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Abstract
When robots perform long action sequences, users will want to easily and reliably find out what they have done. We therefore
demonstrate the task of learning to summarize and answer questions about a robot agent’s past actions using natural language
alone. A single system with a large language model at its core is trained to both summarize and answer questions about action
sequences given ego-centric video frames of a virtual robot and a question prompt. To enable training of question answering,
we develop a method to automatically generate English-language questions and answers about objects, actions, and the
temporal order in which actions occurred during episodes of robot action in the virtual environment. Training one model
to both summarize and answer questions enables zero-shot transfer of representations of objects learned through question
answering to improved action summarization.

Keywords Summarization · Interpretability · Representation learning · Long horizon tasks

1 Introduction

Autonomous robots will soon be deployed in large numbers
performing awide variety of tasks. Theywill operate for long
periods of time, often far from their users, making real time
supervision of their activities impractical. They will be faced
with challenging situations and have to make decisions and
performactions on their own, allwithout the aid or immediate
knowledge of their operators.Robot autonomy, then, presents
an important challenge: the need to inform robots’ operators
what they have done.

Upon returning home after tasking a robot with cleaning
the house, making dinner, and taking care of the dog, a robot
user would like to know what happened during the day: how
the dog fared, what parts of a house could not be cleaned
and why, and what the robot made for dinner, for example. A
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farmer using robots to harvest crops would want to be able
to get ask howmuch has been harvested, what the conditions
in the field were, and if any evidence of disease and drought
was seen.

It might be thought that a robot could simply keep a log of
all it has done and thus give a full report of every turn, move,
and decision it made during its operation. However, there are
two problems with such a scenario. First, such reporting may
not be possible, particularly if an agent’s actions are not the
result of interpretable internal planning using discrete prim-
itives but are instead the result of following a reinforcement
learning policy implemented as a neural network which sim-
ply outputs, for example, rotations and joint movements to
a robot’s wheels, arms, etc. Second, even if such a complete
record of action existed and was human readable, it would
not be useful; it would be far too long and detailed to read and
make sense of in a reasonable time in any realistic situation.
Instead, it will be necessary for agents to summarize their
activities. And in order to make such a summary available
in a format for humans to comprehend quickly and accu-
rately it would be ideal if the summary were given in natural
language.

Summaries, rather than complete records, will be partic-
ularly useful as action sequences become longer. They will
also be challenging to produce because it will be necessary
to identify the most important actions and, very often, to
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describe those actions using higher level abstract terms. Sum-
maries may not fully address everything that a user wants to
know about a robot’s actions so a user may want to ask ques-
tions about what a robot did or saw during a particular action
sequence.

Roboticists have long recognized the usefulness of being
able to give natural language instructions to robots. Sum-
marizing and answering questions about past robotic actions
can be seen as a complement to instruction following. A user
who gave such instructions might naturally be expected to
want a short natural language summary of what was done
in response to those instructions. Yet despite the volume of
work that has been done on instruction following, its comple-
ment has gone largely unaddressed. Fortunately, existing and
future datasets designed for instruction following tasks can
be repurposed and augmented to serve as a training ground
for robot action summarization and question answering. We
make use of and augment the popular alfred dataset (Shrid-
har et al., 2020) which provides ego-centric video frames
of episodes of robot action sequences in a virtual environ-
ment along with multiple levels of description in natural and
structured language. Using a model that incorporates a large
language model (llm), we present the first work directly
addressing, performing, and evaluating robot action summa-
rization and question answering.

Our main contributions are:
Summarization of actions. We demonstrate summarization
of robotic actions in both short and long summaries from
video frames in a multimodal model that incorporates vision
and fine-tunes a pretrained T5 llm (Raffel et al., 2020).
Answering questions about actions. The same model is
jointly trained to answer questions about robotic actions,
including questions about actions performed, objects seen,
and the order in which actions were performed.
Zero-shot transfer from question answering to summariza-
tion. We show that an llm-based system trained to answer
questions about held-out objects can faithfully produce sum-
maries about those objects in a zero-shotmanner, even though
the objects are not in the summarization task training set.
This demonstrates the transfer of representational knowl-
edge from the question answering tasks to the summarization
tasks. We further demonstrate that this transfer occurs for
some question types but not others.
Automatic generation of questions and answers.We develop
a method to automatically generate questions and answers
using an existing dataset and its associated virtual environ-
ment and release a dataset of such questions and answers.

