
1

Context-Aware System Synthesis, Task Assignment,
and Routing

Jason Ziglar, Student Member, IEEE, Ryan Williams, Member, IEEE, Alfred Wicks

Abstract—The design and organization of complex robotic
systems traditionally requires laborious trial-and-error processes
to ensure both hardware and software components are correctly
connected with the resources necessary for computation. This
paper presents a novel generalization of the quadratic assign-
ment and routing problem, introducing formalisms for selecting
components and interconnections to synthesize a complete system
capable of providing some user-defined functionality. By intro-
ducing mission context, functional requirements, and modularity
directly into the assignment problem, we derive a solution where
components are automatically selected and then organized into
an optimal hardware and software interconnection structure, all
while respecting restrictions on component viability and required
functionality. The ability to generate complete functional systems
directly from individual components reduces manual design
effort by allowing for a guided exploration of the design space.
Additionally, our formulation increases resiliency by quantifying
resource margins and enabling adaptation of system structure in
response to changing environments, hardware or software failure.
The proposed formulation is cast as an integer linear program
which is provably NP-hard. Two case studies are developed
and analyzed to highlight the expressiveness and complexity
of problems that can be addressed by this approach: the first
explores the iterative development of a ground-based search-and-
rescue robot in a variety of mission contexts, while the second
explores the large-scale, complex design of a humanoid disaster
robot for the DARPA Robotics Challenge. Numerical simulations
quantify real world performance and demonstrate tractable time
complexity for the scale of problems encountered in many modern
robotic systems.

Index Terms—Resource Allocation, Distributed Robot Systems,
Networked Robots, AI Reasoning Methods

I. INTRODUCTION

W ITH the popularity of modular robotic software infras-
tructures such as the Robot Operating System (ROS),

the Robot Construction Kit (ROCK), Yet Another Robot Plat-
form (YARP), etc., building novel robotic systems can involve
not only developing new hardware and software to generate
desired functionality, but also effectively re-using third party
development. The availability of multiple components capable
of solving a particular technical challenge requires a developer
to understand not only what a component nominally provides,
but also the context in which a component can correctly
operate, and which resources are required for operation. As the
demand for increasingly complex robotic systems grows, the
knowledge of prospective developers must grow exponentially
due to the potential interconnections between components and
the large range of concerns to track through development. The
ecosystem of available software packages eliminates the need
for researchers to implement all functionality de novo; instead,

knowledge of common taxonomies for a given problem, avail-
able solutions, and software/hardware requirements helps in
solving complex design problems. While reusability reduces
development effort, it also introduces a logistical and domain
knowledge problem, which can particularly challenge newer
researchers discovering an unfamiliar body of knowledge. For
instance, in the DARPA Robotics Challenge, teams had the
option to use open-source software packages to address topics
such as hardware interfacing, walking, localization, obstacle
detection, footstep planning, manipulation planning, behavior
planning, and user interfaces [1]–[5]. No team deployed a
robot using only freely available packages, with many teams
instead mixing pre-existing packages with novel research
efforts to address competition challenges. A hypothetical team
of newcomers attempting to participate would have to survey
all necessary problem areas in order to consider available pack-
ages, determine their functionality, understand the underlying
assumptions, estimate the resources required, and map out
how they may integrate with the rest of a possible design,
all before deciding whether to use off-the-shelf packages or
attempt novel development. Such an analysis would provide
information about potential components, but it would not
solve the actual challenges in selecting or integrating compo-
nents into a complete system. The complexity of the space
of system designs means these surveys generally focus on
qualitative analysis (e.g. whether a component appears to work
in a particular context) or empirical evaluation in a largely
complete design (e.g. testing if a component works “well
enough” within a system). In developing novel systems, this
may lead to expending available resources primarily on local
improvements or research goals, minimizing the exploration
of the design space, let alone rigorously defining the design
space to provide a complete definition of optimality.

Selecting components to provide some high-level function-
ality covers only one aspect of producing a functional system.
Indeed, in producing a complete system a designer must often
consider the following issues: (1) components must function
correctly in the environment in which a robot operates; (2)
hardware must be selected to provide sensing, actuation, and
computational resources; (3) software must be assigned the
necessary resources; and (4) data must be routed through
communication networks without exceeding bandwidth limits.
Currently, these tasks are performed largely through manual
effort, making complex system design a slow, brittle process.
For example, works describing the robots developed in the
DARPA Robotics Challenge often include descriptions of the
reasoning and testing involved in these manual designs [6], [7],
produced over years of effort by large teams. The complex

ar
X

iv
:1

70
6.

04
58

0v
2 

 [
cs

.R
O

] 
 2

5 
A

ug
 2

01
7



2

and time-consuming nature of this process typically results
in relatively little exploration of the design space, yielding
decisions based on expert knowledge and trial-and-error, as
opposed to mathematically grounded optimization.

This work introduces a method for automatically construct-
ing optimal robotic hardware and software systems from a
set of available components, based on a generalization of the
quadratic assignment and routing problem. Our formulation
provides a unified framework for enabling a wide array of
capabilities in the design, development, and operation of robot
systems. For design-time operation, our formulation automates
the process of selecting components to build a complete
system with some user-defined functionality, as well as gen-
erating the structure that relates all elements (e.g., connecting
hardware, assigning tasks, and routing communications). By
automating this stage, designs can be made more quickly and
with more confidence in the validity of a given solution, since
the entire problem is solved simultaneously. This also enables
more robust consideration of system resiliency in design, since
the impact of small changes in component parameterization
(e.g., how much computing resources a particular task needs,
the size of a particular message, the cost of using a particular
sensor, etc.) can immediately be propagated to the global
system design. Furthermore, by fully automating the entire
process, system resiliency can be extended by solving the
design problem in an online setting, through the same process
of generating optimal solutions in response to local changes.
As examples, changes in the environmental context (e.g.,
transitioning from indoor to outdoor operation) can require dif-
ferent capabilities (e.g., using GPS for localization), changes in
software performance (e.g., a task consuming more resources
than anticipated) and changes in hardware components (e.g.,
computer failure) can require a reallocation of software tasks
through the system. The ability to automatically synthesize
a novel system capturing these requirements will allow for
complex robotic systems that are more efficient and resilient
by design.

The main contributions leading to the described formulation
are as follows:

1) A formal abstraction defining hardware and software
groups providing functional capability, which addresses
variability in functional decomposition present in state-
of-the-art robotic research. It also enables reasoning
about a consistent scale of functional definitions, regard-
less of implementation details.

2) A representation of environmental and contextual re-
quirements for components, yielding systemic and func-
tional requirements that remain constant irrespective of
operational context. Contextual requirements for tasks
ensure that system synthesis respects the underlying
assumptions present in engineered subsystems.

3) A novel set of optimization constraints that capture the
structure of both hardware and software composing a
robotic system. These constraints unify the synthesis of
system structure with assignment and routing, resulting
in a tool for understanding how changes at any scale
impact an overall system. This can serve to operate as a
design-time tool for developing novel robots, as a run-

time tool for reconfiguring a system in response to a
change in environment, or as a failure response to rebuild
a system in case of component failures.

Two case studies demonstrate the generality and applicabil-
ity of this approach to a wide range of problems, including
heavily-engineered robots. The first case study involves the
synthesis of a large number of robotic variants for a search-
and-rescue robot operating in a variety of mission contexts,
demonstrating the capability of our approach to automate
significant portions of an iterative design process. The second
case study demonstrates the performance of the proposed
approach in synthesizing state-of-the-art robots through the
design of ESCHER, a humanoid robot that was manually
designed for the DARPA Robotics Challenge. The synthesized
variant can be benchmarked both from the time required to
produce a complete solution, as well as by comparing the
resulting design against the manually developed one deployed
for the competition. These case studies demonstrate several
useful features inherent in our approach, such as automatic
dependency resolution, adaptation in response to dynamic
mission contexts, and encoding complex realities in mission
requirements.

II. RELATED WORK

System synthesis is a unified problem capable of addressing
several related but traditionally disparate sub-problems. At the
application level, the management and assignment of software
processes within a robotic system is required, which can be
considered a systems engineering problem. At the same time,
the assignment of software to hardware and the routing of
communication can be formalized as an assignment problem.
This provides a method for automatically determining good
mappings between a set of tasks and workers, with many
useful extensions and generalizations for capturing important
details about tasks, workers, and assignments. At a larger
scale, the process of assigning jobs to workers can be applied
to multi-robot problems, which requires the consideration of
dynamic environments, complex interactions between tasks
and workers, and constraints due to the physical embedding of
task assignments in a team of robots. There exists some work
in defining and automating aspects of robot design as well,
which are useful in demonstrating the complexity of defining
design problems to be amenable to automated approaches.

A. Software Infrastructures and Reconfiguration

Many robotic middleware frameworks include tools to
address the run-time aspects inherent in deploying robotic
systems. The Robot Operating System [5] provides tools
for specifying system configuration, including the assignment
of tasks to multiple computers. This approach involves the
operational aspects of managing a complex multi-process
software system, easing lifecycle management for systems
distributed across a computer network. However, this does
not provide mechanisms for validating the resulting software
organization, leaving the process of assignment and validation
to human operators. Message routing remains unstated, due
to the middleware automatically selecting routes based on the



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 3

network topology. Any non-computer hardware devices are
also unspecified, since these do not directly impact the startup
and teardown procedures. Our proposed formulation instead
builds a more general problem, in which system structure is
synthesized in parallel with the resource assignment repre-
sented in these middleware tools.

Model-based representations such as the one implemented
in the Robot Construction Kit [8] can specify the requirements
and capabilities of system components, enabling validation
of a set of tasks representing a consistent system. Modular-
izing the system specification introduces encapsulation and
information hiding, commonly exploited for re-use and object
oriented systems. The models also enforce system require-
ments as additional components are introduced during system
execution. These features ease the incremental composition of
the software system; however the selection of modules and
ensuring the necessary resources are available for operation
remain in the realm of human experts.

The most comprehensive treatment of resource allocation
and system validation exists in YARP [9]. YARP includes
device descriptions for ensuring access to specific components
such as sensors or specialized computing elements. Tasks can
specify resource needs for operating on individual computers,
and includes the ability to load balance between computers.
The ability to dynamically assign tasks to computers increases
flexibility in development and maintenance of a robot as
hardware and software evolves. However, load balancing is
performed through a round robin assignment process for
tasks without specific hardware access requirements, without
considering limits on computational resources or bandwidth.
No guarantee is placed upon the ability to execute, let alone
execute in an optimal fashion; instead, the assumption that
computational hardware significantly exceeds requirements
serves to allow this approach to function.

