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Abstract When robots interact with humans in homes,

roads, or factories the human’s behavior often changes

in response to the robot. Non-stationary humans are

challenging for robot learners: actions the robot has

learned to coordinate with the original human may fail

after the human adapts to the robot. In this paper we

introduce an algorithmic formalism that enables robots

(i.e., ego agents) to co-adapt alongside dynamic hu-

mans (i.e., other agents) using only the robot’s low-

level states, actions, and rewards. A core challenge is

that humans not only react to the robot’s behavior,

but the way in which humans react inevitably changes

both over time and between users. To deal with this

challenge, our insight is that — instead of building an

exact model of the human — robots can learn and rea-

son over high-level representations of the human’s pol-

icy and policy dynamics. Applying this insight we de-

velop RILI: Robustly Influencing Latent Intent. RILI

first embeds low-level robot observations into predic-

tions of the human’s latent strategy and strategy dy-

namics. Next, RILI harnesses these predictions to select

actions that influence the adaptive human towards ad-

vantageous, high reward behaviors over repeated inter-

actions. We demonstrate that — given RILI’s measured

performance with users sampled from an underlying

distribution — we can probabilistically bound RILI’s

expected performance across new humans sampled from

the same distribution. Our simulated experiments com-

pare RILI to state-of-the-art representation and rein-

forcement learning baselines, and show that RILI better
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learns to coordinate with imperfect, noisy, and time-

varying agents. Finally, we conduct two user studies

where RILI co-adapts alongside actual humans in a

game of tag and a tower-building task. See videos of our

user studies here: https://youtu.be/WYGO5amDXbQ
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1 Introduction

Small and mid-sized manufactures (SMMs) make up

almost 99% of all American manufacturing companies,

and more than 75% of SMMs have fewer than 20 em-

ployees [1]. But despite their prevalence, SMMs are the

least likely manufacturers to use robots [48]. To be-

come successful within small and mid-sized manufac-
turers robots must learn new tasks while coordinating

with human co-workers [43,16,2,33].

Consider a robot arm that is learning to build tow-

ers with a human partner (see Figure 1). During each

interaction the human and robot both add one block to

their respective towers, and the robot is rewarded if its

tower matches the human’s. The robot’s learning would

be straightforward if the human always built the exact

same tower regardless of what the robot did. In prac-

tice, however, humans adapt to the robot’s behavior [38,

15,21]. Perhaps a competitive human sees the robot is

almost always picking green blocks, and so the human

switches their behavior to now add orange blocks to

the tower. Changes in human behavior present a chal-

lenge to robot learners: these shifts alter the robot’s

learning environment, so that robot actions which orig-

inally coordinated with the human (e.g., adding green

blocks) are no longer effective [18]. To make matters

worse, different humans adapt to the same robot behav-

ior in different ways. While a competitive human adapts
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At first I always
added gray blocks...

...but now Iʹm going 
to alternate blocks

 f1(z, τ)

 f2(z, τ)

 f2(z, τ)
z   i

z   i-1  f1(z, τ)

Fig. 1 Human and robot interact to assemble towers. The
robot’s objective is to build the same tower as the human.
As the robot adapts to the human, the human also adapts
to the robot and changes their behavior. Different users react
to the robot in different ways: even the same human will in-
evitably change how they respond to the robot over time. Our
approach enables robots to co-adapt alongside non-stationary
humans by learning a high-level representation of the human’s
policy (strategy z) and maintaining multiple models for how
the user’s strategy will change over time (dynamics fp).

by picking blocks that the robot does not expect, a col-

laborative human may help the robot by selecting the

same blocks that the robot chooses frequently.

This paper explores settings where one ego agent

(e.g., a robot) is learning and interacting with one other

agent (e.g., a human). Specifically, we introduce an al-

gorithmic formalism that enables the ego agent to seam-

lessly co-adapt alongside another agent. Prior research

on multi-agent learning and human-robot interaction

makes restrictive assumptions about this other agent.

For example, existing methods assume that the other

agent always reacts to the ego agent in the same way

[59,56,8,12], the other agent communicates its intent or

is trained together with the ego agent [36,58,13,7], or

the other agent’s adaptation has a pre-defined structure

[6,26,39,46,5,28,30]. By contrast, we recognize that hu-

mans are independent, partially observable agents, and

that the human’s personalized response to the ego agent

will change over repeated interactions.

Humans seamlessly co-adapt to other humans on

a daily basis (e.g., imagine breaking and accelerating

to maintain distance from another car). When humans

learn to coordinate with another human they do not

build exact models of the other agent’s policy [4,45,

55]. Return to our tower building example: humans do

not reason over every fine-grained motion of the other

agent. Instead, a human worker might predict the high-

level intent that shapes the other agent’s actions (e.g.,

the human predicts the other agent will add an orange

block next interaction). Accordingly, our insight is that:

Ego agents can co-adapt by maintaining high-level

representations of both the other agent’s policy and the

change in policy between interactions.

We leverage this insight to propose our algorithmRILI,

Robustly Influencing Latent Intent. Under RILI robots

learn to embed their low-level observations into latent

strategies and dynamics. Here a strategy captures how

the other agent will behave during the current inter-

action (e.g., which block the human will choose), and

dynamics express the underlying rules the other agent is

using to change their strategy (e.g., if the robot adds an

orange block now, then the human will also choose an

orange block during the next interaction). By reasoning

over strategies and dynamics we enable ego agents to

predict which behaviors will coordinate with the other

agent. This prediction is robust to noisy and imperfect

humans who adapt and change their underlying dynam-

ics over repeated interactions (see Figure 2).

Developing a high-level representation of the other

agent forms the first half of our proposed approach.

Next, RILI harnesses this robust predictive model to

learn to influence the other agent. Remember that our

ultimate goal is robots that co-adapt alongside humans

and successfully complete multi-agent tasks. We there-

fore train the ego agent online — as it interacts with

the other agent — to learn a policy that maximizes

its cumulative reward. Because we have equipped the

robot with our predictive model, the robot can antici-

pate how the human will react to its choices; put an-

other way, the robot optimizes for behaviors now that

will guide the human towards advantageous strategies

in the future. Returning to Figure 1, the robot receives

higher rewards for adding blocks that are easy for the

robot to reach. Robots that apply RILI autonomously

learn actions that cause the adaptive human to reach

for those blocks, thereby increasing the robot’s reward

and improving task coordination.

Overall, we make the following contributions1:

Learning to Coordinate. In Section 4 we introduce

our RILI algorithm for settings where one ego agent

repeatedly interacts with an adaptive agent, and the

ego agent can only observe its own low-level states, ac-

tions, and rewards. RILI combines representation and

reinforcement learning to embed low-level observations

into high-level predictions of the other agent’s strategy

and dynamics, and then reasons over these predictions

1 Parts of this work have been published at the Interna-
tional Conference on Intelligent Robots and Systems [42].
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Fig. 2 Robot learning to select blocks that match the human. The robot encounters different humans who react to the robot
in different ways: some users ignore the robot’s behavior (Independent, Top), while others adapt to choose blocks away from
the robot (Competitive, Middle) or match the robot’s last choice (Collaborative, Bottom). Co-adaptive robots must be able to
learn alongside each type of human (i.e., each different dynamics). This is particularly challenging when a single human changes
dynamics (e.g., switches from collaborative to competitive) or when a new user comes along with their own personalized rules
for reacting to the robot. Under our proposed approach the robot learns latent representations of the other agent’s strategy
z and strategy dynamics fp so that it can predict which block the human will choose next and take actions accordingly. The
images above are taken from our second user study (Section 8) where the RILI robot learns to co-adapt with each user.

when selecting robot actions. The resulting approach

learns online while it is working with the other agent.

Deriving Co-Adaptation Bounds. We assert that

RILI can influence other agents who change their un-

derlying dynamics. For example, perhaps a new human

comes along and starts to interact with the robot, or

the existing user becomes more competitive over time.

Let the other agent’s dynamics be sampled from some

distribution P. Given the robot’s measured reward with

N dynamics sampled from P, in Section 5 use PAC-

Bayes theory to derive a probabilistic lower bound on

the robot’s expected reward across the unknown distri-

bution of other agents. We then support this theoretical

bound through simulated experiments.

Comparing RILI to Baselines. To compare our pro-

posed approach to the state-of-the-art we perform ex-

tensive simulations within the the environments estab-

lished by prior work. Our simulations in Section 7 re-

veal that RILI can learn to co-adapt with an arbitrary

number of other agent dynamics, including other agents

who react to every robot behavior, other agents who

only adapt to some robot behaviors, and other agents

who ignore the robot’s behavior altogether. We also

show that the robot can remember old partners even

after training with new partners (e.g., the robot can

still coordinate with previous human users), and that

the RILI approach more rapidly adapts to unexpected,

out-of-distribution dynamics than the baselines.

Co-Adapting with In-Person Users. Finally, in Sec-

tion 8 we put RILI to the test across two experiments

with actual humans. In our first user study participants

play a virtual game of tag with the RILI agent. Each

user chooses their own strategy for avoiding the robot,

and RILI learns from scratch how to coordinate with

and catch the human participants. Our second study fo-

cuses on the tower-building environment from Figure 1.

Here the robot arm is pre-trained offline with a pool of

simulated agents, and the robot must adapt online to

the actual human user during a total of 30 interactions.

The results of both studies suggest that RILI leads to

higher rewards than state-of-the-art baselines.

2 Related Work

In our approach robots learn to influence humans that

change and adapt over time. The robot can only observe

its own states, actions, and rewards, and we do not as-

sume any pre-defined model of the human. Instead, the
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robot must learn to embed its low-level observations to

a high-level representation of the human’s policy and

policy dynamics. We emphasize that training alongside

another robot or simulated human is not sufficient: be-

cause each human may respond to the robot in different

ways, we need a robust robot that personalizes its be-

havior to the agent it is currently working with.

Learning alongside Adaptive Agents. Related work

on multi-agent reinforcement learning (MARL) explores

settings where an ego agent trains alongside other learn-

ing agents [57]. Because the other agents change their

behaviors as they learn, the ego agent’s environment

is non-stationary: robot actions that initially lead to

high reward may suddenly lead to low rewards when the

other agents adapt. To deal with this, some MARL re-

search leverages a centralized learning procedure where

each agent has access to the same models or observa-

tions (e.g., agents are trained using a centralized critic)

[13,29,10]. Other research learns explicit communica-

tion protocols to share information between agents (e.g.,

agents send messages to one another) [7,11,51]. Nei-

ther of these methods apply to our human-robot setting

where (a) the agents are decentralized and (b) we do

not assume that the human and robot have a mutually

understood channel for communication.

Modeling Humans and Other Agents. More rele-

vant here is prior work from MARL and human-robot

interaction that attempts to model the other agent.

Within these methods the ego agent observes the other

agent’s behavior during previous interactions, and learns

a model to predict the other agent’s future actions. Of-

ten these models rely on some underlying structure. For
instance, the robot may assume that it knows the other

agent’s learning rule [12,30], that the other agent acts

as a leader, follower, or expert [28,26,36], or that the

other agent has a fixed, unchanging policy [8]. Research

like [24,44,46] assumes that the human’s behavior nois-

ily optimizes their reward, and this reward is a function

of known features (e.g., the human’s goal position). Go-

ing one step further, robots can recognize that the other

agent is also learning from them, resulting in recursive

reasoning [4,55] and co-adaptation [39]. In the domain

of co-adaptation previous works have used examples of

expert coordination to learn a low-rank subspace over

human strategies [50] or cluster human actions to learn

common reward functions [40]. Similar to prior works

we will learn a predictive model of the other agent over

repeated interactions. We do not assume access to the

other agent’s learning model, roles, reward, features, or

examples of expert coordination; instead, we hypothe-

size that the other agent’s policy is parameterized by a

high-level strategy. By learning this representation —

and predicting how the human’s strategy changes in

response to the robot — we enable the ego agent to

account for its non-stationary environment.

