
Autonomous Robots (2023) 47:947–961
https://doi.org/10.1007/s10514-023-10111-x

Towards neuromorphic FPGA-based infrastructures for a robotic arm

Salvador Canas-Moreno1 · Enrique Piñero-Fuentes1 · Antonio Rios-Navarro1 · Daniel Cascado-Caballero1 ·
Fernando Perez-Peña2 · Alejandro Linares-Barranco1

Received: 30 July 2021 / Accepted: 22 May 2023 / Published online: 14 July 2023
© The Author(s) 2023

Abstract
Muscles are stretched with bursts of spikes that come frommotor neurons connected to the cerebellum through the spinal cord.
Then, alpha motor neurons directly innervate the muscles to complete the motor command coming from upper biological
structures. Nevertheless, classical robotic systems usually require complex computational capabilities and relative high-
power consumption to process their control algorithm, which requires information from the robot’s proprioceptive sensors.
The way in which the information is encoded and transmitted is an important difference between biological systems and
robotic machines. Neuromorphic engineering mimics these behaviors found in biology into engineering solutions to produce
more efficient systems and for a better understanding of neural systems. This paper presents the application of a Spike-based
Proportional-Integral-Derivative controller to a 6-DoF Scorbot ER-VII robotic arm, feeding themotors with Pulse-Frequency-
Modulation instead of Pulse-Width-Modulation, mimicking the way in which motor neurons act over muscles. The presented
frameworks allow the robot to be commanded and monitored locally or remotely from both a Python software running on
a computer or from a spike-based neuromorphic hardware. Multi-FPGA and single-PSoC solutions are compared. These
frameworks are intended for experimental use of the neuromorphic community as a testbed platform and for dataset recording
for machine learning purposes.

Keywords Neuromorphic engineering · Spike-based motor control · FPGA · Robotic arm

Mathematics Subject Classification 68 · 92 · 93 · 94

1 Introduction

The effectiveness and efficiency of the central and periph-
eral nervous systems is the inspiration of Neuromorphic
Engineering (NE). In this field, engineers are inspired by
biology to solve engineering problems through mimicry.
The hardware implementation of neuromorphic systems
often requires fully customized solutions to develop the
desired application. Typical technologies are Application-
Specific Integrated Circuits (ASICs) (Chicca et al., 2014),
Field Programmable Gate Arrays (FPGAs) (Maguire et al.,

B Salvador Canas-Moreno
scanas@us.es

1 Robotics and Tech. of Computers Lab, Smart Computer
Systems Research and Engineering Lab (SCORE),
ETSII-EPS, Research Institute of Computer Engineering
(I3US), Universidad de Sevilla, 41012 Seville, Spain

2 School of Engineering, Universidad de Cádiz, 11519 Puerto
Real, Cadiz, Spain

2007), or even Field Programmable Analog Arrays (FPAAs)
(Rocke et al., 2008). Neuromorphic hardware developed in
the last decade can be classified mainly into sensors and
neural networks. In the field of sensors, the most represen-
tative examples are vision sensors (Lichtsteiner et al., 2008;
Serrano-Gotarredona and Linares-Barranco, 2013; Gallego
et al., 2020) audition sensors (Chan et al., 2007) and olfactory
sensors (Koickal et al., 2007). Themain analogneural proces-
sors are: ReconfigurableOnLineLearning Spiking (ROLLS)
NeuromorphicProcessor (Qiao et al., 2015),Neurogrid (Ben-
jamin et al., 2014),High InputCountAnalogNeuralNetwork
chips (HICANNs) (Schemmel et al., 2008) (Schemmel et
al., 2010) (Calimera A., , 2013) and Dynamic Neuromorphic
Asynchronous Processor (Dynap-SE1) (Moradi et al., 2018).
Digital implementations include the SpikingNeuralNetwork
Architecture (SpiNNaker) (Furber et al., 2014), theLoihi dig-
ital spiking processors from Intel (Davies et al., 2018) and

1 https://www.ini.uzh.ch/en/research/groups/ncs/chips/Dynap-se.
html (accessed on 26/Feb/2021)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10111-x&domain=pdf
http://orcid.org/0000-0003-0402-3210
https://www.ini.uzh.ch/en/research/groups/ncs/chips/Dynap-se.html
https://www.ini.uzh.ch/en/research/groups/ncs/chips/Dynap-se.html

948 Autonomous Robots (2023) 47:947–961

Table 1 Comparison of hardware technologies for the neuromorphic
field. FPAA power consumption citation (Selow et al., 2009)

ASIC FPGA FPAA

Reconfiguration Limited Full Possible

Domain Mixed Digital Analog

Neuron density The biggest Big Small

Power consumption Smallest Small Small

Performance The best Good Moderate

the TrueNorth chip from IBM (Cassidy et al., 2013) as the
main representatives.

Table 1 sumarizes the pros and cons of these three
technologies typically used in this field. ASICs are not recon-
figurable, thus the manufactured circuit is permanent, and
the price of an ASIC is typically high. On the other hand, an
ASIChas several advantages; for instance, they enable denser
implementations (i.e., the largest population of neurons per
chip), they provide better performance and power consump-
tion than other hardware, and, since the logic is already
implemented, they only require working on the software.
Regarding the second technology, i.e., Field Programmable
Gate Arrays (FPGAs), according to (Harkin et al., 2008) and
(Maguire et al., 2007), the main drawback of the FPGA is
that existing FPGAs can only provide limited synapse den-
sity. In contrast, FPGAs present an excellent prototyping
alternative providing a high degree of parallelism in appli-
cation execution; they enable many input/output connectors,
as well as configurable and dedicated computational Spiking
Neural Network (SNN) blocks which offer a suitable recon-
figurable platform for SNN implementation,with optimal use
of hardware area and power with a lower cost. Lastly, Field
Programmable Analog Arrays (FPAAs), as stated in (Rocke
et al., 2008), have several drawbacks: a limited amount of
on-chip real estate restricts neuron density, a large number
of devices are required to create a large scale reconfigurable
analog SNN platform, and they enable few input/output con-
nectors. However, in general, multiple development boards
can be easily daisy-chained together to increase the reconfig-
urable analog area without the need to design custom VLSI
circuitry.

Arrays of spiking neurons and complex neuromorphic
architectures must be properly and efficiently integrated,
thus a strategy for communicating spikes was needed in this
field. Address-Event-Representation (AER) was proposed as
a communication protocol for communicating spikes on a
multiplexed digital bus across neural arrays (Sivilotti, 1992),
which is presently a standard in the neuromorphic commu-
nity. Address-Events (AEs) are digital events communicated
with a four-step asynchronous protocol and a digital label
(i.e., the address of the neuron in the array). The time between
events is self-represented and the addresses identify the

source neuron of the event. The use of mapping tables and
switches / routers (Zamarreno-Ramos et al., 2013) allow for
the routing of events to different destinations, enabling the
design of complex and arbitrary topologies of SNNs.

Today’s robotics are typically built with Commercial Off-
The-Shelf (COTS) components that do not provide specific
solutions for neuromorphic systems. Available products in
the market provide motor controllers as black boxes, which
receive a reference command for targeting a specific position
or revolution speed of a joint. These controllers commu-
nicate with each other through industrial field buses, such
as Controller-Area-Network (CAN), which introduces addi-
tional latency in the control loop and forces a fixed and
not-so-optimal power consumption (Dominguez-Morales et
al., 2011). Nevertheless, these robots are also used in the
neuromorphic community as the last step towards their
demonstrations of spike-based motor controllers or SNNs
trained for robot control, like (Stagsted et al., 2020a, 2020b;
Stroobants et al., 2021) using Loihi, (Zaidel et al., 2021;
DeWolf et al., 2016) using the neuromorphic engineering
framework (NEF), (Denk et al., 2013; Galluppi et al., 2014)
using SpiNNaker or (Milde et al., 2017; Blum et al., 2017)
using ROLLS spiking processor, among others, where the
final actuation to the robot is through the vendor interface,
which lacks the similarity with neural actuation at themuscle
level.