A few proposed software infrastructures have focused on
supporting online reconfiguration, which must reason about
complete systems. Port-based automatons [10]–[12] provide
a framework for reconfiguring software systems for FPGA-
based systems in response to online performance metrics. This
approach can add, remove, or replace software components
while respecting computational limitations, since software
can be directly mapped to hardware, but sacrifices more
complex constraints such as bandwidth limits or parallel
software pipelines (e.g. multiple components using the same
data to perform different operations). Other work provides
frameworks for expressing higher level models of software
components, allowing solutions to be reconfigured or replaced
while maintaining synchronization between tasks [13]. These
works do not provide for components that represent different
decompositions of a set of functional capabilities to be used
interchangeably, as we achieve in this work.

B. Assignment Problems
The theory of combinatorics for task assignment problems

has been extensively researched due to applicability in a wide
array of domains [14]. Many extensions and variations of the
assignment problem exist to capture details of particular appli-
cations, starting with the quadratic assignment problem, which

introduces flow between assigned tasks [15]. The generalized
assignment problem covers assigning multiple tasks to individ-
ual agents with budget constraints, allowing varying costs for
a given task between different agents [16]. The vector packing
problem (or multi-resource extension) represents resources
as vectors containing distinct types, capable of representing
resource requirements for tasks on complex computers [17].
Routing data through a computer network introduces a second
family of problems known as multi-commodity flow prob-
lems [18], embedding additional complexity into the overall
problem. Most robotic software infrastructures encode trans-
ferring data between tasks as an unsplittable flow problem,
an assumption which is preserved in our approach. These
qualities can be combined into a single problem, resulting in
a multi-resource quadratic assignment and routing problem
(MRQARP), which captures the case where software and
hardware graphs must be specified as inputs [19]. MRQARP
aims to find the optimal mapping from a given software
graph to a hardware graph of computational elements, with
the structure of these graphs defined as inputs. Since graph
structure is not included in the problem formulation, functional
components are not explicitly defined, and the optimization
cannot reason over alternatives for a particular element.

C. Multi-Robot Task Assignment

Task allocation also represents a fundamental building block
for collaborative multi-robot systems. In order to achieve high-
level autonomous goals and cope with dynamic environments,
task allocation models and optimization methods are required
that are efficient, scalable, and expressive. Otherwise, alloca-
tion plans for multi-robot teams may be intractable or lack
sufficient mission complexity. Over the years, a great amount
of research has been carried out in the task allocation area
within the robotics community. Relevant examples include the
sequential auction methods [20]–[23], each solving a variation
of the linear assignment problem with provable suboptimality,
market-based works [24]–[26] which achieve near-optimal
guarantees, combinatoric-based optimization [27], and [28],
which provides an early example of abstract task independence
through boolean-type relations. System synthesis has been
demonstrated in multi-robot scenarios [Ziglar2017MRS] with
the presented approach, quantifying the impact of different
modularization schemes in component inputs, while this work
provides the full formulation and analysis of the general
problem. It is also important to point out taxonomies that
have been performed in task allocation, such as [29] and more
recently [30], which provide a far deeper literature survey. The
formulation we present in this work can be exploited for multi-
robot system synthesis with a greater level of abstraction than
is seen in existing multi-robot assignment methods.

D. Automated Robot Design

Several approaches exist to rigorously define robotic de-
sign problems such that they can be automatically solved to
produce functional, complete, and viable systems. Defining
system design as a co-design problem, focusing on selecting
components to fulfill subsystem roles to produce optimal



4

designs in the presence of relationships between subsystems
provides one such rigorous approach [31]. Co-design allows
for reasoning over the complex interactions in the discrete
decisions present in developing complex systems based on
libraries of components, and provides an efficient approach
for solving these problems. This approach defines the relation-
ship between subsystems as part of the input for the design
problem, requiring manual definition of these relationships
which can become cumbersome when combinatoric relation-
ships exist (e.g. routing data between computers). Similarly,
tools exist which define the kinematic design of robots in
general fashions. Most similar to this work, [32] defines
the kinematic design as a set of discrete choices to define
a robot, representing the selection and interconnection of
various components. This approach provides for structure to
be understood as a combination of these discrete decisions
and a set of rules mapping to the real world (in this case,
the laws of motion), providing a framework which can rea-
son about system structure. However, this approach limits
the decision space to the kinematic configuration, and does
not provide a fully automated method for generating robots.
Another approach is to start with an initial kinematic design,
and define an optimization problem in terms of the same
laws of motion in optimizing the design [33]. Starting with
an initial design enables defining the design space as an
implicit function, enabling the optimization of both discrete
and continuous parameters of the kinematic design based on
desired functionality. The solution we derive in this work
provides greater flexibility in defining elements in terms of
potential interactions and limitations, then generates a greater
combinatoric expansion of possible designs when selecting an
optimal design, including the synthesis of novel structure for
organizing components.

III. THE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND
ROUTING PROBLEM

System synthesis is the problem of building a system
capable of executing a set of computational tasks with a user-
defined set of functionality. This problem is logically broken
down into three levels of abstraction: (1) task assignment
and routing; (2) structure synthesis; and (3) context-aware
functional modularity. Task assignment and routing addresses
selecting devices to execute tasks and enabling communication
between tasks by passing data through the network of devices.
This process is demonstrated by the colorization of elements in
Figure 1, with the colors indicating which hardware elements
support each software element. Structure synthesis includes
the selection and interconnection of hardware and software
elements as part of the overarching problem. This step only
considers synthesis from some set of available options, and
does not generate novel elements to introduce into the design;
unused elements are left out, as illustrated by elements in the
dark grey box in Figure 1. Finally, context-aware functional
modularity introduces a higher level abstraction for describing
functionality provided by elements, as well as the required
context for operation.

Operator 
GUI

Path 
Planner

LIDAR
Filter

Localization IMU
Interface

Controller
Interface

LIDAR
Interface

Path
Tracker

Camera
Interface

Router

Mobile
Base

IMU

LIDAR

Camera

CANbus

USB

RS-232

Assignments
Perception
Computer

Control
Computer
Operator 
Computer
Link 1
Link 2
Link 3

Legend

Link 1

Task

Operator
Computer

Control
Computer

Perception
Computer

Device

Connection

Unused Elements

2D SLAM Stereo
Cameras

ARM
Computer

Stereo
Interface

Obstacle
Mapper

Fig. 1. Example teleoperated robot for the system synthesis problem. The top
graph represents a generic software graph for this problem, while the bottom
graph represents a generic hardware graph.

v1 v2
e1

(a) Simple,
Undirected
Graph

v1 v2
e1

(b) Simple, Di-
rected Graph

v1 v2
e1

e2

(c) Multigraph

v1 v2
e1

e2

e3

(d)
Pseudograph

Fig. 2. Example graphs.

A. Task Assignment And Routing

In order to rigorously describe a complex robotic system,
we begin by defining a few basic concepts. A multiset is a
collection of I objects Ψ = {ψi | i = 1, . . . , I}, in which
a given object may occur more than once in the collection.
The indicator function 1ψi(Ψ) : Ψ → [1,∞) defines the
number of times an object ψi occurs in Ψ. A set is the special
case of a multiset in which every object occurs only once,
1ψi(Ψ) = 1 ∀ ψi ∈ Ψ. A graph G = (V,E) is defined by
a set of vertices V = {vi | i = 1, . . . , I}, and a multiset
of edges E = {ei = {vi, vj} | vi, vj ∈ V } which connect
pairs of vertices. The vertices participating in edge ei are
indexed in the form ei,n | n = 1, 2, also known as a loop if
ei,1 = ei,2. Restrictions on the set of edges E define several
important classes of graphs which will be used throughout
this paper: a simple graph possesses a set of edges E in
which no edge is a loop; a multigraph possesses a multiset
E with no loops; and a pseudograph possesses a multiset
E possibly with loops. Additionally, if the order of vertices
in edges is fixed, this defines a directed graph, otherwise a
graph may be referred to as an undirected graph. Figure 2
provides examples of each graph type to demonstrate their
fundamental differences. In this work, graph is used to describe
the case in which no assumptions are made about the nature
of the graph, with more specific terms used when additional
constraints hold true. Furthermore, in order to disambiguate
discussions between hardware and software graph elements,
hardware vertices and edges are referred to as devices and
connections, while software vertices and edges are referred to
as tasks and links.

Hardware and software elements form the basis from which
a system can be composed. Consider a system consisting of
two graphs representing the hardware and software aspects
of a system. The set Π = {πd | d = 1, . . . , D} defines
the D devices in the hardware graph, which provide com-
putational resources and connections to other devices. Each



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 5

Perception
Computer

Operator
Computer

⇡1⇡2
~r⇡1

~r⇡2

�1

�2 �3

b�1 = 1.25e8

b�2 = b�3 = 1.e10

Fig. 3. Simple example of a hardware pseudograph and relevant parameters.

device πd can provide computational resources for executing
tasks, although given the heterogeneous nature of devices,
not every device may provide every resource. The entire
system contains W possible resources, so for every device
πd, a vector ~rπd = 〈rπd,w | w = 1, . . . ,W ; rπd,w ∈
[0,∞)〉 defines the resources available on device πd. These
resources represent computational resources such as avail-
able processing power, RAM, disk storage, or logical ac-
cess to particular peripherals. The multiset of edges Γ =
{γk = {πu, πv} | k = 1, . . . ,K;πu, πv ∈ Π} define the con-
nections between devices which can support data transmission.
Note that this allows multiple connections between devices,
since devices can be connected to each other via differing
physical transports (e.g. both USB and ethernet) or various
forms of internal communication (e.g. shared memory or
a loopback interface). Connections provide finite bandwidth
for transmitting data, resulting in a set of bandwidth limits
B = {bγk | γk ∈ Γ; bγk ∈ [0,∞)}. The set of devices and
connections define the hardware pseudograph H = (Π,Γ),
which provides computational resources for executing tasks,
and connectivity for transferring data. To visualize how these
parameters relate to a hardware pseudograph, consider the
simple example in Figure 3, which demonstrates each of these
parameters with a subset of Figure 1.

In parallel to the hardware pseudograph, the set T =
{τp | p = 1, . . . , P} defines the P tasks in the software graph,
which perform the computational work. Tasks may consume
computational resources, process and publish data, and inter-
face with sensors and actuators, therefore a device is required
to provide these resources for task execution. The resources
required for a particular task may vary between devices, e.g.
due to hardware specialization, where the resources consumed
by a task τp executing on device πd is denoted by the vector
~c
τp
πd = 〈cτpπd,w | w = 1, . . . ,W ; c

τp
πd,w ∈ [0,∞]〉. The multiset

of L edges Λ = {λl = {τo, τi} | l = 1, . . . , L; τo, τi ∈
T, τo 6= τi} models the links that transmit data necessary
for operation, and the output of computation used by other
tasks. Unlike the hardware pseudograph, the edge multiset Λ
does not contain self-loops since tasks have internal access to
generated data. This restriction yields a software multigraph
defined as S = (T,Λ), an example of which is given in
Figure 4.

