Autonomous Robots (2022) 46:893-910
https://doi.org/10.1007/s10514-022-10053-w

®

Check for
updates

Compiling CNNs with Cain: focal-plane processing for robot navigation

Edward Stow’ - Abrar Ahsan? - Yingying Li? - Ali Babaei? - Riku Murai' - Sajad Saeedi? - Paul H. J. Kelly'

Received: 1 July 2021 / Accepted: 28 June 2022 / Published online: 10 September 2022

© The Author(s) 2022

Abstract

Focal-plane Sensor-processors (FPSPs) are a camera technology that enables low power, high frame rate computation in
the image sensor itself, making them suitable for edge computation. To fit into the sensor array, FPSPs are highly resource-
constrained, with limited instruction set and few registers - which makes developing complex algorithms difficult. In this work,
we present Cain, a compiler for convolutional filters that targets SCAMP-5, a general-purpose FPSP. Cain generates code
to evaluate multiple convolutional kernels at the same time. It generates code that avoids the need for hardware multipliers,
while orchestrating the exploitation of common sub-terms—Ieading to a large reduction in instruction count compared to both
straightforward and prior optimized approaches. We demonstrate the capability enabled by Cain on SCAMP-5 with robotic
navigation for near-sensor high-speed and low-power computation, by using Cain to implement a neural network on the focal

plane.

Keywords Convolution - SIMD - Image sensor - Analogue computing - Edge inference

1 Introduction

Real-time robotic and computer vision applications are cur-
rently bound to traditional camera sensors that transfer each
pixel at each frame to a host where it is processed. This
requires high-performance buses between the sensors and
hosts, especially where high frame-rates are required. Some
autonomous driving scenarios may require new information

B<XI Edward Stow
edward.stow 16 @imperial.ac.uk

Abrar Ahsan
abrar.ahsan@ryerson.ca
Yingying Li
yingying.li@ryerson.ca
Ali Babaei
ali.babaei@ryerson.ca

Riku Murai
riku.murail5 @imperial.ac.uk

Sajad Saeedi
s.sacedi @ryerson.ca

Paul H. J. Kelly
p-kelly @imperial.ac.uk

Department of Computing, Imperial College London,
London, UK

Department of Mechanical and Industrial Engineering,
Toronto Metropolitan University, Toronto, Canada

for every 1 cm travelled to be vigilant of unexpected scenar-
ios, so at 80 km/hr a frame rate of 2222 Hz would be required.
A 2 mega-pixel camera, with 10-bit pixel depth, running at
such a frame rate, requires a bus capable of 45.6 Gbit/s—
which is currently only possible with devices such as a PCI-e
x8 Gen3 interface (XIMEA, 2021). For many applications,
streaming data at such volumes is too demanding—in energy,
bandwidth and latency—hence requiring an alternative solu-
tion.

In high speed robotics, low latency predictions become a
requirement to ensure proper navigation and obstacle avoid-
ance. The latency of a standard camera becomes a bottleneck
in these cases and is an important obstacle in achieving
low latency predictions. One way to avoid this bottleneck
is to do some pre-processing of image data in the sen-
sor, to reduce the amount of data that is to be transferred
downstream. Codesign of hardware and software for com-
puter vision applications is an emerging research field to
address the limitations of conventional systems (Saeedi et al.,
2018). Focal-plane Sensor-processors (FPSPs) are a promis-
ing avenue for reducing the data transfer between the camera
and the processing unit. FPSPs, often synonymous with Cel-
lular Processor Arrays (CPAs) and Pixel Processor Arrays
(PPAs), perform processing on the sensor chip itself and are
often designed for tasks which require high frame rates or
low latency (Zarandy, 2011). The principle behind them is

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-022-10053-w&domain=pdf

Autonomous Robots (2022) 46:893-910

894
M M~
12345 01234
21102| g rigne (02110
192345 33440 —5 (03344
21102 55117 05511
M=l33440 70330 07033
55117 -
Sl
70330 down
(010 b M+M¢+
K=1210 My — Mo -
+M
1000 00000 1 4 7 1013
S—MoK 12345 37667
21102 5 10 11 12 10
33440 8 1815 7 9
55117 1219 4 1013
(a) (b)

Fig. 1 Performing kernel convolution using shift and addition opera-
tions. a For matrix M and kernel K, the classic definition of convolution
is shown by X. b The convolution described in (a) can be performed
by shifting M in two directions and adding the results. The shift and
addition operations are derived specifically for the kernel K

that a small processor is embedded directly with each pixel of
the sensor. While FPSPs come in various forms for specific
applications, in this paper we explore a general-purpose fine-
grain architecture SCAMP-5 (Carey et al., 2012), but one can
imagine alternatives that could be designed for various use
cases.

One of the most widely used methods for image analy-
sis is convolution kernels. From edge detection using Sobel
filters to document recognition using Convolutional Neural
Networks (CNNs) (LeCun et al., 1998), convolutional ker-
nels are the foundation for many complex computer vision
applications. Traditionally, application of the convolutional
kernels to the image data occurs on a CPU, but more recently
GPUs and FPGA s are used to accelerate the computations in
parallel (Abadi et al., 2016; Chen et al., 2016). The convo-
lution operation is the sum of products of the elements of an
input matrix and a kernel matrix. Figure 1a shows an exam-
ple, where matrix M is convolved with kernel K resulting
in matrix X. Alternatively, the convolution operation can be
done differently as shown in Fig. 1b. The kernel K describes
that each generated pixel i is the sum of four elements: pixel i
itself, the adjacent pixel above i and 2 of the pixel on i’s left.
Therefore, to do the convolution for all pixels, matrix M is
shifted to the right and also down (to ‘move’ the adjacent pix-
els to i onto i itself), then the produced matrices and original
matrix are summed with the right-shifted matrix added twice,
as shown in Fig. 1b. This indicates that the convolution oper-
ation can be done by shifting the images in proper directions
and adding up the proper factors of the pixel values.

Several systems have been designed to optimise the pro-
cessing of convolutional kernels on GPUs and FPGAs,
leading to a vast array of techniques to reduce the number

@ Springer

of operational cycles needed to apply kernels to input data.
While this significantly increased throughput, these meth-
ods are still bounded in latency as the image must make
its way from the camera through to the host system. As
for FPSPs, the ability to process the data on the focal plane
enables the kernels to be applied to the image data at very
low latency. Furthermore, the unique ability to select the data
which is transferred from the device to the host reduces the
data volume, which allows for high frame rates. However, the
technology is comparatively new. By design, they offer novel
ways to interact with the data, and while work has been done
to provide a Domain-Specific-Language and associated tools
to program such hardware (Martel, 2019), there has been
less work done so far to produce code generation systems to
make efficient use of their architectural features when apply-
ing convolutional kernels in particular. One such system that
does exist for FPSPs, however, is AUKE (Debrunner et al.,
2019b).

In this work, we present an improved alternative to AUKE,
with the ability to produce code for applying multiple con-
volutional kernels at a time. The problem is presented as a
dynamic graph search problem in which we must efficiently
generate and traverse possible processor states to find a path
that describes the relevant convolutional computation. By
incorporating instruction selection and instruction schedul-
ing into the core of search process, we enable the use of more
novel features of FPSP architectures than AUKE is able to
use. By optimising the code for multiple kernels simulta-
neously, common sub-expressions between kernels can be
exploited and produced only once rather than for each ker-
nel. This reduces the computational expense of applying the
kernels, enabling applications to run at a faster frame rate.
We conduct robotics experiments demonstrating that a net-
work architecture trained and implemented using Cain can
successfully achieve competitive performance on FPSP hard-
ware.

The primary objective of this work is to push the boundary
of code generation for FPSP devices through simultaneous
kernel optimisation. We offer the following contributions:

— Cain': A code generation algorithm which effectively
makes use of common sub-expressions across filters
consisting of multiple convolutional kernels. Our graph
search strategy—which enables Cain to efficiently search
large graphs—combines instruction scheduling, instruc-
tion selection and register-allocation constraints into the
core of the search to make better use of specific hardware
capabilities in SIMD processors.

— We show how this search can be tractable for problems of
interest through a problem formulation based on AUKE’s
multi-set—of—Atoms problem representation, combined

! Available at https://github.com/ed741/cain.


https://github.com/ed741/cain

Autonomous Robots (2022) 46:893-910

895

with a ranking heuristic and a hybrid graph-generator—
graph-search exploration strategy.

— We show how this approach allows flexible exploitation
of hardware capabilities (such as three-operand adds and
multi-step shifts), and generates very efficient use of addi-
tions to avoid multiplies.

— Evaluation of the effectiveness of Cain on the SCAMP-
5 Focal-plane Sensor-processor. We compare against
AUKE and test the effectiveness of simultaneous ker-
nel optimisation. We also explore how our simultaneous
kernel optimisation extends to future devices with more
registers per pixel.