2 Method

Our objective is to generate a summary or question response
in natural language r ∈ Lof a longhorizon robotic task, given

the history of observations o ∈ O that the robot experienced
during the task and a question or summarization prompt q.
We define the robot experience/trajectory as τ = {(o0, ...)}.
We seek to learn a function Fθ such that: r = Fθ (τ, q).

2.1 Data requirements

The general problem of robot action summarization and
question answering could be addressed in a variety of ways
depending on the data available, the environment the robot
operates in, and details of how the robot operates. A few types
of data would be most helpful in training and operating an
autonomous, mobile, general purpose robot to summarize its
past:

(1) Ego-centric video of the robot performing tasks serves
as the primary input to summarization and question answer-
ing. It can be captured by many robots and would facilitate
the transfer of knowledge to new circumstances and environ-
ments.

(2) Natural and/or structured language summaries of the
actions performed in the video. These summaries could be of
varying lengths, depending on the needs of the end user. The
presence of both short and long summaries would provide
the most flexibility and choice for a user.

(3) Ground truth information about the objects and places
in the ego-centric video for training question answering tasks.
The objects and places present in the training dataset will
determine what kinds of questions a user could subsequently
ask.

2.2 Repurposed dataset

Our approach requires egocentric video or video frames,
a description of an agent’s actions during an episode, and
information about the environment the agent operates in,
particularly the locations of objects it encounters. For the pur-
poses of the current investigation we use episodes from the
alfred dataset. An episode of robot state-action trajectory
in the original dataset has four different kinds of representa-
tion which we make use of, either as-is or transforming them
in some ways. The following list of dataset elements lays out
the way they are used in this work as well as noting their
original purpose and description in the alfred dataset:
(1) Short summaries: Human-generated natural language one
sentence summaries of the whole action sequence (called
“goal descriptions” in the original dataset).
(2) Long summaries: High level narratives of the robotic
agent’s actions, provided in the original dataset in the form
of action plans in the structured Planning Domain Descrip-
tion Language (pddl) (McDermott et al., 1998). We convert
the terms used in pddl to natural language: for example,
“GotoLocation” becomes simply “go to” and some object
names become two English words instead of one word (e.g.
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Fig. 1 Visual presentation of model and method for producing zero-
shot summaries involving novel objects. Step 1 illustrates the fullmodel:
input (at the left) includes video frames as well as episode metadata
describing the environment as the agent saw it. The components of the
model in black (clip Resnet and the word embeddings) are pretrained
and remain frozen during our training process, while the light bluemod-

ule (the vision-to-T5 bridge network) is trained from scratch. The dark
bluemodule, a pretrained T5, which outputs the final question answer or
summary, is fine-tuned during training. Step 2 demonstrates zero-shot
summarization using a previously trained model which was not trained
to summarize episodes with some of the objects in the newly presented
episode

“coffeemachine” becomes “coffee machine”). We also break
these long summaries up to form questions, as described in
the next subsection.
(3) Natural language action description sentences: Natu-
ral language step by step descriptions of the actions taken
in each episode, written by humans, which were used as
instructions in the original dataset. These are used here to
form some of the questions, as described in the next section.
We do not use these to generate summaries because they are
too detailed and contain somewhat idiosyncratic descriptions
provided by human annotators. These characteristics, which
make these inappropriate to serve as ground truth summaries,
nevertheless make them good training examples for natural-
istic human-generated questions, which is why we use them
to form the basis of questions.
(4) Video, images, and visual features: Raw video of a task
episode as well as a selection of still frames from the video
chosen by the creators of the alfred datasset in such a way
as to guarantee at least one still frame per low level action as
defined in the original dataset.We use the pre-selected subset
of still frames in the dataset, leaving the question of frame
selection to future work.

Robot actions in the alfred dataset consist of discrete
navigation and manipulation actions labeled ’low level’
actions see Shridhar et al. (2020) for details; episodes have an
average of 50 such actions.Because summarization and ques-
tion answering involve higher level semantic descriptions,
action descriptions in this work derive from two sources:
pddl converted to natural language and human annota-
tor descriptions which include actions. The former are a
restricted set (go to, pick up, put, cool, heat, clean, toggle)

while the latter are unrestricted and express actions in diverse
ways.

