using the LTL operator F or
“finally”, converted to a Büchi automaton (Büchi, 1990; Fin-
ucane et al., 2010), and then an AMDP (Gopalan et al., 2017)
to decompose the problem into a series of smaller, and hence
easier to solve, subproblems. Sect. 4 definesLTLand the vari-
ants of MDPs that our model relies on, while Sect. 5 goes
over how they are composed together to produce a more effi-
cient solution, while describing the end-to-end pipeline with
the natural language grounding components.

4 Preliminaries

This section defines the components used in our formulation
and how they are transformed into one another to form state
abstractions for complex, non-Markovian task specifications
utteredbyhumans throughnatural language.Webriefly intro-
duce LTL, syntactically co-safe LTL, and its syntax, explain
the transformation of an LTL expression to a Büchi automa-
ton and further to an MDP.

4.1 Linear temporal logic

Temporal logic was first introduced as a formalism for clar-
ifying issues of time and defining the semantics of temporal
expressions. LTL is a temporal logic whose syntax contains
path formulae — the logical expression describes a speci-
fication that can be validated over a trajectory of any robot
(discrete) system. LTL has the following grammatical syn-
tax: φ::=π | ¬φ | φ ∧ ϕ | φ ∨ ϕ | Gφ | Fφ | Xφ| φ Uϕ ,
where φ is the task specification or path formula, φ and ϕ

are both LTL formulae, π ∈ Π is an atomic proposition,
F denotes “finally”, G denotes “globally” or “always”, U
denotes “until”, and¬,∧,∨denote logical “negation”, “and”
and “or”.

4.2 Linear temporal logic to deterministic Büchi
automaton

An LTL formula intuitively expresses properties over trajec-
tories or traces (a sequence of sets of atomic propositions)
in the environment. This can be translated into an equiva-
lent nondeterministic Büchi automaton (NBA). By Manna
and Pnueli (1990), LTL formula can be classified according
to its properties into the classes Guarantee, Safety, Obliga-
tion, Persistence, or Recurrence. Among them, a formula
in Recurrence class can be translated into a deterministic
Büchi automaton (Duret-Lutz, 2022). All linear temporal
logic formulae generated by our language model belongs
to Recurrence class. For convenient computation the NBA
is constructed to a deterministic Büchi automaton (Bhatia et
al., 2010), where a deterministic automaton differs from the
general notion of automata in that it accepts infinite traces
represented by the input LTL formula (Büchi, 1990). This
handling of infinite traces is specifically necessary in cases
of complex non-Markovian task specifications that can map
to potentially unbounded action sequences.

Definition 1 (Deterministic Büchi automaton)Adeterminis-
tic Büchi automaton (DBA) is a tuple B = (Q,Σ, δ, q0,F)

where Q is a finite set of states, Σ is the input alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the
initial state, and F is the acceptance condition.

For theLTL formulaφ, the input alphabet of the automaton
B is Σ = 2AP . A word w over an alphabet can be any
infinite sequence of atomic propositions, and the run of the
automaton on w = a0a1 · · · , with ai ∈ Σ is a sequence of
states ρ = q0q1 · · · , for qi ∈ Q, where q0 is an initial state
and qi+1 = δ(qi , ai ). A word is accepted by the automaton if
and only if its run ρ satisfies the relationship inf(ρ)∩F �= ∅,
where inf(ρ) is the set of states that occur infinitely often
in r .

While DBA consumes an infinite sequence, the planning
problem considers a finite sequence. So we assume that our
language commands are limited to syntactically co-safe LTL
formula (sc-LTL). Any infinite sequence satisfying an sc-
LTL formula has a finite prefix which satisfies the sc-LTL
formula. It contains onlyX ,F ,U temporal operators in pos-
itive normal form (i.e. ¬ only appears in front of atomic
propositions) (Kloetzer & Mahulea, 2016). After this, LTL
indicates sc-LTL.

4.3 LabeledMarkov decision processes

In order to combine anMDPwith theLTL formula tomake an
expandedMDP, we need to annotate each state with proposi-
tions so that we can evaluate the LTL expression. A labeled
MDP (Fu & Topcu, 2014) is essentially an MDP where tran-
sitions are annotated with labels. These labels are provided
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by a labeling function that maps states to valid propositions
for each state.

Definition 2 (Labeled MDP)A labeledMDP is a tupleM =
(S, A, T , s0, AP, L, R), where S and A are finite state and
action sets, T : S × A× S → [0, 1] is a transition probability
function, s0 ∈ S is the initial state, AP is a set of atomic
propositions, L : S → 2AP is a labeling function which
maps a state s ∈ S into a set of atomic propositions valid at
state s, and R : S → R is a reward function.

4.4 Product Markov decision processes

We now need to combine the labeled MDPM with the LTL
expression in order to make an expanded MDP which keeps
track of the relevant parts of the LTL state. A product automa-
ton is one that derives from the product of the finite transition
system of M and the automaton B that represents the LTL
specification. Labeled MDPs have previously been used for
planning over an MDP to satisfy an LTL formula (Sadigh
et al., 2014; Wolff et al., 2012), where the states of M and
B encode the desired LTL specification. We can therefore
design a state based reward function that relies on accep-
tance conditions of B.
Definition 3 (Product MDP) Given a deterministic Büchi
automaton B = (Q,Σ, δ, q0,F) and a labeled finite MDP
M = (S, A, T , s0, AP, L, R) , with s ∈ S and q ∈ Q,
the product MDP (P-MDP) for the state (s, q) is given by
Mp = (Sp, A, Tp, s0p, Q, L p) where:

(a) Sp = S × Q is a product state,

(b) Tp((s, q), a, (s′, q ′)) =
{

T (s, a, s′), if q ′ = δ(q, L(s′))
0, otherwise,

(c) s0p = (s0, q) such that q =δ(q0, L(s0)),
(d) L p((s, q)) = q,

4.5 Abstract Markov decision processes

AnAbstract Markov Decision Process (Gopalan et al., 2017)
(AMDP) hierarchy decomposes large planning problems into
a series of subproblemswith local reward and transition func-
tions using state and action abstraction.

