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Abstract
Remote manipulation plays a key role for applications in hazardous conditions, yet designing a robust controller enabling
safe interaction with unknown environment and under the influence of disturbances is a challenge. In this study, we propose
effective control and optimization methods for mobile robotic manipulator systems that can increase effort transmission to
a task in desired directions. The vehicle position is optimized by utilizing constrained particle swarm optimization where
the objective is to enhance directional manipulability of the robotic arm within the system. A forward dynamic controller is
implemented to eliminate undesired excessive motions near singular joint configurations. A reset control algorithm along with
an admittance type controller are developed for stable interaction with an unknown object under environmental disturbances.
The experimentally validated results show that the proposed method phase out undesired position disturbances and increase
the directional manipulability for the required task enabling augmented effort transmission for the task execution.

Keywords Directional manipulability · Forward dynamic control · Particle swarm optimization · Mobile robots

1 Introduction

Autonomous vehicles (AVs), that are capable of carrying
task without supervision or teleoperation, and remotely oper-
ated vehicles (ROVs) are mainly used in applications where
human access would imply high risk of danger or there exists
limited access. They are mainly used for remote inspection
and monitoring, with suitable electro–mechanical structures
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for remote repair,maintenance ormaterial handling (Lozano-
Perez, 2012). Interest in autonomous manipulation is con-
stantly increasing, as performing manned tasks in unsafe
conditions is not only dangerous, but also costly, as profes-
sional experts with extensive training are needed to perform
such operations (see, e.g., Ruggiero, Lippiello, & Ollero,
2018).

Designing a safe and robust robotic vehicle manipu-
lator system (VMS) that can accomplish manipulation in
unknown conditions, however, is a challenging task from
control point of view as the overall system has highly
coupled non-linear dynamics along with the parametric
uncertainties. Navigation within unstructured environment is
difficult (Lozano-Perez, 2012). Further, grasping and manip-
ulation of an object contains its own challenges since the
system can be imposed to unstable dynamics (Colgate &
Hogan, 1988). In addition, these robots, particularly for
underwater and aerial applications, need to manipulate the
environment without a stationary base. Motion controller for
such systems requires the capability of simultaneously stable
localization, trajectory tracking, and stable physical interac-
tion with the environment (Andaluz et al., 2012).

To overcome these challenges, some studies consider a
single kinematic/dynamic model for the overall system such
that the robotic armmounted on a mobile platform is defined
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and controlled as a coupled system, resulting in a com-
plex overall model, but enhancing the redundancy at the
task space (see, e.g., De Luca et al., 2006; Lippiello &
Ruggiero, 2012). Similar to this approach, the overall move-
ment of mobile manipulators can be planned to carry out
sub-tasks such as singularity avoidance, maximization of
applicable force in desired directions, and manipulability
enhancement. Manipulability is defined as the measure of
a robotic system’s ability to adjust its end-effector’s posi-
tion/orientation, (see Yoshikawa, 1985). In Yamamoto and
Yun (1994), for instance, dynamic-coupling is presented such
that mobile vehicle localizes itself to enhance manipulabil-
ity of the robotic arm mounted on it; (see Yamamoto & Yun,
1996) for its extension encapsulating dynamic interaction
between the vehicle and manipulator. A robust adaptive con-
troller was proposed in Andaluz et al. (2012) based on a
combined system dynamics for the mobile manipulators to
tackle the point stabilization and trajectory tracking problems
while increasing the manipulability of the robotic arm.

To reduce modelling and control complexities one can
alternatively design independent controllers for each robotic
system, the vehicle and the manipulator, and define differ-
ent control objectives for each sub-system. In this approach
any vehicle motion is considered to cause a perturbation in
the task space and needs to be attenuated by the manipula-
tor (see, e.g., Barbalata, Dunnigan, & Petillot, 2018; Ram,
Pathak, & Junco, 2019). In Rigotti-Thompson et al. (2020),
for a skid-steer mobile manipulator, the end-effector motion
is decoupled from the base motion to compensate disturbed
motions on uneven terrains via implementing an H∞ con-
troller with/without feed-forward control actions.

The position of the vehicle relative to the task, on the other
hand, determines the effectiveness of the robotic arm during
the task execution. Energy efficiency, singularity avoidance,
and dexterity have been used as the main criteria desired
to be improved. Due to the non-availability of the objec-
tive function’s gradient, it is a common approach to use
metaheuristic algorithms for the base position optimization
such as swarm intelligence and genetic algorithm (Dang &
Nguyen, 2016; Mitsi et al., 2008; Ren et al., 2017). In Car-
riker et al. (1991), motion planning of a mobile manipulator
is considered as an optimization problem where the vehi-
cle position and manipulator joint angles were considered
separately and optimum points, based on the end-effector
position and force/torque, were estimated via simulated
annealing. A decoupled approach has been established for
base position optimization in Yu et al. (2018) where an inter-
nal penalty function and generalized Lagrange multiplier
methods were utilized for obtaining near-optimal positions
while nominating thepositioning, orientation, and singularity
avoidance as the constraints. Sparse uniform grid decompo-
sition and sequential quadratic programming methods were
implemented for base position optimization in Fan et al.