2.3 Automatic generation of questions and answers

Wedevelop a Q&Ageneration algorithm that produces ques-
tions and answers about episodes of robots interacting with
an environment. After initial pre-processing, the algorithm
can be used in a partly online fashion during training or as
a one-time off-line dataset generation step which produces
a set of static questions and answers. We train models in
an online fashion and provide performance metrics from the
static validation sets of questions and answers we release
with this work.

In addition to the elements already present in the origi-
nal dataset enumerated in the previous subsection, we use
the ai2thor environment (Kolve et al., 2017) to rerun the
agent trajectories for each episode in the dataset and capture
information present while the agent is in the environment.
At each time step after executing an action, the environ-
ment returns a ‘metadata’ python dictionarywith information
about the last action taken, the agent’s current position and
pose, and the objects present in the environment. Information
about objects includes whether they are visible and within a
specified distance of the agent (we use the default 1.5ms).
We use these two pieces of information to construct ques-
tions about whether objects were present in the environment.
Though here we use one particular existing dataset and envi-
ronment, our approach is general and can be applied to other
datasets and environments with action descriptions in natural
or structured language and available information about the
environment.
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Fig. 2 Sample partial selection of input frames from an episode in a
seen environment originally from the alfred dataset (at the top), gener-
ated questions (on the left, in blue) and expected answers (on the right,

in green), broken up into question type, along with the prompts for long
and short summaries, at the bottom

The algorithm produces nine types of questions in three
broad categories (see Fig. 2 for examples of each type from
the valid seen set and Appendix F for additional examples
from the valid unseen set):

(1) Object questions about the presence of objects in the
environment, both those the agent interacted with and those
it only saw. There are two kinds of object question: “object
yes/no” questions of the form, “was there an <object>?",
which require only “yes” or “no” answers and “object
either/or” questions of the form, “was there an <object A>

or<object B>?” which require themodel to output the name
of the object present. Our algorithm uses the metadata of all
objects visible in the environment to ensure that only one of
the objects in an either/or question will have been seen dur-
ing an episode. The algorithm samples objects with negative
answers in proportion to their appearance in the dataset so
that the model cannot, for example, learn to always answer,
“no”, for seldom-seen objects.Questionswith “yes” and “no”
answers are presented with equal frequency.

(2) Action questions, which ask about actions the agent
performed. The two types of question—“action yes/no” and
“action either/or”—follow the structure of the respective

object questions explained above. There are two subtypes of
the “action yes/no” questions: “simple action yes/no” uses
the relatively simple language converted from pddl for both
the questions and answers. “Complex action yes/no” uses the
raw human-generated description of each action step to pose
the “yes/no” question. “Action either/or” questions present
an either/or choice between two actions described in the sim-
pler language of the converted pddl plans.

(3) Temporal questions about the order in which actions
were performed, of two primary kinds. The first kind—
“just before” questions—asks what action was performed
immediately before a named action (“what did you do just
before <action description>?") while the second—“just
after” questions—asks what action was performed imme-
diately following the named action (“what did you do just
after <action description>?"). If an action occurs more than
once in an episode it will not appear in a temporal question
to avoid ambiguity.

Each of these types of temporal questions has two sub-
types. The first is asked using the simpler description
of actions from converted pddl while the second uses a
human-generated action description sentence to formulate
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the question. Human-generated descriptions are longer, con-
tain more diverse word choice, and sometimes mention
irrelevant details. The answers to both question subtypes are
in the simpler action description format. We suggest that this
distinctionbetween enabling themodel to answer both simple
and more complexly-worded questions while only answer-
ing in simpler language is desirable because while a robot
agent should be able to understand questions phrased in a
variety of ways, such an agent should not produce similarly
varied answers, but instead generate only simple, consistent
language.

In addition to these questions and answers, we also prompt
the model to produce two kinds of summaries:
(1) Short summaries are the short one sentence descriptions
of the action sequences written by human annotators as pro-
vided in the original dataset. We train the model to output a
summary of a given episode with the text prompt, “summa-
rize what you did."
(2) Long summaries, which are the longer narratives of
actions converted from pddl to natural English. Although
these are meaningfully longer than the one sentence sum-
maries, they are significantly shorter than a step by step
account of every low level action the virtual robot performed
(e.g. move ahead, turn, look up, etc.). The model is trained
to output a long summary of an episode with the prompt,
“narrate what you did.”