— We present a practical demonstration and compara-
tive evaluation of robotic collision avoidance using our
AnalogNavNet model running on the SCAMP-5 FPSP,
contrasting it with alternative processing architectures.

The remainder of the paper is organised as follows. Sec-
tion 2 describes the SCAMP-5 and its instruction sets,
Sect. 3 briefly describes related works such as AUKE and
robotic navigation methods similar to AnalogNavNet, Sect. 4
explains our proposed code generation algorithm Cain, and
in Sect. 5, detailed comparison is made between Cain and
AUKE, together with an evaluation of the effectiveness of
simultaneous kernel optimisation. In Sect. 6, we present our
experimental work, using Cain to implement our robot navi-
gation model, AnalogNavNet. Finally, Sect. 7 concludes our
work, with a discussion about potential future research.?

2 BACKGROUND: SCAMP-5 Focal-plane
sensor-processor

In this section, we discuss the capabilities of the next gen-
eration camera technology SCAMP-5, and give an overview
of the functionality used by Cain.

SCAMP-5 has been demonstrated in many different com-
puter vision applications, ranging from Visual Odometry
systems (Murai et al., 2020; Bose et al., 2017; Debrunner
et al., 2019a), an end-to-end neural sensor which performs
learnt pixel exposures (Martel et al., 2020), to Convolutional
Neural Networks (Wong et al., 2020; Bose et al., 2019; Liu
etal., 2020). Its distinctive ability to perform computation on
the focal-plane reduces power consumption and data trans-
fers, making the device promising for edge computation.

The SCAMP-5 architecture is a general-purpose fine-
grain SIMD FPSP (Carey et al., 2013). It has a 256 x 256
pixel array, and along with each pixel is a small Process-
ing Element (PE). All 65,536 processors execute the same
instruction at one time. In addition to 14 binary registers,

2 This paper is partly based on our earlier workshop paper (Stow et al.,
2022), extended with the collision avoidance application example.

each PE has analogue registers A through to F as well as a
NEWS register. Each PE can also address an XN, XE, XS, and
XW register that is actually that PE’s respective neighbours’
NEWS registers. Each PE uses an analogue bus to link its
available analogue registers, and because values are stored
as charge; analogue arithmetic is done directly on the bus
that connects the registers rather than on a separate arith-
metic unit.

Instructions in the architecture control how register values
are let into and out of the bus with the caveat that values are
inverted due to the nature of the analogue electronics. Each
macro instruction like add, sub, and mov are made of multi-
ple bus instructions that create the desired behaviour, where
the busn(wy, ..wy, ro..ry) instruction has the general rule
that the values of registers r..ry are summed up, negated, and
divided equally between the n receiving-registers wp..w,.
Since a bus operation directly controls which registers are
opened to the PE’s common analogue bus, a register may
only appear once in each bus instruction. Each bus instruc-
tion also incurs significant noise and error factors, especially
for bus2 and bus3 (Chen, 2020).

Macro instruction arguments are written as if they are
assignment statements. For example; the macro instruction
add(A, B, C) means A := B + C and is made up
of two bus instructions: bus (NEWS, B, C) meaning the
NEWS register now contains the value of —(B 4+ C); and
then bus (A, NEWS) so that register A contains B + C.
We can see here that the add instruction has additional
constraints, such that the two operands cannot be the same
register, and that the NEWS register is overwritten, and left
containing —(B + C) as a side effect. When using macro
instructions, we restrict the registers to A to F, and allow the
macros themselves to make use of the NEWS and neighbour-
ing NEWS registers for us by means of a direction value. We
use subscripts to denote the registers of neighbouring PEs.
For example: mov2x (A, B, north, east) computes
A := Bnporth,east 1IN two bus instructions: bus (XS, B) ;
bus (A, XE) . The first means that XSporth, cast := Bnorth,east
which is equivalent to NEWSeust := Bhrorth,cast and then the
second instruction means A := XE = NEWSe,8 — A =
B north,east -

While interesting uses of the bus instructions exist,
allowing adding and subtracting from neighbouring PEs,
individual macro instructions are still highly restricted in
comparison to most modern instruction sets. Only primitive
analogue operations are available to each PE such as: Move,
Add, Subtract, Divide by two, and to acquire the value from
the sensor (Chen, 2020). The lack of a multiplication instruc-
tion means the problem of generating convolutional filter
code for SCAMP-5 builds on the theory of multiplier-free
FIR filters (Chandra and Chattopadhyay, 2016).

The chip has been shown to be capable of operating at
100,000 FPS, largely because it is not limited by the speed of

@ Springer



896

Autonomous Robots (2022) 46:893-910

an output bus to transfer all the pixel data (Carey etal., 2012).
Instead of only offering an analogue or digitally encoded
output of all pixels at a time, like traditional camera sensors,
the SCAMP-5 architecture allows binary outputs per pixel,
and even event driven outputs. This allows each PE to come
to a judgement on its input pixel data and fire its own event
that sends the coordinates of the PE to the host; allowing
information transfer without divulging the actual image.

The architecture uses an off-chip controller to manage
the fetch-decode-execute cycle, with every pixel’s processor
receiving the same instruction, making it a single-instruction-
multiple-data (SIMD) design. This has benefits in terms of
simplicity and efficiency as none of the Processing Elements
need to be able to fetch instructions for themselves. There
is also provision for masking pixels such that only selected
PEs execute instructions.

One important consideration to be made when using and
designing algorithms related to the SCAMP-5 chip is noise
introduced by the nature of the analogue computation. Every
use of the 7 analogue registers introduces noise to the val-
ues stored. This makes finding optimal code to perform the
convolutions ever more vital for accurate results.

3 Related work

In this section we will look briefly at alternative systems
to perform convolutional kernels on SCAMP-5 as well as
relevant robotic navigation systems.

3.1 Convolutions on SCAMP-5

Given an N x N convolutional kernel, AUKE’s reverse-split
algorithm generates code for SCAMP-5 which applies the
kernel efficiently to the captured image on the focal-plane
using analogue computation. AUKE is, however, limited to
compiling just a single convolutional kernel at a time using a
reduced instruction set that omits the more powerful instruc-
tions available in SCAMP-5. AUKE’s reverse split algorithm
produces a data-dependency graph of ‘elemental’ opera-
tions which broadly captures common sub-expressions but
is restricted to intermediate results whose values are a subset
of the original kernel’s values. This is then further optimised
with a graph re-timing algorithm that aims to reduce the com-
putation by relaxing that previous constraint. Instructions can
then be selected and scheduled, and registers allocated, from
this data-flow graph.

A method for computing binary weighted convolutional
kernels on the SCAMP-5 FPSP is demonstrated in Liu et
al. (2020). Their approach stores the kernel coefficients, —1
or 1, in the digital registers of the PEs. They repeat a shift-
accumulate procedure predicated on the weights to the image.
The method works for convolutions with a stride equal to

@ Springer

the size of the kernel; denser strides are performed by shift-
ing the kernel weights and repeating the shift-accumulate
algorithm. This method allows different kernels to be run in
different parts of the sensor but is limited to binary weights as
memory is limited and always has worst case performance
characteristics regardless of sparsity or potential common
sub-expressions.

3.2 Robotic navigation

There are various low-power robot navigation methods and
implementations for more traditional processor, as well as
SCAMP-5. Many primarily target drones and others are
designed for ground vehicles in preset courses.

(Giusti et al., 2016) implemented a network for drone nav-
igation in a forest trail using camera input. The network has a
total of 4 convolution layers and a Maxpooling layer between
each convolution layer, followed by a fully-connected layer
of 200 neurons and a final layer of 3 neurons for navigation
prediction.

(Loquercio et al., 2018) implemented DroNet, a network
that allows a UAV to successfully fly at high altitudes and
in indoor environments. The network consists of a ResNet-8
with 3 residual block, followed by dropout and ReLU. This is
then splitinto 2 separate fully-connected layers with 1 neuron
each, one for steering and one for collision probability.

(Kim and Chen, 2015) implemented a network for indoor
drone navigation. It has a total of 5 convolution layers
with pooling and ReLU after each convolution, followed 2
fully-connected layers back-to-back of 4096 neurons each,
followed by an output layer of 6 neurons.

While these networks are effective in their own fields,
transferring them to SCAMP-5 is not practical as the net-
works are too large, both increasing the noise accumulated,
and requiring too much memory to store the activations of
the neurons. Nevertheless, these works are insightful bench-
marks for small and efficient vision based robot navigation.

Other works which utilise SCAMP-5 for robotics nav-
igation do exist. (Greatwood et al., 2019) performs drone
racing with SCAMP-5, using the FPSP to efficiently detect
the gates. This means the only data transferred off the sen-
sor is the gate’s size and location. The on-sensor processing
and the minimal data transfer enables the gate detection to
operate at 500 FPS. SCAMP-5 has also been employed as a
visual sensor for agile robot navigation that allows ground
vehicles to drive around a pre-set course of gates (Liu et al.,
2021a). The gates are labelled with predetermined patterns
that enable the SCAMP-5 to generate control signals for the
ground vehicle. The proposed method achieved 200 FPS in
an indoor setting and 2000 FPS with outdoor lighting condi-
tions. These systems depend on clear visual cues, and their
algorithms are tailored to detect particular patterns and fidu-
cial markers.