(2021) while considering joint range, joint speed, singularity
avoidance and collision avoidance as search constraints. Prior
studies on optimum positioning, however, have not demon-
strated stable physical interaction with unknown objects
under external disturbances. In our paper,we realize optimum
positioning for maximum force transmission for physical
interaction with environment.

The effect of the manipulator’s motion on the vehicle is
negligible in the ground based vehicles as the base is sta-
tionary. In the underwater and aerial applications, when the
manipulator has relatively small mass with respect to the
vehicle, the effects of themanipulator motion on base vehicle
positioning are not significant and there fore a decoupled con-
trol approach can be adapted for a less complex and effective
control (Barbalata et al., 2018). Decoupled control approach
has also the advantage of easily accommodating different
control cycle rates for the base vehicle and the robot arm
manipulator. Thus, in this study, we adapt the decoupling
approach and define different tasks for the vehicle and the
robotic armmounted on it; the vehicle moves to the optimum
position to provide maximum manoeuvrability, (avoiding
joint singularity and enhancing effort transmission from the
joints to a task space) to the robot arm and the arm carries out
the manipulation while attenuating any disturbances at the
task space. We apply particle swarm optimization (PSO) to
find an optimum vehicle position such that the force/torque
transmission and velocity control capacities of the robotic
arm are increased in pre-defined task directions, see Fig. 1.

In this paper, the primary aim is to enhance the force
transmission of a manipulator at task space via optimal base
localization while maintaining velocity control for task exe-
cution. For our method, we inspire from the observation that
humans adopt their body posture and positionwhile perform-
ing a force interaction task in order to apply effective force
with their arms. Imitating this behaviour, the strength capabil-
ities of amobile robotic armcould be increased to accomplish

Fig. 1 The vehicle can be relocated at optimum position based on the
manipulation direction such that effort transmission and fine velocity
control properties of the robotic arm is enhanced for a given task
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manipulations that require excessive effort, such as for the
initial drive to turn a valve. While doing this, task space
position-force control and joint singularity problems should
also be addressed for a stable manipulation under environ-
mental disturbances. The presented control and optimization
methods that we used in our overall system are as follows:

– Reset controller for attenuating any vehicle motion at the
task space; i.e., contact point stabilization,

– Admittance controller for establishing a safe interaction
with the environment,

– Forward dynamic controller for eliminating any exces-
sive joint motions while the robotic arm is close to the
singular joint configurations,

– PSO for optimum localization of the vehicle to enhance
the force transmission andfine velocity control properties
of the mobile robotic arm.

To the best of our knowledge, this is the first research
attempt to implement directional manipulability along with
a metaheuristic optimization algorithm to extend interac-
tion capabilities of a mobile manipulator. Valve turning,
similar to a wheel rotation, in underwater environmental
conditions is considered as a case study for the experi-
mental evaluation (see, e.g., Di Lillo et al., 2020; Korpela,
Orsag, & Oh, 2014). The contributions of this paper can be
summarised as

– Metaheuristic optimisation method is combined with
control architectures tomaintain optimal vehicle position
while interacting with unknown objects under environ-
mental disturbances.

– Maximum force transmission is achieved by adopting
directional manipulability with the optimisation algo-
rithm, where the algorithm finds the robot configuration
that will provide maximum force in selected task space
directions.

– The optimisation and control frameworks are demon-
strated to transmitmaximum forcewith a physical system
that can emulate any (land, underwater, or aerial) VMS,
under environmental disturbances.

1.1 Notation

Bold lower-case letters, x, represent the column vectors, non-
bold upper case-letters, X , denote matrices, non-bold lower
case-letters, x , represent single variables, and � denotes
the transpose. The transformation from a vector to a skew-
symmetric matrix is denoted by []× operator. The identify
matrix is denoted as I.

2 Methods

2.1 Reference frames and transformations

When combining different sensors and motion frames, it
is required to utilize a single frame of reference for each
controlledmotion. The force/torque sensor, for instance, pro-
vides measurements in sensor frame (s) which differs from
the end-effector frame (e) and more importantly needs to be
transferred to the contact/task space (t) as that is the main
concern during an interaction, see Fig. 2 for the frame of
references in this study.

The force/torque sensor measures the force applied by the

environment on the end-effector ( f s =
[
f xs f ys f zs τ x

s τ
y
s τ z

s

]�
);

thus, the force applied by themanipulator on the environment
f e is obtained by taking the negative of the refined (elimi-
nating sensor bias and gravity component due to the sensor’s
own and tool masses) sensor reading (Jamisola et al., 2005).
Generally, due to the displacement (dt ) between the contact
point (t) and the sensor point (s) the torque reading is the
sum of the contact torque and moment of the force around
the origin of the force sensor frame. Thus, the sensor frame
force/torques measurements need be transformed to the task
frame as

f m =
[ tRe 0[

pts
]
×

tRe
tRe

]
f e,

where pts ∈ R
3 is the position vector of the origin of point s

with respect to the coordinate frameof t and tRe is the rotation
matrix between the end-effector frame and the contact point
reference frame.