Definition 4 (Abstract MDP) An AMDP is a 6-tuple M̃ =
(S̃, Ã, T̃ , R̃, Ẽ, F). These are the usual MDP components,
with the addition of F : S → S̃, a state projection function
to map states from the original environment MDP into the
AMDP abstract state space S̃. Actions in the action set Ã of
the AMDP are either primitive actions, or are associated with
subgoals to solve in the environment MDP. The transition
function T̃ captures the dynamics of the effects of changes
in the AMDP state space once subgoals are completed. R̃ is
the reward function. Ẽ ⊂ S̃ is the set of terminal states.

AMDP guarantees the recursive optimality at each level of
abstraction. If the local reward and transition functions are
correct, the whole policy is recursively optimal by the defini-
tion in Dietterich (2000). Though the local reward and value
functions are not accurate, the error in its value and Q-value
can be bounded as proved in Gopalan et al. (2017).

5 Technical approach

At a high level, we use a neural sequence-to-sequence model
to convert an English command to the corresponding LTL
expression, which is then translated to a Büchi automaton
and then levels of the component AMDP to enable the robot
to infer a policy based on the expression.We run a simulation
that shows the produced action sequence, executable by a
drone in a 3D environment.

5.1 Abstract labeledMarkov decision processes

WeproposeAbstract Labeled MDPs (AL-MDPs) that decom-
poses anMDPM intomultiple abstract labeledMDPswhich
are based on abstract states, actions, and transitions in mul-
tiple layers. The labeled MDPs in the lowest level, the i th
level, and the highest level are denoted by M̂0, M̂i , and
M̂L , respectively. The abstract labeled MDP M̂i is defined
below:

Definition 5 (Abstract Labeled MDP): M̂i = (Ŝi , Âi , T̂ i ,

ŝi
0, AP,Li , Ri ), where Ŝi , Âi , T̂ i and Ri are a set of states,
a set of actions, a transition function, and a reward function,
respectively. States in M̂i correspond to a combination of
atomic propositions in AP by the labeling functions Li :
Ŝi → 2AP . The set of atomic propositions AP is a union of
L disjoint sets APi s, where APi = {αi

0, · · · , αi
n} (that is,

AP = ∪L
i=1APi ). The proposition α ∈ AP belongs to APi ,

where i is the largest value which satisfies that there exists a
state s ∈ Ŝi which can determine the truth value of α.

The abstract states, actions, atomic propositions are man-
ually designed considering the problemdomain. For example
in a drone domain (Fig. 1), we have defined abstract states
and actions as described in Sect. 3. Atomic propositions and
labeling functions at each level are defined so that they cor-
respond to an abstract state at the level where they exist. We
define APs at the lowest level like RobotAt(Landmark),
because the unit of the lowest-level states is a grid. APs at
the second level are RobotIn(Room), where Room can
be replaced with Yellow_Room, Red_Room, and so on,
since the abstract states are represented by rooms at the sec-
ond level. Similarly, at the highest level, APs at the highest
level are RobotOn(Floor). A labeling function corre-
sponding to an AP will check if APs are true based on the
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physical information of landmarks, rooms and, floors, where
the robot exists.

5.2 Abstract product Markov decision processes

WeproposeAbstract Product MDPs (AP-MDPs)which com-
bine AL-MDPs and DBAs to solve ordinary product MDPs
efficiently. We furthermore show how our approach handles
a combination of atomic propositions in multiple levels. For
example, if some of the atomic propositions are defined at
level 0, we cannot guarantee that a plan derived at level 1
or level 2 will satisfy level 0 constraints. This would require
working at the lowest level of atomic propositions, thus losing
the computational benefit of abstraction and a reduced state
space. In all previous hierarchical approaches in this area,
when atomic propositions of different levels exist together,
the product MDP must be solved at the lowest level (level
0 in this case) to guarantee the satisfaction of the transi-
tion constraint that directly affects it. This therefore does not
afford the computational benefit of planning at higher levels
using AL-MDPs. Our approach, however, employs different
depths of AL-MDPs by decomposing the product MDP into
subproblems to benefit from the hierarchical structure when
the LTL task includes atomic propositions at the lowest level.

AP-MDPs combine the automaton B of the LTL task
specification with AL-MDPs. This involves taking an LTL
formula in the formof an automaton, converting it to a labeled
MDP and decomposing this MDP into several subproblems,
each of which are individually solved at the required level of
abstraction. We use a running example, as shown in Sect. 5.3
to highlight the process of how decomposed subproblems are
solved for the task specification in question. Sect. 5.4 then
explains how any problem can be decomposed into compo-
nent subproblems and Sect. 5.5 presents the pseudocode for
the algorithm for this process. The language grounding com-
ponent of the system is discussed in Sect. 5.6.

5.3 Example problem

Consider the example in Fig. 3. This figure shows the DBA
for the LTL task specification φ = F(α0

0 ∧ Fα1
0) and

we can see that the atomic proposition α0
0 is in level 0 of

the abstraction hierarchy, while α1
0 is in level 1. To deal

with these different levels in the abstraction hierarchy, we
decompose the entire problem into different subproblems.
The first subproblem M̂0 is defined by a tuple M̂0 =
(Ŝ0, Â0, T̂ 0, ŝ00 , AP,L0, R0) and here the agent wants to go
to q1 while not visiting other states in the DBA. The con-
dition to reach the desired state, f (q0, q1, s, s′) = true is
its goal condition and the condition to stay in the current
state, f (q0, q0, s, s′) = true is its stay condition, where s
and s′ are the current state and the next state, respectively.
The function f returns true or f alse depending on whether

Fig. 3 Deterministic Büchi automaton. The transitions of the automa-
ton refer to constraints over the propositions that are satisfied on taking
that path. Red symbols and blue symbols represent atomic propositions
in level 0 and in level 1, respectively

the logical expression on the edge is satisfied by the state.
The reward function ensures that the agent gets a large posi-
tive reward if the goal condition is satisfied and gets a large
negative reward if the stay condition is violated and the goal
condition is not satisfied. In all other cases, it gets a small
negative reward as the time taken increases. Since this sub-
problem contains atomic propositions at level 0, we can solve
it at level 0, that is, the lowest level of atomic propositions.

