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Abstract
We propose Text2Motion, a language-based planning framework enabling robots to solve sequential
manipulation tasks that require long-horizon reasoning. Given a natural language instruction, our
framework constructs both a task- and motion-level plan that is verified to reach inferred symbolic
goals. Text2Motion uses feasibility heuristics encoded in Q-functions of a library of skills to guide task
planning with Large Language Models. Whereas previous language-based planners only consider the
feasibility of individual skills, Text2Motion actively resolves geometric dependencies spanning skill
sequences by performing geometric feasibility planning during its search. We evaluate our method on
a suite of problems that require long-horizon reasoning, interpretation of abstract goals, and handling
of partial affordance perception. Our experiments show that Text2Motion can solve these challenging
problems with a success rate of 82%, while prior state-of-the-art language-based planning methods
only achieve 13%. Text2Motion thus provides promising generalization characteristics to semantically
diverse sequential manipulation tasks with geometric dependencies between skills. Qualitative results
are made available at sites.google.com/stanford.edu/text2motion.
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1 Introduction
Long-horizon robot planning is traditionally for-
mulated as a joint symbolic and geometric rea-
soning problem, where the symbolic reasoner is
supported by a formal logic representation (e.g.
first-order logic [1]). Such systems can general-
ize within the logical planning domain specified
by experts. However, many desirable properties of
plans that can be conveniently expressed in lan-
guage by non-expert users may be cumbersome
to specify in formal logic. Examples include the
specification of user intent or preferences.

The emergence of Large Language Models
(LLMs) [2] as a task-agnostic reasoning module
presents a promising pathway to general robot
planning capabilities. Several recent works [3–
6] capitalize on their ability to perform task
planning for robot systems without needing to
manually specify symbolic planning domains. Nev-
ertheless, these prior approaches adopt myopic or
open-loop execution strategies, trusting LLMs to
produce correct plans without verifying them on
the symbolic or geometric level. Such strategies
are challenged in long-horizon settings, where the
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task planning abilities of even the most advanced
LLMs appear to degrade [7], and the overall suc-
cess of a seemingly correct task plan depends as
well on how it is executed to ensure long-horizon
feasibility. Therefore, we ask in this paper: how
can we verify the correctness and feasibility of
LLM-generated plans prior to execution?

We propose Text2Motion, a language-based
planning framework that interfaces an LLM with a
library of learned skills and a geometric feasibility
planner [8] to solve complex sequential manipula-
tion tasks (Figure 1). Our contributions are two-
fold: (i) a hybrid LLM planner that synergistically
integrates shooting-based and search-based plan-
ning strategies to construct geometrically feasible
plans for tasks not seen by the skills during train-
ing; and (ii) a plan termination method that infers
goal states from a natural language instruction
to verify the completion of plans before executing
them. We find that our planner achieves a suc-
cess rate of 82% on a suite of challenging table top
manipulation tasks, while prior language-based
planning methods achieve a 13% success rate.

2 Related Work

2.1 Language for robot planning
Language is increasingly being explored as a
medium for solving long-horizon robotics prob-
lems. For instance, Language-conditioned policies
(LCPs) are not only used to learn short-horizon
skills [9–14], but also long-horizon policies [15–17].
However, LCPs require expensive data collection
and training procedures if they are to generalize
to a wide distribution of long-horizon tasks with
diverse instructions.

Several recent works leverage the generative
qualities of LLMs by prompting them to predict
long-horizon plans. [18] grounds an LLM planner
to admissible action sets for task planning, [19, 20]
explore the integration of LLMs with PDDL [1],
and [21, 22] focuses on task-level replanning with
LLMs. Tangential works shift the representation
of plans from action sequences to code [5, 23–25]
and embed task queries, robot actions, solution
samples, and fallback behaviors as programs in
the prompt. In contrast to these works, which pri-
marily address challenges in task planning with
LLMs, we focus on verifying LLM-generated plans
for feasibility on the geometric level.

Figure 1 To carry out the instruction “get two primary-
colored objects onto the rack,” the robot must apply
symbolic reasoning over the scene description and language
instruction to deduce what skills should be executed to
acquire a second primary-colored object, after noticing that
a red object is already on the rack (i.e. on(red, rack)). It
must also apply geometric reasoning to ensure that skills
are sequenced in a manner that is likely to succeed. Unlike
prior work [3, 4] that myopically executes skills at the cur-
rent timestep, Text2Motion constructs sequences of skills
and coordinates their geometric dependencies with geomet-
ric feasibility planning [8]. Upon planning the skill sequence
Pick(hook), Pull(blue, hook), Pick(blue), Place(blue, rack),
our method computes a grasp position on the hook that
enables pulling the blue object into the robot workspace so
that it can be successfully picked up in the next step.

Closest in spirit to our work are SayCan [3] and
Inner Monologue (IM) [4] which at each timestep
score the usefulness and feasibility of all possible
skills and execute the one with the highest score.
Termination occurs when the score of the stop
“skill” is larger than any other. IM provides addi-
tional sources of feedback to the LLM in the form
of skill successes and task-progress cues.

While SayCan and IM are evaluated on a
diverse range of tasks, there are several limitations
that impede their performance in the settings we
study. First, by only myopically executing the next
skill at each timestep, they may fail to account
for geometric dependencies that exist over the
extent of a skill sequence. For an example, see
Figure 1. Second, they do not explicitly predict
a multi-step plan, which prevents verification of
desired properties or outcomes prior to execu-
tion. Examples of such properties could include
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whether the final state induced by the plan sat-
isfies symbolic constraints or whether the plan
adheres to safety criteria. Lastly, these methods
ignore the uncertainty of skill feasibility predic-
tions (i.e. affordances), which [8] demonstrates is
important when sequencing learned skills to solve
long-horizon tasks. By addressing these limita-
tions, Text2Motion outperforms SayCan and IM
by a large margin on tasks with geometric depen-
dencies, as demonstrated in the experiments.

2.2 Task and motion planning
Task and Motion Planning (TAMP) refers to a
problem setting in which a robot solves long-
horizon tasks through symbolic and geometric
reasoning [26, 27]. The hierarchical approach [28]
characterizes the most common family of solu-
tion methods. Such methods typically employ a)
a symbolic task planner [29, 30] to produce a can-
didate plan skeleton, and b) a motion planner to
verify the plan skeleton for its geometric feasibil-
ity and compute a motion trajectory subject to
robot and environmental constraints [31–33].

For complex tasks, classical TAMP solvers [31,
32, 34–37] may iterate between task planning
and motion planning for minutes until a plan is
found. To amortize planning costs, works learn
sampling distributions [8, 38–41], visual feasibility
heuristics [42–44], low-level controllers [45, 46], or
state sparsifiers [47, 48], from datasets of solutions
computed by classical TAMP solvers. Another
line of works learn symbolic representations for
TAMP [46, 49–55], often from task-specific sym-
bolic transition experience.

As is common in TAMP, Text2Motion also
assumes knowledge of task-relevant objects and
their poses in order to plan feasible trajectories for
long-horizon tasks. However, central to our work is
the use of LLMs instead of symbolic task planners
often used in TAMP [27], and language as conve-
nient medium to express tasks that may be cum-
bersome to specify in formal logic (e.g. user prefer-
ences [6]). Accordingly, we address early challenges
concerning the reliable use of LLMs (discussed in
Section 2.1) in the long-horizon settings typically
solved by TAMP. Text2Motion thereby presents
several qualitative differences from TAMP: i) the
ability to interpret free-form language instructions
for the construction of multi-step plans, and ii)
the capacity to reason over an unrestricted set of

object classes and object properties, both of which
are supported by the commonsense knowledge of
LLMs [56]. We leave the extension of our frame-
work to open-world settings (e.g. via environment
exploration [57] or interaction [58]) to future work.

3 Problem Setup
We aim to solve long-horizon sequential manipula-
tion problems that require symbolic and geometric
reasoning from a natural language instruction i
and the initial state of the environment s1. We
assume a closed-world setting, whereby the ini-
tial state s1 contains knowledge of task-relevant
objects and their poses as provided by an exter-
nal perception system (Appendix D.1). Fulfillment
of the instruction i corresponds to achieving a
desired goal configuration of the task-relevant
objects which can be symbolically expressed with
a closed set of predicates (Appendix B.1).

3.1 LLM and skill library
We assume access to an LLM and a library of
skills Lψ = {ψ1, . . . , ψN}. Each skill ψ consists
of a policy π(a|s) and a parameterized manipu-
lation primitive ϕ(a) [59], and is associated with
a contextual bandit, or a single-timestep Markov
Decision Process (MDP):

M = (S,A, T,R, ρ), (1)

where S is the state space, A is the action space,
T (s′|s, a) is the transition model, R(s, a, s′) is the
binary reward function, and ρ(s) is the initial state
distribution. When a skill ψ is executed, an action
a ∈ A is sampled from its policy π(a|s) and fed to
its primitive ϕ(a), which consumes the action and
executes a series of motor commands on the robot.
If the skill succeeds, it receives a binary reward of
r (or ¬r if it fails). We subsequently refer to policy
actions a ∈ A as parameters for the primitive,
which, depending on the skill, can represent grasp
poses, placement locations, and pulling or pushing
distances (Appendix A.1).