Based on the forward kinematics of the manipulator,
which returns end-effector’s position pbe ∈ R

3 and rotation
matrix eRb ∈ R

3×3, the position of the contact point with
respect to the base is obtained as

pbt = pbe + eR�
b pet ,

Fig. 2 Motion’s and sensors’ frames of references
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where pet denotes the position of the contact point t rela-
tive to the end-effector. Here, the orientation of the contact
point coincidences with the end-effector’s; thus, tRb = eRb.
Hereupon, the rotation matrix of the manipulator (eRb) is to
be used for the transformations from the base to the contact
frames.

Once the desired task space velocities are obtained, the
robot’s Jacobian matrix can be utilized to transform the
desired task space velocities, ẋr , into the desired joint space
velocities, q̇r = [

q̇1, . . . , q̇n
]�

as

q̇r = J †(q)ẋr , (1)

where J † ∈ R
n×6 is the pseudo inverse of the manipulator

Jacobian matrix.
The position of the contact point ( pgt ) in the earth-fixed

frame (global), on the other hand, based on the vehicle’s
position and orientation along the manipulator’s joint con-
figurations is given as

pgt = pgv + gRv(rv
b + vRb pbt ),

where pgt is the position of the vehicle with respect to the
global frame, vRg is the rotation matrix between the body-
fixed vehicle frame and the earth fixed global frame, the
manipulator’s base positionwith respect to the vehicle’s body
fixed frame is denoted with the position vector rv

b, and the
matrix vRb is the rotation matrix between the manipulator-
base frame and the body-fixed vehicle frame.

2.2 Position-force controllers

The robotic manipulator is required to perform two tasks
simultaneously; position control for objectmanipulationwith
position disturbance attenuation and force control for estab-
lishing a safe and steady contact with the object. The former
can be accomplishedwith a predetermined trajectory, pr , and
a controller minimizing the perturbations at the end-effector
introduced by the vehicle’s motion. This controller needs to
have fast position tracking performance without excessive
overshoots and steady state errors via using noisy sensor
measurements that might contain time delays due to the dis-
crepancy between the control andmeasurement cycles. Thus,
we applied a reset controller method with a variable reset
band which can be described in the state-space form as

R :

⎧
⎪⎨

⎪⎩

ẋ(t) = Ar x(t) + Br er (t), if (er (t), ėr (t)) /∈ Bh

x(t+) = Apx(t), if (er (t), ėr (t)) ∈ Bh

u(t) = Cr x(t) + Dr er (t),

,

(2)
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Fig. 3 Reset action can reduce the overshot without introducing addi-
tional control efforts on the system

where er , x, and u are error, state, and output vectors,
respectively (Villaverde et al., 2011). The middle equation
represents the reset action applied when the error crosses
a threshold, generally zero value. The diagonal matrix Ap

performs reset algorithm on the desired states as Ap =
diag

(
1 − dr , . . . , 1 − dr , 0, . . . , 0

)
with a reset ratio dr

which is a constant value with values dr ∈ [0, 1] and allow-
ing us to apply a partial reset (dr �= 1) strategy. The variable
reset band can be defined as

Bh =
{
(e(t), ė(t)) ∈ R

2 | |h ė(t) + e(t)| ≤ γ
}

, (3)

where h and γ are positive constants and associated with the
system’s time delay and band range, respectively (Banos &
Barreiro, 2012).

The advantages of the reset control over a linear com-
pensator can be illustrated with a system consisting of pure
integrator and time delay. A numerical example is adapted
fromDavó et al. (2018), such that a transfer function, P(s) =
e−0.15s

s , is considered to be in a feedback loop with a base
compensator given by 1.4s+0.3

s plus a reset band. The step
response of the closed loop systemwith (dr = 0.8) and with-
out (dr = 0) reset actions while h = 0.15 and γ = 0.001
are illustrated in Fig. 3 where the overshoot is eliminated
with the reset action. We refer the reader to Banos and Bar-
reiro (2012), Zhao et al. (2019) for more detailed information
about how the reset control overcomes limitations of the lin-
ear controllers.

The objective of force tracking, on the other hand, requires
a force/torque sensor near the contact point, i.e., the end-
effector of the robot, so that the interaction force can be
measured to generate the desired velocities via an admit-
tance type control algorithm whose motion dynamics in the
task space are

f r − f m = Ma v̇ f + Dav f + Ka(− po), (4)

where f r , f m , and v f ∈ R
6 denote the reference, mea-

sured force/torque, the desired end effector velocity vectors,
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Fig. 4 Block diagram representation of the implemented position-force
control algorithm for the manipulator interacting with the environment

respectively. The object’s position with respect to the end-

effector is denoted by po = [
pxo pyo pzo 0 0 0

]�
. The diag-

onal matrices, Ma , Da , and Ka ∈ R
6×6 are the admittance

controller’s virtualmass (mi ), damping (di ), and stiffness (ki )
parameters for position (i = p) and orientation (i = o). At
the contact point,wewant the end effector to beperpendicular
to the inspected surface at task space. Thereby, the refer-

ence force/torque can be denoted as f r = [
0 0 f zr 0 0 0

]�
,

which implies that the force controller makes an effort to
apply constant force, f zr , in z direction and zero torque
in x and y directions to prevent misalignment at the tool
frame. To eliminate force components affecting in other
directions, calculated v f will bemultipliedwith a taskmatrix
� = diag

(
0, 0, 1, 1, 1, 0

)
before using in the manipula-

tor control algorithm as in Moura et al. (2018), Cetin et al.
(2021).