Influencing Humans. Because the other agent adapts

to the robot’s actions, we can leverage the robot’s be-

havior to intentionally influence the other agent. This

influential behavior is not explicitly programmed as part

of the robot’s objective [23,30] — under RILI influence

emerges naturally as the robot tries to guide the hu-

man towards advantageous strategies and maximize its

own reward. Previous works have explored how robots

can influence humans during a single interaction. In [46,

53,19,6,47] human-robot interaction is formulated as a

two-player game: the robot infers the human’s reward,

and then plans while accounting for the human’s opti-

mal response (e.g., an autonomous car changing lanes

to slow a human driver). Most relevant here are meth-

ods like LILI [59] and SILI [56] that learn to influence

another agent over repeated interactions. Both [59] and

[56] assume that the other agent maintains a fixed set

of rules for reacting to the ego agent. Return to our mo-

tivating example: for a given robot choice (e.g., adding

a green block) LILI and SILI assume that every hu-

man reacts in the exact same way (e.g., choosing a blue

block). Accordingly, while [59,56] are effective in robot-

robot experiments, we will demonstrate that these ap-

proaches fail to influence actual humans.

Robust Human Prediction. For our proposed ap-

proach to coordinate with actual humans it must be

robust to noisy and imperfect agents who change their
dynamics. Today’s robots take a step towards robust

interaction by maintaining a probabilistic model over

the human’s possible actions, and identifying risk-aware

robot behaviors that achieve high rewards even for un-

expected actions [20,3,27,41]. When a human model is

not available (or when humans deviate from pre-defined

models), robots can achieve robust performance by ob-

serving and interacting with a distribution of real or

simulated agents [52,22,8,58]. RILI draws inspiration

from both of these approaches: we learn a posterior dis-

tribution over the human’s strategy through repeated

interactions with multiple other agents. To analyse the

robustness of our resulting algorithm we turn to Prob-

ably Approximately Correct or PAC-Bayes bounds [35]

that have been used for studying generalization in deep

learning [37,9]. PAC-Bayes theory has also been used

to optimize for robust policies in novel environments

[31,32]. Here we similarly leverage PAC-Bayes theory

to obtain a probabilistic lower bound on performance

across new and unseen human dynamics.
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3 Problem Statement

We consider two-agent settings with an ego agent and

some other agent. We control the ego agent, but the

other agent is fully autonomous; for example, the ego

agent could be a robot while the other agent is a human.

Our approach applies to scenarios where the other agent

is collaborative (i.e., a partner) or competitive (i.e., an

opponent). In this paper we use ego agent or robot to

refer to the agent that we control, and other agent or

human to refer to the agent we are interacting with.

The ego agent repeatedly interacts with the other

agent. Recall our motivating example where an indus-

trial robot arm is building towers with a human worker:

the human and robot will need to manufacture multiple

towers over hours, days, or weeks of interaction. Each

time that the human and robot interact we assume that

the human has some high-level strategy z ∈ Z that they

use to make low-level decisions. For instance, the human

may want to build a tower with the purple block above

the orange block. Let i be the current interaction: dur-

ing interaction i, the human uses strategy zi to reach

for, pick up, and move the blocks. The human’s high-

level strategy changes between interactions according to

their underlying dynamics. Perhaps the human noticed

that the robot expects the purple block to be below the

orange block, and so during interaction i+1 the human

changes their high-level strategy zi+1 to also place the

orange block above the purple block.

Importantly, not all other agents follow the same

dynamics to update z. Returning to our example, some

humans may change their high-level strategy to build

a tower that matches the robot’s behavior; other hu-

mans may ignore the robot entirely and build the tow-
ers that they prefer. Even a single human’s dynamics

will inevitably shift over time — causing the human to

respond to the same robot behavior in different ways.

In this section we therefore formalize two-agent inter-

actions where the other agent has a high-level strategy

z as well as changing dynamics for updating that strat-

egy. We emphasize that the ego agent can never directly

observe the high-level strategy z, and the ego agent does

not know what dynamics the human is using to update

z between interactions.

Latent Strategy. We start by formulating a single in-

teraction. Every interaction lasts a total ofH timesteps;

at each timestep the robot observes its state s ∈ S and

takes action a ∈ A. The robot does not know the la-

tent strategy of the other agent z ∈ Z. However, this

high-level strategy affects how the other agent behaves,

and this in turn may alter what the robot observes.

More specifically, both the ego agent’s transition func-

tion T (s′ | s, a, zi) and reward function R(s, zi) depend

on the current latent strategy zi. Consider the run-

ning example of a robot trying to assemble towers that

match the human; the tower that the human chooses to

build determines how much reward the robot receives.

By combining these parts we express a single interac-

tion as a Hidden Parameter Markov Decision Process

(HiP-MDP) using the tuple M = ⟨S,A,Z, T , R,H⟩
where z ∈ Z is the hidden parameter. During the i-

th interaction the ego agent follows the state-action

trajectory ξi = {(si1, ai1), . . . , (siH , aiH)}, and the ego

agent observes this trajectory and its rewards r at ev-

ery timestep. Let τ i = {(si1, ai1, ri1), . . . , (siH , aiH , riH)}
be the robot’s experience. We emphasize that trajectory

ξi and experience τ i contain only low-level information

on the states, actions, and rewards of the ego agent.

Latent Dynamics. Within a single interaction the

other agent maintains a constant latent strategy. But

between interactions this strategy changes according to

the human’s latent dynamics:

zi+1 = fp(z
i, τ i) (1)

Imagine a person building towers with the robot in

Figure 1. The person updates their choice of z based

on some personalized set of rules: they may choose to

build the same tower every time, cycle through different

choices of towers, or even change the tower they build

in response to how the robot behaves. Each of these

cases corresponds to a different dynamics function f .

We capture these differences using subscript p, so that

the p-th other agent has latent dynamics fp.

We next recognize that — not only are there many

possible latent dynamics — but these dynamics will in-

evitably change over repeated interactions. This could

be because the robot is now interacting with a new

agent (i.e., the robot starts working with a different

human) or because the other agent changes (i.e., the

same human modifies how they react to the robot). In

either case, the robot interacts with multiple dynamics

fp, where p ∼ P is sampled from a distribution over

other agents. From the ego agent’s perspective the dy-

namics shift randomly: for the first m interactions the

robot may interact with dynamics fp1 , then the next n

interactions the robot may interact with dynamics fp2
.

The ego agent cannot observe the latent dynamics and

does not know when the latent dynamics change. Sim-

ilarly, the ego agent does not know the distribution P
from which these different dynamics are sampled. Equa-

tion (1) and the listed assumptions describe scenarios

where the robot must learn to interact with different

humans (which could be competitive, collaborative, or

indifferent), and the robot does not know how these

other agents will behave a priori.
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Repeated Interaction. We have separately discussed

the latent strategy within an interaction and how that

latent strategy changes between interactions. Putting

these together we reach our problem formulation. Over

n repeated interactions the ego agent encounters a se-

quence of n HiP-MDPs: (M1, . . . ,Mn) where the other

agent plays strategy zi throughoutMi. The other agent

uses latent dynamics fp to update z between interac-

tions, and the ego agent interacts with a total of N

different latent dynamics, where N ≤ n. To clarify: n

indexes the number of interactions and N is the num-

ber of different latent dynamics the ego agent has so

far encountered. In practice, these N dynamics could

correspond to interacting with one agent that changes

their dynamics N times, N different humans who each

have their own approach for interacting with the robot,

or some combination of the above.

The robot’s total reward is the sum of the rewards

across all interactions, and the robot’s objective is to

maximize its total reward. Maximizing reward often re-

quires that the robot influence the other agent so that

they choose latent strategies with which the robot can

seamlessly coordinate. In our motivating example there

are some towers that are easier for the robot to build

(e.g., the robot receives more reward for specific tow-

ers). The robot can therefore increase long-term reward

by guiding the human towards strategies that corre-

spond to these towers. Efficient ego agents will there-

fore i) identify the other agent’s current dynamics fp
and ii) exploit those dynamics to influence the other

agent towards advantageous latent strategies z.

4 Robustly Influencing Latent Intent (RILI)

In this section we present Robustly Influencing Latent

Intent (RILI), our proposed approach for co-adapting

alongside another agent with changing latent dynam-

ics. RILI breaks down into two components. First, in

Section 4.1 the ego agent learns to predict how the

other agent will respond to the robot’s behaviors. Given

the robot’s low-level states, actions, and rewards dur-

ing previous interactions, can the robot anticipate the

human’s high-level strategy for the current interaction?

Making accurate predictions is challenging because the

dynamics the other agent uses to choose its strategy

will inevitably shift over repeated interaction, and the

ego agent cannot observe either dynamics or high-level

strategies. Second, in Section 4.2 the ego agent leverages

these predictions to influence the human’s strategy over

repeated interactions. Given that the robot has a model

of how the human will react to its actions, which actions

should the robot select to exploit the human’s latent

dynamics and maximize its long-term reward? Overall,

RILI combines representation and reinforcement learn-

ing to continually adapt to changing partners: see the

method outline in Figure 3.

4.1 Robust Prediction

Our first challenge is predicting how the human will re-

act to the robot’s actions, i.e., anticipating the human’s

next latent strategy. Consider our running example:

if the robot can accurately predict which block a hu-

man will choose next, the robot can seamlessly coordi-

nate with that human. We know that the other agent’s

next latent strategy zi+1 is selected according to Equa-

tion (1). Here we therefore enable the robot to learn a

model of Equation (1) across all dynamics p that the

robot has encountered so far.

Inferring Strategies. To start, we recognize that the

human’s next latent strategy zi+1 is a function of their

current strategy zi and the interaction experience τ i.

The ego agent directly observes the states, actions, and

rewards τ i = {(si1, ai1, ri1), . . . , (siH , aiH , riH)}, but the

other agent’s strategy zi is hidden from the robot. Re-

call that the transition and reward functions during in-

teraction i depend on latent strategy zi. As a result,

the robot can leverage the states, actions, and rewards

in τ i to reconstruct zi; e.g., based on the rewards the

robot receives, the robot can determine which block the

human picked up. We introduce the strategy encoder :

zi = Ez(τ i), z ∈ Rd (2)

where Ez maps the i-th interaction to a representation

of the agent’s strategy zi. Because the actual strategies

of the other agent are never observed, we cannot train

this encoder using ground-truth labels.

Instead, we next introduce a strategy decoder. This

decoder attempts to reconstruct the robot’s rewards

when the robot executes trajectory ξ and the other

agent has latent strategy z ∈ Rd:

[r̂i1, . . . r̂
i
H ]T = D(ξi, zi) (3)

where ξi = {(si1, ai1), . . . , (siH , aiH)} includes the ego

agent’s states and actions during interaction i, and r̂ are

rewards predicted by the decoder. Pairing the strategy

encoder and decoder, we reach the loss function:

Lz =

∥∥∥∥∥∥∥
 r

i
1
...

riH

−D(ξi, Ez(τ i))
∥∥∥∥∥∥∥ (4)

The loss Lz is minimized when the decoder accurately

reconstructs rewards. Intuitively, this means the en-

coder Ez must output a latent strategy z that captures
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Fig. 3 Robustly Influencing Latent Intent. (Left) RILI learns online while interacting with another agent. Given a sequence
of past experiences, the robot learns to embed each interaction into a strategy z and the sequence of strategies into dynamics
p. The robot then predicts how an agent with dynamics p selected their next strategy zk+1 given their current strategy zk and
interaction τk. The encoders and the predictor are trained using a strategy decoder that reconstructs τ . We finally condition
the robot’s policy on our high-level representation of the other agent, and leverage model-free, off-policy reinforcement learning
to maximize long-term reward. (Right) At interaction i the updated models are leveraged to predict the strategy and dynamics
of the other agent for interaction i+ 1. The robot co-adapts to the human by taking actions based on the robot’s prediction.
Note that the dynamics encoder and predictor output a mean and standard deviation over the latent representation.

enough information about the other agent such that —

given z — the robot can correctly score its own behav-

ior ξ. For instance, if the reward function is based on

the distance between ξ and the other agent (e.g., the

distance between the robot and human’s blocks), then

z should implicitly represent the other agent’s position.