To include the last step of using spikes to drive motors and
produce complete sensory-processing-actuating neuromor-
phic spiking systems, direct access to the signals that drive
the motors of the robots is required. Typically, these COTS
motor controllers use Pulse-Width Modulation (PWM) to
drive the motors, imposing a constant power consumption
even when the joint is not moving, and an additional latency,
due to the period of the PWMsignal. In contrast, bio-inspired
motor control spiking systems (Perez-Pe?a et al., 2013) aim
to reduce this power consumption by reducing the activity
of the signal driving the motors through the application of a
Pulse Frequency Modulation (PFM) bio-inspired technique
(Jimenez-Fernandez et al., 2012). This technique prevents
the additional latency caused by the period of PWM.

In this work, we used an improved version of the neu-
romorphic robotic arm (from spiking sensors to spiking
actuation) platform, called ED-Scorbot (Gómez-Rodríguez
et al., 2016). This platform was initially composed of a set
of Spartan FPGA-based boards for neuromorphic process-
ing (developed at RTC lab in Seville) and a modified Scorbot
ER-VII. The original controller of the robot was replaced
by a couple of neuromorphic FPGA-based boards for imple-
menting spiking motor controllers and allow commanding
the robot from both a neuromorphic spiking hardware system
and a dedicated computer. The frameworkwas constructed to
provide full-access to both the sensors and the actuators in a
spike-basedmanner. For each joint of this robot, an improved

123

Autonomous Robots (2023) 47:947–961 949

version of the spike-based PID controller integrated in
Gómez-Rodríguez et al. (2016) and Linares-Barranco et al.
(2020) was applied, and additional available sensors were
included in the neuromorphic control. This platformwas used
as a testbed to demonstrate that SNN architectures can con-
trol trajectories for this robot (Linares-Barranco et al., 2022).
Specific data sets needed to train these neural networks can
be collected with this platform.

This research was focused on improving and adapting a
spike-based infrastructure for controlling the six joints of
the ED-Scorbot and its use to collect trajectory datasets for
machine learning.We allowed the flexibility to communicate
the desired position of the joints from a computer (via a USB
interface and a new Python interface) or from the output of a
neuromorphic hardware, such as a SNN running in a Dynap-
SE or Loihi platform, as is described in Donati et al. (2018)
and Stagsted et al. (2020a).

In summary, this paper has the following list of contribu-
tions:

– Improved version of SPID controllers to access robot pro-
prioceptive sensors, including filter circuits and required
finite state machine (FSM) for extracting absolute joint
positions from these sensors. This can be used by a con-
troller algorithm, an Artificial Neural Network or SNN
to implement trajectory controllers.

– A Python based interface that allows robot management
through a Python script and / or through a graphical
user interface (GUI), which can be run either locally or
remotely, which gives access to an (embedded) LinuxOS
platform.

– An upgrade of the FPGA infrastructure from multi-
Spartan platforms plus a dedicated computer, to a single
system on chip (i.e., Zynq) platform without the need for
an additional computer.

– Forward and inverse kinematics of the ED-Scorbot to cal-
culate the robotic arm trajectories using Python scripting
(code available upon request). These equations are used
prior to computing the references for the spike-based con-
trol algorithm.

– Overall, a neuromorphic robotic platform available for
the community to be used, for example, for SNN training
and testing. Recorded trajectories are available.

The rest of the paper is structured as follows: Section 2
describes in detail the state of the art (materials) that supports
this work, Section 3 provides all the implementations and
improvements (ie. methods) that this work performs on the
final neuromorphic robotic arm and its evaluation, Section
4 describes all the performed experiments and the obtained
results Section 5 presents the conclusions of the paper.

2 Materials

This section provides details over the state of the art that
supports this work. Firstly, the Spike-based PID (SPID)
controller concept and its formulation is reviewed, offering
the extraction of the PID constants (Kp, Ki , Kd). Then, a
description of the robotic platform used in this work is pro-
vided.

2.1 Spike-based PID controller

Under the spike paradigm, a new kind of Proportional-
Integrative-Derivative controller was designed: the SPID
(Jimenez-Fernandez et al., 2012) controller. Both the refer-
ence input signal and the output signal to drive the motor are
spike-based signals. The PFMmodulationwas used along the
Spike-Signal-Processing (SSP) Building Blocks (Jimenez-
Fernandez et al., 2010) to compute the intermediate results
and to drive the motors.

The aforementioned input reference signal to the SPID
controller can be provided by any neuromorphic system
with a spiking firing rate as output, or it can be received
as a digital value from a computer and converted into spikes
(Gomez-Rodriguez et al., 2005). In Jimenez-Fernandez et al.
(2012), the spiking input reference signal was used to con-
trol the speed of a motor, which was eventually converted to
a two-independent-wheels, speed-controlled mobile robot.
Therefore, the input frequency of spikes was converted to
a fixed speed of a motor. In this work, the controller was
modified to control the joint position of the Scorbot ER-VII
robotic arm in a similar way as in Linares-Barranco et al.
(2020).

The following lines summarize the SPID concept and its
use in the ED-Scorbot. A PID controller continuously cal-
culates an error value and applies a correction based on
proportional, integral, and derivative terms (denoted P, I,
and D, respectively), hence the name. In Jimenez-Fernandez
et al. (2012), a set of SSP building blocks were developed
taking into account the formulation of theLaplace domain (S-
domain), as they obey the classic PID formulation. The basic
building blocks are: the Spike-Generator, the Integrate-And-
Generate (I&G) motor neuron model, the Hold-And-Fire
(H&F) and the Spike-Expansor. These blocks are thoroughly
explained in Jimenez-Fernandez et al. (2012); however, a
brief explanation of how each of themwork is provided next.
The Spike-Generator receives a digital number (which is
usually referred to as the reference) and outputs a spiking
signal whose frequency changes depending on the reference.
The Integrate-And-Generate module (I&G) performs a con-
tinuous integration of the received spikes, transferring the
integration count of spikes to a bit-wise generator of spikes
(Gomez-Rodriguez et al., 2005). It will generate a new sig-
nal of spikes whose frequency will be proportional to the

123

950 Autonomous Robots (2023) 47:947–961

Fig. 1 Block diagram of the spike processing block known as “spike-
Derivative”. It consists of an Integrate and Generate block connected to
a Hold and Fire for closing the loop. The result is that the output rate is
the derivative of the input rate

Fig. 2 Spike-based PID controller created with SSP building blocks

number of spikes counted. The SPID uses this block for the
integral component. The role of the Hold-And-Fire module
(H&F) is to merge spike streams adding or subtracting their
frequencies by holding an incoming spike while it monitors
the next input spike to decide whether output spikes must
be produced or not depending on the polarity of both spikes.
The right combination of these two blocks (see Fig. 1) allows
extracting the behavior of the derivative component of the
SPID. Finally, the Spike-Expansor block expands in time the
spike signal generated by the controller. This step is neces-
sary, since if the unexpanded spiking signal is used to feed the
motors, these spikes will not be wide enough for the motors
to recognise them as movement commands. The role of the
Spike-Expansor in the controller is the proportional compo-
nent. The controller shown in Fig. 2 was created using all
these building blocks.