We now consider the latter part of the decomposition,
that is, the second subproblem M̂1 from q1 to q2. This has
atomic propositions related to level 1, therefore M̂1 can
be formulated at a higher level of abstraction (i.e. M̂1 =
(Ŝ1, Â1, T̂ 1, ŝ10 , AP, L1, R1)), allowing for more effi-
cient planning over a smaller state space. In this way, all
subproblems M̂i can be solved at the desired level to allow
for full use of the benefits of abstraction where possible.

5.4 Subproblem decomposition

In this section, we describe how to decompose the Büchi
automaton and construct AL-MDPs corresponding to sub-
problems. Let a run from the initial state q0 to the accepting
state qa be ρ = qn0

0 qn1
1 · · · qa , where qni

i means that the state
qi is repeatedly visited ni times. Since the automation does
not reflect the physical configurations of environments, we
extract subgoals from the automaton, construct subproblems
to reach a subgoal in the form of AL-MDPs, and search for
the plan by solving them. We call the sequence of subgoals a
path ζ and a set of possible paths is a finite subset of accepted
runs.

We generate paths based on the following criteria: (a) the
path has a finite length, (b) the final state of the path should
be an accepting state, and (c) the path does not visit the
same state more than once. Since the robot stops as soon
as it reaches the accepting state, the length of the success-
ful plan is finite and the length of its corresponding run is
finite, too. So the criteria (a) and (b) are valid. We add one
more condition (c) to improve the efficiency of the plan. In
these conditions, we can find a finite number of paths used to
construct the subproblem. We assume that there are nζ paths
and the i th path is denoted by ζi = q0q1 · · · qni , where qni is
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the accepting state. AP-MDPs decompose the problem into
nζ subproblems each denoted by Pζi , which accomplish the
LTL task while following the path ζi .

Each problem Pζi can be decomposed into ni subprob-
lems, each formulated by an AL-MDP. Each subproblem
P j

ζi
aims to change the DBA state of the agent from q j

to q j+1. Its goal condition and stay condition of P j
ζi

are
f (q j , q j+1, s, s′) = true and f (q j , q j , s, s′) = true,
respectively. The reward function for the AL-MDP is defined
by:

R j =
⎧⎨
⎩

γgoal , if f (q j , q j+1, s, s′) = true,
γstay, else if f (q j , q j , s, s′) = true,
γ, otherwise,

(1)

where γgoal � 1, γstay is a small negative value, and γ 
 0.
The large positive reward γgoal drives the agent to reach the
goal. The small negative reward γstay reduces the number of
steps to reach the goal.

In this way, AP-MDPs can consist of (
∑nζ

i=1 ni ) AL-
MDPs. Let’s denote the plan for Pζi as (sseq , aseq)ζi , where
sseq is the state sequence and aseq the is action sequence. The
plan for the LTL task is the shortest sequence (sseq , aseq)∗
among all (sseq , aseq)ζi s. For example, in Fig. 3, there are
two paths, ζ1 = q0q2 and ζ2 = q0q1q2 reaching the accept-
ing state q2. Let’s assume that the solution of the subproblem
Pζ1 corresponds to the run qn0

0 q2, where the robot stays q0
for n0 time steps. Solving a subproblem Pζ can be thought
of as choosing the optimal one among an infinite number of
runs considering physical environments.

5.5 Algorithm

The entire algorithm is presented as pseudocode in Algo-
rithm 1. The input task is specified as an LTL expression
composed of atomic propositions in the environment and
the logical operators defined previously. We translate the
LTL formula into a DBA using an existing package called
Spot2 (line 4) (Duret-Lutz et al., 2016). Note that the DBA
may contain infeasible edges because the translator does not
consider the real environment (for example, if the red_room
does not exist on the first_floor in a particular gridworld,
red_room∧floor_1 cannot be true). We handle this by
eliminating edges which have contradictions consisting of
a logical incompatibility between two or more propositions
(line 5), based on specifications of the environment in ques-
tion. We check the contradiction by looking at the truth table
of the formula. Eliminating unrealizable edges improves the
efficiency of the algorithm, because we do not have to solve
AL-MDPs for which there is obviously no solution. We then
find all possible paths from the initial state to the accepting
state in line 6. The AL-MDPs goal and stay conditions are
defined through lines 11 to 14, andwe then obtain the optimal

Algorithm 1 Solve AP-MDPs
1: LTL task φ and s0 are given
2: Initialize the optimal plan, (sseq , aseq )∗.
3: Initialize the length of the optimal plan, l∗.
4: A ← LT L2DB A(φ)

5: A.RemoveContradiction()

6: Paths = A.Find Paths()
7: for ζi ∈ Paths do
8: Initialize s0
9: Initialize the plan (sseq , aseq )ζi

10: for j in {0, · · · , ni − 1} do
11: goal condition ← f (q j , q j+1, s, s′) = true
12: stay condition← f (q j , q j , s, s′) = true
13: � j ← the lowest level of atomic propositions in goal and stay

conditions.
14: M̂ j ← (Ŝ� j , Â� j , T̂ � j , ŝ

� j
0 , AP, L� j , R� j ).

15: ss, aa ← Solve(M̂ j )

16: (sseq , aseq )ζi ← (sseq , aseq )ζi ∪ (ss, aa)

17: s0 ← sseq (end)

18: end for
19: if length(sseq ) < l∗ then
20: (sseq , aseq )∗ ← (sseq , aseq )ζi

21: end if
22: end for

Algorithm 2 Solve(M, aseq , sseq)

1: Input: M, aseq , sseq
2: Output: sseq , aseq ,
3: l ← the level of M
4: if M is in the lowest level then
5: ss, aa ← Plan(M)

6: sseq ← [sseq , ss[1 : end]]
7: aseq ← [aseq , aa[0 : end]]
8: else
9: ss, aa ← Plan(M)

10: s ← sseq [0]
11: for a in aa do
12: M′ ← Build Lower M D P(s, a, l − 1)
13: sseq , aseq ← Solve(M′, sseq , aseq )

14: s ← sseq [end]
15: end for
16: end if

policy and plan of AL-MDPs with a variation of the solver
of the AMDP (line 15). We then select the best plan which
has the minimum number of actions (lines 19-21).