Autonomous Robots (2022) 46:893-910

897

(Chen et al., 2020) use features computed from conven-
tional vision algorithms such as motion parallax, and static
and dynamic corners, to feed a recurrent neural network
(RNN) that outputs proximity distance to any nearby obsta-
cles thus allowing for obstacle avoidance navigation. They
were able to achieve about 250FPS for the full system in an
indoor setting.

A CNN based method is proposed in (Liu et al., 2021b)
for mobile robot localisation and tracking. A binary weighted
CNN is directly implemented on the SCAMP-5 vision chip
to extract features that determine a rover’s position out of 64
positions in the simulated environment.

4 Cain

Cain is a framework for compiling convolutional filters,
designed to search through a configurable Focal-plane
Sensor-processor Array (FPSP) instruction set to find effi-
cient code. A fundamental concept Cain uses is to only
consider a single arbitrary PE in the FPSP, and perform
everything relative to it. This works for SIMD architecture
like SCAMP-5 because every PE will be executing the same
steps synchronously in parallel. The assumption we make
when producing code is that the neighbours of our arbitrary
PE will exist and so will have done the same work but at arel-
ative offset in the input image. The aim is to search through
the graph of possible Processing Element states in such a
way that common sub-expressions in the given kernels are
exploited and used to reduce the cost of any path from ini-
tial to final PE states. To do this Cain searches backwards,
starting with a set of final kernels, these are the convolu-
tional filter, and applying instructions in reverse to simplify
the kernels until only the identity kernel® is left. Figure 2a
shows a high level overview of this process. Searching back-
wards is a design choice that makes the search more effective
because it means the aim at each step is to make what needs
to be solved simpler than before. This means heuristics can
be produced to always direct the search towards the identity
kernel rather than a system of heuristics trying to accurately
predict the path towards an arbitrary set of final kernels. We
present this as a dynamic graph search problem because the
size of the graph is intractable. Given the AnalogNet?2 filter
in Eq. (1), Cain identifies 37163 potential child nodes in the
first step alone. This can be reduced to 239 if we are willing
to accept a less than exhaustive search of the solution space.
This restriction is applied when the computational cost of
computing the full set of child nodes is too high, which is
often the case early in the search process.

3 Single-entry matrix. Not to be confused with identity matrix.

4.1 Definitions

This section provides an overview of notation and definition
used in this paper. Cain is designed such that different defini-
tions could be used without changing the fundamental search
algorithm but the definitions we use here to explain Cain for
SCAMP-5 are based largely on AUKE’s, which provide an
elegant way to conceptualise the convolutional kernels with-
out multiplication.

Example 1 We will look at a simple example of how a
convolutional kernel is represented in Cain. Here we use
AnalogNet2 (Wong et al., 2020; Guillard, 2019) which is
a CNN designed for SCAMP-5.

000 —4 —1 —1
1 1
T I
AnalogNet2 = 12 0 (1
1
7| -1 1 =3
0 -30

Since SCAMP-5 does not have multiplication we must
approximate the kernel and because it does have division-
by-two instructions the natural approximation to make is to
find the nearest integer multiple of zld for each coefficient in
the kernel, given some number of divisions d. In our exam-
ple we have already extracted the common denominator such
that d = 2 and this perfectly represents the kernel. The larger
d is, the larger the search space and complexity of the prob-
lem, so d can be limited to allow an acceptable amount of
approximation error such that the resulting program is shorter
and computational expense of compiling it is reduced.

Definition 1 Let an Atom, denoted as (x, y, z, sign), be a
representation of 2%, of a pixel value at coordinate x, y, on
the zth channel. x, y are coordinates relative to the arbitrary
PE and so also the centre of the kernel, and z refers to an
image input channel. The sign is used to negate the value if
necessary.

Definition 2 Leta Goal, denoted as {atom, atom, ...},bea
multi-set of Atoms. The Goal represents an arbitrary kernel,
however, scaled by 2¢. The aggregate of the values repre-
sented by each of the Atoms yields the same result as applying
the scaled kernel.

Representing a convolutional kernel as a Goal is a conve-
nient way to support multiply-free instruction set, such as
SCAMP-5. One can simply view this as unrolling the multi-
ply instruction into additions. Using Goals simply re-frames
the problem by scaling everything by 2¢, and approximating
coefficients to the nearest number of Atoms.

Definition 3 Let a Goal-Bag, denoted as {goall, goal2, ...},
be a multi-set of Goals. The Goal-Bag is used to capture the

@ Springer



898

Autonomous Robots (2022) 46:893-910

state of our arbitrary PE. This includes defining the Final-
Goals, the set of convolution kernels we wish to compute;
and the Initial-Goals, the set of Goals which the computation
will start from.

Using these definitions of Goals and Atoms we see that the
first kernel from Example 1 can be represented by G

000
K=-|-310], )
—-302
(_1’0703_)7 (_170503_)7 (_150707_)5
G = 0,0,0,4), (—1,—1,0,—), (—1,—1,0,—),
(=1.—1,0,-), (1,=1,0,4), (1,-1,0,+)
3)

As our Goal notation is verbose, we provide a compact ver-
sion that disambiguates Goals from kernels

000 000
G=<—310> = 5 | =310 | «Image Input
-302 -302

where the x operator applies the left-hand

convolutional kernel to the right-hand array “)

By repeating this for process the rest of the convolutional
kernels in the AnalogNet2 filter, the Final-Goals Goal-Bag
FG is produced:

000 —4 -1 -1 -1 2 0

FG = <—310>,<—1 2 O>,<—1 1 —3> 5)
-302 1 1 0 0 -30

Since, in our example, d = 2; the Goal representation of

the identity kernel (G p) that makes up the Initial-Goals, is
based on the approximation of the Final-Goals:

000 000
Kip=-1040 =>G1D=<O4O> ©6)
000 000

Moving a value around the processor array is expressed by
translating every Atom of a Goal. Addition and subtraction
can be expressed by combining two Goals into one, making
sure to cancel out positive and negative Atoms with the same
coordinates. Since Cain searches backwards, we apply these
operations in reverse. For 2-operand addition this means we
take a Goal, G, that we wish to generate code for, then pro-
duce 2 new Goals that when added together produce G.
Defining Goals as multi-sets of Atoms makes this process
intuitive as we can simply split the Atoms between two Goals
in every possible permutation (or fewer if we are willing to
assume some are non-optimal, or willing to miss potentially

@ Springer

better code for the sake of more efficient code generation).
This definition also restricts the reverse search process since
when splitting a Goal we cannot split an Atom. It follows
that one way to naively search backwards to find a solution
that computes G is to split G between the 4 coordinates pop-
ulated with Atoms such that they can be added together (a
Goal for each colour in 2). Then for each of these 4 Goals we
can translate them such that all the atoms are in the centre of
the kernel. For example we read the value of the red Atoms
in G from the west thus translating the Atoms eastwards. We
see that the red and green parts of G are now the same and so
only need calculating once and this can be done by negating
that Goal then splitting the 3 Atoms into Goals containing 1
and 2 Atoms each. Finally we can use the divide instruction
which, in reverse, will double the number of Atoms from 1 to
2 and finally to 4, which gives us the identity Goal Gp. The
resulting code is then simply these steps reversed to produce
a usable program.

4.2 Search strategy

Cain’s reverse search algorithm works iteratively taking the
state of an arbitrary PE, defined as a Goal-Bag:

F :={G, G2, G2, G3...} (7N

This is a node in our search graph and represents the state
we aim to achieve by executing the instructions that form a
path from the initial-Goals to this node. In the search graph,
nodes are generated dynamically as the graph is explored.
Figure 2b shows a simplified view of how a graph might look
as it is generated and searched. We simplify the exploration
such that in each iteration of the search algorithm we produce
a Goal-Bag Pair of an Uppers Goal-Bag and a Lowers Goal-
Bag as well as an instruction, with the following constraints:

(U, L), inst = nextPair(F)
where U C F, U = inst(L) ®)

The new child node, C, is then produced by applying the
instruction in reverse using the following rule, with the
instruction becoming an edge in the graph:

C=F\U)UL )
Following our AnalogNet2 example from Eq. (5), the first

iteration of the search algorithm will start with FG and the
Pair of Goal-Bags Cain produces is as follows:

12 0
U= <—1 1 —3> , (10)
0 -3 0



Autonomous Robots (2022) 46:893-910

899

Input Kernels

Matrices of Coefficients

[ Goal Approximation ]
[ Register Allocation )—)[ Code Generation ]

Specific

Final-Goals (root node) InStTUCtiOYISTInitial-Goal Found

Parent

Configurable Node Explore Otherwise Generate Next Apply Instruction
Traversal System Node Goal Pair In Reverse

Node Culled

Parent Node and Child Node

(a) Cain System Overview.