The transfer function in the S-domain of the full SPID con-
troller follows Eq. (1). This SPID circuit is internally based
on counters and comparators, avoiding the use of more com-
plex operators, such as multipliers. This can be noticed from
the formula, where Ki , Kd and Kp depend on the registers’
length (NB), frequency dividers for the clock signals of the
counters (FD) and the threshold for expanding anoutput spike
in time (SW), apart from the main clock frequency (FCLK)
and the power supply (VPS).

P I D(S) = X(S)

E(S)
=

(
1 + Ki

s
+ s

s + Kd

)
· Kp

=
⎛
⎝1+ FCLK

2N Bi−1 · FDGENi

· 1
s
+ s

s+ FCLK

2NBd−1·FDGENd

⎞
⎠ ·

(SW+1) · TCLK · VPS (1)

For a robotic arm, this SPID speed controller needs amod-
ification to be properly applied to each joint of a robotic arm
for controlling the angles (position controller). Through the
formulation of the forward kinematics, in order to obtain a
Cartesian 3D coordinate of the end effector of the robot,

in a way closer to biology, it is necessary to use stream
of spikes is used for powering the motors, as a muscle is
controlled in the same way by the nervous system. To fore-
see this, the speed controller has to be modified to become
a position controller. This is done by inserting an addi-
tional Integrate-and-Generate block in the closed-loop, as
in Linares-Barranco et al. (2020).

The SPID controller has important differences with
respect to the classical discrete closed-loop PID. The clas-
sical PID is well established in the industry and can be
found implemented in a wide variety of digital devices, such
as Digital Signal Processors (DSP), microcontrollers, and
embedded processors inside FPGAs.All these different types
of devices need complex general purpose hardware to per-
form Multiplicative-and-Accumulative (MAC) operations,
large buses, and shared resources, such as memory. Thus, it
is not easy to implement a large number of digital real-time
controllers running fully in parallel inside a single device. On
the other hand, the spike-based PID-controller is very differ-
ent from the discrete ones. It is also implemented in digital
circuits, but it is similar to a continuous analog controller.
SPID also has some benefits, e.g., a lower power consump-
tion, since, in average, it will produce a lower commutation
rate on the power stages. In addition, SPID controllers pre-
vent intrinsic PID delays (Jimenez-Fernandez et al., 2012).
However, the reduced latency and power consumption come
at the expense of accuracy when reaching target points com-
manded by the controller, i.e., drift (Fig. 5 shows some of its
effects). This drifting can be minimized by optimizing the
Kp, Ki and Kd parameters, although this does not fall in the
scope of this work.

2.2 Robotic platform

The Scorbot ER-VII is a six-axis arm robot with DC motors
for moving axes. Each motor is provided with a dual optical
encoder to enable the registration of axis movements. The
SPID controllers are embedded now on the FPGA MPSoC
hardware. A descriptive image of the operating range of the
robot is shown in Fig. 3.

For controlling the robot axes, a set of six H-bridges
(model BDMICRO REACTOR RX-50) controlled by an
FPGA-based PCB is used. The high-power side of the cir-
cuitry is powered by a 12V-25A power supply. A general
overview on the ED-Scorbot setup is shown in Fig. 4.

The SPID controllers were adjusted for the best response
of the robot joint by joint. The final parameters of the con-
troller, running with a 50MHz clock, and the values of the
SPID constants are expressed in Table 2.

With these parameters in the SPID of the joints of the
robot, different set points firing rate (from now on, spike ref-
erence) imply different angles in the joints. A spiking or spike
reference is the set point that the controller receives as its

123

Autonomous Robots (2023) 47:947–961 951

Fig. 3 Operating Range With Gripper Attached. Adapted from
(Robotec, 1998)

Fig. 4 General overview on the ED-Scorbot setup

input. This spiking signal can come either from a Spike Gen-
erator, such as in this work, or from another spiking source,
such as an SNN or SNN accelerator (Linares-Barranco et al.,
2022).

An SPID controller circuit, as explained in Sect. 2.1, was
synthesized for the Spartan3 400 to measure the estimated
power consumption with the Xpower tool for a 50% switch-
ing rate of the signals considering 16-bit width for all internal
counters and buses. A classic PID controller was also synthe-
sized, not based on spikes, with 16-bit register sizes 2 for the
same FPGA. This PID uses pulse-width-modulation (PWM)
to command the motors. The power measurements were per-
formed in the same way as for SPID. Table 3 shows that
the power benefit for one SPID motor controller is 3x with
respect to an equivalent PID running at the same clock speed.
Even though we have not yet tested the non-spiking PID con-
troller and its consumption, the power saving of the SPID

2 PID adapted from https://github.com/deepc94/pid-fpga-vhdl
(accessed on 19-July-2021)

mainly depends on the reduction of switching signals. SPID
reduces to the minimum the switching when the robot has
reached its final position, but PID classic controllers main-
tain a constant signal switching, due to the use of PWM to
drive the motors. SPID demonstrates other benefits, such as
simplified operations (it does not require multipliers), and
less use of resources.

3 Methods

This section provides details of the improvements attained
in the final neuromorphic robotic arm presented and evalu-
ated in this work. Firstly, the direct and inverse kinematics
of the arm are presented. Then, descriptions of the proprio-
ceptive sensors are provided, and we explain how absolute
position values per joint can be extracted from the encoder
sensors of the motor, with both being new contributions
in the SPID control in this work. Next, the novel Python
software that supports both graphical-user-interface (GUI)
and application-programming-interface (API), is described.
Moreover, the improved implementation of the previous
SPID from multi-FPGA plus a computer, to single Pro-
grammable System on a Chip (PSoC) Zynq is presented.
Finally, this section provides a comprehensive comparison
between ED-Scorbot and its predecessor: ED-BioRob.

3.1 Kinematics

The Scorbot ER-VII robotic arm has six DC motors, as it
has been mentioned before. Since the last two of them are
used to orientate and open/close the gripper located at the
end-effector, the forward kinematics equations are computed
using four joints. Table 4 shows the Denavit-Hartenberg
parameters of the robotic arm. The values of the parameters
are shown in Fig. 3.

The equations of the forward kinematics are shown in
Eq. (2).

x = a4cθ1c (θ2θ3θ4) + a3cθ1c (θ2θ3) + a2cθ1cθ2 + a1cθ1

y = a4sθ1c (θ2θ3θ4) + a3sθ1c (θ2θ3) + a2sθ1cθ2 + a1sθ1

z = a4s (θ2θ3θ4) − a3s (θ2θ3) − a2sθ2 + d1 (2)

For the sake of clarity and brevity, we represent cos and sin
operations with the letters c and s, respectively.