The algorithm Solve is described in Algorithm 2. If the
inputMDPM is defined in the lowest level, we can solve the
problemusing the standardMDP solver (line 5). In this paper,
we choose value iteration. Then the function returns the
sequence of primitive actions and states. If the inputMDPM
is not defined in the lowest level, Plan(M) returns sequences
of non-primitive actions and states (line 9). In order to exe-
cute action a in the resulted action sequence aa, we need
to define M ′ corresponding to the action a (line 12). Then
we call Solve() recursively, until it returns the lowest level of
actions and states (line 13). The function Build Lower M D P
grounds the action a with the level l into the lower level of
MDPwith the initial state s in the lowest level (Algorithm 3).
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Algorithm 3 Build Lower M D P(a, s, l)
1: Input: s, a, l
2: Output: MDP M
3: S ← the state space at the level l
4: s0 ← mapping_state(s)
5: A ← de f ine_action_set(s, a)

6: R ← de f ine_reward_ f unction(s, a)

R =
⎧⎨
⎩

γgoal , if fgoal(s) = true,
γstay, else if fstay(s) = true,
γ, otherwise,

(2)

7: M ← (S, A, T , s0, AP, L, R)

The mapping_state function projects s to s0, the state at the
level l−1 (line 4).WhileAMDP (Gopalan et al., 2017) shares
the same action space with all MDPs in the same level, we
can dynamically choose the action space depending on the
current action and state (line 5). Similarly, the reward func-
tion also dynamically defineddepending on the current action
and state (line 6). For example, let’s ground the action ‘Go to
the first floor’, when a robot is in the second floor. The goal
condition fgoal : S �→ {true, f alse} becomes true, when
a robot is in the first floor. Additionally, we define the stay
condition fstay , which becomes true only if the robot is in
the current floor (e.g. second floor). Then we can reduce the
state space, because we can explore only first and the sec-
ond floors. We will show the example of choosing the action
space depending on the given action and state, in the Sect. 6.

If we have correct local reward and transition functions,
we can guarantee the recursive optimality of the whole prob-
lem, though the solver only goes from a high-level to a lower
level. We have decomposed AP-MDP into n p subproblems,
Pζi s. Each problem Pζi is decomposed into ni subproblems,
formulated by AL-MDP in Algorithm 1. Since the strategy
to solve AP-MDP is basically same as the abstract MDP,
the optimality properties described in Sect. 4.5 hold for each
subproblem. Then we search for the policy exhaustively with
respect to all paths in Büchi automaton and choose the policy
which takes theminimumnumber of actions. So the recursive
optimality holds, if each AP-MDP satisfies the condition, the
local reward and transition functions are correct.

5.6 Grounding language to LTL formulae

We train a neural sequence-to-sequence model to translate
natural language commands to LTL expressions. We discuss
our language corpus and the model architecture below.

5.6.1 Corpus

We use Amazon Mechanical Turk (AMT) to collect non-
Markovian natural language commands that also refer to
elements in the environment at different levels of abstrac-

tion.1 AMTworkerswere shown images representing correct
and incorrect ways for the robot to complete a task, and asked
to give commands that accurately capture the robot’s correct
behavior. 810 natural language commands were collected
from 120 AMT workers for 27 LTL formulae. We augment
these 810 commands to obtain 6185 commands for 343 LTL
expressions. Augmentation is done by mapping one train-
ing sample (for example, “go to the red room” accompanied
by F(red_room)) to similar commands and corresponding
LTL expressions for every other possible goal locations. We
held aside 20% of the data as the test set to evaluate model
performance and trained on all remaining data and perform
5 fold cross-validation in this manner.

5.6.2 Sequence-to-sequence model

As in Gopalan et al. (2018), we use a neural sequence-to-
sequence model composed of a recurrent neural network
(RNN) encoder and decoder to translate each natural lan-
guage instruction to an LTL formula. It is implemented in
PyTorch (Paszke et al., 2017) and trained for 10 epochs over
our corpus, with a learning rate of 0.001 using the Adam
optimizer (Kingma & Ba, 2014). We used a dropout of 0.8
as a regularizer (Srivastava et al., 2014).

6 Abstract Product MDP in CleanupWorld

This section describesAP-MDP for a larger domain, Cleanup
World (MacGlashan et al., 2015a), shown in Fig. 7a. In
Cleanup World, a robot can pick and place objects, move
objects to specific rooms, and move to a room or an object’s
location. The state space and action space grows combinato-
rially with the number of objects and rooms. We increase the
planning efficiency by dynamically defining the action space
depending on the goal.

6.1 Problem formulation

We consider an nx × ny grid world consisting of rooms
with RoomID and objects with ObjectID. RoomID and
ObjectID have the form R#number and O#number ,
respectively (e.g., R0 represents the 0th room and O0 rep-
resents the 0th object). In the level 0, a robot’s state is
defined as [xr , yr ,ObjectID/NONE], where [xr , yr ] is the
robot’s location in the grid world and ObjectID/NONE
denotes the object the robot is carrying. An i th object’s
state is defined as its location [xi , yi ]. The environment state
for level 0 is defined as X = [xr , yr ,ObjectID/NONE,

x1, y1, · · · , xn, yn], where n is the number of objects in
the grid world. The robot’s action set includes {north,