The vehicle motion affects the contact point position. To
phase out this, similar to the chicken head stabilization, the
measured base motion distortion ( pv) is embedded into the
reset controller’s reference trajectory. In this way, the envi-
ronmental disturbances affecting themain body of the overall
system would be eliminated at the contact point.

One can utilize Jacobian matrix as in (1) for transform-
ing task space velocities into the joint space velocities but,
the motion might be unstable near singular joint configu-
rations. Thereby singularity handling algorithms need to be
implemented for safe operations (Jamisola et al., 2005).Here,
following Scherzinger et al. (2017) and Lee et al. (2020),
to solve the inverse kinematics problem we implement a
forward dynamic control (FDC) method. The designed con-
trol architecture is illustrated in Fig. 4 where the Jacobian
transpose is utilized, rather than Jacobian inverse, and nomi-
nal robot model, Pm , generates the desired joint velocities
(Scherzinger, Roennau, & Dillmann, 2019). The control
input, τ c, within the FDC method is generated via an
impedance controller which is denoted as a proportional-
derivative (PD) controller for non-redundant robots as

−0.15 −0.1 −5 · 10−2 0 5 · 10−2 0.1 0.15
0

0.5

1

-σmin | σmin

b
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m
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Fig. 5 Determining the injected damping via a direct-delta function
(bmax = 1.25N sm−1)

Mm(q)q̈ + cm(q, q̇) + gm(q) = τ c,

τ c = J� f c + Gm(q) − B q̇ and f c = K e + D ė, (5)

where Mm ∈ R
6×6 denotes the manipulator’s positive def-

inite inertia matrix, cm and gm ∈ R
6 represent Coriolis an

centrifugal terms and gravitational components, respectively.
The task space pose error is denoted as e ∈ R

6. The diagonal
matrices, K = ki I, D = di I ∈ R

6×6 are the impedance con-
troller’s gains for position (i = p) and orientation (i = o).
Additional joint space damping, B = bI ∈ R

6×6, is injected
to dissipate the energy generated near singular configurations
as the task space inertia and Coriolis increase near singu-
lar configurations (Lee et al., 2020). On the other hand, to
eliminate the effect of the injected damping at a nonsingular
motions, b is modified with a direct-delta function as

b = bmaxexp

(

−σ 2
min

a2

)

, (6)

where a is a positive constant determining the width of the
direct-delta function, see Fig. 5, bmax is the maximum damp-
ing constant, and σmin is the minimum singular value of the
Jacobian matrix measuring the distance from the singular
joint configuration.

2.3 Directional manipulability and constrained PSO

It is a common approach to use a measure of dexterity in
studies that aim at optimizing the base location of serial
manipulators. The manipulability index, μ, is employed as
a proxy to measure the dexterity associated with a feasible
configuration of the manipulator. It can be derived for non-
redundant manipulators as

μ =
√
det(J (q)J (q)�) =

∏

i

σi , (7)

where σi denotes the singular values for the Jacobian
matrix (Yoshikawa, 1985). One can use the dexteritymeasure
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to define an objective function for the optimum base local-
isation. In a near-singular configuration, the determinant of
the Jacobian of a serial manipulator almost diminishes and
hence μ in (7) approaches to zero. Maximizing this index as
an optimization criterion maximizes the transformation from
joint velocities to task-space velocities.

At task space, to enhance not only the effecting velocities
but also the force transmission, the duality between the veloc-
ity and force control directions needs to be addressed (Chiu,
1988). Using the dexterity measure, considering the duality
criterion, and counting the task space control directions we
define a directional optimization index as

oi = fw
[
fu�(Ji (q)Ji (q)�) fu

]

+ vw
[
vu�(Ji (q)Ji (q)�)−1vu

]
, (8)

where fw and vw are positive constants representing the
relative importance of the force and velocity controllers,
respectively, and the directional vectors can be defined as
fu = cR�

b

[
0 0 1 1 1 0

]�
and vu = cR�

b

[
1 1 0 0 0 1

]�
with

cRb = diag(cRb,
cRb)matrix which is the diagonal combina-

tion of the rotationmatrix, cRb, between themanipulator-base
frame and the contact point. One can define a cost function
which is minimised as a function of the total optimization
index along a predetermined task trajectory as

fo(o) = 1
∑n

i=0 oi
, (9)

where i = [0 . . . n] stands for the points on the task trajectory.
Minimizing this cost function corresponds tomaximizing the
total optimization index and in turn maximizing the effective
force transmission in the selected directions and enhancing
the velocity control in others. The two weighting factors, fw

and vw, represent the relative importance of the force and
velocity controllers in orthogonal directions within the opti-
mization index and allow formanaging the trade-off between
maximizing the force in the selected directions and having a
fine velocity control in the other directions. These are user
defined parameters according to whether maneuverability
in the direction of force transmission or maneuverability in
the direction of velocity control are prioritized and to what
degree.