Regarding to the inverse kinematics problem, the gen-
eral equations are shown in (3) (joint angles as a function of
the target point in cartesian coordinates (�p = (px , py, pz)).
Since one of the experiments performed in this work includes
an eight-shaped trajectory, in 2-dimensions, the equations

123

https://github.com/deepc94/pid-fpga-vhdl

952 Autonomous Robots (2023) 47:947–961

Table 2 Kp , Ki , Kd parameters of the first 4 SPID controllers of the ED-Scorbot joints and the closed-loop integrator (CLi)

Joints SW Kp N Bi FDGENi Ki N Bd FDGENd Kd N BCLI FDGENCLi

J1 720 1.73e−4 18 1260 3.03e−1 22 512 4.65e−2 18 8

J2 370 8.90e−5 18 2674 1.43e−1 22 512 4.65e−2 18 2

J3 350 8.42e−5 18 3565 1.07e−1 22 512 4.65e−2 18 8

J4 202 4.87e−5 18 2122 1.80e−1 22 512 4.65e−2 18 1

NB is bit length, FD is frequency divider value and SW is spike width

Table 3 Power and resources estimation from ISE 14.7 Xilinx tools for
SPID and PID with 16-bit register sizes

Controller mW (at 120 MHz) Slices MULT18X18

PID 186 169 2

SPID 62 133 0

Table 4 Denavit-Hartenberg
parameters of the robotic arm
Scorbot ER-VII

Joint θi di ai αi

1 θ1 d1 a1 −π/2

2 θ2 0 a2 0

3 θ3 0 a3 0

4 θ4 0 a4 0

consider that the wrist is fixed.

θ1 = arctan

(
py
px

)

c(θ3) = p2x + p2y + (pz + d1)2 − a22 − a23 − a24
2a2a3a4

θ3 = arctan

(
±√

1 − c2 (θ3)

c (θ3)

)

θ2 = arctan

⎛
⎝ (pz + d1)

±
√
p2x + p2y

⎞
⎠

− arctan

(
(a3 + a4)s(θ3)

a2 + (a3 + a4)c (θ3)

)
(3)

3.2 Proprioceptive sensors

Proprioceptive sensors measure internal values of the sys-
tem or robot. The Scorbot ER-VII has a different set of
proprioceptive sensors with respect to other event-based
robots (i.e., ED-BioRob (Linares-Barranco et al., 2020)). The
Scorbot does not provide joint angle sensors, but it includes,
per joint, three microswitches (one for the home position and
two for the joint limits) and a dual channel optical encoder
attached to themotor.Additional filtering circuitswere devel-
oped and included to solve both the bouncing effect of the

microswitches (2 ms max) and sporadic glitches of 20–40 ns
in the wiring due to electromagnetic noise. Optical encoder
signals are converted into spikes to obtain the feed-back sig-
nal that is connected to the I&G block of the closed-loop.
Since the encoder has two channels (A and B) and these
are used to know the direction of the joint’s movement,
this information is used to extract the right polarity of the
spikes. A positive or negative spike (spikep or spiken) is
generated for each change in either channel A or B of the
encoder for the corresponding movement direction of the
joint. Therefore, there is actually no sensor for the global
joints position. Nevertheless, in this spike-based neuromor-
phic controller integration for the ED-Scorbot, an additional
circuit was implemented in the FPGA per joint, consisting
of an 18-bit counter whose increment or decrement signal
is connected to encoders spikep and spiken respectively. In
this way, after homing the robot, these counters offer a global
position of the robot that can be used to estimate the orien-
tation (in degrees) of each joint.

The home position of the Scorbot robotic arm is not a
single point but a range, and the homing procedure of the
robot must be performed before using it. The home micro-
switch of a joint is placed in a fixed position of the joint path.
When the joint crosses this homeposition, themicro-switch is
active for a particular range. Since these ranges are not small
enough for all joints,wehave considered as the homeposition
the point where the switch outputs an edge from 0 to 1 when
the joint is moving from the negative limit to the positive
limit. Therefore, a routine in the Python library has been
coded to manage this operation by sending each joint (one at
a time) to its negative limit. Then, this routine keeps moving
the joint in the positive direction until an edge in the home
signal is detected.Then the18-bit counter is reset to itsmiddle
value 0x20000. Furthermore, this procedure of resetting the
counters can be enabled to work only once when homing the
robot, or anytime. This way lets the robot to automatically fix
possible drift or imprecise target position achievements due
to joint force issues (ie. joint 3, see Fig. 9 bottom-left). The
software only receives 16-bits from these counters per joint,
discarding the two less significant bits (thus, the home value
is 32768 in decimals). This is done in this way because of two
reasons: first, most interfaces between logic and processors
arewordswhose length ismultiple of a byte; and second, each

123

Autonomous Robots (2023) 47:947–961 953

Table 5 Characterization of joints’ references

Joint Ticks/degree Bounds Op. range

1 128 [11771, 51158] [−155◦,155◦]
2 152 [18478, 44353] [−85◦,85◦]
3 133 [17583, 47591] [−112.5◦,112.5◦]
4 80 [25477, 39797] [−90◦,90◦]

edge of the encoder represents an increment (or decrement)
in the counter, being four steps for a period of the encoder.
Table 5 shows the measured limits of these sensors per joint
in the ED-Scorbot after the homing procedure.

3.3 Python software interface

The managing software for this implementation of the SPID
controller was originally coded in Java, making use of the
jAER software framework.3 Through this application, one
could command the robot to move, change its internal reg-
isters in order to change the Kp, Ki , Kd constants and even
program various algorithms, such as home-searching or dif-
ferent trajectories. The downside, however, was that all this
had to be done from a graphical interface and everything was
also subject to the framework’s visual programming struc-
ture, oriented to event-based sensors and their processing.

Therefore, we decided to re-code the old Java GUI soft-
ware in Python, supporting both, a GUI, and an API. This
decisionwas based on twomain reasons. Firstly, Python is the
main language in the Machine Learning field. Secondly, the
Robotic Operating System (ROS) supports Python and pro-
vides tutorials and examples to facilitate the access to new
researchers. ROS support will be included in this platform
in the future. Furthermore, this also allowed us to provide
remote access to the controller of the robot. Therefore, the
managing software of this work was firstly written in pure
Python, adapting the previous one and maintaining the same
functionalities, while also adding new features such as being
able to execute scripts that perform one (ormore) algorithms,
asmentioned before. This is quite an advantageous character-
istic, as it was not viable to use it through graphical interface
neither for remote access nor for automated learning of a
neural network, for example. The new tool was named Py-
EDScorbotTool.4 As an improvement, we also developed
a C/C++ managing software to be run on the PSoC-based
infrastructure, due to the PS minimal OS of the Zynq plat-
form that communicates directly over the AXI bus with the
PL. This would significantly improve the performance of the

3 https://github.com/SensorsINI/jaer (accessed on 26/Feb/2021)
4 https://github.com/RTC-research-group/Py-EDScorbotTool
(accessed on 28/Feb/2021)

platform due to latency reduction (more details in next sub-
section).

Therefore, for the multi-FPGA-based infrastructure, there
is a dedicated server connected to the robot’s SPID con-
troller that includes the Python tool and acts as an interface
for everyone who wants to use it, including the GUI, as the
dedicated server is also connected to the Internet. Similarly,
for the PSoC, the Python API is remotely available, but the
GUI is executed locally. This API, in this case, keeps using
C/C++ modules to interact with the robot more quickly. Py-
EDScorbot provides everything any user would need to get
started, and the tool also provides information on how to use
it. However, due to safety and scheduling constraints, the
authors must be contacted in order to make an appointment
to use the platform.

3.4 Frommulti-FPGA to single-PSoC

The first attempt to convert the Scorbot into a neuromor-
phic ED-Scorbot was based on the same concept as in
the ED-BioRob (Linares-Barranco et al., 2020), but taking
into account the particularities of this robot. This infras-
tructure lacks several main aspects: (1) Spartan FPGAs are
deprecated, difficult to acquire and not supported by new
development tools; (2) the use of multiple FPGAs due to
resource scarcity induces sporadic communication errors,
longer latency and complexity in the incorporation of new
features; (3) a dedicated computer with a USB connection
is needed to configure and use the robot; and (4) the overall
power consumption increases.