1 The corpus can be found at https://github.com/h2r/ltl-amdp
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east, west, south, pickup, place}.
Each action north/east/west/southmoves the robot
one grid in the corresponding direction. The robot can
pickup an object, if it is at the object’s location. It can
place the carrying object, if it not at the object’s location
and it does not break connectivity of adjacent rooms. For the
level 1, the robot’s state is defined as [RobotLocation,
ObjectID/NONE], where RobotLocation is
[ObjectID/NONE, RoomID/NONE]. For example, if a
robot is at the same location as object Oi in room R j and
is not carrying Oi , RobotLocation = [Oi,R j]. The i th
object’s state is oi = RoomID, the room it is currently in,
which is updated regardless of whether the object is being
carried by the robot. The environment state for level 1 is
Y = [RobotLocation,ObjectID/NONE, o1, · · · , on].
Actions for level 1 include Nav(RoomID),
Nav(ObjectID), PICKUP(Oi), and PLACE. A robot can
move to a room with RoomID through Nav(RoomID),
while avoiding objects. It can also move to the the location
of an object with ObjectID through Nav(ObjectID),
if the robot is currently in the room with that object. It can
execute PICKUP(Oi), if the robot is at object Oi’s loca-
tion. When the robot executes PLACE, it places the object
it is carrying in the room it is currently in. For level 2,
we do not consider the robot’s location. The environment
state for level 2 is Z = [ObjectID/NONE, o1, · · · , on],
where the first term represents the object being carried by the
robot. The robot actions for level 2 are Moveto(RoomID),
Activate(ObjectID), and Deactivate. The action
Activate(ObjectID) makes the robot move to the
object ObjectID and pick it up. The action Deactivate
makes the robot unload the object. The action Moveto
(RoomID) makes the activated object to the adjacent room
with RoomID.

The atomic proposition for LTL specifications at level 2
is IN(ObjectID,RoomID), which means that an object
with ObjectID is in a room with RoomID, and the
object is not on the robot. Atomic propositions for level
1 are ON(ObjectID) – which is true, if the object with
ObjectID is on (being carried by) the robot, RobotIn
(RoomID) – which is true, if a robot is in a room with
RoomID, and RobotAt(ObjectID) – which is true, if a
robot is at the location of an object with ObjectID.

The language command “Move the red object to the red
room and then move the blue object to the blue room”
can be translated to F(IN(O0,R0) ∧ FIN(O1,R1)), where
O0 and O1 are red and blue objects, and R0 and R1 are
red and blue rooms, respectively. The command “Pick
the red object up, go to the red room, and then place
it” can be translated into F(ON(O0) ∧ F(RobotIn(R0)
∧ ON(NONE)). The atomic propositions do not directly cor-
respond to the level 0 goals.

6.2 AP-MDP in CleanupWorld

Though we employ the hierarchical structure for plan-
ning, MDP problem in each level is still too complex
because of the large action space and state space. The
function de f ine_action_set(s, a) and de f ine_reward_
f unction(s, a) in Algorithm 3 reduce the size of the
action space and the state space. The function, de f ine
_action_set(s, a), will define the action space for
Activate(O1) as a set of Nav(RoomID) with all
RoomID, Nav(O1) and PICKUP(O1). The action Nav
(O1) is grounded into the lowest level of MDP with the
action space {north, east, west, south}, because
we do not need pickup and place for navigation. The
state space is limited to the room in which the is currently
located by defining

fstay(s) =
{

T rue, if s is in the current room,
False, otherwise.

The command Nav(O1) can be executed, only if the robot
is in the room, in which object O1 exists. Then we can pre-
vent the action space and the state space from growing up
exponentially, as the number of objects and rooms increases.

7 Simulations

In this section, we show that our method efficiently generates
plans for complex LTL tasks. We successfully applied the
proposedmethod on a drone, aswell as amuch larger cleanup
domain. We evaluate efficiency with the number of backups
and the computation time over 100 tasks for each domain.

7.1 Drone domain

7.1.1 Environment setup

For simulations, we consider two 3D grid worlds (E1 and E2)
of size 6× 4× 3 and 30× 20× 6, respectively. The smaller
world E1 has three floors, each comprised of six rooms, each
the size of 2×2 grid cells. The larger world E2 has six floors,
each comprised of six rooms of size 10 × 10. The visually
observable elements (grid cells, rooms and floors) form the
atomic propositions of the LTL task specifications. Impor-
tantly, these elements span different levels of abstraction:
landmarks (grid cells) are at level 0, rooms are at level 1,
and floors are at level 2. While our simulation environments
consist of at least three floors, our robot demonstration is per-
formed in a gridworld with only two floors for compatibility
with the maximum height our PiDrone can reach.

123



676 Autonomous Robots (2022) 46:667–683

7.1.2 Examples in simulation

We consider the tasks below to demonstrate example sim-
ulations of our proposed method. We show the language
command with the corresponding LTL task specification,
the automaton of the LTL expression, and the path found
by our proposed approach for each example. This highlights
how our method solves a given task while satisfying the con-
straints of the task. The tasks in question exhibit the complex
constraints with non-Markovian nature and varying levels of
abstraction as outlined above. They contain propositions at
different levels in the abstraction hierarchy, and contain tem-
poral order constraints by specifying certain subtasks that
should be performed before others. The two tasks are:

1. φ1=F ((floor_2 ∨ red_room) ∧ F(floor_1))

(“First either go to the second floor or the red room, and
then go to the first floor”)

2. φ2 = F(floor_2 ∧ F(green_room))

(“Go to the green room after entering the second floor”)

The execution of both tasks is shown in Fig. 4. The pro-
cess to solve task φ1 for the given LTL task specification is
outlined in the left side of the figure. Upon decomposing this
task specification as in our proposed method, there are two
paths of automaton states. Consider the path ζ0 = q0q2 cor-
responding to the AL-MDP M̂0. This has a goal condition of
((red_room ∧ floor_1) ∨ (floor_2 ∧ floor_1))

and a stay condition of (¬floor_2 ∧ ¬red_room). For
the path ζ1 = q0q1q2, there are two AL-MDPs M̂0 and
M̂1, where M̂0 has a goal condition of ((red_room ∧ ¬
floor_1) ∨ (floor_2 ∧ ¬floor_1)) and a stay con-
dition of (¬floor_2 ∧ ¬red_room), and M̂1 has
a goal condition of (floor_1) and a stay condition of

(¬floor_1). Since we can satisfy φ1 with only two actions
with ζ0, the final solution is a plan for ζ0.