A timestep in our environment corresponds
to the execution of a single skill. We assume
that each skill comes with a language descrip-
tion and that methods exist to obtain its policy
π(a|s), Q-function Qπ(s, a), and dynamics model
Tπ(s′|s, a). Our framework is agnostic to the
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approach used to obtain these models. We also
assume a method to convey the environment state
s ∈ S to the LLM as natural language.

3.2 The planning objective
Our objective is to find a plan in the form of a
sequence of skills [ψ1, . . . , ψH ] (for notational con-
venience, we hereafter represent sequences with
range subscripts, e.g. ψ1:H) that is both likely to
satisfy the instruction i and can be successfully
executed from the environment’s initial state s1.
This objective can be expressed as the joint prob-
ability of skill sequence ψ1:H and binary rewards
r1:H given the instruction i and initial state s1:

p(ψ1:H , r1:H | i, s1)
= p(ψ1:H | i, s1) p(r1:H | i, s1, ψ1:H).

(2)

The first term in this product p(ψ1:H | i, s1)
considers the probability that the skill sequence
ψ1:H will satisfy the instruction i from a sym-
bolic perspective. However, a symbolically correct
skill sequence may fail during execution due to
kinematic constraints of the robot or geomet-
ric dependencies spanning the skill sequence. We
must also consider the success probability of the
skill sequence ψ1:H captured by the second term
in this product p(r1:H | i, s1, ψ1:H). The success
probability depends on the parameters a1:H fed
to the underlying sequence of primitives ϕ1:H that
control the robot’s motion:

p(r1:H | i, s1, ψ1:H) = p(r1:H | s1, a1:H). (3)

Eq. 3 represents the probability that skills ψ1:H

achieve rewards r1:H when executed from initial
state s1 with parameters a1:H ; which is indepen-
dent of the instruction i. If just one skill fails
(reward ¬r), then the entire plan fails.

3.3 Geometric feasibility planning
The role of geometric feasibility planning is to
maximize the success probability (Eq. 3) of a
skill sequence ψ1:H by computing an optimal set
of parameters a1:H for the underlying primitive
sequence ϕ1:H . This process is essential for finding
plans that maximize the overall planning objec-
tive in Eq. 2. In our experiments, we leverage
Sequencing Task-Agnostic Policies (STAP) [8].

STAP resolves geometric dependencies across
the skill sequence ψ1:H by maximizing the product
of step reward probabilities of parameters a1:H :

a∗1:H = argmax
a1:H

Es2:H

[
H∏
t=1

p(rt | st, at)

]
, (4)

where future states s2:H are predicted by dynam-
ics models st+1 ∼ Tπt(·|st, at). Note that the
reward probability p(rt | st, at) is equivalent to the
Q-function Qπt(st, at) for skill ψt in a contextual
bandit setting with binary rewards (Eq. 1). The
success probability of the optimized skill sequence
ψ1:H is thereby approximated by the product of
Q-functions evaluated from initial state s1 along
a sampled trajectory s2:H with parameters a∗1:H :

p(r1:H | s1, a1:H) ≈
H∏
t=1

Qπt(st, a
∗
t ). (5)

In principle, our framework is agnostic to the
specific approach used for geometric feasibility
planning, requiring only that it is compatible with
the skill formalism defined in Section 3.1 and
provides a reliable estimate of Eq. 3.

4 Methods
The core idea of this paper is to ensure the
geometric feasibility of an LLM task plan—and
thereby its correctness—by predicting the suc-
cess probability (Eq. 3) of learned skills that
are sequenced according to the task plan. In
the following sections, we outline two strategies
for planning with LLMs and learned skills: a
shooting-based planner and a search-based plan-
ner. We then introduce the full planning algo-
rithm, Text2Motion, which synergistically inte-
grates the strengths of both strategies. These
strategies represent different ways of maximizing
the overall planning objective in Eq. 2.

4.1 Goal prediction
Plans with high overall objective scores (Eq. 2) are
not guaranteed to satisfy their instruction. Con-
sider the instruction “move all the dishes from the
table to the sink” issued in an environment with
two dishes on the table. While a plan that picks
and places one of the two dishes in the sink may
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Figure 2 shooting and greedy-search planning overview. Both shooting and greedy-search planners use
the LLM to predict the set of valid goal states given the user’s natural language instruction and a description of the
current state of the environment. These predicted goals are used to decide when the instruction is satisfied and planning
can terminate. Left: The shooting strategy uses the LLM to propose full skill sequences first and then runs geometric
feasibility planning afterwards. As shown in the experiments, this approach fails when the space of candidate task plans is
large but few skill sequences are geometrically feasible. Right: In the greedy-search strategy, the LLM is used to propose
K candidate skills with the top LLM scores. The geometric feasibility planner then evaluates the feasibility of each candidate
skill, and the one with the highest product of LLM and geometric feasibility scores is selected. The successor state of this
skill is predicted by the geometric feasibility planner’s dynamics model. If the successor state does not satisfy any of the
predicted goals, then it is given to the LLM to plan the next skill. If a goal is satisfied, then the planner returns the skill
sequence for execution. By interleaving LLM task planning with geometric feasibility planning at each planning iteration,
greedy-search is able to reliably find feasible plans across the different families of tasks we study in the experiments.

have a high language model likelihood and success
probability, it fails to satisfy the instruction.

The first step in all planning strategies is to
convert the language instruction into a goal con-
dition that can be checked against a candidate
sequence of skills. Given an instruction i, a set
of objects O in the scene, and a library of pred-
icate classifiers Lχ = {χ1, . . . , χM}, we use the
LLM to predict a set of |G| symbolic goal propo-
sitions G = {g1, . . . , gj} that would satisfy the
instruction. Each goal proposition g ∈ G is a set
of predicates grounded over objects in the scene.
Each predicate is a binary-valued function over
objects and has a one-to-one correspondence with
a predicate classifier χ ∈ Lχ that implements the
predicate (details in Appendix B.1). We define a
satisfaction function FG

sat (s) : S → {0, 1} which
takes as input a geometric state s and evaluates
to 1 if any goal proposition g ∈ G predicted by the
LLM holds in state s.

A sequence of skills ψ1:H is said to satisfy the
instruction i iff :

∃ s ∈ s2:H+1 : FG
sat(s) = 1, (6)

where the future states s2:H+1 are predicted by
the geometric feasibility planner (see Section 3.3).
If FG

sat(st) evaluates to 1 for a geometric state st
at timestep t ≤ H + 1, then the planner returns
the subsequence of skills ψ1:t−1 for execution.

4.2 Shooting-based planning
The planner is responsible for finding geometri-
cally feasible plans that satisfy the goal condition
predicted by the LLM (Section 4.1). To this end,
the first strategy we propose is a shooting-based

Algorithm 1 Shooting-based LLM planner

1: globals: Lψ,Lχ,SatFunc,LLM,STAP
2: function Shooting(i, s1,G;K)
3: FG

sat ← SatFunc(G,Lχ) ▷ Goal checker
4: {ψ(j)

1:H}
K
j=1 ← LLM(i, s1,G,K) ▷ Gen. plans

5: C = { } ▷ Init. candidate set
6: for j = 1 . . .K do
7: s

(j)
2:H+1, a

(j)
1:H ← STAP(s1, ψ

(j)
1:H ,L

ψ)

8: if FG
sat(s

(j)
t ) == 1 for t ≤ H + 1 then

9: ψ
(j)
1:t−1 ← ψ

(j)
1:H [: t− 1] ▷ Slice plan

10: C ← C ∪ {j} ▷ Add to candidate set
11: end if
12: Compute p(j)success via Eq. 5
13: end for
14: Filter OOD plans from C as per Eq. 13
15: if C == ∅ then
16: raise planning failure
17: end if
18: j∗ = argmaxj∈C p

(j)
success

19: return ψ
(j∗)
1:t−1 ▷ Return best plan

20: end function

planner, termed shooting (see Figure 2, Left),
which takes a single-step approach to maximizing
the overall planning objective in Eq. 2. shoot-
ing’s process is further outlined in Algorithm 1.

shooting requires querying the LLM only
once to generate K candidate skill sequences
{ψ1

1:H , . . . , ψ
K
1:H} in an open-ended fashion. Each

candidate skill sequence is processed by the geo-
metric feasibility planner which returns an esti-
mate of the sequence’s success probability (Eq. 5)
and its predicted future state trajectory s2:H+1.
Skill sequences that satisfy the goal condition
(Eq. 6) are added to a candidate set. Invalid
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skill sequences as determined by Section 4.5 are
filtered-out of the candidate set. If the candidate
set is not empty, shooting returns the skill
sequence with the highest success probability, or
raises a planning failure otherwise.

4.3 Search-based planning
We propose a second planner, greedy-search
(see Figure 2, Right), which at each planning iter-
ation ranks candidate skills predicted by the LLM
and adds the top scoring skill to the running plan.

This iterative approach can be described as a
decomposition of the planning objective in Eq. 2
by timestep t:

p(ψ1:H , r1:H | i, s1)

=

H∏
t=1

p(ψt, rt | i, s1, ψ1:t−1, r1:t−1).
(7)

We define the joint probability of ψt and rt in
Eq. 7 as the skill score Sskill:

Sskill(ψt) = p(ψt, rt | i, s1, ψ1:t−1, r1:t−1),

which we factor using conditional probabilities:

Sskill(ψt) = p(ψt | i, s1, ψ1:t−1, r1:t−1)

p(rt | i, s1, ψ1:t, r1:t−1).
(8)

Each planning iteration of greedy-search is
responsible for finding the skill ψt that maximizes
the skill score (Eq. 8) at timestep t.