The next step in the building of FPGA based architectures
for several different tasks, including controlling a robotic
arm, is to integrate a PSoC to push the limits of the power
consumption and latency to the edge while still delivering
a proper solution. In this work, a Xilinx Zynq-7000 R© All
Programmable SoC Mini-Module Plus 7Z100 (MMP) was
used. This device is made up of two differentiable parts: the
Processing System (PS) and the Programmable Logic (PL).
PS functions through one ARM processor in which a device-
tailored, minimal Linux distribution can be run. PL holds all
FPGA resources of the platform, as it contains a Kintex 7
FPGA, which provides enough resources to hold both old
Spartan projects as well as future requirements.

A simplified block diagram of this implemented infras-
tructure is shown in Fig. 6. As can be observed, the PL holds
the controller fully, whereas the previous implementation
needed two separate Spartan boards to allocate all the suffi-
cient resources. On the other hand, the PS runs a Linux OS
that allows it to have seamless access to standard ports and
protocols such as Ethernet or USB. This still allows remote
access to the platform, as the Linux OS will provide SSH
access. Finally, PL and PS communicate through a standard
Advanced eXtensible Interface (AXI) bus, which constitutes

123

https://github.com/SensorsINI/jaer
https://github.com/RTC-research-group/Py-EDScorbotTool

954 Autonomous Robots (2023) 47:947–961

Fig. 5 Drift and wait time to reach a target position accurately. Each joint is commanded to move with the same digital reference, which produces
a different angle in each joint as they do not have the same characteristics. No joint will be able to reach its target position accurately if not enough
time is given

Fig. 6 Hardware platform block diagram (left) for 6× DoF spike PID control and photograph of the zynq platform connected to the robot power
stage (right)

Table 6 Dynamic power and
latency metrics for PL (Spartan
& zynq) and PS (zynq)

System Dyn. (PL) (mW) Dyn. (PS) Latency (ms)

Zynq 57 1584 mW 6.5

Spartan3/Spartan6 157 N/A 40

a significant improvement in latency over the SPI bus used in
the previous platform. This is an improvement to the previ-
ous Spartan-based setup tomaintain it up-to-datewith current
technologies.

Table 6 shows the response speed, the estimated power
consumption, and the latency of both infrastructures (with-
out considering the high-voltage power needed for driving the
robot motors). Latency was significantly reduced, while PL
consumption is also significantly lower for the new system
than for the old one. In addition to this, the power consump-
tion of the PS is almost null compared to a dedicated server,
which would normally include a power supply of at least
300W (450W in our scenario).

3.5 ED-Scorbot VII versus ED-BioRob

The ED-Biorob is a very light robot, with joints damped with
a system of ropes and pulleys. This caused overoscillations
when commanding a position, although it posed an advantage
forworking togetherwith humans, as its general applied force
is lower than the force applied to an industrial robot.

The ED-Scorbot has its joints connected to the motors
by belts, with the joints being more rigid. Unlike the ED-
BioRob, the ED-Scorbot only has digital optical encoders
that allow you knowing which the direction in which each
motor is moving and how many degrees it is moving in that
direction.However, they do not show the absolute position of

123

Autonomous Robots (2023) 47:947–961 955

a joint, unlike the ED-BioRob, which provides other absolute
sensors. An estimated position can be calculated if a hom-
ing process is performed in advance. In such process, a limit
switch is used to know the “home” position of that joint.
Once the home process has been performed, the estimated
position is obtained by counting the degrees that the associ-
ated motor moves from the home position, thus integrating
the movements detected by the encoders with respect to the
joint’s home position. This estimation is possible due to the
characterization described in Sect. 4.1. The ED-Scorbot also
has counterweights and larger dimensions. Its movement is
faster than that of the ED-BioRob, but its motors’ energy
consumption is also higher.

4 Results

In this section we present experimental results of the plat-
form’s performance. The characterization of the four first
joints used for trajectory path is explained. Then, two exam-
ples of trajectories are presented and discussed. Finally, we
introduce the mechanisms for collecting useful datasets for
machine learning algorithms that could learn to produce tra-
jectories with this robot.

4.1 ED-Scorbot joints characterization

For a correct use of the robot, a relation between the spike
input reference and the angle of a joint must be established.
To this end, a featuring process for the first four axes was
performed (the fifth axis was not relevant for the preliminary
study and the sixth axis, which corresponds to the grip, will
be used in the future for grasping objects). The process con-
sisted of taking samples of a triplet (spike reference, encoder
counter value, axis angle), with the angle being related to a
home (origin) position in the axis. To improve the rightness
of the process, two batches of samples were done, one in the
direction increasing the spike reference and the other batch
in the opposite direction.

For taking samples in Axis 1, a flexible metric tape was
adhered to the base plate of the axis to serve as an angle scale.
The angle was indicated by a pencil properly placed at the
end of the arm grip, as can be seen in Fig. 7 top-left.

For the other axes, a photo camera placed orthogonal to the
axis was used to take snapshots. The angles were measured
by fitting positioning boxes (red rectangles in Fig. 7) over the
arm segment moved by the axis. The angle can be assessed
obtaining the rotation angle of the box, related to another ref-
erence (which could be a horizontal plane or the positioning
box of another segment of the arm). Figure7 also shows three
snapshots taken for measuring the angles of Joints 2, 3 and
4.

Fig. 7 Joints characterisation scenario photographs. Top-left is Joint 1,
top-right is Joint 2, bottom left is Joint 3 and bottom right is Joint 4

Fig. 8 Characterisation of Joints 1–4

The measured process concluded with a data processing
step to generate the desired relation, expressed graphically
in Fig. 8. The spike reference (SR), shown in the horizontal
axis, is a digital value that represents the spiking frequency
(rate) of the spike generator as the SPID input reference
(rate = SR × FCLK /2(n−1) = 1525.88xSRtextspikes/s
for 50MHz and 16-bits) Linares-Barranco et al. (2020). The
angle is in the vertical axis.

As can be seen in Fig. 8, the right part of the Joint 3 curve
is not as linear as the left part, due to the fact that the motor
of that joint has malfunctions (due to its age). Thus, there is
an imprecise relation between position and spike references,
whichmust be compensated in higher level processing layers.
To observe that imprecision, a new batch of measurements
were taken for each axis.

Figure9 shows normalized recorded and commanded
positions (scaled between 0 and 1 using Eq.5) for a geo-
metrical comparison, after homing the robot and reseting
the counters only once after the homing procedure. It mea-
sures the joint’s position counters (blue) with respect to the
commanded spike input reference (red). Y-axis shows the
normalized angle of the spiking reference commanded (blue)
and the position counters (red). X-axis represents the sample

123

956 Autonomous Robots (2023) 47:947–961

Fig. 9 Normalized joint angle and spiking reference for a 5 iteration
movement over the joints limits for a digital spike reference for differ-
ent steps. For J1 (base) and J3 (forearm), spike references have a step

increment of 1, while J2 (upper arm) has a step of 2 and J4 (flange) a
step of 4. Each command is sent from the software to the robot with a
latency of 122ms per command

Table 7 RMSE per joint for each iteration

It. 1 It. 2 It. 3 It. 4 It. 5

Joint 1 0.0041 0.0042 0.0042 0.0041 0.0042

Joint 2 0.0064 0.0065 0.0065 0.0065 0.0065

Joint 3 0.0430 0.0534 0.0541 0.0546 0.0545

Joint 4 0.0108 0.0111 0.0110 0.0110 0.0108

time, where each sample is captured with a time period spec-
ified in the figure (T ime tick = 122ms/sample). Each joint
was measured with independent experiments for 3–4min,
commanding a new SpikeRe f every T ime tick with the
specified SpikeRe f step (1 for Joints 1 and 3, 2 for joint 2
and 4 for joint 4). The SPID parameters used in this configu-
ration imply different digital spike references per joint as is
shown in the figure. This experiment confirms the previous
results for Joint 3, where it can be seen that the upwardmove-
ment (left part of the Joint 3 curve) has a worse behavior than
the downward movement.