For task φ2, there exists an infeasible path among paths
in the automaton. The first AL-MDP in ζ0 = q0q2 has
goal and stay conditions of (floor_2 ∧ green_room)

and (¬floor_2), respectively. This problem does not
have a solution because the green room is on the sec-
ond floor, and thus our algorithm does not return a plan.
There is, however, a solution for the path ζ1 = q0q1q2.
The first AL-MDP has a goal condition of (floor_2 ∧
¬green_room) and a stay condition of (¬floor_2). The
second AL-MDP has a goal condition of (green_room)

with a stay condition of (¬green_room). The planned path
is shown in Fig. 4.

7.1.3 Efficiency

In this section, we evaluate the efficiency of the proposed
algorithm by measuring the computing time and the num-
ber of backups of the algorithm. The measured computing
time includes pre-processing time like translating the LTL
expression to a DBA and searching for a path in the DBA,
along with the final planning time. The hierarchical structure
allows for more efficient planning when unnecessary backup
across multiple levels of the hierarchy is limited. We also
evaluate the ability of different models to plan without this
unnecessary computation. For each problem, the number of
backups depends on the number and size of subproblems.

Since planning for an LTL task can be formulated as
the product of an automaton B and MDP M as described
in Sect. 4.4, our baseline algorithm (called P-MDP) is
one that solves the product MDP at level 0 using value
iteration. We ran 100 random tasks in the aforemen-
tioned environments (E1 and E2). The example tasks here
are LTL specifications randomly sampled from the set

Fig. 4 Examples, left and right, tested in simulation. In each example, a natural language instruction is converted to an LTL expression, then to a
corresponding AP-MDP to find a policy. An agent then executes the policy in the specified environment to reach the correct goal state through the
desired path
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{Fa, F(a ∧ Fb), F(a ∧ F(b ∧ Fc)), Fa ∧ Fb, ¬a U b} ,
where a, b, and c are atomic propositions that can be visu-
ally observed in our environment (such as landmark_1,
green_room, first_floor). We ensure that atomic
propositions are sampled fromall possible landmarks, rooms,
and floors to get a full variety of commands, and ensure that
environment constraints are satisfied. For example, if level 1
is sampled, we sample the index of rooms among all possi-
ble rooms in that level. The lowest level of sampled atomic
propositions is denoted by 0.

We display the results as histograms plotted in Figs. 5
and 6. In Fig. 5, the y-axis denotes the cumulative number
of cases evaluated, while the x-axis denotes the computing
time and the number of backups. We plot results for both
environments E1 (on the left) and E2 (on the right). The red
line shows computing time taken, while the blue line shows
the number of backups, and the dotted line refers to the P-
MDP (our baseline) while the bold line refers to theAP-MDP
(our proposedmodel). For the corresponding number of cases
on the y-axis, we can see the time taken or the number of
backups, as plotted by the four lines. In both environments E1
andE2, theAP-MDPfinds solutionswith a shorter computing
timeanda smaller number of backups in themajority of cases.
The size of environment E2 is much larger than E1, and it
therefore takes longer computing time and more backups. It
should be noted that AP-MDP perform significantly better

Fig. 5 Cumulative histograms of computing time and the number of
backups of AP-MDP and P-MDP in the environment a E1 and b E2.
We execute AP-MDP and P-MDP with 100 random LTL tasks in two
environments, E1 and E2. The y-axis shows the cumulative number of
cases evaluated

Fig. 6 Cumulative histograms of a computing time ratio (lower is bet-
ter) and b the number of backups ratio (lower is better) of AP-MDP to
P-MDP

than P-MDP given the benefits of abstraction in large states
spaces.

In Fig. 6, to compare the efficiency of the two algorithms
we plot the ratio (that is, AP-MDP to P-MDP) for the same
metrics. For both computing time and number of backups, a
ratio less than 1.0 indicates that AP-MDP is more efficient
than P-MDP. The y-axis shows the cumulative number of
cases, while the x-axis shows the ratio of the computing time
taken. For a corresponding ratio on the x-axis (r = 0.2, for
example) we can see the number of cases that had a ratio
< r ). Therefore, a line that solves a larger number of cases
(out of 100) at a smaller ratio is a better solution. The four
lines refer to different environments when solved at different
levels. For example, (E1, l = 1) refers to the smaller envi-
ronment at level 1. In E1, AP-MDP is better in 72 among
the 100 cases with respect to the computing time and for 71
cases with respect to the number of backups. In E2, AP-MDP
is better in 86 among 100 cases with respect to the com-
puting time and for 89 cases with respect to the number of
backups. The AP-MDP decomposes the problem and there-
fore has to solve more MDPs than the P-MDP. This means
that in certain cases, especially in the smaller environment
where abstraction is unnecessary, this approach is not faster.
However, in the larger environment, employing abstraction
increases the efficiency by reducing the size of each problem.
To clearly show the effect of abstraction, we run simulations
with atomic propositions in higher levels (AP1 and AP2), to
assess how much abstraction helps when dealing with high-
level commands. In E1, the computing time ratio is less than
1.0 in 95 cases and the number of backups ratio is less than
1.0 in 99 cases. In the larger environment E2, the computing
time ratio and the number of backups ratio are less than 1.0
in all cases.

7.1.4 Language grounding results

We observe that while the model achieves 92.2% accuracy
on a test set of commands that it saw during training, its
accuracy drops to 68.3% on the held-out LTL commands.
We observe that the accuracy of the model drops on the
held-out LTL commands. This problem of zero-shot gen-
eralization (specifically, the ability to generalize to samples
unseen during training) has been widely studied (Gopalan
et al., 2018; Koehn & Knowles, 2017; Lake & Baroni,
2017) for neural sequence-to-sequence models that can-
not handle compositionality and the ability of models to
learn meaning representations for given natural language
sentences (Dasgupta et al., 2018). We also observe cases
where changes in word order affect the translated LTL
output of the model. Consider the command “avoid the
blue room until you go to landmark 1”, (¬blue_room U
landmark_1) for example. Variations in our collected data
include sentences like “until you go to landmark 1, always
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avoid the blue room” that change the ordering of referent
words (blue_room and landmark_1) which are occasion-
ally confused, and mapped to incorrect expressions such as
(¬landmark_1U blue_room). However, in the drone demon-
strations, the sequence-to-sequencemodel correctly translate
the given language commands (converted from speech) into
LTL task specifications that are then solved using our pro-
posed method.