:|Instruction:
mov (B,A,south)
add(A,A,B)
mov (B, A,north)
add(A,A,B)

=~ W N =

(b) Example Cain graph.

Fig. 2 a shows an overview of the Cain system. b is a graph show-
ing how Cain might search a simplified 1-dimensional problem using
CGDS. Numbered steps show the order that the paths are explored with
child nodes generated the first time a search step starts at a parent node.
Nodes are checked for being the Initial-Goal when pointed too. The
red node, and edge, correspond to a dead-end where a duplicate node

—120 00 0 00O
L= <—110>,<00—3>,<0 0 0> (11
000 00 0 0-30
inst =U <« add(L1, Ly, L3) (12)
000 —4 -1 -1
<_3lo>,<_1 ) 0>,
-302 1 1 0
€= —-120 00 0 00O (13)
—110),{00-3),{0 0 0
000 00 0 0-30

The multi-set semantics here mean that if the Goals in L are
all already part of F then the number of Goals to solve is
reduced, and so by applying more pairs (U, L) we traverse

has been found at a higher cost than previously seen and so the node is
not traversed further. We see a path to the Initial-Goal is found after 7
steps, and the code produced by this path is presented on the right. The
mov () instruction in step 5 exploits a common sub-expression such
that the two Goals in its output Goal-Bag are produced together, thus
shortening the code

the graph of Goal-Bags, until we reach the initial-state, where
the only Goal in the Goal-Bag is the identity Goal. In our
example (Eq. 10) we see that the sub-expression of 3 negative
Atoms is reused in C4 and Cs since applying a mov2x next
could eliminate Cs from C. There is also further potential to
reuse this by how we split C. Once the initial Goal-Bag is
found the path from the initial Goal-Bag back to the Final-
Goals becomes the list of instructions that form our generated
program.

After this point Cain continues searching for shorter paths,
and can cull any nodes with longer paths. During the search
the same Goal-Bags may be reproduced in different ways,
we cull the current node any time a Goal-Bag is produced

@ Springer



900

Autonomous Robots (2022) 46:893-910

Algorithm 1: Child Generator Deque Search
Input: s

1 deque < [(s, null)]

2 while deque # [] do

3 n, g < dequel0]

4 deque < dequell..]

5 if g = null then

6 do node computation on n

7 g < childGenerator(n)

8 end

9 c <« g.yield()

10 if ¢ # null then

11 deque < [(c, null)] + deque + [(n, g)]
12 end

13 end

that has already been seen at a lower or equal cost, or if the
Goal-Bag has more Goals than available registers.

The second part of the search strategy defines the search
order. Each invocation of the reverse search algorithm pro-
duces one new node, C, and the input node is incremented to
know how many of its children have been produced so far.
Cain uses this simple definition to allow several graph traver-
sal algorithms to be implemented. Using Depth-First-Search
(DFES), Cain can simply maintain a stack of the nodes. On
each cycle the top node is popped off the stack and given
to the reverse search algorithm. Then the incremented parent
node is put back on the stack, followed by the new child node.

While DFES performs well in AUKE, it struggles in Cain
because the number of child nodes at every level is far greater,
since each edge is only one instruction and there are multi-
ple kernels to consider. This means the size of the graph we
would like to search is much larger and we are unable to
search even a small fraction of it. To overcome this we use
a graph-traversal algorithm that, for our purposes, we call
Child Generator Deque Search (CGDS). The aim of this algo-
rithm is to ensure that the search does not end up ‘trapped’ in
one small part of the graph, but can effectively search traverse
many children of many of the nodes that are found where
DFS will search all of the children of nodes at the extent of
the paths it searches before searching the second children of
nodes earlier in the graph. Algorithm 1 shows a pseudo-code
implementation of CGDS. In each cycle the front of the queue
is polled, if the node has not been seen before, Cain checks
to see if it can be directly transformed from the initial-state
Goal-Bag, this is the ‘node computation’. The node is then
passed to the reverse search algorithm to attempt to produce
the next new child node and to increment parent node—this
is implicit in calling ‘yield()’ on g. The child node, if it exists,
is put on the front of the queue and the incremented parent
node is put on the back. We do not claim that CGDS is novel,
but we have found it superior to obvious alternatives, and the
strategy used in (Barthels et al., 2019); for details see (Stow,
2020).

@ Springer

4.3 Cost function

In the reverse search algorithm we see that the pairs of Uppers
and Lowers are produced one at a time. While this simpli-
fication allows us to produce more generic graph traversal
implementations; what allows Cain to efficiently find solu-
tions, are the heuristics that allow us to order the pairs that are
produced for a node from the most promising to the least. This
type of heuristic provides the order of siblings to search so we
callita ‘local heuristic’. It doesn’t compare nodes in different
parts of the graph, which we would call a ‘global heuris-
tic’. We found that we were unable to find effective global
heuristics because traversal algorithms that take advantage
of such heuristics end up producing huge frontier sets of
nodes making the memory requirements too large. The use
of local heuristics drives the SCAMP-5 code generation in
Cain instead, though support for best-first-search with global
heuristics is available in Cain. The local heuristics used for
SCAMP-5 are based on generating every child node of the
parent and then ordering them based on a cost function. There
are 3 main components considered for the cost: Atom dis-
tance, repeated Goals, and divisions. A simplified formula is
shown in Eq. (14).

total(C) + dists(C)

cost(€) = +reps(C) + divs(C) a4
total(C) = Y |G| (15)
GeC
dists(C) = Y > ((la.x| + |a.y] + n(a)) s(G.C))  (16)
GeCacG
__J1if ais anegative Atom
n(@) = {O otherwise. } an
1 .
_|5iffBeC.GCB
$(G.€) = {1 otherwise. (18)
GI*?3a,beG.a#b
reps(€) = Z {l 0| otherwise?'é } (19
GeC.G is unique ’
wrt any translations
2d
divs(C) = (20)

min(multiplicity(a)Va € GNG € C)

The Atom distance part counts up how many Atoms every
Goal in C has, and how far from the centre they are, with some
relief if the Goal is a sub-Goal of another Goal in C. The
repeated Goals portion of the cost penalises C by the square
of number of Atoms in each Goal, unless that Goal is equal to
a translation of another Goal in C. The divisions component
penalises C for the number of division operations that would
be required to produce the Goals from the identity-kernel
Goal, G ID-

The heuristics presented here are designed based on the
use of the analogue functions in SCAMP-5, where the com-



Autonomous Robots (2022) 46:893-910

901

plexity and throughput of additions and data movement are
similar. Since the definitions of instin Eq. (8) is so general as
to accommodate many potential operations and modes of pro-
cessing (digital and analogue), Cain can be easily extended
to use a different set of instructions where analogue noise, for
example, is not an issue. Such a change might then benefit
from a revised heuristic cost function.

5 Evaluation

All performance evaluation in this section is conducted on an
Intel Core 17-7700HQ CPU (4 cores, 8 threads) with a base
frequency of 2.80GHz. The computer has 16GB of RAM,
runs Ubuntu 18; as well as Java 1.8 (Oracle) and Python 3.6
to run Cain and AUKE respectively. The implementation of
AUKE used, as developed by Debrunner, can be found on
Github.* Cain source code can be found at https://github.
com/ed741/cain.

5.1 Performance evaluation against AUKE

Comparison of our work Cain against AUKE is performed
by comparing resulting code generated from the respective
compilers, given the same input filters. Both compilers are
given 60 seconds to find a solution using all 6 registers. Note
as Cain supports multi-threading, it spawns 4 worker threads
to perform the search.

As shown in Table 1, Cain significantly outperforms
AUKE. Cain supports a wider set of instructions in contrast of
AUKE, enabling generation of more efficient code. Not only
this, the search strategy used by Cain is better than AUKE’s,
as shown in 5 x 5 Gaussian Kernel, were using the same
set of instructions (Basic), code generated by Cain is half
in length when compared to output of AUKE’s. Although,
in further testing, AUKE is able to produce less inefficient
code for this kernel given fewer registers. When given mul-
tiple kernels, Cain is able to perform simultaneous kernel
optimisation. For example when combining 3 x 3 and 5 x 5
Gaussian, unlike AUKE, Cain is implemented to utilise the
common sub-expressions between the kernels, thus, generat-
ing shorter code than naively concatenating the code for each
of the Gaussian kernels. Neither Cain or AUKE perform a
compete exhaustive search.