Table 7 shows the root-mean-square error (RMSE) (Eq. 4)
of normalized data of each joint in all five iterations shown
in Fig. 9. In this equation, fc is the value commanded to the
arm and fr is the obtained value. According to this result,
the closer we get to 0, the lower the difference between the

commanded position and the obtained position.

RMSE =
√∑N

i=1

(
fci − fri

)2
N

(4)

From the normalized commanded and collected data (set
x

′
), we calculated the error using the RMSE formula (4).

x
′
i = xi − min(x)

max(x) − min(x)
(5)

Where x denotes the whole data collection and min(x)
and max(x) are the minimum and maximum values of the
set x.

4.2 Two case-studied trajectories

This section presents results from two experimental trajec-
tories: one where all the joints move at the same time for
the same range of digital spike references drawing a curve in
the space, and a second one where the robot is drawing an
“eight” in space. A short video for each experiment can be
accessed in the Py-EDScorbotTool git repository previously
referenced. In all the experiments carried out in this research,
hand-set PID constants were used.

123

Autonomous Robots (2023) 47:947–961 957

Fig. 10 Curve experiment for 10 iterations. Blue dots are the 3D rep-
resentation of the measured joint angles computed by the forward
kinematics. Red dots correspond to the commanded angles converted
to Euclidean coordinates in cm

4.2.1 Curve experiment

In this experiment, a script for commanding the same digital
spike reference to each SPID input of the 4 considered joints
was developed. These spike references where in the range
of −200 to 200. Therefore, the angles produced for each
joint have different ranges according to the characterization
presented in previous sections. With this range, starting at
the home position (and reseting the position counters to 0 ×
20000 only once after homing procedure), the robot repro-
duces an arc that starts in the desk at its right side and finishes
on top of the robot, then, the robot comes back to the desk and
the movement is repeated 5 times, as can be seen in Fig. 10.
The script increments the digital spike reference (from−200
to 200) one by one and sends the commands to the robot
joint at its maximum speed (125 ms per increment), which
implies 100s for each of the 5 iterations. The blue dots (mea-
sured positions) do not precisely correspondwith the red dots
(commanded position) due to latencies of the SPID in stabi-
lizing at targeting positions during the trajectory. The mean
error measured calculating the distance between the target
point and the measured point for the whole experiment is
10.38 cm. The use of a SNN properly trained for dynami-
cally updating the controller parameters may improve these
results.

4.2.2 The fast ‘eight’ experiment

This experiment shows how the robotic arm is following a
two-dimension trajectory: an image of the number eight. The
trajectory was extracted using Eq. (6), which correspond to a

semicircle,where r is the radius, θ is the angle in radians from
0 to π and (h, k) is the center of the circumference. Thus,
combining and concatenating four semicircles the ‘eight’
approximation can be drawn for this experiment. Joints 1 and
2 are used and joints 3 and 4 are left in their home values.
The Python script for this experiment allows representing the
trajectory with configurable scales and sample points. The
experiment was continuously repeated 5 times and recorded
on a logfile. Each iteration consisted of 80points commanded
in 6.25 s, which corresponds to one command every 125 ms
to move from one point to the next, which in turn is the
maximum speed for commanding the robot. Figure11 repre-
sents with blue dots the 3D Euclidean space position of the
end-effector of the robot for the different iterations taking the
angles from the log file and converting them into (x, y, z) with
the previous kinematics equations. Red lines correspond to
the commanded trajectory. Since the highest speed available
was used in this experiment to command the positions, the
error in the measurements is also the highest. Current PID
constants and motor speed do not allow the robot to reach
the commanded positions on time. In this case, the average
error in this trajectory is 6.80 cm.

x = r · cos θ + h

y = r · sin θ + k
(6)

4.3 Datasets generation

This robot is being used as testing platform for neuromor-
phic learning architectures under an EU project. One of the
aims of these spiking architectures is to modify the PID con-
stants of the robot in a dynamic way for fixing the observed
problems of non-linearity (i.e., the robot’s Joint-3), or due to
object grasping with different weights. Some of these archi-
tectures require the use of datasets for their training phases. A
Python script can always be used with the robot for collect-
ing required datasets using available features. The Python
library currently in use, allows storing text files with the
robot parameters’ values online (while it performs the pro-
grammed trajectory). In the results section, these text files
were used to extract the figures. While the main software is
running, it constantly saves the latest commanded position
of the joints, the current value of the measured joint position
and a timestamp. The maximum speed is 1 measurement of
the four joints and its log file writes every 122ms. The trajec-
tories dataset5 is complemented with recorded MP4 videos
of three cameras installed on the X, Y and Z axes. Finally,
the spiking activity of the SPID controllers is recorded using
an USBAERmini2 board (Berner et al., 2007), and stored
in an AEDAT file as a sequence of (x, y) addresses with the

5 https://github.com/RTC-research-group/ED-Scorbot.

123

https://github.com/RTC-research-group/ED-Scorbot.

958 Autonomous Robots (2023) 47:947–961

Fig. 11 “Eight” experiment for 5 iterations. Blue dots are the measured joint angles forward kinematics representation. Red dots corresponds to
the commanded angles converted to Euclidean coordinates. Side figures show the experiment as if the observer were in front of each axis

timestamps with which these spikes appeared. Table 8 shows
the format of the recorded events while a trajectory is exe-
cuted in the robot. Source1 − Source0 values identify the
source of the captured spike, being “00” for the output of the
spike generator that converts the digital spike-reference to
spiking activity; “01” for the SPID output; “10” for the SPID
input; and “11” for the integral of the spiking encoder activ-
ity. Joint2 − Joint0 encode the joint number; and Pol for
the polarity of the captured spike. Figure12 shows recorded
inter-spike-interval (ISI) events for Joint 2 (upper arm) SPID
while producing a simple trajectory consisting in sending the
base, upper arm, forearm and flange from the digital spiking
reference −200 to 200 in steps of 10 with the minimum wait
between steps (122 ms) repetitively (5 times). SPID spik-
ing output changes its ISI time depending on the speed of
the movement when it reaches one side or the other of the
repetitive movement. It can be seen that the activity of the
integration of the motor encoders (aka position) obeys the
SPID output activity with a delay. This delay is caused by
the dynamics of the motors and the robot joints. The figure
shows with different colours positive and negative spikes for
these two signals: SPID output and the integral of the spiking
encoder signal.