Skill usefulness: The first factor of Eq. 8 cap-
tures the usefulness of a skill generated by the
LLM with respect to satisfying the instruction. We
define the skill usefulness score Sllm:

Sllm(ψt) = p(ψt | i, s1, ψ1:t−1, r1:t−1) (9)
≈ p(ψt | i, s1:t, ψ1:t−1). (10)

In Eq. 10, the probability of the next skill ψt
(Eq. 9) is cast in terms of the predicted state tra-
jectory s2:t of the running plan ψ1:t−1, and is thus
is independent of prior rewards r1:t−1. We refer to
Appendix C.1 for a detailed derivation of Eq. 10.

At each planning iteration t, we optimize
Sllm(ψt) by querying an LLM to generate K can-
didate skills {ψ1

t , . . . , ψ
K
t }. We then compute the

usefulness scores Sllm(ψkt ) by summing the token

Algorithm 2 Search-based LLM planner

1: globals: Lψ,Lχ,SatFunc,LLM,STAP
2: function Greedy-Search(i, s1,G;K, dmax)
3: FG

sat ← SatFunc(G,Lχ) ▷ Goal checker
4: Ψ = [ ]; τ = [s1] ▷ Init. running plan
5: while len(Ψ) < dmax do
6: Ψ, τ ← Greedy-Step(i, s1,G,Ψ, τ,K)
7: if FG

sat(τ [−1]) == 1 then
8: return Ψ ▷ Return goal-reaching plan
9: end if

10: end while
11: raise planning failure
12: end function
13: function Greedy-Step(i, s1,G,Ψ, τ ;K)
14: t = len(Ψ) + 1 ▷ Curr. planning iteration
15: {ψ(j)

t }
K
j=1 ← LLM(i, τ,G,K) ▷ Gen. skills

16: C = { } ▷ Init. candidate set
17: for j = 1 . . .K do
18: ψ

(j)
1:t ← Ψ.append(ψ(j))

19: s
(j)
2:t+1, a

(j)
1:t ← STAP(s1, ψ

(j)
1:t ,L

ψ)

20: Compute Sllm(ψ
(j)
t ) via Eq.10

21: Compute Sgeo(ψ
(j)
t ) via Eq.12

22: Sskill(ψ
(j)
t )← Sllm(ψ

(j)
t )× Sgeo(ψ

(j)
t )

23: if ψ(j)
t is not OOD then ▷ As per Eq. 13

24: C ← C ∪ {j} ▷ Add to candidate set
25: end if
26: end for
27: j∗ = argmaxj∈C Sskill(ψ

(j)
t )

28: return ψ
(j∗)
1:t , s

(j∗)
1:t+1 ▷ Return running plan

29: end function

log-probabilities of each skill’s language descrip-
tion (visualized in Section 5.3). These scores rep-
resent the likelihood that ψkt is the correct skill to
execute from a language modeling perspective to
satisfy instruction i.

Skill feasibility: The second factor of Eq. 8
captures the feasibility of a skill generated by the
LLM. We define the skill feasibility score Sgeo:

Sgeo(ψt) = p(rt | i, s1, ψ1:t, r1:t−1) (11)
≈ Qπt(st, a

∗
t ), (12)

where Eq. 12 approximates Eq. 11 by the Q-value
evaluated at predicted future state st with opti-
mized parameter a∗t , both of which are computed
by the geometric feasibility planner. We refer to
Appendix C.2 for a detailed derivation of Eq. 12.

Skill selection: The skill feasibility score
(Eq. 12) and skill usefulness score (Eq. 10)
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Figure 3 Proposed hybrid planner. After predicting
goals for a given instruction, Text2Motion iterates the pro-
cess: i) invoke shooting to plan full skill sequences, and if
no goal-reaching plan is found, ii) take a greedy-search
step and check if executing the selected “best” skill would
reach the goal. Note that the entire planning process occurs
before execution. See Figure 2 for a visualization of the
shooting and greedy-search planners.

are then multiplied to produce the overall skill
score (Eq. 8) for each of the K candidate skills
{ψ1

t , . . . , ψ
K
t }. Invalid skills as determined by

Section 4.5 are filtered-out of the candidate set.
Of the remaining skills, the one with the highest
skill score ψ∗

t is added to the running plan ψ1:t−1.
If the predicted geometric state st+1 that results
from skill ψ∗

t satisfies the predicted goal condi-
tion (Eq. 6), the skill sequence ψ1:t is returned
for execution. Otherwise, st+1 is used to initial-
ize planning iteration t + 1. The process repeats
until the planner returns or a maximum search
depth dmax is met raising a planning failure.
This process is outlined in Algorithm 2.

The baselines we compare to [3, 4] only con-
sider the feasibility of skills ψkt in the current state
st. In contrast, greedy-search considers the
feasibility of skills ψkt in the context of the planned
sequence ψ1:t−1 via geometric feasibility planning.

4.4 Text2Motion
We present Text2Motion, a hybrid planning
algorithm that inherits the strengths of both
shooting-based and search-based planning strate-
gies. In particular, shooting offers efficiency
when geometrically feasible skill sequences can
be easily predicted by the LLM given the ini-
tial state and the instruction. greedy-search
serves as a reliable fall-back strategy that can
determine what skills are feasible at the current
timestep, should shooting fail to find a plan. A
visualization is provided in Figure 3.

Algorithm 3 Text2Motion hybrid planner

1: globals: Lχ,SatFunc,Shooting,Greedy-Step
2: function Text2Motion(i, s1,G;K, dmax)
3: FG

sat ← SatFunc(G,Lχ) ▷ Goal checker
4: Ψ = [ ]; τ = [s1] ▷ Init. running plan
5: while len(Ψ) < dmax do
6: try
7: return Shooting(i, τ,G,K)
8: catch planning failure
9: Ψ, τ ← Greedy-Step(i, s1,G,Ψ, τ,K)

10: if FG
sat(τ [−1]) == 1 then

11: return Ψ
12: end if
13: end try
14: end while
15: raise planning failure
16: end function

At each planning iteration t, Text2Motion
optimistically invokes shooting to plan K can-
didate skill sequences. If shooting raises a
planning failure, then Text2Motion falls back
to a single step of greedy-search, which adds
the skill ψ∗

t with the highest skill score (Eq. 8)
to the running plan ψ1:t−1. The geometric feasi-
bility planner predicts the state st+1 that would
result from executing ψ∗

t . If state st+1 satisfies the
goal condition (Eq. 6), the skill sequence ψ1:t is
returned for execution. Otherwise, the next plan-
ning iteration starts by invoking shooting on
predicted state st+1. The process repeats until the
planner returns or a maximum search depth dmax
is met. Text2Motion is outlined in Algorithm 3.

4.5 Out-of-distribution detection
During planning, the LLM may propose skills that
are out-of-distribution (OOD) given a state st and
optimized parameter a∗t . For instance, a symbol-
ically incorrect skill, like Place(dish, table) when
the dish is not in hand, may end up being selected
if we rely on learned Q-values, since the Q-value
for an OOD input can be spuriously high. We
therefore reject plans that contain an OOD skill.

We consider a skill ψt to be OOD if the vari-
ance of its Q-value (Eq. 12) predicted by an
ensemble [60] exceeds a calibrated threshold ϵψt :

FOOD (ψt) = 1
(
Vari∼1:B [Qπt

i (st, a
∗
t )] ≥ ϵψt

)
,

(13)
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where 1 is the indicator function and B is the
ensemble size. We refer to Appendix A.2 for details
on calibrating OOD thresholds ϵψ.

5 Experiments
We conduct experiments to test four hypotheses:

H1 Geometric feasibility planning is a necessary
ingredient when using LLMs and robot skills to
solve manipulation tasks with geometric depen-
dencies from a natural language instruction.
H2 greedy-search is better equipped to
solve tasks with partial affordance perception (as
defined in Section 5.4) compared to shooting.
H3 Text2Motion’s hybrid planner inherits the
strengths of shooting- and search-based strategies.
H4 A priori goal prediction is a more reliable
plan termination strategy than stop scoring.

The following subsections describe the base-
line methods we compare against, details on LLMs
and prompts, the tasks over which planners are
evaluated, and performance metrics we report.

5.1 Baselines
We compare Text2Motion with a series of
language-based planners, including the proposed
shooting and greedy-search strategies.
For consistency, we use the same skill library
Lψ, with independently trained policies π and
Q-functions Qπ, the OOD rejection strategy
(Section 4.5) and, where appropriate, the dynam-
ics models Tπ(s, a) and geometric feasibility plan-
ner (Section 3.3) across all methods and tasks.

saycan-gs: We implement a cost-
considerate variant of SayCan [3] with a module
dubbed generator-scorer (GS). At each
timestep t, SayCan ranks all possible skills by
p(ψt | i, ψ1:t−1) · V πt(st), before executing the top
scoring skill (Scorer). However, the cost of ranking
skills scales unfavorably with the number of scene
objects O and skills in library Lψ. saycan-gs
limits the pool of skills considered in the ranking
process by querying the LLM for the K most
useful skills {ψ1

t , . . . , ψ
K
t } ∼ p(ψt | i, ψ1:t−1)

(Generator) before engaging Scorer. Execution
terminates when the score of the stop “skill” is
larger than the other skills.

innermono-gs: We implement the Object
+ Scene variant of Inner Monologue [4] by

providing task-progress scene context in the
form of the environment’s symbolic state. We
acquire innermono-gs by equipping [4] with
generator-scorer for cost efficiency. LLM
skill likelihoods are equivalent to those from
saycan-gs except they are now also conditioned
on the visited state history p(ψt | i, s1:t, ψ1:t−1).