The AnalogNet2 filter is the kernels used in AnalogNet2
(Wong et al., 2020; Guillard, 2019), which is a CNN
for SCAMP-5, capable of MNIST digit recognition. Cain
requires only 21 instructions whereas AUKE produces ker-
nel code which has in total 49 instructions. Reduced code
not only improves the execution time, but also reduces the

4 https://github.com/najiji/auto_code_cpa/tree/75¢017e5ad28c0f3f04
0fb9f84d7f8727d035baa.

noise build up, which is significant problem as discussed in
(Wong et al., 2020). If the aim of finding sub-expressions
is to eliminate redoing work, then the number of add and
subtract operands is a proxy for how effective the search
for sub-expressions is, regardless of how translations are
handled. Table 2 shows that AUKE’s code has 40 add or
subtract operands whereas Cain’s code has only 27. We have
compared the runtime of AnalogNet2’s convolution kernels,
generated by AUKE and Cain on the physical SCAMP-5.
Note, as AUKE produces code which performs invalid regis-
ter manipulation, the fixed code as used in (Guillard, 2019),
which executes on the device is 81 instructions long. The
execution time of the code produced by AUKE and Cain
for the convolution kernels were 35us and 9us respectively,
showing almost 4 times speedup.

5.2 Effectiveness of the search strategy

If Cain has an effective heuristic we will quickly see a point
of diminishing returns in code length, as Cain continues to
search new nodes and takes more time. We can track the
number of nodes that are explored before finding any plan
in Cain, and so use this as a measure of the search strategy
and heuristics that is more independent of physical compute
performance. With this in mind we test the effectiveness of
our heuristic by constructing 100 samples of randomly gen-
erated single kernel filters as in Eq. (21). Running Cain as per
the following configuration—Maximum Nodes to Explore:
20,000, Maximum Search Time: 60s, Worker Threads: 1—
allows us to collect as many plans as can be found in the
given time limit. We then ran Cain again, but with Cain’s
SCAMP-5 heuristic disabled and replaced with a random
sort. This allows us to compare Cains heuristics against an
unaided benchmark.

Uy uz u3
1
g | U4 us ue
u7 ug U9
Given uj..ug are integers sampled

uniformly from the range [0..8] 2D

We found that Cain was unable to find any plan for any
of the 100 sample filters without its heuristics, principally
demonstrating that effective heuristics are required in Cain
for any tangible progress to be made. We plot the lengths of
the best plans found against the number of nodes expanded
before the plan is found in Fig. 3. We can see that improve-
ments are fewer and further between after the first 2500 nodes
are explored. After this we see that we can expect at most
a reduction equal to the reduction seen at 2500 for the rest
of the nodes explored. This clearly demonstrates a point of
diminishing returns for these filters. If the heuristic is effec-
tive we expect it to direct the search towards short plans first,

@ Springer


https://github.com/ed741/cain
https://github.com/ed741/cain
https://github.com/najiji/auto_code_cpa/tree/75c017e5ad28c0f3f040fb9f84d7f8727d035baa
https://github.com/najiji/auto_code_cpa/tree/75c017e5ad28c0f3f040fb9f84d7f8727d035baa

902

Autonomous Robots (2022) 46:893-910

Table 1 Kernels tested in AUKE and Cain

Name Approximated filter

AUKE
Basic

Cain
All Basic

f121
242
121

r0O1 2 107
14641
261062
14641
L01 2 10

F01 2 107

14641
261062 |, 4
14641
01210
000

310
302

3 x 3 Gauss L

5 x 5 Gauss L

5 x 5and 3 x 3 Gauss L

oy
2

AnalogNet2 % s %

411
120, |3
110

00000
04840
081680
04840
00000

1207]
113
030 |

12

50

(50 +12)

10 12

19 25

26 39

(13 + 21 + 15) 21 30

Values on the righthand side of the table refer to the number of SCAMP-5 macro instructions in the programs generated by AUKE and Cain for each
filter. AUKE can only use the ’basic’ macro instructions, so Cain is run twice; to compare its effectiveness under the same restrictions as AUKE.
Since AUKE does not offer a way to compile multiple kernels at once, values for each kernel are given separately

Table 2 Comparison of Code for the AnalogNet?2 filter generated by AUKE and Cain

AUKE Cain

Kernel 2 Kernel 3 Kernel 1

1 mov(B,A); 22 mov(C,A); 38 divag(Aa,A); 1 diva(A,D,E);

2 divg(B,B); 23 divag(c,C); 39 divg(A,An); 2 div(D,E,C,A);

3 divg(B,B); 24 divag(c,C); 40 movx(D,A,west) ; 3 movx(E,D,west) ;

4 movx(C,B,north) ; 25 movx (D, C, south) ; 41 neg(D,D) ; 4 movx(C,E,north) ;

5 neg(C,C); 26 neg(D,D); 42 movx (E,D, south) ; 5 neg(F,E);

6 neg(D,C); 27 movx(E,C,east); 43 add(D,D,E) ; 6 subx(B,F,east,A);

7 movx(E,D,west) ; 28 sub(D,D,E); 44 add(E,A,D); 7 addx(E,E,D, south) ;

8 neg(E,E); 29 movx (E,C,north) ; 45 movx (A,A,south) ; 8 add2x (D, F,D,north,north) ;
9 add(F,B,E); 30 add(E,E,D); 46 movx(A,A,east); 9 sub2x(F,D, south, south,C) ;
10 movx(B,D,east) ; 31 add(D,D,D); 47 add(A,D,A); 10 add2x(D,C,D,east, south) ;
11 add(B,B,E); 32 add(D,E,D); 48 add(A,A,n); 11 add(E,E,D);

12 movx (D, E, south) ; 33 movx (E,C,west) ; 49 add(A,E,A); 12 movx (D,A,north) ;

13 movx (D,D, south) ; 34 sub(C,C,E); 13 add2x(A,C,A,east,east) ;
14 sub(B,B,D); 35 add(D,D,C) ; 14 movx (C,B,east);

15 add(B,B,F); 36 movx(C,C,north) ; 15 add(D,F,D);

16 add(B,C,B); 37 add(C,D,C); 16 add2x(F,F,E,east,south);

17 movx(C,C,west) ;
18 add(B,B,C);
19 movx(C,F,south);
20 add(B,C,B);
21 add(B,B,F);

17 movx (E, B, south) ;

18 addx(A,B,A,south);

19 addx(A,B,A,west) ;

20 add2x(B,F,B,north,west) ;
21 add(c,D,C,E);

The Input Register is ‘A’ and the output registers for the 3 kernels are ‘A’,'B’,‘C’ respectively. For AUKE, kernel 2 is run first since testing showed

it was longest so this gives AUKE more registers to use

@ Springer



Autonomous Robots (2022) 46:893-910

903

Lengths of the Shortest Plans Found Given
the Nodes Explored So Far

27.5 —— 95, Percentile
Median
2 —— 54, Percentile
S 25.0 th
o
[T
2 225
]
(2]
C
9 200
C
o
a 17.5
-
%]
= I
< 15.0
£
0
12.5

0 2000 4000 6000 8000 10000 12000

Nodes Explored

Shortest Plans Found for Kernels Processed Simultaneously

—— Simultaneous Kernels 8

70
k]
c
3 60
[T
<
5 50
G
- 40
c %
©
o 30
-
g ==
2 20
©
£ =
wn 10

0

1 2 3 4

Kernels Compiled

Fig. 3 Left: Graph showing the median number of instructions in the
best plans found before n nodes have been explored by Cain. With 100
samples of randomly generated singular 3 x 3 kernel filters. Right: Graph
showing the number of instructions in the shortest programs found by
Cain for filters with 1, 2, 3, and 4 random 3 x 3 kernels. 25 samples
were produced for each kernel count

and try instructions less likely to be optimal later. This model
fits the data well as we see short plans are found quickly, and
while improvements can be made, it is clear that they are
found less often as the search continues.

A perfect heuristic would be able to direct the search
straight to the globally optimal solution, so clearly our heuris-
tic is imperfect. There are many situations when compiling
large and sparse kernels where our heuristic incurs exces-
sive computational overhead that produces a poor balance
between high-quality navigation through the search space
and simply searching more nodes to find a more optimal
solution. This could be addressed with further analysis of
potential heuristic functions or even a machine learning
derived heuristic.

5.3 Effectiveness of the simultaneous Kernel
optimisation

One of the significant features of Cain is to efficiently gen-
erate code for filters with multiple kernels, and do this
simultaneously such that shared common sub-expressions
can be reused. As it is possible for Cain to perform exhaus-
tive searches for plans, given sufficient time, it will find a
solution that simply computes the individual kernels inde-
pendently, or find a solution with lower cost—utilising the
common sub-expressions.

First, we wish to test whether the length of generated
code is sub-linear to the number of input kernels. To test
this, we again generate kernels using the using the method
in Eq. (21). For kernel counts from 1 to 4 we generated 25
filters each and test them all using the same configuration as
before except that we remove the maximum nodes explored
constraint, and allow 4 worker threads. We plot the results
in Fig. 3 and see that the results appear worse than linear,
suggesting that common sub-expressions are not effectively
being taken advantage of.