In order to define a complete computational system, there
must also exist a mapping αSH : S → H, which defines how
software executes on the specified hardware. A computational
system is defined in this work as R = {H,S, αSH}, a set
containing the hardware graph, software graph, and the assign-
ment mapping. An assignment variable ατpπd ∈ {0, 1} defines

LIDAR
Filter

LIDAR
Interface ⌧1

⌧2

�1

LIDAR
Filter

�2

⌧3

~c ⌧1⇡1

~c ⌧1⇡2
~c ⌧2⇡2

~c ⌧2⇡1

~c ⌧3⇡1
~c ⌧3⇡2

Fig. 4. Simple example of a software multigraph and relevant parameters.

whether task τp executes on device πd. Assignments must be
binary and atomic, meaning a task τp executes on one and
only one device πd ∈ Π, as represented in Equation 1b. The
consumption of computational resources by tasks cannot over-
allocate device budgets, resulting in Equation 1d. In addition
to tasks consuming computational resources, transmitting data
between tasks consumes bandwidth on hardware connections.
The transfer of data between two connected tasks consumes
bandwidth traversing a connection, with link λl consuming
cλlγk worth of bandwidth over connection γk. The amount of
bandwidth consumed can vary due to the differences in con-
nections (e.g., packetized network overhead, requirements on
data representations, etc.), requiring the bandwidth utilization
to take the connection γk into account as well. A link λl may
be assigned to transmit over a connection γk, denoted by the
variable αλlγk ∈ {0, 1}, which consumes the specified amount
of bandwidth cλlγk . Equation 1e ensures that the assignment of
links to connections respects the bandwidth limits specified
previously. Tasks may be assigned to devices not directly
connected to one another, requiring data routing along multiple
connections. Multi-hop paths require routing data along a
connected path between the devices assigned to each task.
Equation 1c ensures these properties for all routes with a flow
constraint stating that for any device interacting with a link, it
must have either an odd number of connections and assigned
to the relevant device (e.g., a source or sink) or an even
number of connections transmitting the data (e.g., uninvolved
or flowing through). This logic is formulated on a per-link
basis to ensure a linear constraint, and is visualized in Figure 5,
where γk,· and λl,· represent the indexed element (device or
task) participating in the edge, and E(·) represents the edges
adjacent to a given element. The constraints described to this
point are analogous to those in the multi-resource quadratic
routing and assignment problem [19]. However, we point out
that we have reformulated the problem in a graph-theoretic
manner to allow later for optimizing the hardware and software
graph structures. Next, consider two functions (either linear
or quadratic), fexec : (Π, T ) → R and froute : (Γ,Λ) → R
defining the cost of each assignment, used to generate the
cost function for considering a particular αSH. Writing this as
a constrained minimization aims to find an optimal mapping



6

↵�1
�1

↵�1
�2

↵�1
�3

↵⌧2
⇡1

↵⌧1
⇡2

↵⌧1⇡1

↵⌧2⇡2

Fig. 5. Example flow constraints. Any attempt to trace from an assignment
of τ1 to an assignment of τ2 will result in satisfying the flow constraint.

for the given computational system, as seen in Equation 1.

Z = min
∑
τp∈T

∑
πd∈Π

ατpπdfexec(πd, τp)+∑
γk∈Γ

∑
λl∈Λ

αλlγkfroute(γk, λl)
(1a)

s.t. ∑
πd∈Π

ατpπd = 1 ∀ τp ∈ T (1b)

α
λl,1
γk,1 +

∑
γi∈E(γk,1)

αλlγi = α
λl,2
γk,2 +

∑
γo∈E(γk,2)

αλlγk

∀ λl ∈ Λ; γk ∈ Γ
(1c)

∑
τp∈T

ατpπdc
τp
πd,w

≤ rπd,w ∀ πd ∈ Π;w = 1, . . . ,W (1d)

∑
λl∈Λ

αλlγkd
λl
γk
≤ bγk ∀ γk ∈ Γ (1e)

B. Structure Synthesis

Previous works accept the hardware and software graphs,
H and S, as the input to the optimization problem. A key
contribution in this paper is to generalize the optimization
problem (1) to instead accept as input the sets of available
hardware Π and software T , enabling synthesis of hardware
and software structures in finding an optimal computational
system R. Additional constraints must be introduced to ensure
the graph structure produces a system with two key proper-
ties: consistency and viability. Consistency requires that the
assignment variables represent a physically realizable system
- devices cannot connect to non-existent devices, tasks cannot
send or receive data from inactive tasks, and so forth. Viability
ensures that the synthesized graphs support the requirements of
all constituent elements, while still respecting the assignment
and routing constraints described in subsection III-A. For
instance, any generated hardware pseudograph must provide
the necessary resources to support execution of the software
multigraph; devices must have sufficient resources to support
task execution, and the connections between devices must
provide enough bandwidth for transferring data between tasks.
Viability addresses only local concerns in generating graphs
(e.g. ensuring devices can connect to one another, tasks
have required resources and data inputs, etc.), deferring the

treatment of systemic functionality to later constraints. These
consistency and viability concepts underlie the novel con-
straints which enable expanding task assignment and routing
to include the synthesis of hardware and software graphs.

The first step in generating the hardware pseudograph
requires generalizing to all possible configurations of devices
and connections. The set of devices Π can be trivially re-
interpreted as the set of devices under consideration for
inclusion. In place of explicit device connections Γ as an
input defined previously, each device instead defines a capacity
for number of connections for each physical transport type.
Considering all possible devices in a given system, there exists
X distinct physical transport types, allowing the definition
of a connection capacity vector ~χπd = 〈χπd,x | x =
1, . . . , X;χπd,x ∈ [0,∞)〉 for each device. Given D devices
under consideration, the set of possible connections between
devices in the pseudograph given a single physical trans-
port can be defined as Γx = {γx,k = {πu, πv} | k ∈
E(KD);πu, πv ∈ Π}, where E(KD) denotes the edges
in a complete graph with D vertices. This redefines the
multiset of connections as the union of possible connections
for each transport type, Γ =

⋃X
x=1 Γx. For convenience,

γx,k represents the k-th potential connection using the x-th
transport type. With these definitions for vertices and edges,
the hardware pseudograph now represents all possible graphs
given the redefined vertices and edges, allowing assignment
variables to select one specific instance. A device selection
variable απd ∈ {0, 1} represents the decision to include the
d-th device in the final system. These variables form a unique
basis in this formulation, in that a device has no external
requirements for viability. Devices are assumed to not depend
on other devices, and do not require connections to other
devices in order to operate.

Remark. The resource provision/consumption constraints re-
quired to relax the above assumption are identical in form to
those used to represent the provision/consumption of resources
for software tasks. This relaxation is not included in this for-
mulation in order to focus on hardware supporting software.

Selected devices still must provide the computational re-
sources necessary for task execution as defined in Equa-
tion 1d, with constraint on local budgets being sufficient
for ensuring global resource needs are met. The assignment
variable αγx,k ∈ {0, 1} selects a particular connection between
two devices. Consistent connections respect the fact that a
connection can only occur between two selected devices,
producing Equation 2. Viable connections must not exceed
the connection capacities defined for any device, resulting in
Equation 3.

απd ≥ αγx,k ∀ πd ∈ Π; γx,k ∈ E(πd) (2)

∑
γx,k∈E(πd,x)

αγx,k ≤ χπd,x ∀ πd ∈ Π;x = 1, . . . , X (3)

Introducing flexibility in device connections separates two
previously intertwined concepts: data connection, and logical



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 7

Perception
Computer

⇡2

Ethernet
�⇡2,1 = 1

RS-232
�⇡2,2 = 2

LIDAR

⇡3

RS-232
�⇡3,2 = 1

~r⇡3 ~r�2,k

Operator
Computer

⇡1

~r⇡1
Ethernet
�⇡1,1 = 1

~r⇡2

Fig. 6. Example device generalization for system synthesis.

device access. A task may operate as a device driver, which
requires both access to a specific physical transport (e.g.
CANbus), as well as logical access to a particular device (e.g.
a particular motor controller) over that transport. Previously, a
device driver task would consume resources combining both
concepts, while the computing device connected to the relevant
peripheral offering the matching resource. This allowed sim-
plifying the problem to a tightly-coupled resource model, in
which the resource budget only considers the device providing
resources. While these resources are still considered as the set
of W resources available in a given problem, we now consider
the resources provided by a particular connection, represented
as ~rγx,k = 〈rx,k,j | j = 1, . . . , J〉. This reformulates the
resource budget constraints Equation 1d to introduce these
link-level resources, as shown in Equation 4.∑

τp∈T
ατpπdc

τp
πd,j
≤ rπd,j +

∑
γx,k∈Γ

αγx,krx,k,j

∀ πd ∈ Π; j = 1, . . . , J

(4)

The augmented resource budget provides viability during
task assignment, ensuring the correct accounting for tasks
interfacing to peripheral devices for operation. This formu-
lation enables the generation of a hardware pseudograph as a
necessary component for the software multigraph.

In the example in Figure 6, the base computer interfacing
with an IMU has been broken into two separate devices,
the computer and the IMU, respectively. The original graph
has been decomposed into individual elements with capacities
defined for generating hardware pseudographs. Connecting to
the IMU over RS–232 requires the IMU to exist in the final
assignment as a logical consequence of this decomposition.
Logical access to the IMU no longer exists as a computational
resource for the base computer, instead being available as a
resource for connecting to the IMU via RS–232.

Generalizing the software multigraph requires slightly dif-
ferent relaxations due to the atomic nature of task assignment.
The set of assignment variables for an individual task can
be interpreted as both assigning a task to some device and

describing the set of possible tasks. Modifying Equation 1b
accomplishes this by allowing a task to remain unassigned to
any device, and thus unused, as seen in Equation 5.∑

πd∈Π

ατpπd ≤ 1 ∀ τp ∈ T (5)

While previous requirements for task assignment still hold
in task assignment for computational resources, new re-
quirements exist for the links between tasks. Tasks define
some number of outputs which produce data, and some
number of inputs which accept data for processing. A task
τp ∈ T defines Oτp available outputs in the set Ωτp =
{ωτp,o | o = 1, . . . , Oτp}, and Iτp required inputs in the
set Ξτp = {ξτp,i | i = 1, . . . , Iτp}. A task then can provide
a set of possible links Λτp ⊂ {λτp,τr,ωτp,o,ξτr,i | τp, τr ∈
T, τp 6= τr;ωτp,o ∈ Ωτp ; ξτr,i ∈ Ξτr} defining all possible
outgoing links from τp, where all possible links in the software
multigraph are defined as Λ =

⋃
τp∈T Λτp = {λl | 1, . . . , L}.