7.2 Cleanup world domain

In this section, we successfully applied AP-MDP planning
to more complex cleanup tasks.

7.2.1 Environment setup

We consider a 2D gird world of size 8× 11 with five colored
rooms as shown in 7. There are no colored objects and black
walls. A robot avoids an object unless it picks it up while
navigating the environment. The robot can place the object

unless the object does not cut the connectivity of adjacent
rooms. The robot can bring only one object at once.

7.2.2 Examples in simulation

Fig. 7 shows example scenarios for various tasks. A robot
moves along the line. The color of the line is same as the
color of the object which a robot is carrying. If the robot
does not bring any object, the line is black. For Fig. 7(a)-
7(e), the lowest level of atomic propositions is one. We plan
in the level 1 first, and then plan in the level 0, for these
tasks. In Fig.7(a), the plan at the level 1 ofFRobotAt(O0)
is Nav(R1), Nav(R0), Nav(O0). AP-MDP can handle
various tasks like FRobotIn(R2), FRobotIn(R0) ∧
FRobotIn(R2), F(ON(O0) ∧ FRobotIn(R2)), and
¬RobotIn(R1)UIN(O0,R4) in Fig. 7(b)-7(e).

The lowest level of atomic propositions of Fig. 7(f)-7(h).
The plan at level 2 for FIN(O1,R0) ∧ FIN(O0,R3) is
Activate(O1), Moveto(R0), Deactivate,
Activate(O0),Moveto(R2),Deactivate (Fig. 7(f)).
Activate(O1) corresponds to Nav(R4), Nav(R1),

Fig. 7 Example scenarios in a Cleanup World. A robot starts at I, follows the black line, and stops at F. A colored line represents the trajectory of
the object with that color (Color figure online)
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Nav(O1), PICKUP(O1) at level 1. Moveto(R0) cor-
responds to Nav(R0) and Deactivate corresponds to
PLACE. The plan at level 2 for FIN(O1,R2) is Activate
(O1), Moveto(R0), Moveto (R2), Deactivate
(Fig. 7(g)). Similarly, the plan at level 2 for FIN(O0,R4) is
Activate(O0), Moveto(R1), Moveto(R4),
Deactivate (Fig. 7(h)).

7.2.3 Efficiency

The efficiency of AP-MDP is evaluated by measuring
the computing time and the number of backups com-
pared with the baseline algorithm as describing in a drone
domain. We ran 100 random tasks in the environment.
The LTL specifications are randomly sampled from the
set {Fa, F(a ∧ Fb), Fa ∧ Fb, ¬aUb}, where a and
b are atomic propositions randomly sampled from possi-
ble atomic propositions (e.g.RobotIn(R3),In(O0,R4),
RobotAt(O3), On(O0)).

The results are shown as histograms plotted in Figs. 8
and 9. In Figs. 8, we plot the ratio, AP-MDP to P-MDP for
the computing time and the number of backups. The num-
ber of objects is fixed to 2. AP-MDP is more efficient than
P-MDP, if the ratio less than 1.0. The y-axis shows the cumu-
lative number of cases, and the x-axis shows the ratio of the
computing time taken and the number of backups. We com-
pare performance for LTL tasks of which highest level of
atomic propositions is 1 (a blue line) and 2 (an orange line).
Though AP-MDP is better in most cases for both cases, the
efficiency dramatically increases, if the LTL specification
contains atomic propositions at the level 2. P-MDP takes
much more time to solve the task with higher abstraction.

In Figs. 9, we show the number of backups and time with
respect to one to four objects. Atomic propositions are sam-
pled at the level 1 (i.e. we do not consider In), because the
computing time of P-MDP is much slower with respect to
AP-MDP as Figs. 8 shows. The x-axis denotes the comput-
ing time and the number of backups, and the y-axis denotes
the cumulative number of cases evaluated. The red line and
the blue line show computing time and the number of back-

Fig. 8 Cumulative histograms of a computing time ratio (lower is bet-
ter) and b the number of backups ratio (lower is better) of AP-MDP to
P-MDP

Fig. 9 Cumulative histograms of computing time and the number of
backups of AP-MDP and P-MDP with a one object, b two objects, c
three objects, and d four objects. The y-axis indicates the cumulative
number of cases evaluated.We execute two algorithmswith 100 random
LTL tasks consisting of atomic propositions at the level 1

ups, respectively. Results ofAP-MDP is indicated by the bold
line and results of P-MDP (baseline) is indicated by the dot-
ted line. In all settings, AP-MDP takes a shorter computing
time and a smaller number of backups in most cases. The
computing time of AP-MDP is shorter in 99, 99, 99, and 98
cases and the number of backup is smaller in 95, 89, 92, and
91 cases.

8 Robot experiments

In addition to the simulations described above, we also test
our proposed method on two drones, one indoor and one
outdoor. Video recordings of both experiments can be found
at https://youtu.be/vwH2TQ2HEN8.

8.1 Indoor experiments withmixed reality

We use PiDrone (Brand et al., 2018) for our indoor experi-
ments. The PiDrone is a quadcopter drone that is equipped
with one downward-facing infrared sensor with a maximum
range of 60cm to measure the drone’s altitude, and one
downward-facing camera for localization over a textured sur-
face. The drone’s flight space is a 3m×3m surface.We divide
the space into a grid-based environment, as shown in Fig. 10,
consisting of 2 floors, each with 9 rooms, and each room is
a square made up of 4 cells (each cell is 50cm × 50cm).
The action space for the drone in the grid-based environment
is (north, south, east, west, up, down), where each action
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Fig. 10 Figures of the two-floor environment for our drone demonstra-
tions as viewed through the HoloLens, taken from our video

Fig. 11 Figures of the outdoor environment for our drone demonstra-
tion on Brown University’s campus

changes the drone’s location by 1 cell. We visualize the envi-
ronment through mixed reality using a Microsoft HoloLens
(Chen et al., 2015). Colored rooms and landmarks (boxes
each with the size of 1 cell) to aid path planning and specify
goal positions were set up in a Unity3D virtual environment
running on the HoloLens.