PSO is a bio-inspired population based heuristic opti-
mization technique (Kennedy & Eberhart, 1995). The idea is
intuitive; a group of swarm/particles search for an optimum
location (i.e. cornfield) altogether and each member has the
knowledge of their current local optimum (particle best posi-
tion ppbest ) and global optimum (group best position pgbest )
locations during the search. Each particle, k, is associated
with two vectors, the velocity vector Vk = [

v1k , v2k , . . . , vdk

]

and position vector Pk = [
p1k , p2k , . . . , pdk

]
, where d stands

for the dimension of the search space. The velocity and
position of each particle are initialized with random vectors
within the feasible ranges for each parameter. The optimizer
(evolutionary process) adjusts the velocity and position of
the particle k on dimension d as

vdk = ωvdk−1 + ε1r
d
1 (pdpbest − pdk ) + ε2r

d
2 (pdgbest − pdk ),

pdk = pdk−1 + vdk , (10)

where pk and vk denote the particle’s position and velocity,
respectively, rd1 and rd2 are two uniformly distributed ran-
domnumbers independently generated in [0, 1]. Theparticles
are evaluated based on their new position scores; ppbest and
pgbest are updated at every iteration. The search process is
repeated until a pre-determined stopping criterion ismet; e.g.,
the search is repeated for a fixed number of times (lmax ) or
a defined cost function value is achieved. The effect of the
particle’s inertia, cognitive and social behaviours are denoted
as ω, ε1, and ε2, respectively, see for instance (Eberhart &
Kennedy, 1995; Shi & Eberhart, 1998; Zhan et al., 2009)
for more information about the effect of each variable and
how to tune them. One can implement this algorithm to find
an optimum position for the vehicle such that the cost func-
tion in (9) is reduced to maximize the manipulability of the
manipulator mounted on it.

Algorithm 1 Pseudo code for constrained PSO algorithm.
Create and initialize Pk and Vk in the feasible search space with a
population size (n pop)
repeat

for For each particle k ∈ [
1, .., n pop

]
do

Calculate Fμ via (9) and (12),
if Fμ(pk) < Fμ(ppbest ) and g(pk) ≤ 0 then

ppbest = pk ,
Fμ(ppbest ) = Fμ(pk) .

end if
Choose the particle with best Fμ as pgbest ,
Update positions and velocities via (10).
if |vk | > vmax then

vk = sign(vk)vmax .
end if

end for
until stopping condition is true

When themobilemanipulator is in the vicinity of an object
(such a a valve) which the robotic manipulator can and is
desired to make a contact with (within its workspace), safety
becomes the main concern as collision may occur between
the vehicle and the environment where the object is located
(such as a pipe on which the valve is located). In order to
prevent collision, a safety workspace restricting the potential
movement of the vehicle can be defined. Particles are then ini-
tialized in that workspace and the search space is constrained
within the PSO algorithm. In this study, we illustrate this con-
cept by using a 3D sphere to restrict the motion of the vehicle
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once the contact is established as

g(p) = (px− px0 )
2+(py− py0 )

2+(pz− pz0)
2−r2 ≤ 0, (11)

where r denotes the vehicle’s operational workspace radius
allowed during the interaction, pi0 is the position of the vehi-
cle when the first contact is established, and pi is the relative
position of the vehicle with respect to pi0 ∈ R

3. Also, vk
is restricted to the range [−vmax , vmax ] to prevent particles
from converging outside of the search space (Corne et al.,
1999). Accordingly, the constrained optimization problem
to find a location for the vehicle can be described as

Find px , py , pz to minimize fo,
Subject to g(p) ≤ 0.

The original PSO design lacks a mechanism to handle
the constraints in an effective way. Most of the constrained
PSO designs adopt the popular constraint handling tech-
niques that are built for evolutionary algorithms (Runarsson
& Yao, 2005; Takahama & Sakai, 2006). Different method-
ologies have been implemented regarding the constraint
handling with PSO including penalty methods (Parsopoulos
& Vrahatis, 2002), comparison criteria or feasibility tour-
nament (Coello, Pulido, & Lechuga, 2004; He & Wang,
2007), and Lagrange-based method (Krohling & Dos Santos
Coelho, 2006). Here, a feasible region constraint handling
algorithm and a penalty method are implemented; initial-
ization is made within the feasible search space such that
constraint (11) is satisfied and the particles only memorize
their and the group’s best feasible solutions located in the
search space (Isiet & Gadala, 2019; Xiaohui & Eberhar,
2002). The utilized constrained PSO algorithm solves the
cost function as

Fo =

⎧
⎪⎨

⎪⎩

fo, if feasible,

fo + β1

d∑

i=1
s + β2

d∑

i=1
y, if infeasible,

(12)

where Fo and fo are the penalty and original functions,∑d
i=1 s is the sum of d violated constraints,

∑d
i=1 y is sum

of the amount of d violated constraints, and β1 and β2 are the
penalty factors. See Algorithm 1 for the depicted constrained
search method.