Inferring Dynamics. Let us return to Equation (1).

We have a method for inferring the current strategy;

but just knowing z and τ is not sufficient to accurately

predict zi+1. We need to know the other agent’s dynam-

ics, and these dynamics will inevitably change over time

— either because the robot encounters a new agent, or

because the same agent starts reacting in a different

way. We capture these unique dynamics in Equation (1)

using p ∼ P, i.e., dynamics fpi are different from dy-

namics fpj
. In practice, the ego agent does not know

when the other agent will change their dynamics and

shift how they respond to the robot. Instead of learning

separate models for each p ∼ P, we therefore capture

the other agent’s dynamics through a single model:

zi+1 = ϕ(p, zi, τ i), p ∈ Rd (5)

where p ∈ Rd is the robot’s latent representation of the

other agent’s current dynamics (i.e., the other agent’s

type), and ϕ uses this dynamics representation to pre-

dict zi+1. Given z and τ , different choices of p result in

different predictions of zi+1. Returning to our motivat-

ing example: for one latent dynamics p the robot may

predict that the human will pick up the red block dur-

ing the next interaction, while for another p the robot

predicts the human will reach the blue block.

To infer the latent dynamics p we look back at the

other agent’s behavior over the last m interactions. In-

verting Equation (1), we can solve for p based on the

past sequence of strategies z and experiences τ . We ap-

proximate this using a dynamics encoder :

p = Ep(hi), hi = {zi, zi−1, · · · , zi−m+1} (6)

where h is the history of m strategies and Ep embeds

this history to a representation of the agent’s dynamics

p. Note that this approach i) assumes the other agent’s

dynamics remain constant across h and ii) does not

include τ i . . . , τ i−m+1 within h. We leave out τ because

z is already an embedding of τ from Equation (2), and

because this functional approximation works well across

our simulations and experiments.

Now that we have developed an encoder to infer p,

we can use ϕ to predict what latent strategy the cur-

rent human will follow during the next interaction. Of
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course, the robot cannot observe the actual dynamics

the other agent uses to select their high-level strategies.

We therefore leverage the robot’s low-level observations

and our strategy decoder D to learn the dynamics en-

coder Ep in Equation (6) and the overall dynamics ϕ in

Equation (5). Given τ i . . . , τ i−m+1, we first apply Ez
to recover zi . . . , zi−m+1. We then use this sequence to

predict zi+1, before finally decoding zi+1 to estimate

the ego agent’s rewards during interaction i+ 1:

Lϕ =

∥∥∥∥∥∥∥
r

i+1
1
...

ri+1
H

−D(ξi+1, ϕ
(
τ i, Ep(hi), Ez(τ i)

))∥∥∥∥∥∥∥ (7)

In our running example the robot is assembling towers

with a human, and the robot’s reward is the distance

between the block it selected and the block the human

selected. To accurately estimate this reward the robot

must correctly anticipate which block the human will

choose; in Equation (7), this means zi+1 must learn to

correctly capture the human’s next block.

Representation Learning. Now that we have intro-

duced the individual components of our prediction frame-

work, we will discuss how to train the robot to pre-

dict the other agent’s strategy. Here training involves

learning the weights of the strategy encoder Ez, dynam-

ics encoder Ep, predictor ϕ, and strategy decoder D.
We structure the dynamics encoder and the predictor

as conditional variational autoencoders. Specifically, Ep
outputs the mean µp and standard deviation σp over

the latent space p, while ϕ outputs the mean µz and

standard deviation σz over the latent strategy space

zi+1. Define the overall mean and standard deviation

as µ = (µp, µz) and σ = (σp, σz). In practice, higher

values of σ indicate that the robot is uncertain about

its prediction, while lower values of σ suggest that the

robot is confident about p and zt+1. Our overall loss

function for robust strategy prediction sums the recon-

struction losses Equation (4) and Equation (7) with a

regularization term that enforces a N (0, 1) Gaussian

prior over the latent space:

L =
∑
T∈B

(
Lz + Lϕ +KL

(
N (µ, σ) || N (0, 1)

)
︸ ︷︷ ︸

regularizer

)
(8)

Here T = (τk, . . . , τk+m) is a sequence of consecutive

interactions and B is the memory buffer that contains

past interactions. We emphasize that our prediction

models are not just trained once; we apply the loss

function in Equation (8) throughout each interaction

to continually improve the ego agent’s ability to antic-

ipate the other agent’s response.

4.2 Influential Policies

In the first half of our RILI approach we developed a

representation learning structure that enables robots

to predict the other agent’s next strategy. The second

half of our RILI approach harnesses these predictions

to influence the other agent towards strategies the ego

agent can exploit. Robots that anticipate how humans

will react to their behaviors can choose actions to in-

tentionally shape the human’s response. We learn to

influence others without hand-coded policies or heuris-

tics: instead, the robot uses reinforcement learning to

identify high reward behaviors, and influence becomes

a natural outcome of this optimization procedure.

Robot Policy. In our motivating example a robot is

trying to build towers with a human. The robot needs

to determine which block to reach for (i.e., which ac-

tions a ∈ A to take). To collaborate and pick up the

same block as the human, the robot must first antici-

pate the human’s latent strategy z during the current

interaction i. For instance, if the human’s zi is reaching

for the blue block, then the robot should also reach for

blue; but if instead the human’s zi is reaching for a red

block, then the robot needs to take different actions. Be-

cause different human strategies require different robot

responses, we assert that the robot’s policy should de-

pend on the predicted z. But the ego agent also needs

to understand what dynamics p the human will follow

when reacting to the robot’s behavior. For instance, if

the current human updates their strategy to pick up

whichever block the robot grasped during the last in-

teraction, then the robot can leverage this knowledge

of p to guide the other agent. Accordingly, we learn a

policy, parameterized by weights w, that is conditioned

on the predicted strategy, dynamics, and the robot’s

uncertainty over this prediction:

a ∼ πw( · | s, zi, pi, σi) (9)

Note that zi, pi, and σi are held constant throughout

the i-th interaction, but are updated between interac-

tions using the models from Section 4.1. Including σ

enables the ego agent to take actions that are collabo-

rative with a distribution of strategies when the robot

is unsure about its prediction (i.e., picking up the block

the human has reached for most often).

Reinforcement Learning. We train the robot’s pol-

icy to maximize the ego agent’s reward across repeated

interaction. Specifically, the ego agent learns a policy

with weights ω in order to maximize:

max
ω

∞∑
i=1

[
γiEρi

ω

[
H∑
t=1

r(st, z
i)

]]
(10)
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Here γ ∈ [0, 1) is the discount factor, ρiω is the distri-

bution over trajectories ξi under a policy with weights

ω, and zi is the other agent’s true strategy that transi-

tions according to dynamics Equation (1). Ego agents

that maximize Equation (10) will naturally influence

the other agent towards advantageous strategies z. In

our recurrent example the human’s strategy is the block

that they choose, and there are some blocks that are

easier for the robot to reach (e.g., blocks closer to the

robot). Since the ego agent receives the most reward

during the i-th interaction if the human and robot reach

for the closest block, the robot is encouraged to learn

a policy that guides the human towards this z. Im-

portantly, influential behavior is made possible by the

robot’s predictions z and p. Because the robot antici-

pates how the other agent will respond to its actions, it

learns to select actions now that influence the human

towards beneficial strategies in future interactions.

5 Lower Bounds on RILI Performance

In Section 4 we introduced RILI, our approach for in-

fluencing humans whose latent dynamics change over

time. If the robot trains with N other agents across

many interactions, we would expect the robot to co-

ordinate efficiently with these N agents. Take our mo-

tivating example of a robot learning to build towers

with a human: after practicing with this specific hu-

man for many hours, days, or weeks, the robot should

accurately anticipate the human’s blocks and influence

their choices. In practice, however, the robot will in-

evitably encounter new dynamics (e.g., new humans)

that respond to the robot’s actions in different or unex-

pected ways. Given the robot’s performance with N la-

tent dynamics sampled from an underlying distribution

P, how will the robot perform with other agents sam-

pled from this same distribution? Here we answer this

question by finding Probably Approximately Correct-

Bayesian bounds (PAC-Bayes) [35]. PAC-Bayes theory

has been shown to provide the tightest known general-

ization bounds for supervised learning problems [14,25,

49]. In Section 5.1 we first overview an existing PAC-

Bayes bound for supervised learning settings. Next, in

Section 5.2 we develop a correspondence between the

RILI algorithm and these supervised learning settings,

and then leverage this correspondence to extend the

PAC-Bayes bound to our RILI algorithm. The result

is a probabilistic lower bound on the robot’s expected

reward across a distribution P of latent dynamics. This

bound depends on the number of dynamics the ego

agent has encountered, the ego agent’s measured per-

formance with these seen dynamics, and the divergence

between the prior and posterior of the latent space.

Later, in Section 7 we will put the bound to the test,

and numerically show that the RILI agent’s expected

performance matches the theoretical bound.

5.1 Preliminaries of PAC-Bayes

PAC-Bayes theory is used to derive PAC (Probably Ap-

proximately Correct) bounds for learning algorithms

[37,35,14,25]. In this section we present a brief overview

of PAC-Bayes bounds for supervised learning settings;

in the next subsection we will extend this bound to our

RILI algorithm.

Supervised Learning. Consider a robot that is learn-

ing to label inputs x ∈ X . Let y ∈ Y be the space of

labels, and assume the robot maps inputs to predicted

labels using a function parameterized by weights σ. In

other words, ŷ = σ(x), where ŷ is the robot’s predicted

label. At the start of the task the robot has a prior

P0(σ) over the weights. But as the robot observes new

inputs x — and their true labels y — it refines its belief

over σ. Let P(x) be the distribution over inputs, and

let S = {x1, . . . xN} be N samples drawn from this dis-

tribution. Given these N samples and their true labels

{y1, . . . yN} the robot learns a posterior P (σ) over the

model weights. Ideally, the robot will learn choices of σ

that correctly label the inputs. Define L(σ(x), y) as the

loss function, where L captures the error between the

robot’s prediction ŷ = σ(x) and the true label y. With-

out loss of generality we assume that this loss function

is normalized so that 0 ≤ L(σ(x), y) ≤ 1.

5.2 PAC-Bayes Bounds for RILI

Existing Theory.Within this supervised learning con-

text, existing work [34,35] has derived a probabilistic

upper bound on the robot’s loss. For any δ ∈ (0, 1),

with probability at least 1− δ we have that:

LP(P ) ≤ LS(P ) +

√√√√KL(P || P0) + log
(

2
√
N

δ

)
2N

(11)

Here KL(P || P0) is the Kullback–Leibler divergence

between the posterior P (σ) and the prior P0(σ). The

measured loss LS is the expected loss across the N dat-

apoints that the robot has already seen, and LP is the

expected loss across the entire distribution — including

inputs x ∼ P(x) that the robot has not interacted with.