2.3.1 Dataset of questions and answers

We will release both the code to generate the questions and
answers as well as a static set of premade questions and
answers aligned to episodes in the alfred dataset. The static
dataset was generated to produce up to ten question instances
per question type for each episode; in some cases there are
fewer than ten such question instances per episode because
not all question types can produce ten question instances for
a given episode.

The entire static question and answer set contains 486,704
questions paired to episodes in the alfred dataset’s training
set, 18,891 questions paired to its seen environments vali-
dation set, and 19,097 in its unseen environments validation
set.

2.4 Joint summarization and question answering
model

Wepresent a learned algorithm that takes as input ego-centric
video frames of a virtual mobile robot along with a natural
language question or summarization prompt and produces an
answer or summary in response.

Our full neural network model (see the breakdown on the
left in Fig. 1) combines several components. Video frames
from each episode are fed as individual images collected

into a batch into a frozen Resnet network (He et al., 2016)
pretrained as part of the clipmodel (Radford et al., 2021).We
extract the output of the last convolutional layer and feed it
into a three layer convolutional network trained from scratch,
which acts a bridge network between the Resnet and the next
step in the pipeline, a pretrained T5 transformer llm (Raffel
et al., 2020) (“t5-base”in the Hugging Face library (Wolf et
al., 2020)). The bridge network outputs one vector for each
input image; these vectors are concatenated together along
with the tokenized question or summary prompt which is
embeddedusing theT5model’s pretrained embeddings as the
input to the T5 model. The bridge network serves to translate
the input from the clip latent space into one which can be
processed by the T5. We find that fine tuning the entire T5 –
rather than leaving either or both of the encoder or decoder
frozen – leads to better results. While the T5 model was
pretrained only on language data, we use it for simultaneous
language and visual input, following other work which has
shown the ability of language model transformers to process
multimodal data (Lu et al., 2022; Tsimpoukelli et al., 2021).
The latent space of inputs which the T5 expects is likely also
modified during this fine tuning, so the adaptation of the T5
to process multimodal input can be seen as a result of both
the bridge network and the fine tuning process.

As the T5 is an encoder-decoder model it is able to gener-
ate encoded representations of the images conditioned on the
given question or prompt. We train a single model to answer
all questions and produce long and short summaries so that it
must learn to generate representations useful for all of these
tasks. During an epoch of training we iterate through each
episode in random order. For each episode, the model must
produce long and short summaries and answer one question
of each of the nine question types (when such a question
exists for that episode).

2.5 Zero-shot summarization after question
answering

Weare interested in the possible interaction between question
answering and summarization abilities within the model, in
particular if representations of objects transfer between these
tasks. We therefore alter the training regime to leave some
objects out of the summarization training set and measure
whether themodel is still able to produce accurate summaries
about interactions with the objects. In these experiments, we
first randomly select a set of five objects fromamong themost
common thirty objects in the dataset (excluding the top ten).
We then identify all episodes whose long summaries con-
tain those objects (i.e. any episode in which the virtual robot
interacts with those objects) and set them aside as a ‘held-
out’ set. The model is then trained on questions and answers
involving all episodes, including the held-out episodes, but
is not trained to produce either long or short summaries of
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Table 1 Accuracy and precision
scores for question and
summary outputs by output type,
including standard deviation.