Note that the set of possible links any output may provide is
a subset of all possible combinations of inputs and outputs,
unlike the definition of connections between devices.

Data transmitted in software systems require agreement on
typing or structure of data, analogous to physical transports for
device connections. We define functions fintype : Ω→ [0,∞)
and fouttype : Ξ→ [0,∞), which map possible link structures
to a number uniquely associated with each message type. Valid
transmission of data between tasks only occurs when the type
on both sides agree, leading to Equation 6 below.

αλlfintype(λl,1) = αλlfouttype(λl,2) ∀λl ∈ Λ (6)

Unlike device connections, there exists no fundamental limit
on the number of links active to a given input, eliminating
the need to use a budgetary constraint to limit the number of
possible links. While connections between devices provide the
capability for transferring data, links between tasks actualize
the transfer. For each link, αλl ∈ {0, 1} represents the decision
to transfer data from one task’s output to another task’s input.
All inputs for an active task must have at least one output
linked to provide data, but unlike physical connections, no
fundamental limit exists on the number of outputs linked to a
single input. This allows aggregation of data for processing,
leading to a satisfaction constraint in Equation 7 applying to
each task input. The previously defined variable αλlγk maintains
the original interpretation of assigning a link to a particular
connection, with an additional constraint ensuring the assign-
ment of links to active connections only in Equation 8.∑

πd∈Π

ατpπd ≤
∑

λl∈Ξτp

αλl ∀ τp ∈ T (7)

αλlγk ≥ αλl ∀ λl ∈ Λ; γk ∈ Γ (8)

Beyond data typing, inputs and outputs in the software multi-
graph may provide different semantic meaning representing
some underlying assumption of a task. For instance, an output
transmitting a pose message may contain the estimated pose
of a robot, the sensed location of an object of interest, or
a commanded goal pose. These instances share a common
data type, but represent different quantities in the software



8

LIDAR
Interface

LIDAR
Filter

⌧1

⌧2

LIDAR

LIDAR

Obstacle
Mapper

LIDAR

⌧3

LIDAR Maps

!⌧1,1

~r!⌧1,1

⇠⌧2,1

~c⇠⌧2,1

!⌧2,1

~r!⌧2,1

⇠⌧3,1

~c⇠⌧3,1

!⌧3,1

Fig. 7. Example task generalization. While all inputs and outputs share the
same structure, semantic content differs them.

system. In order to ensure that the structure keeps seman-
tic consistency, outputs define a vector of Wωo “resources”
~rωo = 〈rωo,w | w = 1, . . . ,Wωo ; rωo,w ∈ [0,∞)〉 which
represent the semantic content provided by this output. Sim-
ilarly, inputs define a vector of Wξi requirements ~cξi =
〈cξi,w | w = 1, . . . ,Wξi ; cξi,w ∈ [0,∞)〉 representing the
required semantic content for a given input. In addition to
active tasks requiring all inputs have at least one assigned
link, the assigned links must satisfy the defined budget, as
seen in Equation 9. An example of the semantic budget/
consumption for links can be seen in Figure 7, in which all
two outputs and two inputs work with an identical LIDAR data
structure, but semantically different meanings (e.g. raw or ego-
filtered data). These constraints also introduce inconsistencies
in the routing constraints in Equation 1c - tasks may not send
data to all potential recipients due to semantic requirements.
Equation 10 introduces the link assignment variable into the
original constraint such that the constraint only applies to the
active links. This introduces a quadratic constraint, which can
be linearized by introducing a dummy variable, ατp∅πd ∈ {0, 1},
for each task assignment, which balances the constraint when
tasks are utilized but not linked, as seen in Equation 11.
The linear form of this constraint is not used due to poor
performance, but is included to demonstrate a formulation with
purely linear constraints.∑
λl∈Ξτp

αλlrλl,1,j ≥ cξi,j ∀ τp ∈ T ; ξi ∈ Ξτp ; j = 1, . . . ,Wξi

(9)

αλl(α
γk,1
λl,1

+
∑

γi∈E(γk,1)

αλlγi ) = αλl(α
γk,2
λl,2

+
∑

γo∈E(γk,2)

αλlγo)

∀ λl ∈ Λ; γk ∈ Γ
(10)

α
γk,1
λl,1

+ α
γk,1
∅λl,1

2
+

∑
γi∈E(γk,1)

αλlγi =
α
γk,2
λl,2

+ α
γk,2
∅λl,2

2
+

∑
γo∈E(γk,2)

αλlγo

∀ λl ∈ Λ; γk ∈ Γ
(11)

Besides the new constraints of the software multigraph, con-
sistency introduces a few additional constraints on task as-
signment. With the introduction of inactive devices, tasks can
only execute on devices participating in the system (Equa-
tion 12), and a link can only route over active connections
(Equation 13).

ατpπd ≤ απd ∀ πd ∈ Π; τp ∈ T (12)

αλlγk ≤ αγk ∀ γk ∈ Γ;λl ∈ Λ (13)

These constraints ensure selected graph structures maintain
consistency in the overall system, and viability during assign-
ment. Combined with the previous constraints for task assign-
ment and routing, any system adhering to these constraints
supports the operation of every element.

C. Context-Aware Functional Modularity

The constraints presented thus far provide a method for
composing a computational system from a list of available
elements, without regard for the overall functionality of the
system. In order to generate systems with desired functionality,
a problem definition requires a description of the desired
system functionality, and a framework for determining the
contributions subsets of the system provide. Functionality
is assumed to be "linearly independent", in the sense that
system requirements can be met by summing functionality
from system components. Given the complexity of functional
decomposition already present in robotic systems, and the
interaction between robots and their environment, two addi-
tional notions are introduced to define functional capabilities.
First, system functionality is defined as two separate compo-
nents, mission parameters, and mission context, which define
functional requirements and the conditions under which the
system must operate to provide those requirements. Second,
functionality is provided to a system through collections of
components referred to as modules. These two additions serve
to address some of the real world complexities present in
determining functional capabilities.

As an example, consider a mission parameter for a hypothet-
ical robot that specifies the ability to localize the robot within
the environment during operation. Many possible approaches
for robot localization exist [34]–[37], varying in input data,
computational complexity, and underlying theory of operation.
However, many approaches vary in the assumptions made
about the environment, robot, or mission under which the
approach will operate; GPS-based localization approaches
assume direct visibility of the sky, Kinect-based localization
requires indoor environments for the sensor to receive usable
data, and 2D localization approaches assume a planar environ-
ment. Let these assumptions compose a vector of J elements
defining the mission context ~s = 〈sj | j = 1, . . . , J ; sj ∈
[0,∞)〉. The task definition is then augmented with a vector
~yτp = 〈yj | j = 1, . . . , J ; yj ∈ [0,∞)〉 defining the context
required for a task to execute. In this way, ~x defines a J-
dimensional bounding box inside which tasks must exist in
order to correctly execute, representing the underlying assump-
tions about the environment a task encodes. This bounding box



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 9

generates a contextual constraint in Equation 14 to ensure that
no task executes in an invalid context.∑

πd∈Π

ατpπdyτd,j ≤ sj ∀ τd ∈ T ; j = 1, . . . , J (14)

If the mission context includes both outdoor and planar
world assumptions, GPS and 2D localization techniques can
operate, while indoor-only techniques cannot. When combined
with previous constraints, functionality exists when tasks can
execute under the correct set of environmental assumptions,
with the necessary computational resources, and attached to
the appropriate hardware.

Derived as an instance of an assignment problem, the entire
problem has been cast in terms of constraints on individual
decisions related to the tasks and devices composing the
system. This approach dovetails with the approach taken by
many modern robotics software systems, which present tasks
as the unit of functionality and reuse [5], [38], [39]. Tasks
provide an intuitive unit of functionally reusable software in
this context for a variety of reasons: tasks provide a simple
model of usability (inputs, process, outputs), require minimal
effort to use (launch task, provide data), and can naturally
isolate development of novel algorithms. Tying reusability
to an individual executable black box presents a problem
when considered across an ecosystem consisting of diverse
contributions. Reusability tends to favor smaller units of
modularity [40], exerting downward pressure to produce tasks
with compact sets of functionality. However, the definition of
functional completeness for an individual task varies between
different approaches, depending on performance considera-
tions, underlying algorithms, or philosophical views. Tasks
thus define functional scope differently depending on the indi-
vidual resolution of this tension, breaking the direct coupling
between task selection and functional capability. Depending
on the decomposition of functionality in a given problem,
some units of functionality will inevitably require more than
a single task to implement. In order to introduce functionality
requirements, this work introduces a mid-level concept of
functional modules.

A module represents a collection of tasks and devices
which, if included in a computational system, provide some
amount of functionality to the overall system. This provides
an abstraction through which an expert can normalize func-
tionality metrics over a set of options, as well as provide
any simplifying constraints on the structure of a particular
subsystem. With structure synthesis, the problem input defines
a set of tasks T , and a set of devices Π; modularity partitions
these sets into N disjoint subsets. Thus, a module µ is defined
by the set of tasks Tµ = {τp | p = 1, . . . , Pµ} and the set of
devices Πµ = {πd | d = 1, . . . , Dµ}. The full set of modules
can then be written M = {µn = {Πµ, Tµ} | n = 1, . . . , N},
with the example elements organized into modules in Figure 8.
By definition, a module only functions for systems including
all elements, which introduces an atomicity relationship be-
tween all elements and each individual task (Equation 15)
and device (Equation 16). Functionality is defined by Q
functional requirements possible in a given problem, with a
valid system requiring ~rs = 〈rs,q | q = 1, . . . , Q; rq ∈ [0,∞)〉.

LIDAR
Interface

LIDAR
Filter

⌧1

⌧2

LIDAR

LIDAR

Obstacle
Mapper

LIDAR

⌧3

LIDAR Maps

LIDAR RS-232

⇡3

Perception
Computer

⇡2

Ethernet RS-232

Operator
Computer

⇡1

Ethernet

µ1 Tµ1
⇧µ1

⇧µ2
⇧µ3

Tµ3
Tµ2

µ2 µ3

? ?