Formally, these losses are defined as:

LS(P ) =
1

N

N∑
i=1

E
σ∼P

L(σ(xi), yi) (12)
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Supervised Learning RILI

Input data x ∈ X → Dynamics fp ∼ P
Input data distribution P(x) → Dynamics distribution P(fP )
Model weights σ → Latent variable θ = (z, p)

Loss L(σ(x), y) → Cost C(θ, fp)

Encountered inputs S = {x1, . . . , xN} → Encountered dynamics S = {fp1 , . . . , fpN
}

Table 1 Correspondence between supervised learning and our proposed RILI algorithm. The supervised learning variables
are defined in Section 5.1 and the RILI variables are discussed in Section 5.2. We develop this correspondence so that we
can apply PAC-Bayes theory to our RILI algorithm. This results in Equation (14), a lower bound on expected reward (upper
bound on expected cost) across a distribution of dynamics P based on the measured rewards with N encountered dynamics.

LP(P ) = E
x∼P

E
σ∼P

L(σ(x), y) (13)

We note that Equation (13) is not actually evaluated

in practice. Instead, by empirically calculating the loss

LS on the N inputs we have seen, we leverage Equa-

tion (11) to obtain an upper bound on Equation (13).

This enables the robot to confidently generalize its per-

formance: using the losses the robot has measured, the

robot can bound its expected performance across the

entire distribution of inputs P(x).
Now that we have reviewed a key PAC-Bayes bound

for supervised learning, we will extend the theory to our

RILI algorithm. The purpose of this analysis is to quan-

tify how RILI generalizes: given the network’s perfor-

mance with N different humans, how will RILI perform

with new agents that have dynamics sampled from the

same underlying distribution P?
To reach our generalization result we will develop a

precise analogy between the supervised setting in Sec-

tion 5.1 and our proposed approach. Our robot inter-

acts with another agent that has latent dynamics fp ∼
P, where distribution P is not known by the robot.

These dynamics are updated over repeated interactions:

consider a robot that has interacted with N different

dynamics (e.g., N different humans) such that S =

{fp1
, . . . , fpN

}. For each human the robot records multi-

ple sequences of experiences. Let T i
k = {τ ik, . . . , τ

i−m+1
k }

be the i-th sequence of interactions with the k-th other

agent, and let Tk = {T 1
k , T

2
k , . . .} contain all sequences

for the k-th agent. Intuitively, these sequences are batches

of low-level data that RILI uses to predict the other

agent’s strategy and select the robot’s actions.

Recall that the representation learning component

of RILI (Section 4.1) inputs T i
k = {τ ik, . . . , τ

i−m+1
k } and

uses the strategy encoder, dynamics encoder, and pre-

dictor to estimate the human’s strategy z and dynamics

p. To capture both z and p we introduce a new variable

θ = (z, p). More specifically, our conditional variational

autoencoders in Equation (8) output a Gaussian poste-

rior over the space of θ given input sequence T , such

that P (θ | T ) = N (µ, σ | T ). The robot starts with a

unit Gaussian prior P0 = N (0, 1 | T ) imposed by the

regularization term for these variational autoencoders,

and learns to map different T to different means µ and

standard deviations σ. Next, the reinforcement learn-

ing part of RILI (Section 4.2) leverages θ ∼ P (· | T ) to
select actions according to policy π. Here we make two

simplifications of Equation (9): first, for our generaliza-

tion analysis we leave out σ so that π only depends on

s, z, and p. Second, we assume that π is a deterministic

policy so that a = π(s, z, p). We will later show that

the empirical results match our theoretical predictions

even with these design approximations.

We now have a robot that selects actions according

to the latent parameter θ, where P (θ | T ) is the learned
posterior and P0(θ | T ) is the prior. To complete our

analogy with the supervised learning setting we must

introduce a loss function that depends on θ. Let cost

C(θ, fp) = −R be the negative reward of acting based

on θ during a single interaction when the other agent

has dynamics fp. Without loss of generality, we again

normalize this cost so that 0 ≤ C(θ, fp) ≤ 1. At this

point we have a parallel between RILI and the PAC-

Bayes setting: Table 1 reviews the correspondence. We

will therefore apply Equation (11) to reach our gener-

alization result for RILI robots.

Generalization Result. Consider a RILI robot trained

withN partners that have dynamics S = {fp1
, . . . , fpN

}.
The robot has learned a Gaussian posterior P (θ | T )
that maps sequences of low-level interactions to robot

behavior. Let the robot’s weights be fixed, so that no

new learning occurs. Given the robot’s average cost CS
across the seen agents S, for any δ ∈ (0, 1) the robot’s

average cost CP across the entire distribution of latent

dynamics P(fp) will be less than:

(14)CP(P ) ≤ CS(P ) +

√√√√KL(P || P0) + log
(

2
√
N

δ

)
2N

with probability at least 1− δ. Here KL(P || P0) is the

Kullback-Leibler divergence between the learned poste-

rior over the latent strategy and dynamics P (θ | T ) =
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N (µ, σ | T ) and the prior P0(θ | T ) = N (0, 1 | T ).
We measure the average cost across the known latent

dynamics using:

CS(P ) =
1

N

N∑
k=1

1

|Tk|
∑

T i
k∈Tk

E
θ∼P (·|T i

k)
C(θ, fpk

) (15)

Similarly, the average cost across the distribution P of

other agents is:

CP(P ) = E
fp∼P

E
T∼P (·|fp)

E
θ∼P (·|T )

C(θ, fp) (16)

Reading Equations (15) and (16) from left to right, we

first take the expectation over the other agent’s latent

dynamics and then consider the sequences of interac-

tions T that are likely for that specific agent. Finally,

we find the expected cost across the latent parameters

θ sampled from the learned posterior P (θ | T ). Re-

member that Equation (15) is evaluated using measured

data from our interactions with the N known agents,

while the robot does not evaluate Equation (16) in prac-

tice. Overall, this result enables designers to generalize

the performance of their learned RILI system across

populations of users. Given that the robot is interacting

with a population of humans that have latent dynam-

ics drawn from an underlying distribution P, the robot
can leverage its performance with N of those humans

to provide a probabilistic lower bound on the expected

reward across the entire population.

6 Implementing RILI

Our overall formalism is visualized in Figure 3 and out-

lined in Algorithm 1. At its heart RILI is built of multi-

ple neural networks: the strategy encoder, the dynam-

ics encoder, a strategy decoder, the predictor, the pol-

icy, and the critic. The specific implementation of these

models is largely left up to the designer. In this section

we provide further details about how we instantiated

RILI during our simulations and user studies: we believe

that the listed details should serve as a starting point

for other designers. Code for our proposed algorithm is

available here: https://github.com/VT-Collab/RILI_

co-adaptation

Strategy, Dynamics, and Predictor. The strategy

encoder Ez was a fully-connected network with 2 hidden

layers of size 64. Recall that Ez maps low-level obser-

vations τ into a latent strategy z ∈ Z: in our experi-

ments we used a 10-dimensional latent strategy space.

The strategy decoder D then takes z and the state-

action trajectory ξ and attempts to reconstruct the ob-

served rewards. We similarly implemented D as a fully-

connected network with 2 hidden layers of size 64.

The dynamics encoder Ep inputs a sequence of m

consecutive latent strategies h = {zi, . . . , zi−m+1} and
outputs the latent dynamics p. For our experiments we

set m = 4, so that the robot attempted to infer the

other agent’s dynamics from the last four interactions.

We designed Ep as a fully-connected network with 2

hidden layers and 64 units per layer. Importantly, Ep
outputs a Gaussian mean µp and standard deviation

σp over the 10-dimensional latent dynamics space. The

predictor ϕ was constructed like the dynamics encoder.

Model ϕ inputs vectors τ , z, and p and outputs a Gaus-

sian posterior over the next latent strategy zi+1. We

programmed ϕ as a fully-connected network with 2 hid-

den layers of size 64, and used the reparameterization

trick to sample zi+1 from a normal distribution with

mean µz and standard deviation σz.

Robot Policy. To perform off-policy model-free re-

inforcement learning we applied the soft actor-critic

(SAC) algorithm [17]. The actor (i.e., the policy) and

critic were fully-connected networks with 2 hidden lay-

ers of size 256. We used the tanh(·) activation through-

out the architecture, including the policy and critic net-

works. To train the representation and reinforcement

learning modules we employed two separate Adam opti-

mizers: for robust prediction the learning rate was 1e−3
and for SAC the learning rate was 3e−4.

7 Simulations

In this section we perform controlled experiments to

compare our proposed algorithm to state-of-the-art base-

lines. We leverage three simulated environments estab-

lished by prior work: within each environment the ego

agent interacts with one other agent across interactions

with H = 10 timesteps, and the dynamics of this other

agent change stochastically between interactions. The

resulting simulations have agents who respond to the

robot at every interaction, agents who only adapt to

some robot behaviors, and agents who stick to their

plan and ignore the robot’s actions entirely. The ego

agent cannot observe the true strategy or dynamics of

their partner and must co-adapt over repeated inter-

actions. We compare RILI to a reinforcement learning

baseline that does not learn an embedding of the other

agent, as well as approaches that combine representa-

tion and reinforcement learning while assuming that the

dynamics of the other agent are constant.

In our first experiment (Section 7.2) the robot learns

to influence and coordinate with an unknown distribu-

tion of other agents across all three environments. Next,

in Section 7.3 we test the model’s capacity to remem-

ber old partners: i.e., after learning alongside more than

https://github.com/VT-Collab/RILI_co-adaptation
https://github.com/VT-Collab/RILI_co-adaptation
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Algorithm 1 RILI: Robustly Influencing Latent Intent

1: Randomly initialize the robust prediction networks Ez, Ep, ϕ,D
2: Randomly initialize the policy and critic networks

3: Initialize empty replay buffer B
4: Initialize zi ← 0, σi

z ← 0, pi ← 0

5: for interaction i = 1, 2, . . . do

6: Sample a batch of m+ 1 consecutive experiences (Tm, τm+1) ∼ B
7: Initialize an empty batch of history hm

8: for τ in Tm do

9: Pass τ through Ez and get the corresponding batch of z

10: Update the history batch hm ← hm ∪ z

11: Calculate the loss Lz

12: end for

13: Pass batch of history hm through Ep to get p

14: Pass batches of zm, τm, and pm through ϕ to get zm+1

15: Calculate the loss Lϕ

16: Calculate total loss L given by Equation (8)

17: Calculate the gradient of total loss L
18: Update the autoencoder networks Ez, Ep, ϕ,D
19: Update the critic and policy networks

20: Collect interaction τ i using policy π(a | s, zi, σi
z, p)

21: Update the replay buffer B ← τ i

22: Get the recent history T i from B
23: Estimate recent strategies z ← Ez(τ) for each τ ∈ T i

24: Predict latent dynamics p← Ep(hi) where hi = {zi, . . . zi−m+1}
25: Predict latent strategy (zi+1, σi+1

z )← ϕ(Ez(τ i), p, τ i)
26: end for

250 other agent dynamics, can the robot still coordi-

nate with the original users? In Section 7.4 we explore

the ego agent’s ability to adapt to unexpected, out-of-

distribution dynamics: i.e., if the robot has interacted

with other agents sampled from distribution P, how will

it perform with new agents not drawn from P? Finally,

in Section 7.5 we empirically support our probabilistic

lower bound on RILI performance. We recognize that

these simulations alone do not necessarily capture how

each algorithms will perform with actual humans. We

therefore use our controlled simulations to complement

the user studies in Section 8. We also extend these sim-

ulations in the Appendix, where we interact with in-

creasingly erratic partners and more complex tasks.