Table 8 Address-Event-Representation of SPID internal activity mon-
itoring

Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Source1 Source0 Joint2 Joint1 Joint0 Pol

5 Conclusions

In this paper, an application of a Spike-based Proportional-
Integral-Derivative position controller to a Scorbot ER-VII
robotic arm is presented. This design was further tested and
simulated. TheSpike-basedPIDcontrollerwas improved and
applied to each joint of the robot. The robotic arm platform
was improved to allow access to its proprioceptive sensors.
Remote access through SSH with webcams and a Python-
based interface was added to the robotic platform to provide
remote control over the robotic arm. Two infrastructures for
the use of a SPID controller are presented: one that uses
deprecated Xilinx Spartan FPGAs and an update of the first
one that uses amore recently developedXilinxZynqMPSoC.
In the first infrastructure, two Spartan boards are required
to fit the whole controller, and they also require external

123

Autonomous Robots (2023) 47:947–961 959

time (us)

IS
I (

us
)

Spike-ref: -100 100 -100 100 -100 100 -100 100 -100 100 -100 Joint-2

Fig. 12 Monitored spiking activity of the SPID output and the integral of the spiking encoder for Joint 2 while the ED-Scorbot executes a trajectory
where all joints are moving from digital spiking reference −100 to 100, with ref 0 being the HOME position

support through the use of a dedicated PC/server that allows
for USB access. However, in the second infrastructure, the
MPSoC’s PL is capable of holding the whole controller in
one chip, and the PS serves as a dedicated server, but with
much less power consumption. Inter-FPGA communication
was also removed in theMPSoC; therefore, latency improved
significantly. The control system presented in this paper uses
spiking neurons that are tuned to achieve the desired PID
control. However, our system lacks ground-truth sensors to
determine the position of each joint, while other works do
have them (Linares-Barranco et al., 2020). Furthermore, this
infrastructure can be used for collecting trajectories dataset
with video captures and spiking information for potential
training of machine learning algorithms.

Acknowledgements This research was partially supported by the
Spanish grant (with support from the European Regional Develop-
ment Fund) MINDROB (PID2019- 105556GB- C33/ AEI/ 10. 13039/
501100011033) and by the CHIST-ERAH2020 grant SMALL (CHIST-
ERA-18-ACAI-004, PCI2019-111841-2/AEI/10.13039/501100011033).

Funding Funding for open access publishing: Universidad de Sevilla/
CBUA

Conflict of interest The authors have no conflict of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., et al. (2014).
Neurogrid: A mixed-analog-digital multichip system for large-

scale neural simulations. Proceedings of the IEEE, 102(5), 699–
716.

Berner, R., Delbruck, T., Civit-Balcells, A., & Linares-Barranco, A.
(2007). A 5 meps $100 usb2.0 address-event monitor-sequencer
interface. In 2007 IEEE international symposium on circuits and
systems, (pp. 2451–2454).

Blum, H., Dietmüller, A., Milde, M., Conradt, J., et al. (2017). A neuro-
morphic controller for a robotic vehicle equipped with a dynamic
vision sensor. In: Robotics Science and Systems, RSS 2017, Berlin,
Germany. Proceedings of Robotics: Science and Systems.

Calimera, A., & Macii, E. (2013). The human brain project and neuro-
morphic computing. Functional Neurology, 28(3), 191–196.

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., et al. (2013). Cog-
nitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores. In: The 2013 international
joint conference on neural networks (IJCNN), (pp. 1–10).

Chan, V., Liu, S., & van Schaik, A. (2007). Aer ear: A matched sili-
con cochlea pair with address event representation interface. IEEE
Transactions on Circuits and Systems I: Regular Papers, 54(1),
48–59.

Chicca, E., Stefanini, F., Bartolozzi, C., & Indiveri, G. (2014). Neu-
romorphic electronic circuits for building autonomous cognitive
systems. Proceedings of the IEEE, 102(9), 1367–1388.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., et al. (2018). Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE
Micro, 38(1), 82–99.

Denk, C., Llobet-Blandino, F., Galluppi, F., Plana, L., et al. (2013).
Real-time interface board for closed-loop robotic tasks on the spin-
naker neural computing system. In: Artificial neural networks and
machine learning (ICANN 2013), (pp. 467–474). Springer Berlin
Heidelberg.

DeWolf, T., Stewart, T. C., Slotine, J.-J., & Eliasmith, C. (2016). A
spiking neural model of adaptive arm control. Proceedings of the
Royal Society B: Biological Sciences, 283(1843), 20162134.

Dominguez-Morales, M., Jimenez-Fernandez, A., Paz, R., Linares-
Barranco, A., et al. (2011). An AER to can bridge for spike-based
robot control. In Advances in Computational Intelligence, (pp.
124–132). Springer Berlin Heidelberg.

Donati, E., Perez-Peña, F., Bartolozzi, C., Indiveri, G., and Chicca, E.
(2018). Open-loop neuromorphic controller implemented onVLSI
devices. In 2018 7th IEEE International conference on biomedical
robotics and biomechatronics (Biorob), (pp. 827–832). IEEE.

Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The
spinnaker project. Proceedings of the IEEE, 102(5), 652–665.

Gallego, G., Delbruck, T., Orchard, G. M., Bartolozzi, C., et al. (2020).
Event-based vision: A survey. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44, 154–180.

Galluppi, F.,Denk,C.,Meiner,M.C., Stewart, T.C., et al. (2014). Event-
based neural computing on an autonomous mobile platform. In:
2014 IEEE international conference on robotics and automation
(ICRA), (pp. 2862–2867).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

960 Autonomous Robots (2023) 47:947–961

Gomez-Rodriguez, F., Paz, R., Miro, L., Linares-Barranco, A., et al.
(2005). Two hardware implementations of the exhaustive synthetic
AER generation method. Computational Intelligence and Bioin-
spired Systems (pp. 534–540). Berlin Heidelberg: Springer.

Gómez-Rodríguez, F., Jiménez-Fernández, A., Pérez-Peña, F., Miró,
L., et al. (2016). Ed-scorbot: A robotic test-bed framework for
FPGA-based neuromorphic systems. In 2016 6th IEEE interna-
tional conference on biomedical robotics and biomechatronics
(BioRob), (pp. 237–242).

Harkin, J., Morgan, F., Hall, S., Dudek, P., Dowrick, T., & McDaid,
L. (2008). Reconfigurable platforms and the challenges for large-
scale implementations of spiking neural networks. In 2008 inter-
national conference on field programmable logic and applications,
(pp. 483–486). IEEE.

Jimenez- Fernandez, A., Linares-Barranco, A., Paz-Vicente, R.,
Jimenez, G., & Civit, A. (2010). Building blocks for spikes signals
processing. In The 2010 international joint conference on neural
networks (IJCNN).

Jimenez-Fernandez, A., Jimenez-Moreno, G., Linares-Barranco, A.,
Dominguez-Morales, M., et al. (2012). A neuro-inspired spike-
based PID motor controller for multi-motor robots with low cost
FPGAS. Sensors, 12(4), 3831–3856.

Koickal, T. J., Hamilton, A., Tan, S. L., Covington, J. A., et al. (2007).
Analog VLSI circuit implementation of an adaptive neuromorphic
olfaction chip. IEEE Transactions on Circuits and Systems I: Reg-
ular Papers, 54(1), 60–73.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128× 128 120 db
15μs latency asynchronous temporal contrast vision sensor. IEEE
Journal of Solid-State Circuits, 43(2), 566–576.

Linares-Barranco, A., Perez-Pena, F., Jimenez-Fernandez, A., &
Chicca, E. (2020). Ed-biorob: A neuromorphic robotic arm with
FPGA-based infrastructure for bio-inspired spiking motor con-
trollers. Frontiers in Neurorobotics, 14, 96.

Linares-Barranco, A., Pinero-Fuentes, E., Canas-Moreno, S., Rios-
Navarro, A., Maryada, E., C. Wu, J. Z., Zendrikov, D., & Indiveri,
G. (2022). Towards hardware implementation of WTA for CPG-
based control of a spiking robotic arm. In 2022 IEEE international
symposium on circuits and systems, (pp. 1–4).