~cµ1

~cµ2

Fig. 8. Example tasks organized into modules. Requiring Traversal Obstacles
from µ2 requires all three modules to fully satisfy constraints.

Modules provide functional capabilities ~cµ = 〈cµ,q | q =
1, . . . , Q; cµ,q ∈ [0,∞)〉 if selected. While a new assignment
variable, αµ, could be introduced to indicate the selection of
a particular module, this variable can be represented in terms
of the assignment of component elements. To minimize the
number of variables in the formulation, the indicator function
in Equation 17 will be used, although the formulation will
continue to use αµ for brevity. The sum of the functionality
vectors of active modules must meet or exceed the mission
parameters ~rs, resulting in the final constraint on mission
readiness in Equation 18.

(Dµ + Pµ)
∑
πd∈Π

ατpπd =
∑
πd∈Πµ

απd +
∑
τr∈Tµ

∑
πd∈Π

ατrπd

∀ µ ∈M ; τp ∈ Tµ
(15)

(Dµ + Pµ)απd =
∑

πr∈Πm

απr +
∑
τd∈Tm

∑
πr∈Π

ατdπr

∀ µ ∈M ;πd ∈ Πµ

(16)

αµ =

∑
πd∈Πµ

απd +
∑
τd∈Tµ

∑
πd∈Π α

τp
πd

Dµ + Pµ
(17)

∑
µ∈M

αµcµ,q ≥ rs,q ∀ q = 1, . . . , Q (18)

Allowing functionality metrics to be compared directly at the
module level enables reasoning about the opportunity costs in
a system design, since assignment can begin to reason about
the tradeoffs in selecting one module over another, similar to
a trade study performed by an expert. Crucially, modules only
contain elements directly related to the defined functional ca-
pabilities, but not necessarily all elements required to produce
a complete system. This functional independence, combined
with previous constraints, introduces automatic dependency
resolution among modules - selecting one module may require
the selection of other modules to produce a complete system.
The variable scale of modules and functionality capability
in modules, combined with the assurance that the resulting
system ensures a complete system, allows for applying this
approach to a wide range of system synthesis problems.
Modules can represent small, single function components,
building to a larger individual robot as easily as they can



10

represent individual pre-built robots composing a complex
multi-robot system. Thus, this extension serves to unify design
for a wide range of robotic systems.

D. Objective Function and Full Formulation

As a constrained minimization problem, combining the
constraints defined previously with an objective function com-
pletes the formulation for selecting an optimal system. These
cost functions can be defined in a variety of ways, depending
on the desired metrics to define an optimal system. The cost
function is presented in a generalized fashion to enable a
point by which expert knowledge can be applied to define
optimality for a given scenario. Similar to the MRQARP,
the full objective function can be composed from a set of
functions considering the assignment operations present in
the problem definition. For system synthesis, these functions
are augmented with additional functions to consider the three
additional assignments: modules, devices, and connections.
The overall objective function in Equation 20 composes the
overall cost function from terms representing the user defined
costs for each selection.

As a higher level organizational structure, modules offer
the most complex function for determining cost. The cost for
selecting a module is defined as the sum of costs for each
constituent device, as well as a subsystem cost for selecting the
module independent of its constituent elements. Both device-
specific and module-specific costs are independent of other
elements of the system, since they are not embedded in some
other aspect of the system. These functions are combined to
produce the total cost function in Equation 19. For each device,
fdev : Π→ R, represents the cost of including a given device
and a cost representing any overhead for utilizing a module,
fo : M → R.

fm = (fo(µ) +
∑
πd∈Πµ

fdev(πd)) (19)

Task costs result from resource consumption as a result of
execution, requiring consideration of the device assignment,
and thus are considered independent of module selection.
The cost function for task execution is identical to the one
defined for Equation 1, with the same considerations. Device
connection costs of the form fcnx : Γ → R not only serve
the previously stated system goals, but also serve to han-
dle physicality constraints on system components. Assigning
infinite costs to physical connections between devices (e.g.
wired connections) ensures that connections between devices
cannot imose unwanted physical connections. Common cases
for this need include remote operator stations, in which a
robot needs to transmit data without constraining motion, or
multi-robot systems, in which individual robots must remain
physically independent. Message routing introduces costs for
utilizing bandwidth available on device connections, which
aims to reduce latency. The particulars of modeling latency in
networks are beyond the scope of this problem formulation,
but instead, the intuition that an oversubscribed connection
will result in delivery time increasing unbounded with time
serves to motivate that reducing bandwidth utilization will

minimize latency. The relationship between bandwidth utiliza-
tion and latency can vary depending on the devices connected,
the physical transport connecting them, and the link routed
over a particular connection. This function is identical to
froute defined previously. Note that while these two costs are
logically separate, the cost function in Equation 20 combines
them in a slightly more concise form, in which the message
routing cost computation is included as a term in the device
connection equation. These functions are combined to produce
the total system cost function in Equation 20a.

The selection of the sub-functions not only sets the metrics
by which possible systems are compared, but also defines the
complexity of the given problem. If all functions f are linear
functions, the final problem is formulated as an integer linear
program; if any function is quadratic, the problem is instead a
quadratic program. As an example, task costs can be quantified
by linear metrics (e.g. resource utilization) or quadratic metrics
(e.g. load balancing, power utilization, thermal load). In order
to demonstrate the overall capability of system synthesis to
construct optimal systems, the remainder of this work will
assume linear functions, and thus an integer linear program.
While many other frameworks exist for solving this type of
constrained optimization (e.g. guided local search, genetic
algorithms, simulated annealing), an integer linear program
can be solved for the global optimum, demonstrating the
optimal solution and worst case in performance. This problem
represents a generalization of the (MRQARP) [19], which has
been proven to be NP-hard in the strong sense [41]. The
additional variables representing the structure of the graphs
and functional requirements can be set to trivial values such
that a problem instance maps to an instance of MRQARP,
leading this problem to share the same complexity class.

Z = min
∑
µ∈M

αµ
fo(µ) +

∑
πd∈Πµ

fdev(πd)

+

∑
τp∈T

∑
πd∈Π

ατdπdfexec(πd, τp)+

∑
γk∈Γ

(
αγkfcnx(γk) +

∑
λl∈Λ

αλlγkfroute(γk, λl)

)
(20a)

s.t. ∑
µ∈M

αµcµ,q ≥ rs,q ∀ q = 1, . . . , Q (20b)

∑
πd∈Π

ατpπdyτd,j ≤ sj ∀ τd ∈ T ; j = 1, . . . , J (20c)

(Dµ + Pµ)
∑
πd∈Π

ατpπd =
∑
πd∈Πµ

απd +
∑
τr∈Tµ

∑
πd∈Π

ατrπd

∀ µ ∈M ; τp ∈ Tµ
(20d)

(Dµ + Pµ)απd =
∑
πr∈Πµ

απr +
∑
τd∈Tµ

∑
πr∈Π

ατdπr

∀ µ ∈M ;πd ∈ Πµ

(20e)



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 11

αλlγk ≤ αγk ∀ γk ∈ Γ;λl ∈ Λ (20f)

ατpπd ≤ απd ∀ πd ∈ Π, τp ∈ T (20g)

αλlfintype(λl,1) = αλlfouttype(λl,2) ∀λl ∈ Λ (20h)

αλl(α
γk,1
λl,1

+
∑

γi∈E(γk,1)

αλlγi ) = αλl(α
γk,2
λl,2

+
∑

γo∈E(γk,2)

αλlγo)

∀ λl ∈ Λ; γk ∈ Γ
(20i)∑

λl∈E−(τp)

αλlrλl,1,j ≥ cξi,j

∀ τp ∈ T ; ξi ∈ Ξτp ; j = 1, . . . ,Wξi

(20j)

∑
πd∈Π

ατpπd ≤
∑

λl∈Ξτp

αλl ∀ τp ∈ T (20k)

αλlγk ≥ αλl ∀ λl ∈ Λ; γk ∈ Γ (20l)∑
πd∈Π

ατpπd ≤ 1 ∀ τp ∈ T (20m)

∑
τp∈T

ατpπdc
τp
πd,j
≤ rπd,j +

∑
γx,k∈Γ

αγx,kγx,k,j

∀ πd ∈ Π; j = 1, . . . , J

(20n)

απd ≥ αγx,k ∀ πd ∈ Π; γx,k ∈ E(πd) (20o)∑
γx,k∈E(πd,x)

αγx,k ≤ χπd,x ∀ πd ∈ Π;x = 1, . . . , X (20p)

∑
λl∈Λ

αλlγkd
λl
γk
≤ bγk ∀ γk ∈ Γ (20q)

απd , α
τp
πd
, αλl , α

λl
γk
∈ {0, 1}

∀ πd ∈ Π; τp ∈ T ; γk ∈ Γ;λl ∈ Λ
(20r)

IV. SIMULATION RESULTS

To demonstrate the application and performance of the
system defined previously, two case studies are presented
and benchmarked. The case studies represent two traditionally
different stages of building robotic systems: the incremental
design and development of a robot, and the construction of
a complex fielded robot. These problems demonstrate the
expressiveness and capability of system synthesis, and provide
some insight into performance with realistic systems.

The first case explores the power of context and functional
requirements in synthesizing a complex system and simplified
variants in the face of differing contexts. This case considers
the development of a single ground-based robot for search and
rescue of targets of interest. As a hypothetical research system,
components are developed in isolation, and integrated at some
later point. Integration exercises several potential complexities

for system synthesis: components need to share resources,
subsystem testing may occur under differing contexts, and
modules which indirectly support functional requirements (e.g.
providing interface adaptation between two tasks, providing
additional computing) may be required to enable integration.
This experiment considers a fixed set of modules, demonstrat-
ing the versatility in resulting designs as a result of evolving
functional integration.

The second case study considers the design of a humanoid
robot for the DARPA Robotics Challenge. The development of
the custom humanoid ESCHER [6] complex enough to require
a large team of engineers to handle the same challenges pre-
sented in this framework, and familiar enough to the authors to
formulate as a system synthesis problem. The system requires
a diverse set of hardware to support the operation of a custom
33 degree-of-freedom, force controlled robot, as well as a
large number of software tasks to provide a sliding autonomy
framework, as well as handling degraded communications. As
a robot fielded without the use of the proposed framework,
significant manpower went into manually defining and validat-
ing the overall system design, providing a natural comparison
for the optimization. This provides both a comparison against
the state-of-the-art in designing these systems, as well as a
demonstration of applicability to real world problems.