We hypothesise that the limited number of registers in the
SCAMP-5 architecture is the major limiting factor in pro-
ducing efficient code. To test this we increase the number
of available registers to 18. For filters with 1 kernel up to 10
kernels we generate 10 samples each. Every kernel in the 100
filters is produced as in Eq. (21). For each sample, Cain com-
piles the kernels individually, given the appropriate number
of registers such that other kernels in the filter would not
be overwritten. Then we compile the kernels simultaneously
using Cain. All compilations are given 60s to run, with 4
worker threads.

Figure 4 shows the results of this test. We see clearly that
when register limitations are not a restricting factor Cain is
able to consistently improve the performance of filter imple-
mentations by compiling them simultaneously. We see that
improvements grow with more kernels, and it appears that
the length of code generated for simultaneously compiled
kernels increases sub-linearly. This supports the idea that
with more kernels, ever more common-sub expressions can
be exploited.

Since we are working with analogue computation in our
evaluation, there is a limit to the length of code that could be
run before the accumulated noise of each instruction com-
pounds to make the results unreliable. This problem can be
partially mitigated by reducing code length or logical depth as
Cain does but still presents a challenge to complex and large
kernels. Since Cain can be programmed to use an instruction
set based on digital computation that does not suffer these
problems, we can use these findings to inform the design of
future CPA architectures that use digital and analogue com-
putation.

@ Springer



904

Autonomous Robots (2022) 46:893-910

Fig.4 Graph comparing the
sum of the shortest SCAMP-5
code lengths found for kernels
compiled individually, against
the same kernels compiled
simultaneously as one filter. For
each filter a total of 18 registers
were made available (more than
in SCAMP-5) to reduce register
availability as a limiting factor.
In total 100 filters are produced,
10 for each number of kernels
per filter. Each kernel is a
randomly generated 3 x 3 kernel
with coefficients uniformly
selected in eighths from O to 1
(inclusive)

140

120

100

80

60

40

Smallest Plan Length Found

20

—— Sum of Individual Kernels
—— Simultaneous Kernels

6 AnalogNavNet

To demonstrate the use-cases for Cain and Focal-Plane
Sensor-Processors like SCAMP-5, we present AnalogNavNet,
a convolutional neural-network based model for collision
avoidance and robot navigation. AnalogNavNet has been
physically implemented for a corridor and a race-track envi-
ronment.> We evaluate the robotic navigation using a Jetson
Nano, comparing the accuracy, inference time, and power
consumption of this architecture as implemented on the FPSP
(SCAMP-5), CPU (Quadcore ARM A57), GPU (128-core
NVIDIA Maxwell), and a Visual Processing Unit (VPU, Intel
Myriad Neural Compute Stick 2).

Our proposed method uses a CNN, similar to (Giusti et
al., 2016) and (Kim and Chen, 2015), to learn directly from
image features to navigate through an indoor corridor and
race-track environment. The objective is similar to that of
(Chen et al., 2020) in which they implement an RNN that
learns from camera images along with range measurements
from proximity sensors.

6.1 Network architecture

As shown in Fig. 5a, AnalogNavNet is split into two
halves, with the convolutions, ReLLU activations, and the
pooling happening on the pixel-processor, and the fully-
connected layer and Soft-max activations happening on the
onboard micro-controller.

The Convolutional side of AnalogNavNet has a total of 4
kernels only (2 from first convolution layer, 1 from second
convolution layer, and 1 from third convolution layer). Each
convolutional kernel is of size 3 x 3 each, with the second

3 Video of robot can be found at cain.edstow.co.uk.

@ Springer

3 4 5 6 7 8 9
Kernels Compiled

10

layer convolutional kernel having a 2-channel input, with
ReLU activations between each layer. Since we are targeting
the SCAMP-5 FPSP, the initial image is of size 256 x 256
but the final feature map is average-pooled with strides of
32 x 32 to generate a final feature map of size 8 x 8. The
feature map is passed onto the fully connected layer on the
onboard micro-controller.

The pooling layer is aggregated into a single vector as part
of being fed out of the FPSP, making use of standard pixel
averaging functionality within the sensor. As the SCAMP-
5 onboard micro-controller is very rudimentary and has a
low clock frequency, the processing speed bottleneck hap-
pens here. Large fully-connected layers, while providing high
accuracy, cannot be implemented on the SCAMP-5 micro-
controller while retaining high frame rates. AnalogNavNet
therefore uses a fully-connected layer with just 30 neurons.
From here the network is split into two branches, each branch
taking the 30 neuron outputs and using a simple dense layer
with 2 neurons followed by a soft-max to aid the conversion
from network prediction result to robot control instructions.
These outputs encode turning left or right and forwards or
stop on the two branches respectively.

6.2 Network training

The network is initially trained using a labelled dataset we
developed by simulating corridor environments in Robot
Operating System (ROS) and Gazebo. Images are collected
at various points within the simulated corridor maze, and the
corridor walls vary in texture to allow the network to learn
different features. Each captured image is divided and scaled
into 4 256 x 256 sample images which are then labelled with
one or more appropriate actions that the robot should take
when they observe this part of the scene: go left, right, for-


http://cain.edstow.co.uk

Autonomous Robots (2022) 46:893-910

905

Pixel Processor

>

N N \

W T e e 0o®
W o5 45t + @

(b) Left (¢) Right

Fig.5 a AnalogNavNet: Convolutions are executed on the focal-plane,
and the fully-connected layers on the onboard micro-controller. b—e
Labelled images from the simulation dataset rendered using Gazebo

Table3 Convolutional kernels of AnalogNavNet, produced by training
the network, along with the length of code to compute them for SCAMP-
5 as produced by Cain

Name Kernel Code Length

(43 47
164
(144
1107
211 10
[101]
1227
030 9
1033
1327
443 14
[413]

034
.x|210 24
702

Convl

ool—

Conv2 channel 1

ool —

Conv2 channel 2

ool—

Conv3

00—

wards, and stop (see Fig. 5b—e). The 4 labels, split into the
2 branches of the network, are trained using binary cross-
entropy to predict the appropriate actions. For validation data
the textures in the simulation are changed and another set of
samples produced for a total of ~ 61,000 simulated training
samples and ~ 35,000 simulated validation samples.
During this initial training the fully-connected layer has
200 neurons, once trained and validated using the simulated

RelLU RelU RelU

Onboard Microprocessor

FC1
I:I Softmax I:I
Dense(2) [L,R]
o FC2
& Softmax
o ] (.
*
\z\a\\e“ Dense(2) [S,B] Qo°

(e) Brake

(d) Straight

in a custom corridor environment. Left label translates to a right turn,
Right label to a left turn, Straight label translates to move forward, and
Brake is to stop the robot

environment the convolutional weights are frozen and the
fully-connected layer is reset and reduced to final 30 neurons.
The model is then retrained and achieves a validation accu-
racy of 96.36% for the Left or Right branch, and 79.6% for
moving Forward or Stop branch. The network is then tested
in a simulated environment using Cain to produce SCAMP-5
instructions for the convolutional kernels. A SCAMP-5 simu-
lator running in ROS is used to ensure the behaviour is correct
and the quantisation errors introduced by the multiply-free
computation do not severely impact the model’s perfor-
mance.

With the first two convolution layer still frozen the net-
work is further trained on a smaller ‘real-world’ dataset with
19,733 training samples and 9297 validation samples. Freez-
ing the weights ensures that they do not converge into smaller
values that are likely to exacerbate quantisation errors. The
real-world data is made up of images of corridors all from the
same building with the same pre-processing and labelling as
before. The model achieves a validation accuracy of 93.8%
for the Left or Right branch, and 78.9% for moving Forward
or Stop branch.

Table 3 provides the approximated kernels compiled by
Cain, along with the code lengths obtained as a reference for
Cain’s performance in a real-world example.

A second dataset was also collected for the race-track envi-
ronment. The training process followed the same structure as

@ Springer



906

Autonomous Robots (2022) 46:893-910

(a) Corridor navigation

—— FPS=80 —— FPS=60 —— FPS=40

—— FPS=20

(b) Track navigation

Failure (FPS=60) ¢ Failure (FPS = 40) 2 Failure (FPS = 20)

Fig.6 a Trajectory in a corridor environment. b Trajectory in a track environment

the previous, with the only difference being is that the camera
view had to be lowered in order to capture the track edges.

6.3 Network performance at different FPS

Two simulated experiments were performed to evaluate the
performance of the network and robot at different FPS.
For two environments, an octagonal corridor and a track,
a network is trained as described in Sect. 6.2 up to the
point preceding real-world samples. For each environment
a TurtleBot3 Waffle Pi is implemented with the full-floating
point precision network to autonomously navigate through
the corridor at speed of 0.8m/s, and the track at 0.7m/s. The
robot is simulated to process the environment at 80, 60, 40,
and 20 FPS while the trajectories are recorded (see Fig. 6a
and b). Trajectories of various FPS are plotted in solid lines in
different colours and each cross represents a crash occurred
during navigation. When the robot hits obstacles due to a
lack of timely updates to the speed controller, the robot is
manually driven away from the obstacles, moved back to a
position before crashing happened, and set to continue navi-
gating. This process was repeated for these failures until the
robot completed one full lap or 8 crashes. With increasing
FPS, the trajectory of the robot becomes smoother, resulting
in fewer crashes during the navigation along the corridor and
track.