Baselines. We include four baselines for comparison:

– Oracle. This best-case robot has direct access to

the other agent’s strategy z.

– SAC [17]. This robot uses only reinforcement learn-

ing, and does not learn a representation of the other

agent. SAC is equivalent to RILI when the robot’s

policy is conditioned on state but not z, p, or σ.

– LILI [59]. This related approach learns a latent rep-

resentation of the other agent’s strategy and then

conditions the robot’s policy on z. However, LILI

assumes that all other agents follow the same un-

derlying dynamics zi+1 = f(zi, τ i).

– SILI [56]. This recent method is an extension of

LILI that explicitly encourages the ego agent to sta-

bilize the other agent’s latent strategy, i.e., the robot

tries to drive zi+1 = zi. Like LILI, SILI assumes

that all users respond with the same dynamics.

7.1 Simulation Environments

The experiments in this section were performed on three

environments with continuous state-actions spaces: Cir-

cle, Driving, and Robot (see Figure 4). We selected these

environments to remain consistent with the baselines

most relevant to our approach [56,59]. Each environ-

ment consists of an ego agent and another agent: the

other agent’s policy may change between interactions,

and the ego agent does not know either the other agent’s

policy or their dynamics.

We programmed N different latent dynamics for the

other agent in each environment. For Circle, Driving,

and Robot we included the dynamics described in [59,

56]: these dynamics cause the other agent to react to

either some or all of the ego agent’s behaviors. We then
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Fig. 4 Setup and results from our first experiment (Section 7.2). (Top) Environments where the ego agent interacts alongside
one other agent. In Circle the other agent selects their hidden location, in Driving the other agent chooses the lane they merge
into, and in Robot the other agent picks their desired block. This other agent changes their policy between interactions (e.g., in
Circle the other agent chooses a new hidden location), and the rules that the other agent uses to make these policy changes also
shift stochastically (e.g., in Circle the other agent may switch from moving clockwise to moving counter-clockwise). (Bottom)
The ego agent’s average reward as a function of interaction number. Shaded regions show the standard error across three trials.
Oracle always knows the other agent’s latent strategy and exhibits best-case performance.

added new dynamics where the other agent ignores the

robot and follows a stationary policy. Finally, we cre-

ated a separate Circle environment where the other

agent’s dynamics are stochastically sampled from a con-

tinuous distribution (we refer to this as Circle-N ).

Circle. This environment is a pursuit-evasion game [54]

with two-dimensional states and actions. During each

interaction the ego agent (pursuer) attempts to reach

the other agent (evader); however, the ego agent can-

not observe the other agent’s position. Between interac-

tions the other agent changes their location by moving

around the circle. Here the other agent’s latent strat-

egy z could represent their location and their latent dy-

namics fp captures how the other agent updates their

position between interactions.

For Section 7.2 we programmed the other agent with

N = 4 possible dynamics. In Dynamics 1 the other

agent moves counter-clockwise when the ego agent lands

outside the circle, and otherwise moves clockwise [59];

in Dynamics 2 the other agent moves clockwise when

the ego agent moves outside the circle, and otherwise

it does not move [56]. For Dynamics 3 and 4 the other

agent moves counter-clockwise or clockwise regardless

of how the ego agent behaves.

Circle-N. This environment is similar to Circle. But

instead of designing four latent dynamics, we sample

the other agent’s dynamics from a continuous distribu-

tion P. More specifically, we sample a step size from −π
to π radians. Between each interaction the other agent

moves around the circle with the current step size. This

environment is especially useful for simulation since we

can always sample different step sizes, leading to a po-

tentially infinite number of latent dynamics.

Driving. In this environment the speeding ego agent is

trying to pass a slower driver. The ego agent’s state is

its (x, y) position, the ego agent’s action is its steering

angle, and the reward function encourages the robot

to minimize steering angle while avoiding a collision.

The other agent may change lanes as the ego agent ap-

proaches: perhaps a collaborative agent gets out of the

robot’s way, while a competitive agent merges into the

robot’s lane. Here latent strategy z could represent the

lane the other agent merges into and latent dynamics fp
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Fig. 5 Ego agent’s reward across multiple other agents who
react to the robot in different ways (Section 7.2). For Circle
in Figure 4 the other agent had four possible dynamics for up-
dating their latent strategy. Here we take the learned models
after 30, 000 interactions and roll them out with each of the
four dynamics. More negative rewards indicate worse perfor-
mance, and an ∗ denotes statistical significance (p < .05).

captures how the other agent changes lanes in response

to the robot’s driving.

We programmed N = 5 dynamics for the other

agent. In Dynamics 1 the partner merges into the lane

where the ego agent most recently passed [59]; in Dy-

namics 2 and 3 the other agent moves into the lane

that the ego agent occupied earlier in the interaction

[56]. Finally, in Dynamics 4 and 5 the other agent cy-

cles through the lanes either left-to-right or right-to-left

regardless of the ego agent’s actions.

Robot. In our final environment the ego agent is a sim-

ulated Franka Emika robot arm, and the other agent

picks one of three goals that it wants the robot to

reach. The ego agent does not know which goal the

other agent has in mind, and must learn to predict the

other agent’s choice. The ego agent’s state is its end-

effector position, actions are end-effector velocities, and

the robot’s reward is the negative distance between its

end-effector and the target object. Here z could repre-

sent the other agent’s desired goal and fp captures how

the other agent updates their choice between interac-

tions. Because of the robot’s initial position and the

location of the goals, the robot receives higher rewards

when the other agent chooses the right-most goal.

We program the other agent with N = 4 dynam-

ics for choosing targets. In Dynamics 1 the other agent

changes their goal to move away from the robot’s end-

effector; in Dynamics 2 the other agent keeps the same

goal if the robot goes to the left of that target, and

otherwise moves away from the robot [56]. Finally, in

Dynamics 3 and 4 the other agent cycles clockwise or

counter-clockwise through the three goals without re-

sponding to the robot.
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Fig. 6 Results from our first experiment in the Circle-N en-
vironment (Section 7.2). (Top) Like Circle, the ego agent and
the other agent are playing a pursuit-evasion game. The other
agent moves their hidden location around the circle between
interactions. Here the latent dynamics of the other agent are
sampled from a continuous uniform distribution, where each
step size [−π, π] is equally likely. For instance, with dynam-
ics f1 the other agent moves by +π/4 between interactions,
while with f2 the other agent moves −π/2. (Bottom) The ego
agent’s reward vs. interaction number. The shaded region is
the standard error across three trials.

7.2 Coordinating with Changing Agents

In our first experiment we pair the ego agent with one

other agent whose dynamics change throughout the sim-

ulation. The ego agent starts from scratch: this robot

has no prior experience, and must learn to success-

fully complete the task despite the other agent’s shift-

ing strategy and dynamics. Across Circle, Driving, and

Robot environments the other agent’s dynamics change

between interactions with a 1% probability. We testOr-

acle, SAC, LILI, SILI, and RILI three times for the

same number of interactions in each environment.

Our results are displayed in Figure 4. These plots

show the ego agent’s reward as a function of interac-

tion number. Recall that Oracle has direct access to

the other agent’s strategy zi (i.e., in the Circle environ-

ment Oracle knows the evader’s location). As such, we

treat Oracle as the gold standard — in the best case,

our learning algorithm should match the performance of

Oracle. At the other end of the spectrum is SAC: this
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Fig. 7 Example of the ego agent and other agent interacting in Circle (Simulation 7.2). The other agent is using latent
dynamics from [59]. If the ego agent ends the interaction outside the circle, the other agent moves counter-clockwise; but if the
ego agent ends inside the circle, the other agent moves clockwise (Dynamics 1 ). Here the ego agent has previously interacted
multiple different latent dynamics, and is now learning alongside an agent using Dynamics 1. (Top Row) LILI ends each
interaction inside the circle and fails to influence the other agent. (Middle Row) SILI behaves similar to LILI. (Bottom Row)
RILI has learned to influence the other agent by switching between outside and inside of the circle. Because the ego agent
has trapped the other agent close to its start position, RILI is able to reach higher rewards than the alternatives.

approach does not learn a model of the other agent, and

seeks behaviors that work well on average. For exam-

ple, in the Circle environment SAC often moves to the

center of the circle (minimizing its expected distance to

the evader when the evader’s location is unknown). In-

tuitively, SAC serves as the worst case baseline. Across

Circle, Driving, and Robot we find thatRILI converges

to the best-case rewards of Oracle, while LILI and

SILI perform similarly to one another and achieve re-

wards closer to the worst-case SAC.

For the Circle environment we break these results

down by dynamics: see Figure 5. Remember that dur-

ing this experiment the other agent in Circle has N = 4

possible latent dynamics. After completing the interac-

tions shown in Figure 4, we evaluate the learned models

over 1, 000 interactions with Dynamics 1-4. We observe

that RILI matches the gold standard Oracle for each

other agent, while repeated-measures ANOVAs show

that LILI and SILI perform significantly worse than

RILI across the board (p < .05). Interestingly, RILI

slightly outperforms Oracle with Dynamics 3-4. One

explanation for this could be the interplay of learning

alongside the four dynamics. In Dynamics 3-4 the other

agent takes larger steps than in Dynamics 1-2. It is

possible that RILI learned to move farther clockwise

or counterclockwise to trap the other agent in Dynam-

ics 1-2, and these larger step sizes translated over to

Dynamics 3-4. By contrast, Oracle always moves di-

rectly towards the known other agent; it therefore learns

smaller step sizes in Dynamics 1-2 and must adapt to

larger changes in Dynamics 3-4.

Next we repeat the same experimental procedure

in the Circle-N environment. So far the ego agent has

only had to co-adapt to N = 4 or N = 5 dynamics.

But within Circle-N there is a continuous space of pos-

sible dynamics, meaning that each time the ego agent

samples from P it leads to new, previously unseen dy-

namics. Figure 6 displays how each algorithm performs

across three trials. As before, the other agent’s dynam-
ics change between each of the 30, 000 interactions with

a 1% probability, meaning that the ego agent inter-

acts with roughly 300 different dynamics. With this

increased number of latent dynamics the differences be-

tween the algorithms becomes more pronounced: RILI

converges to Oracle while LILI and SILI perform on

par with SAC. Put another way, LILI and SILI match

the performance of a naive robot that always goes to

the center of the circle. We highlight this naive behavior

in Figure 7 and compare it to the influential behavior

displayed by RILI. Overall, our results suggest that

RILI learns to coordinate with agents that shift how

they respond to the robot.

7.3 Revisiting Previously Seen Dynamics

If RILI rapidly adapts to coordinate with new agent

dynamics, one might ask whether we are also forgetting

the dynamics that the robot has already seen. Imag-
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Fig. 8 Results from our second experiment (Section 7.3). Us-
ing the procedure from Section 7.2 we first train the ego agent
with roughly 300 other agent dynamics drawn from Circle-N.
We then roll out the final learned models with the first five
other agents the robot encountered. The robot interacts with
each of these agents for 1000 interactions: vertical lines in-
dicate when the other agent’s dynamics change. Our results
suggest that RILI is able to remember past dynamics.

ine a person who works with the robot one day and

then comes back to collaborate a few weeks later: we

would hope that the robot both (a) retains the behav-

iors that led to high rewards with this specific human

and (b) transfers other effective behaviors that it has

learned from more recent users. We have some indica-

tion that the RILI agent can remember and coordinate

with multiple dynamics in Figure 5. But in Figure 5 the

robot is continually interacting with the same N = 4

dynamics throughout the learning process, and there

are only four different dynamics to remember.