In the formulation, the concrete definition of the cost
function is deferred to be problem or user specific. For the
following experiments, the same set of cost functions are
used to compose the objective function, and are defined here
for clarity. Task execution costs are defined as the fractional
consumption of resources (Equation 21), which normalizes
the differing scales of computational resources and favors
parsimonious systems. Route costs define the cost of traversing
a loop as zero cost, but otherwise uses the same fractional
consumption cost as task execution (Equation 22). Connection
costs serve only to disallow physical connections between
systems which cannot support physical connections in the
problem context (e.g. a mobile robot and a remote operator),
otherwise providing a constant cost for any connection. Mod-
ule and device costs are also defined in a problem specific
manner, estimating the monetary cost for purchasing the device
new (or the module, in the case of modules representing
complex devices.) These costs aim to define optimal systems
as ones which minimize the overall cost of constructing the
final system, by minimizing the amount of computational and
bandwidth resources required, and then considering monetary
costs.

fexec(πd, τp) =

W∑
w=1

cπd,τp,w

rπd,w
(21)

froute(γk, λn) =

{
0 : γk,1 = γk,2
c
λl
γk,n

bγk
: γk,1 6= γk,2

(22)

Besides the cost function, given the complexity of the pseu-
dographs and mappings involved, instances are generated by
Algorithm 1, with the specific element parameters (e.g. com-
putational resources) empirically derived. Since this composes
the problem based on descriptions of elements, tasks, and
devices can be defined independent of the overall system.



12

This allows for more compact definitions as well as re-
use of element definitions when appropriate (e.g. common
computers). Problem formulations generated in this fashion
are implemented using the Gurobi [42] optimization library.

Algorithm 1 Generate System Synthesis Program

1: procedure GENERATE(M,~rs,~cm, fo, fdev)
2: Π, T,Γ,Λ, cnx_limits, constr ← {}
3: cost← 0
4: for µ ∈M do
5: Π← Π ∪Πµ

6: T ← T ∪ Tµ
7: cost← cost+ αµ

(
fo(µ) +

∑
πd∈Πµ

fdev(πd)
)

8: constr ← constr ∪ AtomicModule(µ) ∪
ModuleFunctionality(µ,~rs)

9: end for
10: for πd, τp ∈ Π× T do
11: cost← cost+ απd,τpfexec(πd, τd)
12: constr ← constr∪ AtomicTask(τp) ∪

InBudget(πd, τp) ∪ ExecOnActive(πd, τp)
13: end for
14: for π1, π2 ∈

(
Π
2

)
;x = 1, . . . , X do

15: if min(χπ1,x, χπ2,x) > 0 then
16: γk ← {π1, π2}
17: Γ← Γ ∪ {γk}
18: cnx_limits(π1, x)← cnx_limits(π1, x) + 1
19: cnx_limits(π2, x)← cnx_limits(π2, x) + 1
20: constr ← constr∪ ActiveCnx(π1, π2)
21: cost← cost+ αγkfcnx(γk)
22: end if
23: end for
24: for πd ∈ Π;x = 1, . . . , X do
25: constr ← constr ∪

CnxCapacity(πd, x, cnx_limits(πd, x)))
26: end for
27: for τ1, τ2 ∈ PERMUTE(T, 2) do
28: for (out, in) ∈ GetOutputs(τ1) × GetInputs(τ2) do
29: if type(out) == type(in) then
30: Λ← Λ ∪ {{τ1, τ2}}
31: constr ← constr∪ ActiveInputs(in) ∪

LinkResources(in, out)
32: end if
33: end for
34: end for
35: for γk, λn ∈ Γ× Λ do
36: constr ← constr∪RouteOnActive(γk, λn)∪

BandwidthLimit(γk, λn)∪Flow(γk, λk)
37: cost← cost+ αγk,λnfroute(γk, λn)
38: end for
39: return cost, constr
40: end procedure

A. Dynamic Robot Development

Consider the development of a mobile robotic system for
tracking and retrieving a potential target of interest. The
robot requires a few crucial elements for operation: a method

TABLE I
MEAN SOLUTION TIMES (SECONDS) FOR DIFFERENT CONFIGURATION

AND CONTEXTS
FOR CONTEXTS, D=DAY, N=NIGHT, O=OUTDOORS, I=INDOORS, V=VISUAL, B=BEACON

Capability DOV DOB DIV DIB NOV NOB NIV NIB
Track 5.09 4.187 5.3 4.003 4.542 4.312 4.994 3.988
Drive 5.588 4.333 6.311 4.718 4.624 4.341 5.578 4.736
Arm 5.261 4.216 5.445 4.108 4.559 4.313 5.11 4.068

Track, Drive 5.585 4.149 5.78 4.31 5.311 4.266 5.482 4.321
Track, Arm 5.396 4.34 5.472 4.195 4.756 4.366 5.281 4.206
Drive, Plan 5.78 4.251 5.994 4.76 4.624 4.327 5.638 4.674
Arm, Plan 5.152 4.268 5.279 4.179 4.588 4.317 5.217 4.072

Track, Drive, Plan 5.187 4.181 5.777 4.364 5.335 4.198 5.527 4.358
Track, Arm, Plan 5.16 4.19 5.385 3.98 4.452 4.172 5.063 3.923

Full 5.421 4.427 6.261 4.241 4.975 4.698 5.581 4.243

for finding and localizing a target of interest, a manipulator
for grasping a target, and some method for selecting grasp
poses. Component development and testing initially occurs
in isolation, in environments which do not fully replicate
operational conditions. The devices and tasks defined for this
system are derived from real-world robots developed for this
task, using a ROS-based system for providing many of the
components defined. For this problem, the context is defined
with three binary dimensions: the time of operation (e.g. day
or night), whether operation is occurring indoors or outdoors,
and whether the targets of interest are visually identifiable
or contain an active beacon. These contextual parameters
limit the applicability of some of the defined options: target
tracking options include an RGB camera tracking system
(capable of working in daytime scenarios,) a monochrome
night-vision system (capable of working at night for visible
targets,) and a system for triangulating a signal from a non-
visual target (works regardless of lighting, but at a reduced
tracking range.) Localization modules can operate either out-
doors using GPS for absolute positioning, or using one of
a variety of simultaneous localization and mapping (SLAM)
packages making different tradeoffs for computational effort
and positional accuracy. Functional requirements cover both
required hardware capability (e.g. a mobile base for traversing
terrain, an arm for manipulating a target,) required software
functionality (e.g. target tracking,) and differing levels of
autonomy (e.g. teleoperated or planning for the mobile base or
arm, or if planning should happen completely autonomously),
and include both binary requirements (e.g. presence of absence
of an arm) and continuous parameters (e.g. the detection
range for targets). The options and variability expressed in
this problem provide some of the uncertainty and variability
present in real world development projects.

Given this problem, the versatility of system synthesis in
adapting to requirements can be demonstrated. We define a
fixed set of functional modules (D = 19, P = 25, N = 29)
covering the available options for the entire range of capability.
These modules are then combined with each valid combination
of contextual parameters and functional requirements to gen-
erate a full range of variant problem instances. Table I reports
the mean solution time for three trials of each full problem
configuration.

In order to analyze the impact of functional requirements
and contextual parameters, an ANOVA test is performed with



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 13

TABLE II
SECOND-DEGREE FACTORIAL ANOVA RESULTS.
Term Estimate Std Error t-Ratio Prob> |t|

Intercept 4.661 0.06201 75.17 < 0.0001
Track -0.02354 0.005964 -3.95 0.0001
Drive 0.3549 0.06294 5.64 < 0.0001

Plan-M -0.03118 0.03087 -1.01 0.3136
Plan-A -0.06229 0.03631 -1.72 0.0877

Arm 0.06603 0.06596 1.00 0.3179
Daylight -0.1111 0.009582 -11.60 < 0.0001
Outdoors 0.1085 0.009582 11.33 < 0.0001

Visual -0.5222 0.01026 -50.88 < 0.0001
Track*Drive 0.02628 0.03498 0.75 0.4532

Track*Plan-M -0.006934 0.01467 -0.47 0.6369
Track*Plan-A -0.04818 0.01467 -3.28 0.0012

Track*Arm 0.07632 0.03340 2.29 0.0233
Track*Daylight 0.01860 0.004807 3.87 0.0001
Track*Outdoors -0.02196 0.004807 -4.57 < 0.0001

Track*Visual -0.02191 0.005483 -4.00 < 0.0001
Drive*Plan-M 0 0 . .
Drive*Plan-A 0.1259 0.06035 2.09 0.0381

Drive*Arm 0 0 . .
Drive*Daylight -0.02248 0.03289 -0.68 0.4950
Drive*Outdoors 0.1126 0.03289 3.42 0.0007

Drive*Visual -0.1260 0.03118 -4.04 < 0.0001
Plan-M*Plan-A 0 0 . .

Plan-M*Arm 0 0 . .
Plan-M*Daylight 0.02113 0.02919 0.72 0.4700
Plan-M*Outdoors 0.003328 0.02919 0.11 0.9093

Plan-M*Visual 0.02445 0.03024 0.81 0.4198
Plan-A*Arm 0 0 . .

Plan-A*Daylight -0.01125 0.02919 -0.39 0.7004
Plan-A*Outdoors 0.0004866 0.02919 0.02 0.9867

Plan-A*Visual -9.34e-5 0.03024 -0.00 0.9975
Arm*Daylight -0.001081 0.03289 -0.03 0.9738
Arm*Outdoors -0.03505 0.03289 -1.07 0.2877

Arm*Visual 0 0 . .
Daylight*Outdoors 0.01596 0.009582 1.67 0.0972

Daylight*Visual 0.1348 0.01001 13.47 < 0.0001
Outdoors*Visual -0.1318 0.01001 -13.17 < 0.0001

results reported in Table II. The results generally indicate
that parameters which impact tradeoffs significantly alter the
computation time, as opposed to parameters which include
or exclude static subsystems. Including a manipulator as
a functional requirement introduces complexity in the final
system in terms of the final computational system, but context
does not alter considerations of variability in the arm com-
ponents. Requiring target tracking introduces consideration of
three possible options, which operate under different contexts,
introduces significant changes to computation time. Functional
requirements which implicitly include contextual interactions,
such as the mobile base (which implicitly requires localiza-
tion to operate, linked to context) also respond accordingly.
Of the interactions considered, the impact of both the arm
and target tracker as individual factors are masked by the
interaction between these components. Contextual parameters,
which interact with all tradeoff considerations in the system,
unsurprisingly impact computation time as well. While signif-
icant, these parameters introduce relatively small changes in
the overall time, with the largest significant impact averaging
0.354s additional computational time.