Maguire, L., McGinnity, T., Glackin, B., Ghani, A., Belatreche, A.,
& Harkin, J. (2007). Challenges for large-scale implementations
of spiking neural networks on FPGAS. Neurocomputing, 71(1),
13–29.

Milde, M., Blum, H., Dietmuller, A., Sumislawska, D., et al. (2017).
Obstacle avoidance and target acquisition for robot navigation
using a mixed signal analog/digital neuromorphic processing sys-
tem. Frontiers in Neurorobotics, 11, 28.

Moradi, S., Qiao, N., Stefanini, F., & Indiveri, G. (2018). A scalable
multicore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (dynaps). IEEE
Transactions onBiomedical Circuits and Systems, 12(1), 106–122.

Perez-Pena, F., Morgado-Estevez, A., Linares-Barranco, A., Jimenez-
Fernandez, A., et al. (2013). Neuro-inspired spike-based motion:
From dynamic vision sensor to robot motor open-loop control
through spike-vite. Sensors, 13(11), 15805–15832.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., et al. (2015). A
reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128 k synapses. Frontiers in Neuro-
science, 9, 141.

Robotec, E. (1998).Scorbot er-vii usermanual. EshedRobotecLimited.
Rocke, P., McGinley, B., Maher, J., Morgan, F., & Harkin, J. (2008).

Investigating the suitability of FPAAS for evolved hardware spik-
ing neural networks. In Evolvable systems: From biology to
hardware, (pp. 118–129). Springer Berlin Heidelberg.

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., &Millner,
S. (2010). A wafer-scale neuromorphic hardware system for large-

scale neural modeling. In Proceedings of 2010 IEEE international
symposium on circuits and systems, (pp. 1947–1950).

Schemmel, J., Fieres, J., & Meier, K. (2008). Wafer-scale integration
of analog neural networks. In 2008 IEEE international joint con-
ference on neural networks, (pp. 431–438).

Selow, R., Lopes, H. S., & Lima, C. R. E. (2009). A comparison of
FPGA and FPAA technologies for a signal processing application.
In 2009 international conference on field programmable logic and
applications, (pp. 230–235). IEEE.

Serrano-Gotarredona, T., & Linares-Barranco, B. (2013). A 128×128
1.5

Sivilotti, M. A. (1992).Wiring considerations in analog VLSI systems,
with application to field-programmable networks, PhD thesis, Cal-
ifornia Institute of Technology, USA.

Stagsted, R., Vitale, A., Binz, J., Renner,A., et al. (2020a). Towards neu-
romorphic control: A spiking neural network based PID controller
for UAV. In Robotics: science and systems 2020, RSS.

Stagsted, R. K., Vitale, A., Renner, A., Larsen, L. B., et al. (2020b).
Event-based pid controller fully realized in neuromorphic hard-
ware: A one DOF study. In 2020 IEEE/RSJ international confer-
ence on intelligent robots and systems (IROS),(pp. 10939–10944).

Stroobants, S., Dupeyroux, J., & de Croon, G. (2021). Design and
implementation of a parsimonious neuromorphic PID for onboard
altitude control for MAVS using neuromorphic processors. arXiv
preprint arXiv:2109.10199.

Zaidel, Y., Shalumov,A., Volinski, A., Supic, L.,&Ezra Tsur, E. (2021).
Neuromorphic NEF-based inverse kinematics and PID control.
Frontiers in Neurorobotics, 15, 2.

Zamarreno-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona,
T., & Linares-Barranco, B. (2013). Multicasting mesh AER:
A scalable assembly approach for reconfigurable neuromorphic
structured AER systems. Application to convnets. IEEE Transac-
tions on Biomedical Circuits and Systems, 7(1), 82–102.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Salvador Canas-Moreno is a
researcher at department of Archi-
tecture and Tech. of Computers
at the University of Seville. He
received the B.S. degree in com-
puter engineering and the M.S.
degree in microelectronics from
the University of Seville, Spain, in
2015 and 2016, respectively. His
research interest includes VLSI
digital design, embedded systems,
neuromorphic computing for sen-
sors, robotics, and deep-learning.

123

http://arxiv.org/abs/2109.10199

Autonomous Robots (2023) 47:947–961 961

Enrique Piñero-Fuentes is a Ph.D.
student at the department of Archi-
tecture and Tech. of Computers,
member of the Robotics and Com-
puter Technology Lab and posses-
sor of a “Ayudas para la forma-
ción de profesorado universitario
(FPU)” grant. He has a degree
in Computer Engineering, having
the best overall mark of the pro-
motion. Research interest include
ArtificiaI Intelligence, Machine
Learning, Microcontrollers,
FPGA, Edge-Computing, Robotics
and Computer Vision.

Antonio Rios-Navarro received
the B.S. degree in computer sci-
ence engineering, the M.S. degree
in computer engineering, and the
Ph.D. degree in neuromorphic engi-
neering from the University of
Seville, Seville, Spain, in 2010,
2011, and 2017, respectively. He
currently holds an Assistant Pro-
fessor position at the Computer
Architecture and Technology De-
partment, University of Seville.
His current research interests in-
clude neuromorphic systems, real-
time spikes signal processing, field-

programmable gate array design, deep learning and neural control.

Daniel Cascado-Caballero work
as Assistant Professor in the Uni-
versity of Seville. He received his
degree in Computer Science in
1996 and his PhD. in 2003, both
from the University of Seville.
From 2009 he has worked as Pub-
lication Chair of several Interna-
tional Conferences. His research
field is focused on wireless com-
munications, membrane comput-
ing, simulation and e-health sys-
tems, where he has numerous
papers published in referred inter-
national journals and conferences.

Fernando Perez-Peña Fernando
Perez Peña received the degree
in telecommunication engineering
from the University of Seville,
Spain, in 2009, and the Ph.D.
degree (specialized in neuromor-
phic motor control) from the Uni-
versity of Cadiz, Spain, in 2014.
In 2015, he was a Postdoctoral
Researcher with CITEC, Biele-
feld University, Germany. He has
been an Assistant Professor with
the University of Cadiz, since
2014. His current research inter-
ests include neuromorphic engi-

neering, FPGA digital design, motor control, and neurorobotics.

Alejandro Linares-Barranco is
full-professor at the department of
Architecture and Tech. of Com-
puters and chair of the Neuromor-
phic Systems group of the Exce-
lence Unit SCORE at the Uni-
versity of Seville. He is mem-
ber of the Robotics and Com-
puter Technology Lab since 2001.
He received the B.S. degree in
computer engineering, the M.S.
degree in industrial computer sci-
ence, and the Ph.D. degree in com-
puter science from the University
of Seville, Spain, in 1998, 2002,

and 2003, respectively. His research interest includes VLSI digi-
tal design, embedded systems, neuromorphic computing for sensors,
robotics, and deeplearning.

123

	Towards neuromorphic FPGA-based infrastructures for a robotic arm
	Abstract
	1 Introduction
	2 Materials
	2.1 Spike-based PID controller
	2.2 Robotic platform

	3 Methods
	3.1 Kinematics
	3.2 Proprioceptive sensors
	3.3 Python software interface
	3.4 From multi-FPGA to single-PSoC
	3.5 ED-Scorbot VII versus ED-BioRob

	4 Results
	4.1 ED-Scorbot joints characterization
	4.2 Two case-studied trajectories
	4.2.1 Curve experiment
	4.2.2 The fast `eight' experiment

	4.3 Datasets generation

	5 Conclusions
	Acknowledgements
	References