5.2 Large language model
We use two pretrained language models, both of
which were accessed through the OpenAI API: i)
text-davinci-003, a variant of the InstructGPT
[61] language model family which is finetuned from
GPT-3 with human feedback and ii) the Codex
model [62] (specifically, code-davinci-002). For
the shooting planner, we empirically found
text-davinci-003 to be the most capable at open-
ended generation of skill sequences. For all other
queries, we use code-davinci-002 as it was found
to be reliable. We do not train or finetune the
LLMs and only use few shot prompting.

5.3 Prompt engineering
The in-context examples are held consistent across
all methods and tasks in the prompts passed to the
LLM. We provide an example of the prompt struc-
ture used to query greedy-search for K = 5
skills at the first planning iteration (prompt tem-
plate is in black and LLM output is in orange):

Available scene objects: [‘table’, ‘hook’,
‘rack’, ‘yellow box’, ‘blue box’, ‘red box’]

Object relationships: [‘inhand(hook)’,
‘on(yellow box, table)’, ‘on(rack, table)’,
‘on(blue box, table)’]

Human instruction: How would you push two of
the boxes to be under the rack?

Goal predicate set: [[‘under(yellow box, rack)’,
‘under(blue box, rack)’], [‘under(blue box,
rack)’, ‘under(red box, rack)’], [‘under(yellow
box, rack)’, ‘under(red box, rack)’]]

Top 5 next valid robot actions (python list):
[’push(yellow box, rack)’, ’push(red box,
rack)’, ’place(hook, table)’, ’place(hook,
rack)’, ’pull(red box, hook)’]

The prompt above chains the output of
two queries together: one for goal prediction
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Figure 4 TableEnv Manipulation evaluation task
suite. We evaluate the performance of all methods on tasks
based on the above manipulation domain. The tasks con-
sidered vary in terms of difficulty and each task contains a
subset of three properties: being long horizon (Tasks 1, 2,
3, 5, 6), containing lifted goals (Tasks 4, 5, 6), and having
partial affordance perception (Tasks 4, 5, 6). During evalu-
ation, we randomize the geometric parameters of each task.

(Section 4.1), and another for skill generation
(Section 4.3). To compute the skill usefulness
(Eq. 10), we replace Top 5 next valid robot
actions with Executed action:, append the
language description of the generated skill (e.g.
Push(yellow box, rack)), and sum token log-
probabilities. We provide the full set of in-context
examples in the Appendix (Appendix B.2).

5.4 Task suite
We construct a suite of evaluation tasks (Figure 4)
in a table-top manipulation domain. Each task
includes a natural language instruction i and ini-
tial state distribution ρ(s) from which geometric
task instances are sampled. For the purpose of
experimental evaluation only, tasks also contain a
ground-truth goal criterion to evaluate whether a
plan has satisfied the corresponding task instruc-
tion. Finally, each task contains subsets of the
following properties:

• Long-horizon (LH): Tasks that require skill
sequences ψ1:H of length six or greater to solve.
For example, Task 1 in Figure 4 requires the
robot to pick and place three objects for a total
of six skills. In our task suite, LH tasks also con-
tain geometric dependencies that span across
the sequence of skills which are unlikely to be
resolved by myopically executing each skill. For
example, Task 2 (Figure 4) requires the robot
to pick and place obstructing boxes (i.e. blue

and yellow) to enable a collision-free push of the
cyan box underneath the rack using the hook.

• Lifted goals (LG): Goals are expressed over
object classes rather than object instances. For
example, the lifted goal instruction “move three
boxes to the rack” specifies an object class (i.e.
boxes) rather than an object instance (e.g. the
red box). This instruction is used for Task 3
(Figure 4). Moreover, LG tends to correspond
to planning tasks with many possible solutions.
For instance, there may only be a single solu-
tion to the non-lifted instruction “fetch me the
red box and the blue box,” but an LLM must
contend with more options when asked to, for
example, “fetch any two boxes.”

• Partial affordance perception (PAP): Skill
affordances cannot be perceived solely from the
spatial relations described in the initial state
s1. For instance, Task 5 (Figure 4) requires the
robot to put two boxes onto the rack. However,
the scene description obtained through predi-
cate classifiers Lχ (described in Section 4.1) and
the instruction i do not indicate whether it is
necessary to use a hook to pull an object closer
to the robot first.

5.5 Evaluation and metrics
Text2Motion, shooting, greedy-search:
We evaluate these language planners by marking a
plan as successful if, upon execution, they reach a
final state sH+1 that satisfies the instruction i of a
given task. A plan is executed only if the geometric
feasibility planner predicts a state that satisfies
the inferred goal conditions (Section 4.1).

Two failure cases are tracked: i) planning fail-
ure: the method does not produce a sequence
of skills ψ1:H whose optimized parameters a∗1:H
(Eq. 4) results in a state that satisfies FG

sat within
a maximum plan length of dmax; ii) execution fail-
ure: the execution of a plan that satisfies FG

sat does
not achieve the ground-truth goal of the task.

Since the proposed language planners use
learned dynamics models to optimize parameters
a1:H with respect to (potentially erroneous) future
state predictions s2:H , we perform the low-level
execution of the skill sequence ψ1:H in closed-
loop fashion. Thus, upon executing the skill ψt
at timestep t and receiving environment feedback
st+1, we call STAP [8] to perform geometric fea-
sibility planning on the remaining planned skills
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ψt+1:H . We do not perform task-level replan-
ning, which would involve querying the LLM at
timestep t+1 for a new sequence of skills ψt+1:H .

saycan-gs & innermono-gs: These
myopic agents execute the next best admissible
skill ψt at each timestep t without looking-ahead.
Hence, we evaluate them in a closed-loop man-
ner for a maximum of dmax steps. We mark a
run as a success if the agent issues the stop
skill and the current state st satisfies the ground-
truth goal. Note that this comparison is advan-
tageous for these myopic agents because they
are given the opportunity to perform closed-loop
replanning at the task-level (e.g. re-attempting
a failed skill), whereas task-level replanning does
not occur for Text2Motion, shooting, or
greedy-search. This advantage does not lead
to measurable performance gains on the challeng-
ing evaluation domains that we consider.

Reported metrics: We report success rates
and subgoal completion rates for all methods. Suc-
cess rates are averaged over ten random seeds per
task, where each seed corresponds to a different
geometric instantiation of the task (Section 5.4).
Subgoal completion rates are computed over all
plans by measuring the number of steps an oracle
planner would take to reach the ground-truth goal
from a planner’s final state. To further delineate
the performance of Text2Motion from shoot-
ing and greedy-search, we also report the
percentages of planning and execution failures.

6 Results

6.1 Feasibility planning is required
to solve tasks with geometric
dependencies (H1)

Our first hypothesis is that performing geomet-
ric feasibility planning on task plans output by
the LLM is essential to task success. To test this
hypothesis, we compare methods that use geomet-
ric feasibility planning (Text2Motion, shoot-
ing, greedy-search) against myopic methods
that do not (saycan-gs and innermono-gs).

Instructions i provided in the first two plan-
ning tasks (LH) allude to skill sequences that, if
executed appropriately, would solve the task. In
effect, the LLM plays a lesser role in contributing
to plan success, as its probabilities are condi-
tioned to mimic the skill sequences in i. On such

Figure 5 Results on the TableEnv manipulation
domain with 10 random seeds for each task. Top: Our
method (Text2Motion) significantly outperforms all base-
lines on tasks involving partial affordance perception (Task
4, 5, 6). For tasks without partial affordance percep-
tion, the methods that use geometric feasibility planning
(Text2Motion, shooting, greedy-search) convincingly
outperform the methods (saycan-gs and innermono-gs)
that do not. We note that shooting performs well on
the tasks without partial affordance perception as it has
the advantage of outputting multiple goal-reaching candi-
date plans and selecting the one with the highest execution
success probability. Bottom: Methods without geometric
feasibility planning tend to have high sub-goal completion
rates but very low success rates. This divergence arises
because it is possible to make progress on tasks without
resolving geometric dependencies in the earlier timesteps;
however, failure to account for geometric dependencies
results in failure of the overall task.

tasks, Text2Motion, shooting and greedy-
search which employ geometric feasibility plan-
ning over skills sequences better contend with
geometric dependencies prevalent in LH tasks and
thereby demonstrate higher success rates.

In contrast, the myopic baselines (saycan-
gs and innermono-gs) fail to surpass success
rates of 20%, despite completing between 50%-
80% of the subgoals (Figure 5). This result is
anticipated as the feasibility of downstream skills
requires coordination with earlier skills in the
sequence, which these methods do not consider.
As the other tasks combine aspects of LH with
LG and PAP, it remains difficult for saycan-gs
and innermono-gs to find solutions.