Considering the generated systems, several high level obser-
vations can be made. Hardware devices communicating with
software tasks tend to generate small subgraphs of tasks reliant

arm_planner/goal

arm_planner/planner

7dof/intf

roscore/roscore

nav/move_basergb_target/tracker

teleop_rviz/rviz

mobile/intf

drive_coverage/planner

lidar/intf

ground_1604/intf

rgb/intf

costmap/map

gps/ekf

gps/gps

(a) Software graph

lidar/sensor

onboard/cpu

USB
rgb/cam0USB

mobile/base

RS-232

7dof/arm

CANbus

ocs/ocs ocs_bridge/antenna
ethernet

mobile_bridge/antenna

bridge

gps/puck

RS-232

mobile_switch/switch

ethernet

ethernet
dev/bbb

ethernet
ground_1604/imu

I2C

(b) Hardware graph

Fig. 9. Synthesized system for the complete configuration, when operating
outside, during the day, with visible targets.

on the raw data produced by these devices, since many of these
tasks encode some assumptions about the underlying hard-
ware. These subgraphs appear in many of the solutions with
identical structure, assigned to a single computer minimizing
bandwidth utilization. For instance, in every mission requiring
the target tracker, the task identifying and localizing the target
was assigned to the same device as the hardware interface
providing the applicable sensor data, with the same structure of
inputs and outputs between them. The task representing pose
estimation with GPS and odometry data, however, would only
match assignments with the GPS antenna interface in some
scenarios. These tasks may encode more assumptions about the
underlying hardware into software interfaces, resulting in more
rigid structures. Tasks operating at higher levels produce more
flexibility in assignment groupings. This qualitative behavior
is driven by the zero cost for routing over loopbacks in
Equation 22 and lack of load balancing in Equation 21.
The resulting cost function generates lower costs for densely
packed tasks, which coupled with the hardware assumptions
present in tasks, generates these repeated subgraph structures.

In these experiments, three separate IMUs are included with
different costs and connection requirements, but lacking any
differentiation in performance characteristics. As a result, one
option offers the lowest cost, and is utilized in every system
requiring inertial measurements. This introduces a small single
board computer in order to support a physical transport type
unsupported by every other device (I2C). The combination
of a small single board computer and a low cost IMU was
introduced to model the kind of system which might be crafted
from parts readily available from a hobbyist outlet. Generally,
the synthesized system treats the combination of IMU and
single board computer identically to how the parts were ini-



14

tially introduced (e.g. as a single purpose inertial measurement
module). In a small number of cases, other tasks get assigned
to the single board computer, taking advantage of the available
under-utilized resources. Two tasks commonly transitioned to
this computer occur in Figure 9, in which the extended Kalman
filter task, which utilizes the IMU measurements directly, and
the RGB camera interface (and accompanying RGB camera).
These cases demonstrate the power of synthesizing these sys-
tems automatically, since resources are utilized in a rigorously
optimal fashion, as opposed to following local decisions.

B. Humanoid Disaster Response Robot Synthesis

The development of robots to address novel scenarios
pushes researchers to develop more complex systems to handle
real world complexities. Competitions such as the DARPA
Robotics Challenge serve to focus efforts on particular sce-
narios and encourage pushing the state of the art in fielded
systems. These systems provide an ideal case study for system
synthesis - reducing time spent diagnosing errors due to
missing functionality or oversubscribing resources would lead
to increased productivity and safety. Hard constraints im-
posed by competition design and non-functional requirements
derived from related efforts introduce additional need for
expert knowledge to guide module capabilities. For instance,
degraded communications between operator and robot imposes
a hard constraint on the hardware structure, as well as guiding
software development of software to respect tighter bandwidth
limits. Previously developed robots can provide insight into the
new design space, as well as accumulated expert knowledge.
For a case study, a system synthesis problem is formulated
based on the design of Team VALOR’s ESCHER and solved.
As a custom humanoid, ESCHER’s design included a wide
variety of custom hardware and software that had to be
developed and integrated into a single, functional whole.
The hardware design included 33 degrees-of-freedom with
both custom (e.g. linear series elastic actuators) and off-the-
shelf (e.g. MultiSense stereo vision) devices. Furthermore,
the software design employs a mix of novel and open-source
software covering 3 different infrastructures (ROS, LCM, and
Bifrost), development shared between four different teams [6],
[34], [43] and totaling over 1.7 million source lines of code.
ESCHER’s design was performed manually for the competi-
tion, providing a real world baseline to compare against.

Each design approach operates with differing levels of
freedom in this comparison. Resource requirements, the or-
ganization of functionality into discrete devices or tasks, and
the approach taken to meeting system requirements can evolve
throughout the original development process, which cannot be
captured with a ex post facto application of synthesis. Apply-
ing system synthesis on a completed design can provide insight
into only the aspects of the design over which it operates -
device and task interconnections, execution assignments, etc.
Many of the decisions available during development cannot
be considered within this framework in a single problem
instance. This comparison focuses on providing some sense
of how system synthesis compares to human effort in the
later stages of integration and field experiments, in which

both system synthesis and human experts perform equivalent
tasks in design. In order to accomplish this, the final design
of ESCHER is decomposed into a set of modules (D = 18,
P = 36, N = 12) used to generate and solve a full system
synthesis problem instance.

The results of system synthesis in Figure 10 produces
a system significantly different from the manually defined
version. The automated design does not include two of the
six computers in the original design, resulting in a more
compact hardware design. In the manual design, the four
onboard computers were named in reference to the deliberative
paradigm of robotics: sense, think, act, and dream. A fifth
computer, known as archangel, offboard the physical robot
but not suffering from degraded communications, managed
the network connection. Manual task assignments followed
this naming convention: motion-related tasks to act, perception
related tasks to sense, higher level cognitive functions to think,
network management to archangel, and the remaining tasks to
dream. In the synthesized system, task groupings re-occur at
a coarse level on the selected computers. The differences can
be summarized as placing tasks closer to necessary inputs:
tasks related to mid-level perception were assigned alongside
the planning tasks which utilized their outputs, while network
management tasks were moved alongside tasks generating data
to transmit across the bridge. Localization and networking
tasks handling command and control messages were assigned
alongside motion tasks with which they interacted. The high-
performance IMU was assigned from an unused computer
to a computer with an open RS–232 port. These results
indicate that the system produces a reasonable result given its
similarity to the manually designed attempt, but a lower overall
cost. Synthesis uses two fewer computers, corresponding to
a significantly more efficient final system. Additionally, the
rearrangement of tasks results in less bandwidth usage on
higher latency connections. The synthesis problem is solved
in an average of 9.120s over five trials, fitting well within
design-time operation.

V. DISCUSSION & CONCLUSION

System synthesis captures several aspects of robot design,
integrating them into a unified framework for ensuring a func-
tional result. Introducing higher level concepts of functionality
and context-awareness provide mechanisms for encoding ex-
pert knowledge about requirements at the systems engineering
level, and restrictions on valid systems on the technical level,
while still enforcing constraints on computing resources. These
two features provide the mechanism for down-selecting core
components to guide system construction. The other novel
constraints introduced define a set of conditions necessary for
components to operate, and that the resulting system provides
a consistent solution. Integrating these constraints with the
assignment and routing problem ensures that the fine grained
details of constructing a viable system are handled as well.
These features extend the underlying problem to provide a
global solution from high level functional requirements to low
level assignment concerns.

The case studies demonstrate the capabilities of this sys-
tem in generating modern fielded robots. Demonstrated per-



ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 15

���������������

���������������

�������������

����������������

������������

������������������ ��������������������������������������� ����������������������

������������������

�������������������

���������������

�������������
�������������������

�����������������������������

����������������

���������������������

��������������

����������������

������������

��������������

�����������

������������������
����������

��������

������������������������

���������������

������������

�����������������

����������������

�����������

��������������

�����������������������

�������������������

��������������������������

(a) Software Graph

��������������

���������������

��������

���������������

��������

�������������

��������

����������

������

�����������������

�������

��������

���������������

����������

������

����������

���

������������

������

����������
������

����������

������

������������������ ��������

����
����

��������������

���

����������

���
������

������������������

����

�����������

������

(b) Hardware Graph

Fig. 10. Synthesized ESCHER system.

formance meets the design-time analysis role suggested in
these experiments, automating a previously manual effort.
Traditional approaches to designing computational systems
for robots involves laborious trial-and-error efforts, or over-
engineering the hardware aspect to ensure many viable solu-
tions exist, without a rigorous framework for defining optimal-
ity. Automated system synthesis compares very favorably to
these approaches, ensuring an optimal solution while providing
a framework for quantifying several aspects of the design.

A. Practical Considerations

As a design-time tool, it is worth remarking on several
important observations from these experiments. In constructing
the presented experiments, significant effort was expended in
formulating correct, re-usable, and consistent specifications.
These issues generally derive from increased specificity in sys-
tem details, differing aims in development tools, and defining
functionality and context in a re-usable fashion.

The need for precise quantitative values to define system
synthesis problems drives one of the biggest changes in these
experiments. Generally, systems focus on functionality first,
and addressing finer grained details such as bandwidth utiliza-
tion or computational constraints are addressed later. System
synthesis operates holistically, requiring quantified values at
every scale in order to produce a complete problem. In prac-
tice, many low level details (e.g. CPU or memory utilization)
are left under- or un- quantified, with hardware components
selected to provide significant overhead in these resources.
Accurately estimating parameters for non-functional require-

ments, or connectivity between tasks requires careful parsing
through layers of abstraction and indirection. Initially using
pessimistic estimates costs relatively little effort compared to
attempting to quantify these details earlier on. This approach
should be mirrored in system synthesis, with resource param-
eters estimated as worst-case estimates, producing a similar
preference towards over-provisioning. With automatic system
synthesis, tools which can help refine these estimates as a
design evolves are useful for understanding the overall design
space. Small-scale parameter changes can ripple throughout
a design, and additional support for mapping higher level
decisions down to quantifiable results would be beneficial. The
inclusion of traditionally less heavily scrutinized parameters
enables more rigorous system synthesis, but care must be taken
in applying well established design practices to these aspects
of system analysis.

Finally, the definition of semantic parameters across compo-
nents require careful consideration and development. Current
systems rarely provide explicit definitions of the semantic
content of algorithm inputs and outputs in a reusable fash-
ion. The development and presentation of novel components
focuses on the demonstration of success for a particular
application or challenge. Defining the operational envelope for
a component requires analyzing and understanding failure as
well, which not only increases effort, but introduces analysis to
extract root causes related to technically relevant parameters.
Furthermore, some of these parameters may be relevant only
to a subset of developers. For instance, a task input may have a
semantic requirement of representing a goal state for planning,
which represents the universal version of that requirement.
A system which may optionally include multiple sources of
that particular goal state (e.g. an autonomous system and an
operator) which requires expanding the semantic requirement
to represent both the source and the content of the data as
aspects of the semantic requirement. These problems reach
towards the need to better understand and communicate how
re-usable elements can be shared, a more general problem
beyond the scope of this work.