2.4 Case study: valve turning

Valve manipulation (e.g., Di Lillo et al., 2020) similar to a
wheel rotating under environmental disturbances is adopted
as a case study in the validations. Namely, a gripper attached
to a robotic arm mounted on a moving platform grasps a
valve from its outer circle (or from its extreme if it is a T-
shape valve) such that the end-effector’s z-coordinate frame

is perpendicular to the valve’s rotation plane. In this con-
figuration, our control direction in the task frame would be
defined as; x , y, and yaw for velocity control and z, roll,
and pitch for force/torque control. In this way, valve manip-
ulation can be carried out with the velocity control and the
orientation between the gripper and the valve itself will be
maintained with the force/torque control.

An imitation of underwater manipulation was chosen as a
case study where the manipulator motion and environmental
interaction force affect the motion of the base vehicle. These
effects are generated via modelling for the evaluation of the
performance of the designed controller. The general equation
of motion of an underwater vehicle can be written as

Mr ν̇ + Cr (ν)ν + Dr (ν)ν + gr (η) = τ r + τ d , (13)

where ν is the body fixed linear (surge, sway, and heave) and
angular (roll, pitch, and yaw) velocity vector, η is the earth
fixed position and attitude vector. The vehicle’s positive def-
inite inertia matrix including the added inertia, Coriolis and
centripetal terms, and hydrodynamic lift and damping matri-
ces are denoted by Mr , Cr , and Dr ∈ R

6×6, respectively.
The vectors gr , τ r , and τ d ∈ R

6 denote gravitational com-
ponents and buoyancy forces, propulsion forces, and induced
disturbance due to the manipulator motions (Fossen, 2011).
The induced disturbances due to the manipulator motions,
τ d = [τ�

f , τ
�
m]�, can be calculated as

τ d =
[

vRb 0[
rv
b

]
×

vRb
vRb

]
f b, (14)

where f b represents the forces and moments acting on the
base frame of the manipulator.

3 Experimental validation

3.1 Experimental setup

The experimental setup consists of a parallel manipulator
known as a Stewart platform, a Universal Robot (UR3), a
Robotiq 2-finger gripper (2F-140), an Intel RealSense cam-
era (D455), and an ATI Gamma force/torque sensor (with
ATI Force/Torque 9105-NETB sensor box). The camera and
UR3 robot are mounted on the Stewart platform and the
force/torque sensor attached to the robot’s end effector via
a mechanical adaptor and the gripper is attached to the end-
of the sensor. Thus, the setup enables the robot to interact
with the environment (in this case a PVC valve with diame-
ter equal to 0.1m), see Fig. 6. The platform and UR3 robot
each have six degrees of freedom and each controlled by
their own control boxes providing 33Hz and 125Hz control
cycles, respectively.
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Fig. 6 Experimental setup consisting of a Stewart platform, UR3
robotic arm, force/torque sensor, 2-finger gripper, and a camera. A rigid
wheel type valve was used as an object that the robot arm is interacting
with and manipulating

The explained swarm algorithm is used to find the opti-
mum positions for the platform and waypoints to generate a
smooth trajectory using a quartic spline. AnApril-tagmarker
is used to locate the valve and also to measure any perturba-
tion effecting the platform (Wang&Olson, 2016). To create a
stable interaction with the environment, the FDC method, in
(5) with (6), along with the reset control, in (2) with (3), and
admittance control, in (4), architectures were implemented
when an object enters into the workspace of the manipula-
tor, by using the force/torque sensor’s measurements with
a sampling frequency ( fs) equivalent to the robot’s control
cycle ( fs = 125Hz). The Stewart platform, robotic manipu-
lator, and gripper are all controlled via the ROS middleware
for ease of integration by a computer with a 3.20GHz CPU.
This experimental setup imitates a mobile manipulator sys-
tems that could be used for subsea or aerial applications.

3.2 Results

Initially, to evaluate the controller actions on the chicken-
head problem, the base of the manipulator was moved in
z-direction ±0.18m as a perturbation (Experiment 1), with
the controller parameters given in Table 1. Thus, the per-
formance of the reset action was observed with the default
proportional-integral (PI) controller. The measured base
motion by means of the fiducial marker was used within
the controller to eliminate the undesired move at the con-
tact point. The evaluation is based on the Euclidean norm
of the recorded position errors with respect to the reference
point computed as

‖Econt .‖ =
√√
√√

l∑

i=x

n∑

j=1

e2i j ,

Table 1 Controller and optimization parameters

PI+Reset kp = 20 i p = 2 dr = 0.7

Control ko = 2 io = 1 γ = 10−4

Adt. mp = 2 kg dp = 350Ns/m kp = 250N/m

Control mo = 0.2 kg do = 7Ns/m ko = 0N/m

PSO lmax = 100 ω = 0.5 ε1 = ε2 = 2

n pop = 50 w f = wv = 1

FDC kp = 50 dp = do = 0.02 bmax = 1.25

ko = 5
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Fig. 7 End-effector position, position error (E), and integral error term
within the controller when base of the manipulator is moved ±0.18m
in the z-direction. Reset action eliminates the overshoot and reduce
overall tracking error via resetting the integral action (undermost figure);
‖EPI ‖ = 0.212 and ‖EPI+Reset‖ = 0.154

where the controlled axes are denoted by l = x, y, z and n
denotes the data size. For a tmax seconds experiment, with
data registration at a rate fs , the amount of samples recorded
will be n = tmax fs . Figure 7 shows that despite the fast base
motion, |vz | = 0.18m s−1, the controller could relatively
keep the end-effector position stationary with respect to the
global frame with a maximum error equivalent to 1mm and
the reset action can reduce the overall position tracking error
by approximately 27%when compared to the base controller.