Surprisingly, we see that saycan-gs closely
matches the performance of innermono-gs,
which is additionally provided with descriptions
of all states encountered during execution (as
opposed to just the initial scene description). This
result suggests that explicit language feedback
does not contribute to success on our tasks when
considered in isolation from plan feasibility.
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Figure 6 Failure modes of language-based plan-
ners on two categories of tasks. In this plot, we
analyse the various types of failure modes that occur with
Text2Motion, shooting and greedy-search when eval-
uated on tasks with partial affordance perception (PAP;
see Section 5.4 for an explanation) and tasks without par-
tial affordance perception (non-PAP). Top: For the PAP
tasks, shooting incurs many planning failures because the
space of possible plans is large but only few can be feasibly
executed. In contrast, greedy-search uses value functions
during search to narrow down the space of plans to those
that are feasible. Text2Motion relies on greedy-search as
a fallback if shooting fails, and thus can also contend with
PAP tasks. Bottom: For the non-PAP tasks, shooting
outperforms greedy-search. We attribute this difference
to shooting’s ability to output multiple task plans while
greedy-search can only output a single plan. Finally,
Text2Motion matches the performance of shooting as it
also outputs and selects among multiple task plans.

6.2 Search-based reasoning is
required for PAP tasks (H2)

Our second hypothesis is that search-based rea-
soning is required to solve the PAP family of tasks
(defined in Section 5.4). We test this hypothesis
by comparing greedy-search and shoot-
ing, which represent two distinct approaches to
combining symbolic and geometric reasoning to
maximize the overall planning objective (Eq. 2).
shooting uses Q-functions of skills to optimize
K skill sequences (Eq. 4) after they are generated
by the LLM. greedy-search uses Q-functions
as skill feasibility heuristics (Eq. 12) to guide
search while a skill sequence is being constructed.

In the first two tasks (LH, Figure 5), we
find that shooting achieves slightly higher suc-
cess rates than greedy-search, while both
methods achieve 100% success rates in the third
task (LH + LG). This result indicates a subtle
advantage of shooting when multiple feasi-
ble plans can be directly inferred from i and
s1. shooting can capitalize on diverse order-
ings of K generated skill sequences (including the
one specified in i) and select the one with the
highest success probability (Eq. 3). For example,
Task 1 (Figure 4) asks the robot to put three

boxes onto the rack; shooting allows the robot
to test multiple different skill sequences while
greedy-search only outputs a single plan.
This advantage is primarily enabled by bias in the
Q-functions: Eq. 5 may indicate that Place(dish,
rack) then Place(cup, rack) is more geometrically
complex than Place(cup, rack) then Place(dish,
rack), while they are geometric equivalents.

The plans considered by greedy-search
at planning iteration t share the same sequence
of predecessor skills ψ1:t−1. This affords lim-
ited diversity for the planner to exploit. How-
ever, greedy-search has a significant advan-
tage when solving the PAP family of problems
(Figure 5, Tasks 4-6). Here, skill sequences with
high success probabilities (Eq. 3) are difficult
to infer directly from i, s1, and the in-context
examples provided in the prompt. As a result,
shooting incurs an 80% planning failure rate,
while greedy-search finds plans over 90% of
the time (Figure 6). In terms of success, greedy-
search solves 40%-60% of the PAP tasks, while
shooting achieves a 10% success rate on Task
4 (LG + PAP) and fails to solve any of the lat-
ter two tasks (LH + LG + PAP). Moreover,
shooting does not meaningfully advance on any
subgoals, unlike saycan-gs and innermono-
gs, which consider the geometric feasibility of
skills at each timestep (albeit, myopically).

6.3 Hybrid planning integrates the
strengths of shooting-based and
search-based methods (H3)

Our third hypothesis is that shooting-based plan-
ning and search-based planning have complement-
ing strengths that can be unified in a hybrid plan-
ning framework. We test this hypothesis by com-
paring the performance of Text2Motion against
shooting and greedy-search.

The results are presented in Figure 5. We find
that Text2Motion matches the performance of
shooting on tasks that do not consist of PAP
(Task 1, 2, 3). This is expected because shoot-
ing does not exhibit planning failures on these
tasks (Figure 6) and Text2Motion starts by
invoking shooting, which results in their iden-
tical performance. However, on tasks with PAP
(Task 4, 5, 6) we observe that Text2Motion
succeeds more often than greedy-search.
This suggests that interleaving shooting and
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Hybrid planning breakdown Task 4 Task 5 Task 6

% shooting only 14% 0% 0%
% greedy-search only 0% 0% 0%
% Combination 86% 100% 100%
Avg. greedy-search Steps 1.0 2.6 3.0
Avg. Plan Length 5.0 7.0 7.0

Table 1 Ablation on hybrid planning method. We
analyze the usage percentages of both shooting and
greedy-search in successful plans found by our hybrid
planner (see Figure 3). We find that, as tasks increase in
difficulty (Task 4, 5, 6), the majority of solutions involve
a combination of both planners. This result indicates that
shooting-based and search-based planning strategies play
complementing roles in the success of Text2Motion.

greedy-search at each planning iteration
enables Text2Motion to consider a more diverse
set of goal-reaching solutions. This result is
corroborated in Figure 6, where we see that
Text2Motion incurs fewer planning and execu-
tion failures than greedy-search.

In Table 1, we further analyze the usage
percentages of shooting and greedy-
search within successful plans executed by
Text2Motion. The results show that, for tasks
involving PAP, over 90% of solutions involve a
combination of both shooting- and search-based
strategies, which confirms our third hypothesis.

6.4 Plan termination is made
reliable via goal prediction (H4)

Our fourth hypothesis is that predicting goals
from instructions a priori and selecting plans
based on their satisfication (Section 4.1) is more
reliable than scoring plan termination with a ded-
icated stop skill at each timestep. We test this
hypothesis in an ablation experiment (Figure 7),
comparing our plan termination method to that
of SayCan and Inner Monologue’s, while keeping
all else constant for our greedy-search plan-
ner. We run 120 experiments (two variations, six
tasks, and ten seeds each) in total on the TableEnv
Manipulation task suite. The results in Figure 7
suggest that, for the tasks we consider, our pro-
posed goal prediction method leads to 10% higher
success rates than the scoring baseline.

We also note the apparent advantages of both
techniques. First, goal prediction is more efficient
than scoring stop as the former requires only one
LLM query, whereas the latter needs to be queried

Figure 7 Ablation on termination method: goal
proposition prediction vs stop scoring. We compare
the performance of greedy-search using two different
plan termination methods: using the LLM to predict goals
a priori (ours) and scoring a stop skill [3] during search. We
present results averaged across all six tasks and ten seeds
for each variation (120 experiments in total). We find that
terminating planning when LLM-predicted goals are satis-
fied results in a 10% boost in success rate over stop scoring.

at every timestep. Second, goal prediction offers
interpretability over stop scoring, as it is possible
to inspect the goal that the planner is aim-
ing towards prior to execution. Nonetheless, stop
scoring does provide benefits in terms of expres-
siveness, as its predictions are not constrained to
any specific output format. This advantage, how-
ever, is not captured in our evaluation task suite,
which at most require conjunctive (∧) and disjunc-
tive (∨) goals. For instance, “Stock two boxes onto
the rack” could correspond to (on(red box, rack)
∧ on(blue box, rack)) ∨ (on(yellow box, rack) ∧
on(cyan box, rack)), while in theory, stop scoring
can represent all goals expressible in language.

7 Limitations and Future Work
LLM likelihoods: We observed an undesirable
pattern emerge in the planning phase of greedy-
search and the execution phase of saycan-gs
and innermono-gs, where recency bias [63]
would cause the LLM to produce unreliable likeli-
hoods (Eq. 10), inducing a cyclic state of repeating
feasible skills. While we mitigate such failures by
combining greedy-search and shooting in
the hybrid Text2Motion algorithm, leveraging
calibration techniques to increase the reliability
LLM likelihoods [64, 65] may improve the perfor-
mance search-based planning over long-horizons.

Skill library: As with other methods that
use skill libraries, Text2Motion is reliant on the
fidelity of the learned skills, their value functions,
and the ability to accurately predicted future
states with dynamics models. Thus, incorporating
skills that operate on high-dimensional observa-
tions (e.g. images [11]) into our framework may
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require adopting techniques for stable long-term
predictions in these observation spaces [66].

Runtime complexity: Text2Motion is
mainly comprised of learned components, which
comes with its associated efficiency benefits.
Nonetheless, runtime complexity was not a core
focus of this work, and STAP [8] was frequently
called during planning, increasing the overall plan-
ning time. LLMs also impose an inference bottle-
neck as each API query (Section 5.2) requires 2-10
seconds, but we anticipate improvements with
advances in both LLM inference techniques and in
methods that distill LLM capabilities into smaller,
cost-efficient models [67].

Closed-world assumptions: Our framework
operates in a closed-world setting (Section 3),
where we assume to know which objects are task-
relevant and the poses of objects are estimated
by an external perception system at the time
of receiving a language instruction. Extending
Text2Motion to open-world settings may neces-
sitate exploring [57] or interacting [58] with the
environment to discover objects that are not ini-
tially observable, and training skills to support a
diverse set of real-world objects [10, 68].