6.4 Robot evaluation

In order to evaluate the robotic navigation, the Jetson Nano
was mounted to a differential drive chassis (Fig. 7) and run
in a straight corridor of approximately 25m to test if it col-
lides with the walls. Since the two motors are not identical,

@ Springer

Fig. 7 a SCAMP-5 mounted for track experiment. b SCAMP-5
mounted for corridor experiment

there is always a slight left or right deviation, which the PID
controller corrects using the outputs of the network. If the
robot collides with the wall or starts travelling in the oppo-
site direction, the run is considered a failure. The experiment
was run total of 20 times for each hardware option, Table 4
shows the percentage of successful runs. For fair compar-
isons, the specification of the lens on the SCAMP-5, and
a webcam used for the CPU, GPU, VPU are kept similar.
The angle of view of the lens on SCAMP-5 is 56.3 x 43.7
degrees; whereas, the field of view of the lens on the web-
cam is 54 x 41 degrees. Since the quantised weights are only
a restriction for the SCAMP-5, the other processors use the
full-floating point precision that the network was trained for.

On comparing the results of the same network running on
a CPU, GPU, VPU, and the SCAMP-5 we find that the CPU
performed poorly as the lower frame rate prevented early
enough updates of the PID values, resulting in corrections
happening too late. The GPU and VPU have very similar



Autonomous Robots (2022) 46:893-910

907

Table 4 Robotic navigation success rate on different devices

Hardware Navigation success Kernel resolution
SCAMP-5 85% 3 Binary Places
VPU 80% Full-Floating Point
GPU 85% Full-Floating Point
CPU 60% Full-Floating Point

The navigation tests were run on environments different from the train-
ing dataset corridors

Table 5 Per-frame computation time in milli-seconds, for Analog-
NavNet architecture

Hardware Inference time [ms] FPS
SCAMP-5 11.76 85
VPU 22.72 31
GPU 26.26 28
CPU 49.84 17

For inference time, image data retrieval time is excluded for CPU, GPU,
and VPU, while it effectively is zero for SCAMP-5

results, although the VPU results were subject to a systemic
disadvantage caused by the physical mounting of the device.

6.5 Inference Time

For each of the SCAMP-5, VPU, CPU, and GPU, inference
time was calculated by measuring the average over 5000
frames of per-frame computation time incurred on each sys-
tem using their respective system utilities. Table 5 shows the
recorded per-frame computation time excluding the cost of
capturing and retrieving the image data from the camera for
computation on the CPU, GPU and VPU. To achieve this, we
subtracted 10ms from their inference times, corresponding to
the average time it takes to capture a frame from the external
camera and transfer it to the Jetson Nano. Despite this, the
SCAMP-5 is ~ 2 x faster than the VPU and GPU. These fig-
ures include the total time for inference; both convolutional
part as well as the fully connected part, and the transfer of
the features from the focal-place to the micro-controller in
the case of SCAMP-5.

In practice, this data shows that not only are FPSPs effec-
tive at reducing the data retrieval bottleneck, but they enable
lower latency computation regardless of data transfer rates.
The FPSP does not suffer from this bottleneck as the image
is processed directly in place at the pixel level. This shows
the advantage of realising most of the computation directly
on the focal-plane in an analogue manner; the image retrieval
latency is simply reduced to zero.

6.6 Energy consumption

Per-frame energy consumption was determined by measuring
the power drawn by each device divided by the recorded FPS.
The power drawn by the GPU and CPU were measured using
JetsonStats, and a USB power meter was used for the VPU
and SCAMP-5. The SCAMP-5 power measurement includes
the image sensor and focal-plane processing, while the CPU,
GPU and VPU inference results do not account for the energy
consumption required for image capture and transfer. Table 6
shows the power and energy draw of the system. In order to
calculate the total energy used during inference, For the VPU
and SCAMP-5, the Jetson Nano’s power during inference,
approximately 2.97 Watts, and the inference power by their
respective devices, is divided by the recorded FPS. For the
CPU and GPU, Jetson Nano’s power during the inference is
used, and is divided by the FPS. Both VPU and SCAMP-
5 uses far less power and energy during inference than the
GPU and CPU. As SCAMP-5 is a prototype device, there is
no idle-mode for the device, so it is running as soon as the
deviceis plugged in, but as the inference time of the SCAMP-
5 is much faster than the VPU, the total energy per frame is
better than a low-power VPU. Comparing SCAMP-5 to the
rest of devices, the inference energy per frame consumption
is approximately 42% of VPU, 15% of GPU and 8% of CPU.
Although the inference power of VPU is slightly lower than
SCAMP-5 by 0.69 W, SCAMP-5 has a large advantage on
FPS that means the extra power cost is insignificant in terms
of general performance.

6.7 Discussion

AnalogNavNet successfully proves the viability of Cain for
compiling convolutional kernels used in basic navigation and
obstacle avoidance. The models produced perform in the real
world, but there are significant limitations present. While the
SCAMP-5 is able to run the network at a much faster FPS
than CPU, GPU and VPU, the network had to be modified
in order to be accommodated, leading to loss in precision.
Significantly deeper networks could not be implemented via
this method due to the noise introduced by each operation. If
more registers were available, larger networks could fit inside
the system, but an increase in registers would also lead to an
increase in energy cost, which is a trade-off with limited
utility given the noise constraints. A faster onboard micro-
processor would allow for faster dense layer operations, a
proposition that would be easily possible in a commercial
setting. One of the limiting factors in the real-world experi-
ments is the physical limitation of the robot itself; the chassis
is front-heavy and higher speeds lead to a constant wobble
which adversely affects navigation and is not accounted for
in the training process.

@ Springer



908

Autonomous Robots (2022) 46:893-910

Table 6 Power consumption at

idle and during inference for Hardware Idle power[W] Inference power[W] Inference energy per frame[mJ]
each of the systems tested, and Nano+SCAMP-5 3.92 5.01 58.94
energy per-frame based on the
inference power and recorded Nano+VPU 3.00 4.32 1394
FPS Nano using GPU 2.31 11.37 406.07
Nano using CPU 2.31 12.16 715.29

SCAMP-5 has noidle state as it is a prototype device so its idle-power is equivalent to sending nop instructions.
The Nano power does not include power drawn by the camera

7 Conclusion

We have presented Cain, acompiler which produces SCAMP-
5 instructions from a set of convolutional kernels. Although
the effectiveness of simultaneous kernel optimisation is
limited on the current iteration of the SCAMP-5, we demon-
strate, that with the increased number of registers, the length
of the output of Cain is sub-linear to the number of ker-
nels given. We have conducted extensive comparison against
AUKE, and we demonstrate that the code generated by Cain
is more efficient, and exhibits almost 4x speed up when the
generated kernel is executed on the SCAMP-5 device.

We have presented an end-to-end working example of
robotic navigation using SCAMP-5 based on our Analog-
NavNet model. We have evaluated the performance and
energy efficiency of AnalogNavNet running on 4 types of
processor and found that SCAMP-5 is significantly faster
and uses less energy per-frame than the alternatives. We have
presented compelling evidence that FPSPs are a promising
technology for edge computation, and by providing easy to
use, yet efficient code generation toolkit, we hope to accel-
erate the relevant research in this field.

Acknowledgements We would like to thank Piotr Dudek, Stephen J.
Carey, and Jianing Chen at the University of Manchester for kindly
providing access to SCAMP-5, and their support in our work. This
work was partially supported by the Engineering and Physical Sciences
Research Council (EPSRC), Grant reference EP/P010040/1

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Irving, G., Isard, M., & Kudlur, M. (2016).
Tensorflow: A system for large-scale machine learning. In /2th
USENIX symposium on operating systems design and implemen-
tation OSDI 16), (pp. 265-283).

Barthels, H., Psarras, C., & Bientinesi, P. (2019). Linnea: Automatic
generation of efficient linear algebra programs. arXiv:1912.12924.

Bose, L., Chen, J., Carey, S. J., Dudek, P., & Mayol-Cuevas, W. (2017).
Visual odometry for pixel processor arrays. In 2017 IEEE interna-
tional conference on computer vision (ICCV), (pp. 4614-4622).

Bose, L., Chen, J., Carey, S. J., Dudek, P., & Mayol-Cuevas, W. (2019).
A camera that CNNs: Towards embedded neural networks on pixel
processor arrays. In Proceedings of the IEEE international con-
ference on computer vision (ICCV), (pp. 1335-1344).

Carey, S. J., Barr, D. R. W., Wang, B., Lopich, A., & Dudek, P. (2012).
Locating high speed multiple objects using a scamp-5 vision-chip.
In 2012 13th international workshop on cellular nanoscale net-
works and their applications, (pp. 1-2).