Then, a simple experiment (Experiment 2) was executed
via using a pendulum with a mass of 8kg and l = 0.26m to
compare the torque measures generated by the manipulator
to accomplish the same task in different base positions. The
robot was required to hold a pendulum 0.05m away from the
equilibrium position which, creates restoring forces on the
contact point due to the gravity.

A threshold force, fth , was specified as 2Nwhich allowed
us to determine whether or not a contact is established with
the pendulum. Once the end-effector has contact with the
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Fig. 8 Left holding a pendulum with 8kg mass at a position approxi-
mately 0.05m from the equilibrium position. Right repeating the same
task while the base is located an optimum posture such that force/torque
transmission property of the manipulator, from joint to end-effector
space, is enhanced
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Fig. 9 Force measurements in z direction at task space during two
experiments; non-optimum and optimum postures. Threshold force was
determined as fth = 2N to determine the contact

pendulum, the manipulator moves the mass to the desired
position in 5 s and holds there around another 5 s. The task
was repeated with a non-optimum1 (practically the nomi-
nal position of the platform; 1.196m above and parallel to
the ground) and with an optimum postures where, in the later
case, the basewas located at the optimumposition after estab-
lishing contact with the pendulum. The last 2 s of the joints’
torques measurements were is used in a comparison index
calculated as

τ̃ =
∥∥∥∥

∑n
i τmr ( j, i)�

n

∥∥∥∥ , j ∈ [1, 6],

where τmr denotes the stored joints’ effort measurement as
a matrix. A lower value of this index is desired for the same
task.

Figure 8 shows different postures of the manipulator
during the experiments. Figure 9 shows the end-effector inter-
action force in z direction at task space for both cases, which
verifies that a very similar level of task effort (slightly more
effort in case of optimal location) was performed by the robot
with both the non-optimal and optimal base locations. Table 2

1 The non-optimum posture for the experiment was set in a way that
the manipulator can reach and execute the task within its workspace.

Table 2 Joints’ efforts in different postures and contact conditions. First
Row: Less joint-torques are required in optimum posture compared to
the non-optimum while holding a pendulum. Second Row: More effort
is required for the gravity compensation in the optimum posture com-
pared to the non-optimum, indicating that the less torque requirement
in the First Row with the optimum posture, is obtained despite larger
gravity compensation compared to the non-optimum posture

τ̃nopt τ̃opt Difference (%)

Pendulum 2.1974 1.9931 9.3

Free Space 2.1661 2.2715 −4.9

gives the joint torque effort computations for both robot con-
figurations when the robot was pushing the pendulum and
when the robot was in free space without pushing the pendu-
lum. Moving the base location to a desired position reduces
the required joints’ efforts around 9.3% for the same task: in
the non-optimum case τ̃nopt = 2.1974 and in the optimum
posture τ̃opt = 1.99. This is achieved despite the fact that
slightly more force is applied to the end-effector while the
robot was in the optimum posture, as seen in Fig. 9.

In a given posture, the total joint torques are determined by
the gravitational effect (the torques required to hold the robot
at that joint configuration) and the force applied to the end
effector (or any external disturbances effecting the system).
To analyse the effect of the gravitational term in the effort
calculations, we moved the arm to the previously obtained
joint configuration in free space (without the pendulum, no
force is applied at end-effector) and joints efforts are analysed
in these configurations. It was observed that gravitational
term in optimal posture is slight higher than the non-optimal
posture, around 4.9%: in the free space non-optimum case
τ̃nopt = 2.1661 and in the optimum posture τ̃opt = 2.2715
(Table 2). Despite this, the optimal posture overall requires
less effort to apply the same level of force at the end effec-
tor. This verifies that the difference of 9.3% effort with the
optimal base location is indeed due to optimally locating the
base for maximum effort transmission.

Finally, a valve turning task at optimum base location was
executed with the following experimental protocol (Experi-
ment 3);

1. Manipulator grasps the valve under base disturbances,
2. Optimum base position is estimated,
3. Platform is moved to the optimum location,
4. Valve is manipulated with a pre-defined trajectory (0 −

π/2 rad).

Different experimental scenarios were carried out for com-
parisons. First, a benchmark performance indexwas obtained
via manipulating the valve with a fixed base location (T0)
(platform is at its nominal position). Then, another exper-
iment (T1) was carried out assuming that the robotic arm
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Table 3 Overall directional manipulability of the robotic arm mounted on the platform through the valve turning

Tests Fixed veh. position:
Benchmark

Optimal 2D pos. (T1):
Ground VMS

Opt. 3D pos. (T2): UVMS Optimal 3D pos. plus dist.
(T3): UVMS under dist.

ototal 161.85 283.47 428.61 391.62

Bold values indicate the main results

was mounted on a ground based vehicle which had omni-
directional motion capabilities which could translate the
manipulator base location in two directions. Thus, an opti-
mum base location was estimated in x- and y-directions (2D)
and quartic splines were implemented to generate a smooth
path for the vehicle in between the initial and optimal loca-
tions.