Future Work: We outline several avenues for
future work based on these observations. First,
there remains an opportunity to increase the
plan-time efficiency of our method, for instance,
by warm starting geometric feasibility planning
with solutions cached in earlier planning itera-
tions [69]. Second, we aim to explore the use
of Visual Question and Answering (VQA) [70]
and multi-modal foundation models that are visu-
ally grounded [71, 72]. Such models may sup-
port scaling Text2Motion to higher-dimensional
observation spaces and potentially serve as a sub-
stitutes for closed-world components used in our
framework (e.g. detecting a variable number of
predicates using VQA). Lastly, we hope to lever-
age Text2Motion as part of a broader planning
system enroute to the goal of open-world oper-
ability. Such a system could, for example, use
Text2Motion to produce feasible and verified plans
to subgoals, while building knowledge of the envi-
ronment in unobserved or partially observable
regions during the execution of those subgoals.
Progress on each of these fronts would constitute
steps in the direction of scalable, reliable, and
real-time language planning capabilities.

8 Conclusion
We present a language-based planning framework
that combines LLMs, learned skills, and geometric
feasibility planning to solve long-horizon robotic
manipulation tasks containing geometric depen-
dencies. Text2Motion constructs a task- and
motion-level plan and verifies that it satisfies a
natural language instruction by testing planned
states against inferred goals. In contrast to prior
language planners, our method verifies that its
plan satisfies the instruction before executing any
actions in the environment. Text2Motion repre-
sents a hybrid planning formalism that optimisti-
cally queries an LLM for long-horizon plans and
falls back to a reliable search strategy should opti-
mistic planning fail. As a result, Text2Motion
inherits the strengths of both shooting-based and
search-based planning formalisms.

Our results highlight the following: (i) geomet-
ric feasibility planning is important when using
LLMs and learned skills to solve sequential manip-
ulation tasks from natural language instructions;
(ii) search-based reasoning can contend with a
family of tasks where the space of possible plans
is large but only few are feasible; (iii) shooting-
based and search-based planning strategies can be
synergistically integrated in a hybrid planner that
outperforms its constituent parts; (iv) terminat-
ing plans based on inferred symbolic goals is more
reliable than prior LLM scoring techniques.
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Overview

The appendix offers additional details with respect to the implementation of Text2Motion and language
planning baselines (Appendix A), the experiments conducted (Appendix B), derivations supporting the
design of our algorithms (Appendix C), and the real-world planning demonstrations (Appendix D).
Qualitative results are made available at sites.google.com/stanford.edu/text2motion.
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Appendix A Implementation Details

The Text2Motion planner integrates both shooting and greedy-search to construct skill
sequences that are feasible for the robot to execute in the environment. The planning procedure relies on
four core components: 1) a library of learned robot skills, 2) a method for detecting when a skill is out-of-
distribution (OOD), 3) a large language model (LLM) to perform task-level planning, and 4) a geometric
feasibility planner that is compatible with the learned robot skills. All evaluated language-based plan-
ners use the above components, while saycan-gs and innermono-gs are myopic agents that do not
perform geometric feasibility planning. We provide implementation details of these components in the
following subsections.

A.1 Learning robot skills and dynamics

Skill library overview: All evaluated language planners interface an LLM with a library of robot
skills L = {ψ1, . . . , ψN}. Each skill ψ has a language description (e.g. Pick(a)) and is associated with
a parameterized manipulation primitive [59] ϕ(a). A primitive ϕ(a) is controllable via its parameter a
which determines the motion [73] of the robot’s end-effector through a series of waypoints. For each skill
ψ, we train a policy π(a|s) to output parameters a ∈ A that maximize primitive’s ϕ(a) probability of
success in a contextual bandit setting (Eq. 1) with a skill-specific binary reward function R(s, a, s′). We
also train an ensemble of Q-functions Qπ1:B(s, a) and a dynamics model Tπ(s′|s, a) for each skill, both of
which are required for geometric feasibility planning. We discuss the calibration of Q-function ensembles
for OOD detection of skills in Appendix A.2.

We learn four manipulation skills to solve tasks in simulation and in the real-world: ψPick, ψPlace,
ψPull, ψPush. Only a single policy per skill is trained, and thus, the policy must learn to engage the
primitive over objects with differing geometries (e.g. πPick is used for both Pick(box) and Pick(hook)).
The state space S for each policy is defined as the concatenation of geometric state features (e.g. pose,
size) of all objects in the scene, where the first n object states correspond to the n skill arguments and
the rest are randomized. For example, the state for the skill Pick(hook) would have be a vector of all
objects’ geometric state features with the first component of the state corresponding to the hook.

Parameterized manipulation primitives: We describe the parameters a and reward function
R(s, a, s′) of each parameterized manipulation primitive ϕ(a) below. A collision with a non-argument
object constitutes an execution failure for all skills, and as a result, the policy receives a reward of 0.
For example, πPick would receive a reward of 0 if the robot collided with box during the execution of
Pick(hook).

• Pick(obj): a ∼ πPick(a|s) denotes the grasp pose of obj w.r.t the coordinate frame of obj. A reward of
1 is received if the robot successfully grasps obj.

• Place(obj, rec): a ∼ πPlace(a|s) denotes the placement pose of obj w.r.t the coordinate frame of rec. A
reward of 1 is received if obj is stably placed on rec.

• Pull(obj, tool): a ∼ πPull(a|s) denotes the initial position, direction, and distance of a pull on obj with
tool w.r.t the coordinate frame of obj. A reward of 1 is received if obj moves toward the robot by a
minimum of dPull = 0.05m.

• Push(obj, tool, rec): a ∼ πPush(a|s) denotes the initial position, direction, and distance of a push on
obj with tool w.r.t the coordinate frame of obj. A reward of 1 is received if obj moves away from the
robot by a minimum of dPush = 0.05m and if obj ends up underneath rec.
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Dataset generation: All planners considered in this work rely on accurate Q-functions Qπ(s, a) to
estimate the feasibility of skills proposed by the LLM. This places a higher fidelity requirement on the
Q-functions than typically needed to learn a reliable policy, as the Q-functions must characterize both
skill success (feasibility) and failure (infeasibility) at a given state. Because the primitives ϕ(a) reduce
the horizon of policies π(a|s) to a single timestep, and the reward functions are R(s, a, s′) ∈ {0, 1}, the
Q-functions can be interpreted as binary classifiers of state-action pairs. Thus, we take a staged approach
to learning the Q-functions Qπ, followed by the policies π, and lastly the dynamics models Tπ.

Scenes in our simulated environment are instantiated from a symbolic specification of objects and
spatial relations, which together form a symbolic state. The goal is to learn a Q-function that sufficiently
covers the state-action space of each skill. We generate a dataset that meets this requirement in four
steps: a) enumerate all valid symbolic states; b) sample geometric scene instances s per symbolic state; c)
uniformly sample actions over the action space a ∼ U [0,1]d ; (d) simulate the states and actions to acquire
next states s′ and compute rewards R(s, a, s′). We slightly modify this sampling strategy to maintain a
minimum success-failure ratio of 40%, as uniform sampling for more challenging skills such as Pull and
Push seldom emits a success (∼3%). We collect 1M (s, a, s′, r) tuples per skill of which 800K of them are
used for training (Dt), while the remaining 200K are used for validation (Dv). We use the same datasets
to learn the Q-functions Qπ, policies π, and dynamics models Tπ for each skill.

Model training: We train an ensemble of Q-functions with mini-batch gradient descent and logistic
regression loss. Once the Q-functions have converged, we distill their returns into stochastic policies π
through the maximum-entropy update [74]:

π∗ ← argmax
π

E(s,a)∼Dt
[min(Qπ1:B(s, a))

−α log π(a|s)].

Instead of evaluating the policies on Dv, which contains states for which no feasible action exists, the
policies are synchronously evaluated in an environment that exhibits only feasible states. This simplifies
model selection and standardizes skill capabilities across primitives. All Q-functions achieve precision and
recall rates of over 95%. The average success rates of the converged policies over 100 evaluation episodes
are: πPick with 99%, πPlace with 90%, πPull with 86%, πPush with 97%.

We train a deterministic dynamics model per skill using the forward prediction loss:

Ldynamics (T
π;Dt) = E(s,a,s′)∼Dt

||Tπ(s, a)− s′||22.

The dynamics models converge to within millimeter accuracy on the validation split.

Hyperparameters: The Q-functions, policies, and dynamics models are MLPs with hidden dimen-
sions of size [256, 256] and ReLU activations. We train an ensemble of B = 8 Q-functions with a batch
size of 128 and a learning rate of 1e−4 with a cosine annealing decay [75]. The Q-functions for Pick,
Pull, and Push converged on Dv in 3M iterations, while the Q-function for Place required 5M iterations.
We hypothesize that this is because classifying successful placements demands carefully attending to the
poses and shapes of all objects in the scene so as to avoid collisions. The policies are trained for 250K
iterations with a batch size of 128 and a learning rate of 1e−4, leaving all other parameters the same as
[74]. The dynamics models are trained for 750K iterations with a batch size of 512 and a learning rate of
5e−4; only on successful transitions to avoid the noise associated with collisions and truncated episodes.
The parallelized training of all models takes approximately 12 hours on an Nvidia Quadro P5000 GPU
and 2 CPUs per job.
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A.2 Out-of-distribution detection

The training dataset described in Section A.1 contain both successes and failures for symbolically valid
skills like Pick(box). However, when using LLMs for robot task planning, it is often the case that the LLM
will propose symbolically invalid skills, such as Pick(table), that neither the skill’s policy, Q-functions,
or dynamics model have observed in training. We found that a percentage of out-of-distribution (OOD)
queries would result in erroneously high Q-values, causing the invalid skill to be selected. Attempting to
execute such a skill leads to control exceptions or other failures.