Carey, S.J., Lopich, A., Barr, D. R. W., Wang, B., & Dudek, P. (2013). A
100,000 fps vision sensor with embedded 535GOPS/W 256 x 256
SIMD processor array. In 2013 symposium on VLSI circuits, (pp.
C182-C1830).

Chandra, A., & Chattopadhyay, S. (2016). Design of hardware efficient
fir filter: A review of the state-of-the-art approaches. Engineering
Science and Technology, an International Journal, 19(1),212-226.

Chen, J. (2020). scamp5 kernel api macro analog.hpp file reference.
https://scamp.gitlab.io/scamp5d_doc/.

Chen, J., Liu, Y., Carey, S. J., & Dudek, P. (2020). Proximity esti-
mation using vision features computed on sensor. In 2020 IEEE
international conference on robotics and automation (ICRA), (pp.
2689-2695).

Chen, Y. H., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE Journal of Solid-state Circuits, 52(1), 127—
138.

Debrunner, T., Saeedi, S., Bose, L., Davison, A. J., & Kelly, P. H.
J. (2019a). Camera Tracking on Focal-Plane Sensor-Processor
Arrays.

Debrunner, T., Saeedi, S., & Kelly, P. H. J. (2019b). AUKE: Auto-
matic kernel code generation for an analogue SIMD focal-plane
sensor-processor array. ACM Transactions on Architecture and
Code Optimization 15(4).

Giusti, A., Guzzi, J., Ciresan, D. C., He, F. L., Rodriguez, J. P., Fontana,
F., Faessler, M., Forster, C., Schmidhuber, J., Caro, G. D., Scara-
muzza, D., & Gambardella, L. M. (2016). A Machine Learning
Approach to Visual Perception of Forest Trails for Mobile Robots.
IEEE Robotics and Automation Letters, 1(2), 661-667.

Greatwood, C., Bose, L., Richardson, T., Mayol-Cuevas, W., Clarke, R.,
Chen, J., & Carey, S. (2019). Towards drone racing with a pixel
processor array. In / Ith international micro air vehicle competition
and conference (IMAV), (pp. 76-82).


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.12924
https://scamp.gitlab.io/scamp5d_doc/

Autonomous Robots (2022) 46:893-910

909

Guillard, B. (2019). Cnns-on-fpsps. https://github.com/brouwa/CNNs-
on-FPSPs/tree/c6b5c51839¢9e3c45368 1e5b0a3e3ef54 1ba3cce.

Kim, D. K., & Chen, T. (2015). Deep neural network for real-time
autonomous indoor navigation. arXiv:1511.04668.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278-2324.

Liu, Y., Bose, L., Chen, J., Carey, S., Dudek, P., & Mayol-Cuevas, W.
(2020). High-speed light-weight cnn inference via strided convo-
lutions on a pixel processor array. In British machine vision virtual
conference 2020.

Liu, Y., Bose, L., Greatwood, C., Chen, J., Fan, R., Richardson, T.,
Carey, S. J., Dudek, P., & Mayol-Cuevas, W. (2021). Agile reac-
tive navigation for a non-holonomic mobile robot using a pixel
processor array. [ET Image Processing, 15(9), 1883-1892.

Liu, Y., Chen, J., Bose, L., Dudek, P, & Mayol-Cuevas, W.
(2021b). Bringing a robot simulator to the scamp vision system.
arXiv:2105.10479.

Loquercio, A., Maqueda, A. 1., Del-Blanco, C. R., & Scaramuzza, D.
(2018). DroNet: Learning to Fly by Driving. IEEE Robotics and
Automation Letters, 3(2), 1088—-1095.

Martel, J. (2019). Unconventional processing with unconventional
visual sensing. PhD thesis, Institut National des Sciences
Appliquées de Lyon.

Martel, J. N. P, Miiller, L. K., Carey, S. J., Dudek, P., & Wetzstein, G.
(2020). Neural sensors: Learning pixel exposures for HDR imag-
ing and video compressive sensing with programmable sensors.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(7), 1642-1653.

Murai, R., Saeedi, S., & Kelly, P. H. J. (2020). BIT-VO: Visual Odom-
etry at 300 FPS using Binary Features from the Focal Plane. In
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS).

Saeedi, S., Bodin, B., Wagstaff, H., et al. (2018). Navigating the land-
scape for real-time localization and mapping for robotics and
virtual and augmented reality. Proceedings of the IEEE, 106(11),
2020-2039.

Stow, E. (2020). Automatic code generation for simultaneous con-
volutional kernels on cellular processor arrays. Master’s thesis,
Imperial College London.

Stow, E., Murai, R., Saeedi, S., & Kelly, P. H. J. (2022). Cain: Auto-
matic code generation for simultaneous convolutional kernels on
focal-plane sensor-processors. In B. Chapman & J. Moreira (Eds.),
Languages and compilers for parallel computing (pp. 181-197).
Cham: Springer International Publishing.

Wong, M. Z., Guillard, B., Murai, R., Saeedi, S., & Kelly, P. H. J. (2020).
AnalogNet: convolutional neural network inference on analog
focal plane sensor processors. arXiv preprint arXiv:2006.01765.

XIMEA. (2021). xiB - PCI Express Cameras with high speed and reso-
lution. https://www.ximea.com/pci-express-camera/pci-express-
camera.

Zaréndy, A. (2011). Focal-Plane Sensor-Processor Chips. Springer-
Link: Biicher, Springer, New York.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

E. Stow is a PhD Student in
the Software Performance Opti-
misation Group at Imperial Col-
lege London, having completed a
M.Eng degree in Computing at
Imperial College in 2020.

A. Ahsan is a student at the
Department of Electrical and
Computer Engineering, Toronto
Metropolitan University. He is a
member of Robotics and Com-
puter Vision Lab at Toronto
Metropolitan ~ University.  His
research interests include robotics,
computer vision, and unconven-
tional vision sensors.

Y. Li is a student at the Depart-
ment of Mechanical and Industrial
Engineering, Toronto Metropoli-
tan University. He is a member
of Robotics and Computer Vision
Lab at Toronto Metropolitan Uni-
versity. His research interests include
mechatronics, computer vision, and
vision sensors.

A. Babaei is a master’s student
in the Department of Mechani-
cal and Industrial Engineering at
Toronto Metropolitan University.
His research interests include
computer vision and robotics, par-
ticularly perception in vision-aided
navigation. His current research
focuses on human-computer inter-
action and robotic navigation using
FPSP.

@ Springer


https://github.com/brouwa/CNNs-on-FPSPs/tree/c6b5c51839e9e3c453681e5b0a3e3ef541ba3cce
https://github.com/brouwa/CNNs-on-FPSPs/tree/c6b5c51839e9e3c453681e5b0a3e3ef541ba3cce
http://arxiv.org/abs/1511.04668
http://arxiv.org/abs/2105.10479
http://arxiv.org/abs/2006.01765
https://www.ximea.com/pci-express-camera/pci-express-camera
https://www.ximea.com/pci-express-camera/pci-express-camera

910

Autonomous Robots (2022) 46:893-910

R. Murai received M.Eng in Com-
puting in 2019 from the Imperial
College London. He is currently
a PhD student in the Department
of Computing at Imperial Col-
lege London. His research inter-
ests include robotics and com-
puter vision. In particular, the use
of novel hardware and distributed
computations.

S.Saeediis an Assistant Professor
at Toronto Metropolitan Univer-
sity. He received his PhD in Elec-
trical and Computer Engineering
from the University of New
Brunswick, Fredericton Canada.
He is currently working on seman-
tic perception, bringing deep
learning advances to robotic sys-
tems. His research interests span
over simultaneous localization and
mapping (SLAM), focal-plane
sensor-processor arrays (FPSP),
collaborative robotic ~ systems,
ground/aerial/marine robotics, and

artificial intelligence and its applications in computer vision, robotics,

and control systems.

@ Springer

P. H. J. Kelly has been on the fac-
ulty at Imperial College London
since 1989, has a BSc in Com-
puter Science from UCL (1983)
and has a PhD in Computer Sci-
ence from the University of Lon-
don (1987). He leads Imperial’s
Software Performance Optimisa-
tion research group, working on
domain-specific compiler technol-
ogy.



	Compiling CNNs with Cain: focal-plane processing for robot navigation
	Abstract
	1 Introduction
	2 BACKGROUND: SCAMP-5 Focal-plane sensor-processor
	3 Related work
	3.1 Convolutions on SCAMP-5
	3.2 Robotic navigation

	4 Cain
	4.1 Definitions
	4.2 Search strategy
	4.3 Cost function

	5 Evaluation
	5.1 Performance evaluation against AUKE
	5.2 Effectiveness of the search strategy
	5.3 Effectiveness of the simultaneous Kernel optimisation

	6 AnalogNavNet
	6.1 Network architecture
	6.2 Network training
	6.3 Network performance at different FPS
	6.4 Robot evaluation
	6.5 Inference Time
	6.6 Energy consumption
	6.7 Discussion

	7 Conclusion
	Acknowledgements
	References