In our second experiment we therefore evaluate the

robot’s ability to coordinate with old dynamics after in-

teracting with a larger number of new, unique agents.

First we use the same procedure as Section 7.2 to train

RILI, LILI, and SILI with other agent dynamics drawn

from a continuous distribution in Circle-N. After 30, 000

interactions the robot has encountered an average of

300 different partners. We then freeze the networks and

return to interact with the first five other agents (i.e.,

the first five simulated humans who used the robot).

Our results are shown in Figure 8. Here the horizon-

tal dashed lines capture the average rewards for Ora-

cle and SAC, and the vertical lines indicate when we

switch from one dynamics to another. We find a clear

distinction between Oracle and RILI on one extreme

and SAC, LILI, and SILI on the other extreme. Our

results suggest that RILI is able — at least to some

extent — to remember previously seen agents. Because

the robot does not continue learning during Figure 8,

this also indicates that RILI can predict the strategies

and dynamics of multiple different agents.

7.4 Out-of-Distribution Dynamics

Our first two experiments suggest that RILI can learn

to coordinate with a set of other agents, provided that

the dynamics of those other agents are all drawn from

the same underlying distribution P. However, it is rea-

sonable to expect that — at some point during the

robot’s lifetime — it will encounter another agent whose

dynamics diverge from everything the robot has previ-

ously encountered. In other words, our ego agent will

run into out-of-distribution other agents.

In our third experiment we test the ego agent’s abil-

ity to coordinate with another agent whose dynamics

are out-of-distribution. We stick with the Circle-N en-

vironment, and first trained the robot to coordinate

with agents whose step size is sampled from π to −π.
We then conducted an online survey to ask human par-

ticipants for their suggested dynamics. Participants de-

scribed how they would respond to the ego agent’s ac-

tions and evade the pursuer: we grouped their responses

into 4 new dynamics. These externally provided, out-

of-distribution dynamics are listed in Table 2. Once col-

lected, we next paired the new other agents with RILI,

LILI, and SILI robots. During this experiment the ego

agent learned alongside the new dynamics for a total of

1, 000 interactions across three separate trials. Our re-

sults are displayed in Figure 9. Notice that when the

new dynamics are introduced the performance of each

algorithm drops — because the other agent is now re-

sponding to the robot’s behavior in an unexpected way,

the ego agent is not immediately sure how to coordi-

nate. But over the course of 1, 000 interactions we again

find that the RILI agent converges to the performance

of Oracle, and LILI and SILI return to the SAC base-

line. Overall, the results from this simulation suggest

that learning with RILI not only improves the agent’s

performance with dynamics sampled from a fixed dis-

tribution, but also enables the robot to adapt to new

agents who behave in unexpected ways.

7.5 Empirically Testing Generalization Bounds

In Section 5 we extended PAC-Bayes theory to reach

a theoretical lower bound for RILI performance. Given

that the ego agent has learned alongside N other agents

with dynamics sampled from P, we can leverage Equa-

tion (14) to bound how the ego agent will perform with

new agents also sampled from P. In order to reach this

result we made two simplifications within RILI: first

we assumed that π did not depend on σ, and second we

assumed that π was deterministic. Here we test the re-

sulting theory while removing these assumptions. Put

another way, we use our full RILI algorithm with a
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New Dynamics 1 If the ego agents moves closer to the other agent at the end of the interaction

then the other agent moves counter-clockwise with step π/3.

New Dynamics 2 Other agent moves to a random point on the quadrant of the circle opposite to

where the ego agent ended last interaction.

New Dynamics 3 Other agent moves to the point on circle opposite to the ego agent.

New Dynamics 4 If the ego agent ends on the right side of the circle the other agent goes to

θ = π. Otherwise the other agent goes to θ = 0.

Table 2 Crowd-sourced dynamics for the pursuit-evasion game (Section 7.4). Online participants responded to a survey asking
how they would move in Circle to avoid the ego agent. We grouped similar responses and reached four new dynamics for the
other agent. We then explored how agents trained in Circle-N adapted to these new, unexpected other agents (Figure 9).

-0.1

200

R
ew
ar
d

Interactions
400 600 800 10000

-0.2

-0.3

-0.4

-0.5

old dynamics new dynamics

LILI SILI RILI

Fig. 9 Results for the third experiment (Section 7.4). Here
we focus on how the ego agent adapts to unexpected other
agent dynamics that are out-of-distribution. We start with an
ego agent trained in Circle-N with other agents that move
with constant steps of [−π, π]. We then learn alongside four
new dynamics that are crowd-sourced (see Table 2). These
new dynamics are different from what the robot has seen be-
fore; for example, the other agent may react by moving to the
point on the circle opposite to where the robot went in the
last interaction. We plot the average reward across all four
new dynamics over 1000 interactions. Compared to the base-
lines, RILI learns to coordinate with these new unexpected
dynamics and converges back towards Oracle performance.

stochastic policy π(a | s, z, p, σ) and empirically mea-

sure whether the algorithm’s performance lies within

the theoretical bound. For clarity we remind the reader

that Equation (14) provides an upper bound on ex-

pected cost, which is equivalent to a lower bound on

expected reward. Here we will measure cost to be con-

sistent with existing PAC-Bayes theory.

Our fourth experiment takes place in the Circle-

N environment. This experiment has two components:

finding the theoretical bound and estimating the ac-

tual performance. To obtain the theoretical bound we

first train RILI alongside N = {10, 20, 30, 40} other

agents. For each value of N we perform three runs. We

then measure the robot’s cost using Equation (15) and

compute the Kullback-Leibler divergence between the

model posterior P (θ | T ) = N (µ, σ | T ) and the prior

20

C
o

st
 a

cr
o

ss
 D

is
tr

ib
u

ti
o

n

Seen Dynamics (N)

0.2

30 4010

0.3

0.4

0.5

0.6 Theoretical Bound

Measured Cost

Fig. 10 Empirical support for our theoretical bound on
RILI performance (Section 7.5). In Section 5 we applied
PAC-Bayes theory to find an upper bound on cost (i.e.,
a lower bound on reward). Here we test the resulting
bound in simulation. We first trained RILI alongside N =
{10, 20, 30, 40} dynamics sampled from Circle-N. We then
used Equation (14) to plot the probabilistic worst case perfor-
mance across the entire distribution of dynamics given only N
samples. To estimate the true cost we rolled out the learned
models with 1, 000 dynamics drawn from distribution P. Our
results show that the actual cost (orange) is below the theo-
retical upper bound (i.e., within the shaded region).

P (θ | T ) = N (0, 1 | T ). By plugging these measured

terms into Equation (14) we obtain the theoretical up-

per bound on cost after working with 10, 20, 30, or 40

other agents. Remember that this bound indicates how

a robot that is trained with N agents will generalize

across the entire distribution P. Our second step is to

estimate RILI’s actual performance across the entire

distribution. To do this we take theRILImodel trained

after working withN agents, freeze the weights, and roll

it out with 1, 000 agents sampled from P. Our assump-

tion here is that by measuringRILI’s performance with

these 1, 000 samples we will reach an estimate of the

true cost Equation (16). We plot both the theoretical

upper bound and the estimated true cost in Figure 10.
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Our results show that the robot’s actual performance

is below the upper bound, and as RILI interacts with

more agents both the theoretical and empirical costs

decrease. This matches our intuition: we expect RILI

to perform better across a distribution of dynamics as

it interacts with more dynamics from that distribution.

Overall, the results from this fourth simulation support

the theoretical bound on RILI performance.

8 User Study

Our ultimate goal is a learning algorithm that enables

robots to coordinate with and influence actual humans.

We recognize that humans react to robots, and that

different humans adapt to the same robot behaviors in

different ways [38,15,21]. So far our simulations have

captured these dynamic interactions in controlled envi-

ronments (Section 7). But unlike simulated agents, real

humans are noisy and imprecise: their latent strategies

and dynamics constantly shift, and a single human may

switch between competitive and collaborative interac-

tions. In this section we accordingly perform two user

studies with in-person participants recruited from the

campus community. In the first study (Section 8.1) par-

ticipants play a game of tag with a virtual agent. This

agent is trained from scratch: the robot starts the ex-

periment without ever having played tag before. Over

repeated interactions with multiple humans the virtual

robot must learn to anticipate where the human will

hide and then reach for that location. In our second

study (Section 8.2) humans build a tower with a Fetch

robot arm. Offline we train the robot to build towers

alongside simulated users; then during the experiment

the robot must learn to adapt to current participant

over only 30 interactions.

Independent Variables. We will compare two robot

learning algorithms: state-of-the-art LILI [59] and our

proposed RILI. Both of these approaches attempt to

learn a representation of the other agent and then lever-

age that representation within the ego agent’s policy.

But while LILI assumes that all humans react to the

robot in the same way (i.e., follow the same underlying

rules), RILI learns to robustly predict the other agent’s

strategy across multiple latent dynamics. We have cho-

sen to use LILI instead of SILI for two reasons: (a) in

our pilot studies with simulated humans LILI outper-

formed SILI and (b) SILI is designed to drive the other

agent towards constant strategies, but our user study

environments require constantly changing strategies.

8.1 Learning to Play Tag from Scratch

In our first user study participants interacted with an

ego agent in a virtual game of tag (see Figure 11). This

game is similar to the Circle environment from Sec-

tion 7. Between each round the human chose where

around the circle they wanted to hide, and then the ego

agent attempted to predict and reach the human’s hid-

den position. Importantly, the ego agent started from

scratch: at the beginning of the experiment the virtual

robot had no experience playing tag and had not in-

teracted with any simulated users. Participants were

not forced to follow any pre-defined rules or patterns of

play: we encouraged users to develop their own meth-

ods for avoiding the robot, and these dynamics changed

both over time and between participants. We measured

how LILI and RILI agents were able to coordinate

with the changing human participants.

Experimental Setup. Users played a game of tag

with a virtual agent by using a clicking interface. The

user and virtual agent were point masses in the con-

tinuous two-dimensional Circle environment outlined

in Section 7. Participants saw a rendering of the envi-

ronment on a computer screen: the graphical interface

displayed their position and the ego agent’s final posi-

tion at the end of each interaction. Between interactions

users chose where along the circle they wanted to move

by clicking on the screen. Here the user’s latent strat-

egy could be where they are hiding on the circle, and

their latent dynamics are how they change their hid-

ing location in reaction to the robot. As an example, in

one latent dynamics a user might go to locations that

maximizes their distance from the ego agent. The ego

agent’s state was its (x, y) position, the ego agent’s ac-

tions were changes in position, and the reward function

was the negative Euclidean distance between the ego

and the hidden user. The robot maximized its reward

by reaching exactly to the human’s hidden position.

In each interaction the ego agent started at a position

halfway between the center and the top of the circle.

The ego agent acted for H = 10 timesteps to reach the

user, and users were shown the ego agent’s final posi-

tion at the end of each interaction. We emphasize that

this environment was continuous, i.e., the human might

choose to hide anywhere on the perimeter of the circle.