B. Future Work

Posing system synthesis as an integer program results in
solving for the global optimum, requiring more computational
effort to find the solution. Switching to approaches capable
of quickly finding approximately optimal solutions raises the
possibility of extending the range of problems which can solve
in an online scenario. Extending this approach to address hard-
ware fault recovery, dynamic operational contexts or mission
requirements offers the ability to be more resilient in the face
of failures. Dynamically altering the hardware and software as
requirements and context change can offer greater adaptability,
allowing components developed to address specialized scenar-
ios to be used when necessary. Generally, online execution
of system synthesis can enable reasoning about interactions
between a system’s structure and the environment, potentially
enabling a wide variety of new capabilities.

Another avenue of work introduces reasoning about the
physical relationships between elements under consideration.



16 REFERENCES

Hardware connections currently serve to transfer data between
devices; connections can also transfer power, add payload
mass, or enforce mechanical relationships between elements.
Generalizing hardware connections can allow reasoning about
additional hardware constraints such as power and mass bud-
gets. Additionally, consideration of mechanical relationships
between elements can improve expressiveness in synthesizing
multi-robot systems, as well as enabling more expressive
constraints on mechanical systems (e.g. ensuring an IMU is
rigidly mounted on each robot, or selecting mobility elements
based on environment).

Introducing a more robust model for functionality could
improve the complexity of design problems posed in this
framework. Currently, functionality is modeled as linearly
independent parameters, which does not reflect some func-
tional trade-offs in design. Interactions between functional
elements can include synergistic effects (e.g. better localization
improving accuracy for perception), adversarial relationships
(e.g. assigning more roles to a single robot reducing the time
devoted to each role), or non-linear scaling (e.g. running two
localization estimators may not linearly improve the accuracy
of localization). Reworking the model for how functional
elements contribute to the overall system opens the door to
a wider variety of design considerations.

REFERENCES

[1] I. A. Sucan and S. Chitta, MoveIt! 2017.
[2] A. Hornung et al., “OctoMap: An efficient probabilistic 3D mapping

framework based on octrees,” Autonomous Robots, 2013.
[3] J. Engel et al., “LSD-SLAM: Large-scale direct monocular SLAM,”

in Computer Vision – ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II. 2014,
pp. 834–849.

[4] A. Hornung et al., “Anytime search-based footstep planning with
suboptimality bounds,” in 2012 12th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2012), IEEE, Nov. 2012,
pp. 674–679.

[5] M. Quigley et al., “ROS: an open-source Robot Operating System,”
ICRA, vol. 3, p. 5, 2009.

[6] C. Knabe et al., “Team VALOR’s ESCHER: A novel electrome-
chanical biped for the DARPA Robotics Challenge,” Journal of Field
Robotics, Feb. 2017.

[7] M. DeDonato et al., “Team WPI-CMU: Achieving reliable hu-
manoid behavior in the DARPA Robotics Challenge,” Journal of Field
Robotics, 2017.

[8] (2017). ROCK, the Robot Construction Kit, [Online]. Available: http:
//www.rock-robotics.org.

[9] P. Fitzpatrick et al., “Towards long-lived robot genes,” Robotics and
Autonomous Systems, vol. 56, no. 1, pp. 29–45, Jan. 2008.

[10] D. Stewart et al., “Design of Dynamically Reconfigurable Real-Time
Software Using Port-Based Objects,” IEEE Transactions on Software
Engineering, vol. 23, no. 12, 1997.

[11] Y. Cui et al., “ReFrESH: A Self-Adaptation Framework to Support
Fault Tolerance in Field Mobile Robots,” no. Iros, pp. 1576–1582,
2014.

[12] Y. Cui et al., “Real-Time Software Module Design Framework for
Building Self-Adaptive Robotic Systems,” pp. 2597–2602, 2015.

[13] D. Doose et al., “MAUVE Runtime: A Component-Based Middleware
to Reconfigure Software Architectures in Real-Time,” in 2017 First
IEEE International Conference on Robotic Computing (IRC), Apr.
2017, pp. 208–211.

[14] D. W. Pentico, “Assignment problems: A golden anniversary survey,”
European Journal of Operational Research, vol. 176, no. 2, pp. 774–
793, 2007.

[15] E. M. Loiola et al., “A survey for the quadratic assignment problem,”
European Journal of Operational Research, vol. 176, no. 2, pp. 657–
690, 2007.

[16] G. T. Ross and R. M. Soland, “A branch and bound algorithm for the
generalized assignment problem,” Mathematical Programming, vol. 8,
no. 1, pp. 91–103, 1975.

[17] J. Beck and D. Siewiorek, “Modeling Multicomputer Task Allocation
as a Vector Packing Problem,” Proceedings of the 9th International
Symposium on System Synthesis (ISSS 96), pp. 115–120, 1996.

[18] S. Even et al., “On the complexity of time table and multi-commodity
flow problems,” 16th Annual Symposium on Foundations of Computer
Science (sfcs 1975), pp. 184–193, 1975.

[19] T. D. ter Braak et al., “Dynamic Resource Allocation Problems,”
Centre for Telematics and Information Technology, University of
Twente, Enschede, Tech. Rep. TR-CTIT-16-08, Feb. 2016.

[20] H.-L. Choi et al., “Consensus-based decentralized auctions for robust
task allocation,” Robotics, IEEE Transactions on, vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[21] P. Sujit and R. Beard, “Distributed sequential auctions for multiple
UAV task allocation,” in American Control Conference, 2007. ACC
’07, Jul. 2007, pp. 3955–3960.

[22] X. Zheng et al., “Improving sequential single-item auctions,” in Intel-
ligent Robots and Systems, 2006 IEEE/RSJ International Conference
on, Oct. 2006, pp. 2238–2244.

[23] M. Lagoudakis et al., “Simple auctions with performance guarantees
for multi-robot task allocation,” in Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Con-
ference on, vol. 1, Sep. 2004, 698–705 vol.1.

[24] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,” Annals of Operations Research,
vol. 14, no. 1, pp. 105–123, 1988.

[25] M. M. Zavlanos et al., “A distributed auction algorithm for the
assignment problem,” in IEEE Conference on Decision and Control,
2008, pp. 1212–1217.

[26] L. Luo et al., “Provably-good distributed algorithm for constrained
multi-robot task assignment for grouped tasks,” Robotics, IEEE Trans-
actions on, vol. 31, no. 1, pp. 19–30, Feb. 2015.

[27] R. K. Williams et al., “Decentralized matroid optimization for topology
constraints in multi-robot allocation problems,” in Robotics and Au-
tomation (ICRA), 2017 IEEE International Conference on, Jun. 2017.

[28] R. M. Zlot and A. Stentz, “Market-based multirobot coordination
for complex tasks,” in International Journal of Robotics Research,
Special Issue on the 4th International Conference on Field and Service
Robotics, vol. 25, London, Jan. 2006, pp. 73–101.

[29] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[30] G. A. Korsah et al., “A comprehensive taxonomy for multi-robot task
allocation,” The International Journal of Robotics Research, vol. 32,
no. 12, pp. 1495–1512, 2013.

[31] A. Censi, “A Mathematical Theory of Co-Design,” ArXiv e-prints, Dec.
2015. arXiv: 1512.08055 [cs.LO].

[32] R. Desai et al., “Computational abstractions for interactive design of
robotic devices,” in IEEE International Conference on Robotics and
Automation (ICRA), Jun. 2017.

[33] S. Ha et al., “Joint optimization of robot design and motion parameters
using the implicit function theorem,” in Robotics: Science and Systems,
Jul. 2017.

[34] M. F. Fallon et al., “Drift-free humanoid state estimation fusing kine-
matic, inertial and LIDAR sensing,” in 2014 IEEE-RAS International
Conference on Humanoid Robots, IEEE, Nov. 2014, pp. 112–119.

[35] H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and
Mapping: Part I,” IEEE Robotics Automation Magazine, vol. 13, no.
2, pp. 99–110, Jun. 2006.

[36] S. Izadi et al., “KinectFusion: Real-time 3D Reconstruction and
Interaction Using a Moving Depth Camera,” in Proceedings of the
24th Annual ACM symposium on User Interface Software and Tech-
nology, ser. UIST ’11, Santa Barbara, California, USA: ACM, 2011,
pp. 559–568.

[37] A. Kelly, Mobile robotics: Mathematics, models, and methods. Cam-
bridge University Press, 2013.

[38] M. Reichardt et al., “Introducing FINROC: A Convenient Real-Time
Framework for Robotics Based on a Systematic Design Approach,”
Technische Universität Kaiserslautern, Tech. Rep., Jul. 2012, pp. 1–8.

[39] M. Mcnaughton et al., “Software Infrastructure for an Autonomous
Ground Vehicle,” Journal of Aerospace Computing Information and
Communication, vol. 5, no. 12, pp. 491–505, 2008.

[40] K. J. Sullivan et al., “The structure and value of modularity in software
design,” ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5,
p. 99, 2001.

http://www.rock-robotics.org
http://www.rock-robotics.org
http://arxiv.org/abs/1512.08055


ZIGLAR et. al.: CONTEXT-AWARE SYSTEM SYNTHESIS, TASK ASSIGNMENT, AND ROUTING 17

[41] T. D. ter Braak, “Using guided local search for adaptive resource reser-
vation in large-scale embedded systems,” in 2014 Design, Automation
Test in Europe Conference Exhibition (DATE), Mar. 2014, pp. 1–4.

[42] Gurobi Optimization Inc., Gurobi optimizer reference manual, ver-
sion 7.0.1, 2016.

[43] A. Romay et al., “Collaborative autonomy between high-level be-
haviors and human operators for remote manipulation tasks using
different humanoid robots,” Journal of Field Robotics, vol. 34, no.
2, pp. 333–358, 2017.


	I Introduction
	II Related Work
	II-A Software Infrastructures and Reconfiguration
	II-B Assignment Problems
	II-C Multi-Robot Task Assignment
	II-D Automated Robot Design

	III The System Synthesis, Task Assignment, and Routing Problem
	III-A Task Assignment And Routing
	III-B Structure Synthesis
	III-C Context-Aware Functional Modularity
	III-D Objective Function and Full Formulation

	IV Simulation Results
	IV-A Dynamic Robot Development
	IV-B Humanoid Disaster Response Robot Synthesis

	V Discussion & Conclusion
	V-A Practical Considerations
	V-B Future Work