Whilst there are many existing techniques for OOD detection of deep neural networks, we opt to
detect OOD queries on the learned Q-functions via deep ensembles due to their ease of calibration [60].
A state-action pair is classified as OOD if the empirical variance of the predicted Q-values is above a
determined threshold:

FOOD (ψ) = 1
(
Vari∼1:B [Qπi (s, a)] ≥ ϵψ

)
,

where each threshold ϵψ is unique to skill ψ.

To determine the threshold values, we generate an a calibration dataset of 100K symbolically invalid
states and actions for each skill. The process takes less than an hour on a single CPU as the actions are
infeasible and need not be simulated in the environment (i.e. rewards are known to be 0). We compute the
mean and variance of the Q-ensemble for each (s, a) sample in both the training dataset (in-distribution
inputs) and the calibration dataset (out-of-distribution inputs), and produce two histograms by binning
the computed ensemble variances by the ensemble means. We observe that the histogram of variances
corresponding to OOD inputs is uniform across all Q-value bins and is an order of magnitude large
than the ensemble variances computed over in-distribution inputs. This allows us to select thresholds ϵψ
which are low enough to reliably detect OOD inputs, yet will not be triggered for in-distribution inputs:
ϵPick = 0.10, ϵPlace = 0.12, ϵPull = 0.10, and ϵPush = 0.06.

A.3 Task planning with LLMs

Text2Motion, greedy-search, and the myopic planning baselines saycan-gs and
innermono-gs use code-davinci-002 [62] to generate and score skills, while shooting queries
text-davinci-003 [61] to directly output full skill sequences. In our experiments, we used a temperature
setting of 0 for all LLM queries.

To maintain consistency in the evaluation of various planners, we allow Text2Motion, saycan-
gs, and innermono-gs to generate K = 5 skills {ψ1

t , . . . , ψ
K
t } at each timestep t. Thus, every search

iteration of greedy-search considers five possible extensions to the current running sequence of skills
ψ1:t−1. Similarly, shooting generates K = 5 skill sequences.

As described in Section 4.3, skills are selected at each timestep t via a combined usefulness and
geometric feasibility score:

Sskill(ψt) = Sllm(ψt) · Sgeo(ψt)

≈ p(ψt | i, s1:t, ψ1:t−1) ·Qπt(st, a
∗
t ),

where Text2Motion, greedy-search, and shooting use geometric feasilibity planning (details
below in Appendix A.4) to compute Sgeo(ψt), while saycan-gs and innermono-gs use the current
value function estimate V πt(st) = Eat∼πt

[Qπt(st, at)]. We find that in both cases, taking Sllm(ψt) to
be the SoftMax log-probability score produces a winner-takes-all effect, causing the planner to omit
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highly feasible skills simply because their associated log-probability was marginally lower than the LLM-
likelihood of another skill. Thus, we dampen the SoftMax operation with a β-coefficient to balance the
ranking of skills based on both feasibility and usefulness. We found β = 0.3 to work well.

A.4 Geometric feasibility planning

Given a sequence of skills ψ1:H , geometric feasibility planning computes parameters a1:H that maximizes
the success probability of the underlying sequence of primitives ϕ1:H . For example, given a skill sequence
Pick(hook), Pull(box, hook), geometric feasibility planning would compute a 3D grasp position on the
hook that enables a successful pull on the box thereafter.

Text2Motion is agnostic to the method that fulfils the role of geometric feasibility planning. In
our experiments we leverage Sequencing Task-Agnostic Policies (STAP) [8]. Specifically, we consider the
PolicyCEM variant of STAP, where optimization of the skill sequence’s success probability (Eq. 4) is
warm started with parameters sampled from the policies a1:H ∼ π1:H . We perform ten iterations of the
Cross-Entropy Method [76], sampling 10K trajectories at each iteration and selecting 10 elites to update
the mean of the sampling distribution for the following iteration. The standard deviation of the sampling
distribution is held constant at 0.3 for all iterations.
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Table B1 TableEnv manipulation task suite. We use the following shorthands as defined in the paper: LH:
Long-Horizon, LG: Lifted Goals, PAP: Partial Affordance Perception.

Task ID Properties Instruction

Task 1 LH How would you pick and place all of the boxes onto the rack?”
Task 2 LH + LG How would you pick and place the yellow box and blue box onto the table,

then use the hook to push the cyan box under the rack?”
Task 3 LH + PAP How would you move three of the boxes to the rack?”
Task 4 LG + PAP How would you put one box on the rack?”
Task 5 LH + LG + PAP How would you get two boxes onto the rack?”
Task 6 LH + LG + PAP How would you move two primary colored boxes to the rack?”

Appendix B Experiment Details

We refer to Table. B1 for an overview of the tasks in the TableEnv Manipulation suite.

B.1 Scene descriptions as symbolic states

For the remainder of this section, we use the following definitions of terms:

• Predicate: a binary-valued function over objects that evaluates to true or false (e.g. on(a, b))
• Spatial Relation: a predicate grounded over objects that evaluates to true (e.g. on(rack, table))
• Predicate Classifier: a function that implements whether a predicate is true or false in the scene. In

this work, we use hand-crafted predicate classifiers for each spatial relation we model
• Symbolic State: the set of all predicates that hold true in the scene
• Satisfaction Function: a binary-valued function that takes as input a geometric state, uses the

predicate classifiers to detect what predicates hold true in the geometric state, and collects those
predicates into a set to form a symbolic state. The satisfaction function evaluates to true if the predicted
goals (predicates) hold in the symbolic state

To provide scene context to Text2Motion and the baselines, we take a heuristic approach to con-
verting a geometric state s into a basic symbolic state. Symbolic states consist of combinations of one or
more of the following predicates: on(a, b), under(a, b), and inhand(a). inhand(a) = True when the height
of object a is above a predefined threshold. on(a, b) = True when i) object a is above b (determined by
checking if the centroid of a’s axis-aligned bounding box is greater than b’s axis-aligned bounding box),
ii) a’s bounding box intersects b’s bounding box, and iii) inhand(a) = False. under(a, b) = True when
on(a, b) = False and a’s bounding box intersects b’s bounding box.

The proposed goal prediction method (Section 4.1) outputs goal propositions consisting of com-
binations of the predicates above which have been grounded over objects (i.e. spatial relations). As an
example, for the natural language instruction “Put two of the boxes under the rack” and a symbolic state
[on(red box, table), on(green box, rack), on(hook, rack), on(blue box, rack)], the LLM might
predict the set of three goals {[under(red box, rack), under(blue box, rack)], [under(red box,
rack), under(green box, rack)], [under(green box, rack), under(blue box, rack)]}. We note
that objects are neither specified as within or beyond the robot workspace, as we leave it to the skill’s
Q-functions to determine feasibility (Section A.1).
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Since planning in high-dimensional observation spaces is not the focus of this work, we assume knowl-
edge of objects in the scene and use hand-crafted heuristics to detect spatial relations between objects.
There exists several techniques to convert high-dimensional observations into scene descriptions, such as
the one used in [77]. We leave exploration of these options to future work.

B.2 In-context examples

For all experiments and methods, we use the following in-context examples to construct the prompt
passed to the LLMs.

Available scene objects: [’table’, ’hook’, ’rack’, ’yellow box’, ’blue box’, ’red box’]
Object relationships: [’inhand(hook)’, ’on(yellow box, table)’, ’on(rack, table)’, ’on(blue box,
table)’]
Human instruction: How would you push two of the boxes to be under the rack?
Goal predicate set: [[’under(yellow box, rack)’, ’under(blue box, rack)’], [’under(blue box, rack)’,
’under(red box, rack)’], [’under(yellow box, rack)’, ’under(red box, rack)’]]
Top 1 robot action sequences: [’push(yellow box, hook, rack)’, ’push(red box, hook, rack)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’blue box’, ’rack’, ’red box’]
Object relationships: [’on(hook, table)’, ’on(rack, table)’, ’on(blue box, table)’, ’on(cyan box,
table)’, ’on(red box, table)’]
Human instruction: How would you push all the boxes under the rack?
Goal predicate set: [[’under(blue box, rack)’, ’under(cyan box, rack)’, ’under(red box, rack)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(hook)’, ’push(cyan
box, hook, rack)’, ’place(hook, table)’, ’pick(blue box)’, ’place(blue box, table)’, ’pick(hook)’,
’push(blue box, hook, rack)’, ’push(red box, hook, rack)’]

Available scene objects: [’table’, ’cyan box’, ’red box’, ’hook’, ’rack’]
Object relationships: [’on(hook, table)’, ’on(rack, table)’, ’on(cyan box, rack)’, ’on(red box,
rack)’]
Human instruction: put the hook on the rack and stack the cyan box above the rack - thanks
Goal predicate set: [[’on(hook, rack)’, ’on(cyan box, rack)’]]
Top 1 robot action sequences: [’pick(hook)’, ’pull(cyan box, hook)’, ’place(hook, rack)’, ’pick(cyan
box)’, ’place(cyan box, rack)’]