As a final effort, it was assumed that there existed an
underwater vehicle manipulator system (UVMS) such that
the vehicle could be controlled to move in x-, y-, and z-
directions (3D). Optimal base locations were estimated for
these directions and an AUV model along with its controller
were implemented to generate themotions of the vehicle. The
experiment repeated while assuming that there was no (T2)
and there existed (T3) environmental disturbances affecting
the vehicle motion in all three directions. The following posi-
tion disturbance adopted fromDunnigan andWronka (2011)
was applied to evaluate the performance of the task execution
controller

pi (t) = Asin

(
2π t

Ti
+ ψi

)
for i ∈ {x, y, z} ,

where A = 0.02m denotes the amplitude, Ti is the period
(Tx = 3 s, Ty = 2.25 s, Tz = 4.5 s), and ψi is the phase
(ψx = π/2 rad, ψy = 0 rad, ψz = π rad). It must be stated
that, the disturbance was unknown to the position controller
and a camera in conjunction with the fiducial marker was
utilized to measure the deviation from the desired path.

The performance index of the manipulator, as motivated,
was enhanced at the optimumbase locations, see the obtained
total optimization index (ototal = ∑n

i=0 oi ) within the afore-
mentioned experiments in Table 3. In 2D optimization the
overall directional manipulability was increased 75% and in
3D localization it is boosted approximately 165% compared
to the fixed base position. Perturbations, naturally, reduce the
overall performance as the base would be displaced from the
desired position, see Fig. 10 for the base motion, optimum
location, and deviation from the path due to the disturbances
during T3. Figure 11 illustrates the base motion in the last
experiment (T3) and the estimated optimum positions for all
the experiments within the constrained search space.

For a safe operation, not exceeding the maximum force/
torque values applicable to the manipulator and the manip-
ulated object is essential along with adequately attenuating
any undesired base motion at the contact point. The interac-
tion force and torque values during the last experiment (T3)
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Fig. 10 The platform performs themotion of a hypothetical underwater
vehicle under disturbances
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Fig. 11 Estimated optimum points (within T1, T2, and T3) and mea-
sured platform position in the last experiment within the constrained
motion space

are illustrated in Fig. 12, where the force and torque values
caused by the interaction are not exceeding 2N and 0.2Nm,
respectively, with the help of the implemented force/torque
controller. Also, the reset control architecture sufficiently
attenuates any base motion effect at the contact point such
that max(|E |) = 0.005m, which can be compensated with
the compliance mechanism of the gripper.
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Fig. 12 Force and torque measurement during the interaction where S
and F denotes the start and finish points of the task execution. Bottom
graph: position error at the contact point caused by the undesired base
motions

To observe the effects of the interaction forces on the
vehicle, the dynamics of an AUV, the Falcon underwater
vehicle was emulated using the Stewart platform, via imple-
menting (13) and (14) with the dynamic parameters adopted
from Berg (2012) and Manhães et al. (2016). The simu-
lated AUV position is transferred to the platform in addition
to the artificially generated disturbances and the computed
optimum location as a reference trajectory. One can state
that the proposed approach is applicable to such underwater
vehicles with strong controllers as the deviation of the base
vehicle from the reference position is almost negligible and
the implementation of the force/torque and the reset con-
trollers leads to the limited interaction forces. Parameters
used in the control architecture and the optimization algo-
rithm (Bonyadi & Michalewicz, 2017) are given in Table 1.
We refer the reader to Scherzinger et al. (2019) and Tugal et
al. (2018) for more detailed information about the impact of
the manipulator’s model and impedance controller used in
FDC approach and admittance controller parameters on the
system’s behaviour, respectively.

4 Conclusion

This study validates the feasibility of the directional manipu-
lability to augment the force/torque transmission andvelocity
control from joint space to the task space for a mobile robotic
manipulator system. Constrained particle swarm optimiza-
tion was implemented to find an optimal position for the
vehicle. To attenuate the undesired motion at the contact

point alongwith avoiding excessivemotions near the singular
joint configurations and to establish a stable interaction with
an unknown object; reset, forward dynamic, and impedance
controllers were developed for the robotic arm. In this
approachwe combine ametaheuristic optimisation technique
and the directional optimization index with the control archi-
tecture and in this way we both enhance manipulability and
ensure stability while interacting. This approach can be used
with any vehicle-manipulator system or stationary robotic
systems.

The proposed optimization and control algorithms were
evaluated with an experimental setup allowing to emu-
late mobile robotic manipulator dynamics within a limited
motion space. The results show that a wheel type valve,
typically used in underwater assets, can be manipulated at
an optimum vehicle position where force transmission and
fine velocity control properties of the robotic arm mounted
on it are enhanced. Also, the arm can apply executable
force/torque in the rotation direction of the valve in a safe
manner despite moderate disturbances affecting the system.
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