Dependent Measures. To evaluate how accurately

the ego agent (pursuer) caught the human (evader)

we measured two things. First, we recorded the dis-

tance between the ego agent and the human at the final

timestep of each interaction (Distance). For reference

the radius of the circle was 1 unit, so a Distance > 1

indicates that the virtual robot was more than one ra-
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Fig. 11 Results from our first user study in Section 8.1. (Left) Participants visited the lab and played a virtual game of tag.
Tag is similar to Circle from Section 7: users moved their cursor around a circle to evade the robot. Each participant was free
to choose their dynamics for avoiding the robot, and participants could adapt their dynamics between interactions. (Middle)
22 participants evaded LILI and RILI agents for a total of 15, 000 interactions. We plot the Distance between the robot
and human at the end of each interaction. Note that the radius of the circle was one unit, so a Distance> 1 indicates the
robot ended more than one radius away from the human. We draw vertical lines every five users, and the shaded regions show
standard deviation. (Right) Number of times the robot caught the human. Here a human is caught if the distance between the
robot and human is less than 0.5 at the end of the interaction. RILI caught participants more frequently than LILI (p < .001).

dius away from the human agent. As a binary measure

of success we also recorded the number of times the ego

agent caught the user (Times Caught). The human was

“caught” if the distance between the ego agent and the

human at the end of the interaction was less than half

the circle’s radius (e.g., Distance < 0.5). The ego agent

could never observe the human’s hidden location, and

had to learn to catch this human based on low-level

observations of its own states, actions, and rewards.

Participants. We recruited 22 participants (4 female,

ages 24 ± 4.5 years) from the Virginia Tech commu-

nity. All participants provided informed written consent

following university guidelines (IRB #20-755). We con-

ducted a within-subject design. Every participant inter-

acted with both LILI and RILI for the same number

of interactions. The order of the methods was counter-

balanced between participants, and participants were

not told which of the two algorithms learning they were

currently interacting with.

Procedure. Before starting the experiment we informed

participants about the rules of the game and asked

them to play a few practice rounds. Once the exper-

iment started the user was instructed to move around

the perimeter of the circle to evade the ego agent. In our

initial trials we found that users always evaded the ego

agent by going to the diametrically opposite point. We

were concerned that every user might follow this same

latent dynamics. To better ensure diversity in user be-

havior we constrained participants to a step size ≤ π/2.

Besides this constraint, however, participants were free

to choose how they wanted to move in every interaction,

i.e., the users could select their own time-varying latent

dynamics. As an example, we observed that some users

changed their direction of motion frequently to try and

throw-off the pursuer, while others moved in a consis-

tent direction away from the robot’s last position. We

did not reset the robot’s training between participants

— or even inform the robot that it was now interact-

ing with a new human. Instead, the robot’s learning

simply resumed once the new participant began to play

tag. Overall, we trained each method for a combined

total of 15, 000 interactions across all 22 participants.

Hypothesis. We hypothesized that:

H1. Agents that learn from scratch using RILI
will more frequently tag adversarial humans than

agents that learn from scratch using LILI.

Results. The results of our first user study are sum-

marized in Figure 11. We plot the Distance from the

robot to the human as a function of interaction number.

Remember the ego agent works with each subsequent

user without resetting its learning process, so that from

the robot’s perspective the virtual agent plays 15, 000

interactions with a single other agent. Lower Distance

scores indicate that the ego agent ended the interaction

closer to the human, and as Distance approaches zero

the robot more accurately predicts and reaches the hu-

man’s hidden position. We find that RILI reaches the

human more accurately than LILI throughout the user

study. To determine how many times the robot catches

the evading human, we next plot Times Caught. This

binary metric counts up the number of times the virtual

robot ended within a pre-defined distance from the hu-

man, and is summed across all 15, 000 interactions. Here

RILI catches the human 37% more frequently than

LILI. Wilcoxon signed-rank tests reveal that the differ-

ence is statistically significant: Z = −12.819, p < .001.
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Fig. 12 Comparison of influential behavior in our first user
study (Section 8.1). We plot the percentage of interactions
where users hid in the upper half of the circle (see Figure 11).
Because the robot started along the positive y axis, these
human locations are closer to the robot’s initial position and
lead to higher robot rewards. Hence, the robot should ideally
influence humans to maximize their frequency of hiding in the
upper semicircle. Humans that are not influenced by the robot
(i.e., humans that play randomly) will move to the upper
semicircle in around 50% of interactions. We find that RILI
influenced humans significantly more frequently than LILI
over the last 1, 000 interactions (p < .001).

Overall, these results support hypothesis H1 and indi-

cate that RILI robots learn to coordinate from scratch

more effectively than a state-of-the-art baseline.

Does RILI Influence Actual Humans? The overall

objective of RILI is to co-adapt to dynamic agents. As

part of that objective, in Section 4.2 we designed RILI

to learn influential policies. We here analyze whether

RILI actually results in influential behavior when co-

adapting alongside human users. As a reminder, the

robot starts every interaction in the x-y position (0, r/2),

where r is the circle radius, and the robot’s reward is the

negative of its Euclidean distance from the user’s posi-

tion. Intuitively, if the evading humans are in the upper

half of the circle the robot can reach them more quickly.

Put another way, the robot can maximize its long-term

rewards by influencing the users to choose hiding lo-

cations in the upper half of the circle. We quantify

the robot’s influence using the metric Human in Upper

Half, which counts the percentage of interactions where

the user hid in the upper semicircle. If the ego agent did

not influence users we would expect Human in Upper

Half to converge around 50%. In Figure 12 we plot the

results over the last 4000 interactions of the user study.

From this plot we observe thatRILI influenced humans

to hide in the upper half more consistently than the

LILI baseline. A Wilcoxon signed-rank test revealed

that users were influenced significantly more frequently

by RILI than by LILI over the last 1000 interactions

(Z = −6.16, p < .001). These results suggest the RILI

does actually result in robot policies that influence hu-

mans with changing latent dynamics.

8.2 Rapidly Adapting to Build Towers

Our first user study suggests that — when a robot en-

counters a new interactive task — the robot can lever-

age RILI to gradually adapt to the task and the hu-

man’s behaviors. But learning both the task and how

to coordinate from scratch is challenging: we conducted

Section 8.1 in a virtual environment so that we could

maximize the number of interactions with humans and

collect as many experiences as possible. In more realis-

tic industrial settings we anticipate that manufacturers

will pre-train the robot using prior knowledge of the

task. Accordingly, we here return to our motivating ex-

ample from Figure 1: a human and Fetch robot arm

work together to build towers. During each interaction

the human and robot add one block to their respective

towers, and the robot is rewarded for building the same

tower as the human. Here the block the user chooses in

a given interaction is captured by their latent strategy,

and how they choose their next block is represented

by their latent dynamics. We assume that the robot

knows about the task ahead of time. Instead of starting

from scratch, we pre-train the robot offline by learn-

ing to complete the task with simulated humans. We

then put this policy to the test and start to work with

actual participants. Overall, we study whether training

RILI with simulated humans and then interacting with

actual humans leads to rapid, seamless adaptation.

Experimental Setup.Our experimental setup is shown

in Figures 1, 2, and 13. Participants sat across the ta-

ble from a 7-DoF Fetch Mobile Manipulator. On the

table were two rows of colored blocks (one row for each

agent), and during the i-th interaction the human and

robot each picked up one block from their row and

added it to their tower. To keep the experiments un-

der 1 hour in length and maintain subject interest, users

did not physically assemble the towers. Instead, the user

and robot simply indicated which block they would add

to their tower. The robot’s state was its end-effector po-

sition, the robot’s action was a change in end-effector

position, and the robot’s reward function was the nega-

tive Euclidean distance between the user’s chosen block

and the robot’ end-effector. Put another way, the robot

was motivated to pick up the same blocks as the par-

ticipant. We gave the robot a bonus reward if users
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Fig. 13 Example interactions between the robot and human during our second user study (Section 8.2). In each interaction
the human and robot pick one block to add to their towers; the robot gets higher rewards for picking the same block as the
human. The robot cannot observe the human’s choices and only measures its own state, actions, and rewards. This particular
user is choosing blocks in order while ignoring the robot’s behavior. (Top Row) LILI always reaches for the middle block.
(Bottom Row) RILI adapts to the user and matches their block at each interaction.

picked up the block on their right; because of the con-

figuration of the robot arm, this far right block was the

easiest for the robot to grab. Each interaction lasted 10

timesteps, and at every timestep the robot would move

towards the block it wanted to pick up.

Before the start of the user study we pre-trained

LILI and RILI agents in the tower environment. In-

stead of interacting with actual users the robots learned

alongside a simulated human. We designed three differ-

ent latent dynamics for this simulated human to lever-

age: a competitive human that picks up the block far-

thest away from the robot’s last choice, a collaborative

human that picks up the same block the robot chose last

time, and an independent human who cycles through

the blocks while ignoring the robot’s behavior. Similar

to Section 7.2 the simulated human’s latent dynam-

ics changed with 1% probability between interactions.

Both LILI and RILI learned from 10, 000 interactions

with these simulated humans. From the robot’s per-

spective the participant’s strategy could be the block

they select and their dynamics could correspond to how

they change their block choice between interactions.

Dependent Variables.When working with actual par-

ticipants we recorded the blocks that the human and

robot added to their towers at each interaction. Re-

call that the robot’s objective in this study is to build

the same tower as the human (e.g., to pick up the

same blocks as the human). We therefore measured

the robot’s performance by counting the number of

Matching Blocks for each participant. To get a sense

of the human and robot policies, we also measured how

frequently each of the blocks were chosen (Block Fre-

quency). During the experiment the robot never ob-

served which blocks the human picked, and the robot

had to learn to coordinate with the human based only

on its own states, actions, and rewards.

Participants. We recruited 11 participants (11 male,

ages 22.8 ± 3 years) from the Virginia Tech commu-

nity. All participants provided informed written con-

sent prior to the experiment consistent with the univer-

sity guidelines (IRB #20-755). None of the participants

in this user study were also participants in the Sec-

tion 8.1 experiment. We conducted a within-subjects

study where each participant interacted with RILI as

well as LILI. The order of the methods was counter-

balanced across the users (i.e., half the participants

started with LILI and the other half started withRILI).

Participant completed 30 interactions with each method

for a total of 60 interactions per participant.

Procedure. Before starting the study we explained the

setting to users and encouraged them to think about

their interaction strategy. Specifically, the participants

were asked to decide on what behavior they will use for

selecting blocks; users were instructed to maintain this

same pattern throughout the experiment. We explic-

itly asked participants not to choose blocks at random.

During the experiment the human and robot took turns

adding blocks to their respective towers. We placed

five different colored blocks in front of the human and

the same five different colored blocks in front of the

robot (see Figure 13). Within each interaction the hu-

man went first and chose their color block; then the

robot moved next to selected their own block. Impor-

tantly, the robot was never informed which block the
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Fig. 14 Results from our second user study in Section 8.2. Here the human and robot are selecting blocks to build towers,
and the robot’s objective is to match the human’s tower. (Left) Frequency the human and robot selected each block. While
LILI added the middle block to its tower 86.7% of the time, humans only chose this block in 33.6% of interactions. If the
robot is uncertain about the human going for the middle block is a safe play since it minimizes the average distance across all
possible human choices. By contrast, we observe that RILI chooses each block at a frequency that roughly matches the actual
participants. (Middle) Overall performance of the robot across all 11 participants. RILI matched the human more often than
LILI (p < .001). (Right) Breakdown of the robot’s performance across each individual participant.

human picked. At the end of each interaction the robot

observed its rewards and both the robot and the par-

ticipant reset their blocks for the next interaction. This

process was repeated across 30 interactions per method.

Participants were never told how they should choose

the blocks and were free to follow their own person-

alized latent dynamics. However, we did instruct the

participants to try and maintain consistent dynamics

throughout the experiment (i.e., however participants

played with the first method they should try to repli-

cate with the second method).

Hypothesis. We hypothesized that:

H2. Robots that use RILI to pre-train with sim-

ulated humans and then interact with actual hu-

mans will better match the human’s towers than

LILI robots learning under the same conditions.

Results. Our results from this final user study are dis-

played in Figures 13 and 14. We also include video from

this experiment at: https://youtu.be/WYGO5amDXbQ

Before summarizing our results we first want to ex-

plain the robot behaviors observed during the study.