Available scene objects: [’table’, ’rack’, ’hook’, ’cyan box’, ’yellow box’, ’red box’]
Object relationships: [’on(yellow box, table)’, ’on(rack, table)’, ’on(cyan box, table)’, ’on(hook,
table)’, ’on(red box, rack)’]
Human instruction: Pick up any box.
Goal predicate set: [[’inhand(yellow box)’], [’inhand(cyan box)’]]
Top 1 robot action sequences: [’pick(yellow box)’]
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Available scene objects: [’table’, ’blue box’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’yellow box’]
Object relationships: [’inhand(hook)’, ’on(red box, rack)’, ’on(yellow box, table)’, ’on(blue box,
table)’, ’on(cyan box, rack)’, ’on(rack, table)’]
Human instruction: could you move all the boxes onto the rack?
Goal predicate set: [[’on(yellow box, rack)’, ’on(blue box, rack)’]]
Top 1 robot action sequences: [’pull(yellow box, hook)’, ’place(hook, table)’, ’pick(yellow box)’,
’place(yellow box, rack)’, ’pick(blue box)’, ’place(blue box, rack)’]

Available scene objects: [’table’, ’blue box’, ’red box’, ’hook’, ’rack’, ’yellow box’]
Object relationships: [’on(hook, table)’, ’on(blue box, table)’, ’on(rack, table)’, ’on(red box,
table)’, ’on(yellow box, table)’]
Human instruction: situate an odd number greater than 1 of the boxes above the rack
Goal predicate set: [[’on(blue box, rack)’, ’on(red box, rack)’, ’on(yellow box, rack)’]]
Top 1 robot action sequences: [’pick(hook)’, ’pull(blue box, hook)’, ’place(hook, table)’,
’pick(blue box)’, ’place(blue box, rack)’, ’pick(red box)’, ’place(red box, rack)’, ’pick(yellow
box)’, ’place(yellow box, rack)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’red box’, ’yellow box’, ’rack’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(red box, table)’, ’on(blue box, table)’, ’on(cyan
box, table)’, ’on(rack, table)’, ’under(yellow box, rack)’]
Human instruction: How would you get the cyan box under the rack and then ensure the hook is on the
table?
Goal predicate set: [[’under(cyan box, rack)’, ’on(hook, table)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(red box)’,
’place(red box, table)’, ’pick(hook)’, ’push(cyan box, hook, rack)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’yellow box’, ’blue box’, ’rack’]
Object relationships: [’on(hook, table)’, ’on(yellow box, rack)’, ’on(rack, table)’, ’on(cyan box,
rack)’]
Human instruction: set the hook on the rack and stack the yellow box onto the table and set the
cyan box on the rack
Goal predicate set: [[’on(hook, rack)’, ’on(yellow box, table)’, ’on(cyan box, rack)’]]
Top 1 robot action sequences: [’pick(yellow box)’, ’place(yellow box, table)’, ’pick(hook)’,
’pull(yellow box, hook)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(blue box, rack)’, ’on(cyan box, table)’, ’on(red box,
table)’, ’on(rack, table)’]
Human instruction: Move the warm colored box to be underneath the rack.
Goal predicate set: [[’under(red box, rack)’]]
Top 1 robot action sequences: [’pick(blue box)’, ’place(blue box, table)’, ’pick(red box)’,
’place(red box, table)’, ’pick(hook)’, ’push(red box, hook, rack)’]
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Available scene objects: [’table’, ’blue box’, ’hook’, ’rack’, ’red box’, ’yellow box’]
Object relationships: [’on(hook, table)’, ’on(red box, table)’, ’on(blue box, table)’, ’on(yellow
box, rack)’, ’on(rack, table)’]
Human instruction: Move the ocean colored box to be under the rack and ensure the hook ends up on
the table.
Goal predicate set: [[’under(blue box, rack)’]]
Top 1 robot action sequences: [’pick(red box)’, ’place(red box, table)’, ’pick(yellow box)’,
’place(yellow box, rack)’, ’pick(hook)’, ’push(blue box, hook, rack)’, ’place(hook, table)’]

Available scene objects: [’table’, ’cyan box’, ’hook’, ’rack’, ’red box’, ’blue box’]
Object relationships: [’on(hook, table)’, ’on(cyan box, rack)’, ’on(rack, table)’, ’on(red box,
table)’, ’inhand(blue box)’]
Human instruction: How would you set the red box to be the only box on the rack?
Goal predicate set: [[’on(red box, rack)’, ’on(blue box, table)’, ’on(cyan box, table)’]]
Top 1 robot action sequences: [’place(blue box, table)’, ’pick(hook)’, ’pull(red box, hook)’,
’place(hook, table)’, ’pick(red box)’, ’place(red box, rack)’, ’pick(cyan box)’, ’place(cyan box,
table)’]
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Appendix C Derivations

We provide two derivations to support our approximation of the skill score Sskill (used to select skills
while planning with greedy-search and Text2Motion) defined in Eq. 8. The skill score is expressed
as a product of two terms:

Sskill(ψt) = p(ψt | i, s1, ψ1:t−1, r1:t−1)

p(rt | i, s1, ψ1:t, r1:t−1).
(C1)

C.1 Skill usefulness derivation

Eq. 9 defines the first term in the skill score product to be the skill usefulness score Sllm. We derive the
approximation of Sllm given in Eq. 10, which corresponds to quantity we use in our experiments.

Sllm(ψt) = p(ψt | i, s1, ψ1:t−1, r1:t−1)

=

∫
p(ψt | i, s1:t, ψ1:t−1, r1:t−1)

p(s2:t | i, s1, ψ1:t−1, r1:t−1) ds2:t

= Es2:t [p(ψt | i, s1:t, ψ1:t−1, r1:t−1)] (C2)
≈ Es2:t [p(ψt | i, s1:t, ψ1:t−1)] (C3)
≈ p(ψt | i, s1:t, ψ1:t−1) (C4)

The final expression is given in Eq. C4. Here, we compute a single sample Monte-Carlo estimate of
Eq. C3 under the future state trajectory s2 ∼ Tπ1(·|s1, a∗1), . . . , st ∼ Tπt−1(·|st−1, a

∗
t−1), where a∗1:t−1

is computed by STAP [8]. The key insight is that future state trajectories s2:t are only ever sampled
after STAP has performed geometric feasibility planning to maximize the success probability (Eq. 3) of
the running plan ψ1:t−1. By doing so, we ensure that the future states s2:t correspond to a successful
execution of the running plan ψ1:t−1, i.e. achieving positive rewards r1:t−1. This supports the independence
assumption on rewards r1:t−1 used to derive Eq. C3 from Eq. C2.

C.2 Skill feasibility derivation

Eq. 11 defines the second term in the skill score product (Eq. C1) as the skill feasibility score Sgeo. We
derive the approximation provided in Eq. 12, which is the quantity we use in our experiments.

Sgeo(ψt) = p(rt | i, s1, ψ1:t, r1:t−1) (C5)
= p(rt | s1, ψ1:t, r1:t−1) (C6)

=

∫
p(rt | s1:t, ψ1:t, r1:t−1)

p(s2:t | s1, ψ1:t, r1:t−1) ds2:t

= Es2:t [p(rt | s1:t, ψ1:t, r1:t−1)] (C7)
≈ Es2:t [p(rt | s1:t, ψ1:t)] (C8)
= Es2:t [p(rt | s1:t, a∗1:t)] (C9)
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= Es2:t [p(rt | st, a∗t )] (C10)
= Es2:t [Q

πt(st, a
∗
t )] (C11)

≈ Qπt(st, a
∗
t ) (C12)

From Eq. C5 to Eq. C6, the reward rt is conditionally independent of the instruction i given the
initial state s1, running plan ψ1:t, and previous rewards r1:t−1. As described in Appendix C.1, we can use
STAP to make an independence assumption on the previous rewards r1:t−1 between Eq. C7 and Eq. C8.
The reward probability in Eq. C8 depends on the parameters a∗1:t computed by STAP and fed to the
underlying primitive sequence ϕ1:t, which gives Eq. C9. Eq. C10 comes from the Markov assumption, and
can be reduced to Eq. C11 by observing that the reward probability p(rt | st, a∗t ) is equal to the Q-value
Qπt(st, a

∗
t ) in the contextual bandit setting we consider. The final expression given in Eq. C12, which

represents a single sample Monte-Carlo estimate of Eq. C11 under a sampled future state trajectory
s2 ∼ Tπ1(·|s1, a∗1), . . . , st ∼ Tπt−1(·|st−1, a

∗
t−1).
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Appendix D Real World Demonstration

D.1 Hardware setup

We use a Kinect V2 camera for RGB-D image capture and manually adjust the color thresholds to
segment objects in the scene. Given the segmentation masks and the depth image, we can estimate object
poses to construct the geometric state of the environment. For the skill library, we use the same set of
policies, Q-functions, and dynamics models trained in simulation. We run robot experiments on a Franka
Panda robot manipulator.

D.2 Robot demonstration

Please see our project page for demonstrations of Text2Motion operating on a real robot.
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