In our experiments, the drone is given a natural language
instruction through speech. This is converted using Google’s
speech-to-text, and then translated by our trained sequence-
to-sequence model into an LTL formula to be solved by the
AP-MDP framework in real time. The action sequence out-
put by AP-MDP for the LTL expression is then used for the
drone’s navigation. The natural language commands were:
“Navigate to the red room”, “Avoid landmark two until you
have been to the blue room”, “Move to the orange room then
the purple room”, “Go to landmark three then go to the yel-
low room.” Video recordings of the indoor experiments can
be found at https://youtu.be/zjtMEGUmkd8.

8.2 Experiments in an outdoor environment

Motivated by the increased planning efficiency of AP-
MDPs, we test our framework in an outdoor environment.
We use Skydio R1 2 for our outdoor experiment. The

2 Skydio R1: https://robots.ieee.org/robots/skydior1/

drone is equipped with a forward-facing color camera and
6 stereo camera pairs providing an omnidirectional view of
the environment. We chose Skydio R1 for its robust obstacle
avoidance capabilities and support for navigation in global
coordinates. The drone’s environment, as shown in Fig. 11,
is composed of 447 nodes and 17 rooms, where each room
is either a continuous region or line of nodes. Landmarks
are defined as rooms, which are the higher level of abstrac-
tion. Under the Albers projection (Snyder, 1987), the area
of the convex hull enclosing the environment is 6593.25
meters2. The drone can move to adjacent nodes spaced 5
meters or less apart. At the lowest level, the action space
is defined as {GotoNode1,...,GotoNodeK}, where
K is the number of adjacencies for the most-connected
node in the graph. At the room level, the action space is
{GotoRoom1,...,GotoRoomN}, where N is the num-
ber of rooms in the environment.

In this experiment, language commands are given to
a laptop with 4 processor cores and 8GB of RAM. The
sequence-to-sequence model and AP-MDP framework are
run onboard the laptop. Unlike the indoor experiment,
AP-MDP outputs a sequence of global coordinates. These
coordinates are wirelessly uploaded to Skydio R1 via HTTP.
Due to safety purposes, challenges with speech-to-text in the
outdoor environment, and to conserve the drone’s battery life,
the AP-MDP-planned coordinate sequence is cached before
flight. To keep landmarks in the drone’s field of view, the
altitude is manually set for each path. Flying at lower alti-
tudes introduces additional complex obstacles, such as trees,
that are handled by Skydio R1’s on-board motion planning.
In effect, the AP-MDP-planned trajectory provides a higher-
level plan that satisfies LTL constraints, while the drone’s
lower-level motion planner resolves local obstacles in the
outdoor environment. The drone successfully followed plans
for two commands: “avoid landmark one until you have
been to the second landmark” and “go to landmark three.”
Visualizations of the drone’s path are shown in Figs. 12 and
13, and planning results are shown in Table 1. These results
demonstrate that the AP-MDP framework can resolve LTL
specifications in the larger environment. A video recording
of the outdoor experiment can be found at https://youtu.be/
LhtQ7SiVcI8.

Additionally, we verified that avoid-class constraints can
induce a modified path by testing the LTL constraints
F(landmark_2) and ¬landmark_4 U landmark_2.
In this experiment, input is an LTL formula and output is
the AP-MDP-planned coordinate sequence. We performed
these tests after the original outdoor experiment. Due to the
COVID-19 pandemic, we did not test these trajectories on
the drone. Visualizations of the drone’s path are shown in
Fig. 14 and planning results are shown in Table 1.
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Fig. 12 Planned path for the command: “avoid landmark one until you
have been to the second landmark.” Circled points (left) correspond to
drone-perspective images (right) in the outdoor environment

Fig. 13 Planned path for the command: “go to landmark three.” Cir-
cled points (left) correspond to drone-perspective images (right) in the
outdoor environment. The orange line denotes Landmark 3 (Room 6)

Fig. 14 Simulated drone trajectories for F(landmark_2) (left) and
¬landmark_4 U landmark_2 (right), where the avoid predicate
induces a modified path (right)

Table 1 Planning results for outdoor experiments

LTL Planning Time (s) Actions Backups

¬landmark_1
U
landmark_2

164.90 ± 5.09 13 66080

F(landmark_3) 230.14 ± 33.44 17 66048

F(landmark_2) 158.6 ± 0.19 13 66080

¬landmark_4
U
landmark_2

158.07 ± 1.06 13 66080

9 Conclusion

This paper introduces a novel approach to combine the han-
dling of non-Markovian task specifications in large environ-
ments by grounding complex language to LTL expressions
and then decomposing tasks within an abstraction hierarchy

to plan efficiently at higher levels where possible. We show
that planning with abstractions allows the robot to correctly
reach the goal location more efficiently, in terms of com-
puting time and backups required, in over 95% of tasks in
a small planning problem and over 99% of tasks in a larger
planning problem. In a cleanup world, AP-MDP is more effi-
cient in over 91 of tasks. We also show that this method of
abstraction can handle LTL task specifications. Moreover,
we present the largest existing dataset of natural language
commands mapped to LTL expressions at different levels
of abstraction. We demonstrate our approach in both indoor
and outdoor environments with two drones that navigate to
the goal location along a correct path when given a human-
uttered command.

While the language grounding model works fairly well to
translate language to LTL formulae, it cannot fully handle
expressions unseen during training and cannot always deal
with simple changes in word-ordering and variations in the
language. Future work in this direction can explore composi-
tional models that can handle a wide range of expressions by
learning to compose subparts together and then execute the
required actions. Future work in the hierarchical setup can
explore models that go beyond fixed hierarchies and state
abstractions. If the hierarchies can be learned with model-
learning methods on the fly, this will enable generalization
to unseen environments and other domains.
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