In Figure 13 we show a sequence of interactions from

Participant 4 with LILI and RILI. This specific par-

ticipant appeared to choose their blocks in sequential

order, and ignored the robot’s behavior: in the top row

we observe that LILI continually picks the middle block

(orange) while on the bottom row RILI has identified

the participant’s dynamics and matches their choices

(red, purple, then orange). This is supported by the

plot for Participant 4 in Figure 14, which shows RILI

matches this user’s blocks almost twice as often as LILI.

Interestingly, LILI seemed to prefer the middle block

across all participants. Looking at Figure 14, we notice

that the LILI robot selected the middle block 86.7% of

the time, and reached for the remaining blocks during

only 13.3% of interactions. LILI’s convergence on the

middle block is at odds with the human’s actual behav-

ior — looking again at Figure 14, when working with

LILI the humans selected the middle block only 33.6%

of the time and the remaining blocks 66.4% of the time.

So why did LILI incorrectly reach for the middle

block so frequently? Remember that the robot’s reward

function depends on the distance between the robot’s

end-effector and the human’s preferred block. By reach-

ing for the middle block LILI played it safe: going for

the middle of the table maximizes the robot’s expected

reward if — from the robot’s perspective — the human
chooses their next block uniformly at random. Put an-

other way, the middle block makes sense when the robot

is uncertain about the human’s strategy. By contrast,

in Figures 13 and 14 we observe that RILI reaches for

each available block. Here the likelihood of RILI select-

ing a given block approximately matches the distribu-

tion across users: for instance, RILI picked the middle

block 24% of interactions while participants working

with RILI picked middle in 22% of interactions. Sim-

ilarly, RILI reached for the far right or left block in

39% of interactions while participants chose these ex-

tremes 41% of the time. RILI’s willingness to select

other blocks besides the middle indicates that the robot

is confident in its prediction of the human’s actions —

reaching for blocks on the far right or left only pays off

if the robot is guessing correctly.

With this intuition in mind we now return to our

empirical results in Figure 14. We first plot the num-

ber of Matching Blocks across all 11 participants. Ap-

plying a Wilcoxon signed-rank test, we discover that

https://youtu.be/WYGO5amDXbQ
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RILI matched the human’s choice significantly more

frequently than LILI (Z = −3.93, p < .001). We next

break down these results across the users: for 10 of the

11 participants working with RILI resulted in more

Matching Blocks than working with LILI. The only

anomaly was Participant 2, who did better with LILI

than with RILI. This was likely because Participant 2

accidentally used different strategies when interacting

with the two methods. When working with LILI this

specific user cycled through the blocks (i.e., the par-

ticipant used latent dynamics that the robot had seen

during pre-training). In contrast, when interacting with

RILI the participant used previously unseen dynamics

(starting at the ends and moving in). Due to this dis-

parity in the participant’s dynamics RILI had fewer

Matching Blocks than LILI for this specific case. In-

terestingly, we noticed that LILI performed best with

users that collaborated with the robot. Participants 7

and 8 helped their robotic partner by choosing the same

block that the robot picked during the last interaction.

Since LILI almost always selected the middle block,

these collaborative users converged to also pick the mid-

dle block with LILI. But while playing collaboratively

did lead to the highest number of matching blocks for

LILI, we still found that RILI resulted in even better

coordination with these same users.

Overall, the results from our final user study sup-

port hypothesisH2. By first pre-training the robot with

simulated users, RILI was able to rapidly adapt to ac-

tual humans over 30 interactions. Our comparisons to

a state-of-the-art baseline (LILI) suggest that the dif-

ferences were due to RILI’s ability to anticipate the

human’s behavior despite the fact that participants fol-

lowed personalized rules for interaction.

9 Conclusion

In this paper we proposed RILI, an algorithmic frame-

work that enables robots to co-adapt alongside non-

stationary humans. Learning alongside humans is chal-

lenging because (a) humans adapt to robot behaviors,

(b) different humans adapt to the same robot behaviors

in different ways, and (c) even a single human will in-

evitably change how they adapt to the robot over time.

Put another way, actions the robot has learned to co-

ordinate with one user may fail when that user changes

or a new human comes along.

To address these challenges we hypothesized that

robots should learn and reason over high-level represen-

tations of the human. Specifically, we enabled the robot

to learn a latent representation of the other agent’s

policy (i.e., their strategy) as well as a latent repre-

sentation of how the policy changes (i.e., their dynam-

ics). Our resulting RILI algorithm learns online over

repeated interactions using only the robot’s low-level

states, actions, and rewards. We divided RILI into two

parts: robust prediction, which learns to anticipate the

strategy and dynamics of the current human, and in-

fluential policies, which harnesses these predictions to

intentionally drive the human towards advantageous,

co-adaptive behaviors. Given RILI’s measured rewards

across N humans, we derived probabilistic bounds on

RILI’s performance with new, previously unseen users.

To compare RILI to the state-of-the-art we con-

ducted extensive simulations and two user studies. In

simulations we compared RILI to representation and

reinforcement learning alternatives: our results suggest

that RILI is better able to co-adapt alongside agents

that constantly change their behavior. We also found

that RILI can remember previously seen agents, and

rapidly adapt to new agents with unexpected, out-of-

distribution dynamics. For our in-person user studies

we considered two opposite settings. First, the robot

learned to play tag from scratch across 15, 000 interac-

tions with adversarial participants. Next, we pre-trained

the robot to build towers alongside simulated humans,

and then rapidly adapted to independent, competitive,

and collaborative humans across 30 interactions.

Limitations. RILI is a first step towards robots that

co-adapt alongside non-stationary humans without pre-

defined human models or direct observations of the hu-

man’s behavior. Our simulations and first user study

suggest that — when starting completely from scratch

— RILI will require many human interactions to reach

desired performance. This may limit our approach in

settings where interactions consume excessive time, ma-

terials, or human effort. Our ultimate goal is to co-

adapt to the current human as quickly as possible: to-

wards this end, we suggest pre-training the robot along-

side simulated agents. These simulated agents could

emerge from methods such as self-play [8], population

play [22], or fictitious co-play [52]. Our second user

study indicates that — by training alongside simulated

humans — the robot can rapidly coordinate with ac-

tual humans over few interactions (e.g., < 20 minutes

in our study). We recognize that — like other learning

approaches — our method’s downstream performance

is also sensitive to the data available at training time

(i.e., the simulated humans used for pre-training). In

practice the robot may adapt quickly to humans that

display latent dynamics similar to the simulated hu-

mans seen during pre-training, but the robot may react

more slowly to humans that display completely new and

unexpected behaviors. However, our simulation results

in Section 7.5 as well as the user study of learning to
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play tag from scratch (Section 8.1) suggest that RILI

will gradually co-adapt to novel humans.
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A Appendix

In this appendix we extend the simulation results from Sec-
tion 7 and Figure 4. In Section A.1 we vary the rate at which
the other partner changes their latent dynamics in the Cir-
cle environment (i.e., how frequently the other agent switches
their response to the ego agent). Next, in Section A.2 we scale
up the Robot environment to include more complex tasks that
involve multiple subtasks and an increased number of goals.
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Fig. 15 Interacting with other agents that change their latent dynamics at different frequencies (Appendix A.1). These
simulations were performed in the Circle environment from Section 7. (Left) The other agent changes their dynamics with 1%
probability after an interaction. This plot corresponds to the Circle simulation in Figure 4. (Middle to Right). The other agent
changes their dynamics after 5%, 10%, or 20% of interactions. Shaded regions show the standard error across three trials.

A.1 Coordinating with Rapidly Changing Agents

Recall our simulations from Section 7. Here the robot learns
to coordinate with another agent over repeated interactions,
and over time this other agent’s behavior can shift as they
adapt to the robot. In our experiments we simulated the other
agent’s adaptation as a probabilistic change in their latent
dynamics. More specifically, the other agent’s latent dynam-
ics could change between interactions with a 1% probability.
We showed that our method RILI can co-adapt alongside
other agents in this setup (see results in Section 7.2). How-
ever, actual humans are much more erratic in their behavior.
Can RILI still learn to coordinate if the other agent changes
their latent dynamics more rapidly? Here we investigate dif-
ferent rates of adaptation in the Circle environment where the
robot attempts to reach an evasive other agent. All aspects of
the environment are the same as discussed in Section 7.1 ex-
cept the probability with which the latent dynamics change.
Now we test RILI and the other baselines with another agent
that changes with a probability p = {1%, 5%, 10%, 20%}. All
methods start with no prior experience and are trained for
the same number of interactions.

We display our results in Figure 15. These plots show the
robot’s reward as a function of the interaction number. Ora-
cle is the baseline that can directly observe the other agent’s
latent strategy; we therefore treat Oracle as the best-case
performance. We see that when the other agent changes less
frequently (e.g., p = 1%, 5%) RILI is able to converge close
to Oracle performance. As the other agent becomes more
erratic (e.g., p = 20%), we find that the performance of the
co-adaptive robot decreases across the board. However, RILI
consistently outperforms the baselines, even when faced with
these erratic partners. To explain why RILI’s performance
decreases as the partner changes more frequently, we note
that RILI attempts to predict the other agent’s next latent
strategy based on their history of behaviors. When the other
agent rapidly changes their dynamics, it becomes increasingly
challenging to anticipate what rules the other agent will fol-
low to select their next strategy.

A.2 Coordinating in Environments with Sub-Tasks

We have shown that RILI can learn to co-adapt alongside
changing agents for multiple tasks — but what happens as
these tasks become increasingly complicated? In this section
we scale up the complexity of the Robot task from Section 7.
In the new task there are 8 goals in the robot’s workspace.
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Fig. 16 Increasing the task complexity of the Robot envi-
ronment (Appendix A.2). (Left) Our modified Robot envi-
ronment where the ego agent (robot) interacts with the other
agent (human). The other agent selects 3 desired blocks out
of the 8 possible blocks on the table. The ego agent does
not know which blocks the human has selected, and must co-
adapt to select these 3 desired blocks in the same order as
the other agent. (Right) Ego agent’s average reward vs. the
interaction number. The shaded region represents the stan-
dard error across three trials.

Every interaction the other agent (e.g., the human) selects a
sequence of 3 goals that they want the robot to choose, but
the robot cannot observe the other agent’s choice or the or-
der in which the human selects these goals. Instead, the robot
must learn to anticipate the other agent’s choices and the or-
der of selection. We divide the overall interaction into 3 sub-
tasks with 10 timesteps each (leading to 30 total timesteps).
During every sub-task the robot must pick the correct goal
that the other agent selected for that specific sub-task. Thus,
the robot’s reward function is its distance from the respec-
tive goal in the sub-tasks. Depending on their dynamics, the
other agent chooses a new sequence of goals at the end of
the interaction. We design four different latent dynamics. In
every dynamics the other agent chooses three alternate goals
each time. In Dynamics 1 the other agent chooses a new se-
quence to move away from the robot. InDynamics 2 the other
agent keeps the same sequence of goals if the robot goes to
the left of the third goal in the sequence, otherwise it moves
away from the robot. In Dynamics 3 and Dynamics 4 the
other agent cycles clockwise or counter-clockwise by selecting
a new sequence of alternate goals.

We compare RILI with the baselines in Figure 16. We see
that although RILI reaches higher rewards than LILI, SILI,
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and SAC, it does not converge to the ideal Oracle within
50, 000 interactions. The complexity added by multiple sub-
tasks and more intricate latent dynamics makes it challenging
for RILI to perfectly model the other agent. However, we em-
phasize that RILI outperforms the state-of-the-art baselines
even as the task complexity scales up.
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