Question / prompt Seen envs Unseen envs
accuracy Precision accuracy Precision

Object yes/no .954 ±.007 – .907 ±.010 –

Object either/or .990 ±.003 .990 ±.003 .966 ±.009 .968 ±.010

Simple action yes/no .975 ±.001 – .892 ±.004 –

Complex action yes/no .935 ±.003 – .895 ±.004 –

Simple action either/or .988 ±.003 .995 ±.001 .923 ±.019 .963 ±.009

Simple action just before .948 ±.004 976 ±.003 .865 ±.012 .957 ±.004

Complex action just before .927 ±.007 .967 ±.004 .818 ±.013 .939 ±.005

Simple action just after .959 ±.002 .983 ±.002 .815 ±.017 .936 ±.004

Complex action just after .911 ±.009 .952 ±.004 .730 ±.015 .887 ±.002

Long summary .850 ±.005 .969 ±.011 .475 ±.035 .945 ±.004

rouge bleu rouge bleu

Short summary .571 ±.000 .556 ±.006 .517 ±.004 .504 ±.022

Long summary .981 ±.000 .969 ±.000 .922 ±.004 .880 ±.010

rouge and bleu scores also given for summaries. Results shown are from two validation sets: those based
on episodes in virtual environments seen during training are on the left, unseen environments on the right.
None of the actual episodes themselves, of either type, are found in the training set. Precision scores are not
shown for “yes/no”answers where such scores must equal the accuracy scores. Results are averaged from
three models with different random seeds, all tested on the set of static held-out questions

the held-out episodes. We then test its ability to summarize
these held out episodes.

3 Results

3.1 Summarization and question answering

We find that our model performs very well on both short
and long summarization tasks and on the questions from our
Q&A generation algorithm. Table 1 presents results for all
question and summarization types. An answer is considered
accurate if it completely matches the target answer. bleu
(Papineni et al., 2002) and rouge (Lin, 2004) scores are
also given for the two summary types. The bleu score is a
measure of how well the generated text matches the ground
truth text, penalizingwords and phraseswhich are not present
in the ground truth while rouge measures how much of the
ground truth text is present in the generated text, penaliz-
ing words and phrases which are missing from the generated
text. Unigram precision scores measure the percentage of
generated words which are in the ground truth text and are
given for question answering tasks which require more than
one word as an answer. As the short summaries are more
lexically diverse, binary accuracy measures are less appro-
priate so only bleu and rouge scores are given for the short
summaries.

A few patterns in the results can be seen. First, the perfor-
mance generally varies depending on how much generated
text must be produced in an answer. Longer answers provide
more opportunities for errors so performancewhenmeasured

Table 2 Overlap of missing objects between questions and long sum-
maries by question type, averaged over three models tested on the static
held out valid unseen set.

Question Error overlap

Object yes/no .054 ±.023

Object either/or .061 ±.029

Simple action yes/no .370 ±.059

Complex action yes/no .222 ±.051

Simple action either/or .464 ±.058

Simple action just before .441 ±.071

Complex action just before .414 ±.028

Simple action just after .725 ±.020

Complex action just after .414 ±.028

Overlap here is the number of missing word errors per question type for
which the long summaries are also missing the same word in the same
episode, as a percentage of all missing word errors per question type

by the strict metric of complete accuracy tends to be worse.
This is particularly true for the question which asks for a long
summary of the agent’s action, which has the worst results
according to the all-or-nothing accuracy metric.

Second, “either/or” questions have better accuracy than
their corresponding “yes/no” questions. This could be
because asking if, for example, an action was performed is
made easier when it is a choice between two actions so that
any uncertainty the model has about one of the actions may
be offset by its certainty about the other option. It is also pos-
sible that themodel has a harder time connecting themeaning
of the “yes/no” answers back to the input, particularly since
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most of the questions require outputting an object or action
name, not just a “yes/no”.

Third, it might be expected that questions about the order
that actions took place would be significantly more difficult
for the model to interpret than those about the mere occur-
rence of those actions. Surprisingly, then, we find that inmost
cases the model’s performance on temporal questions is very
similar to that on the other questions.

The model tends to make two kinds of errors when gen-
erating anything other than “yes/no” answers. It sometimes
misidentifies objects, especially small ones, and particularly
in the unseen environments. It also sometimes uses a different
description for a location than the ground truth annotation,
in some cases doing so in a way that is nevertheless consis-
tent with the action as seen in the episode. For example, the
ground truth annotationmay read, “go to the apple” while the
model outputs, “go to the counter” when the apple is on the
counter. See Fig. 3 for examples of errors in short and long
summaries generated by the model.

The errors made by the model display some consistency
between the different questions asked and between the ques-
tions and summaries. For example, in one episode of the
validation seen set which involves moving a book, it consis-
tently mistakes the book for a pen, answering a “just before”
question with, “put the pen on the desk," producing a short
summary, “put two pens on the right side of the desk,” and
beginning the long summary with, “go to the side table, pick
up the pen...” There is a marked difference in the consistency
of these errors depending on question type, however, as we
show in Table 2. We measure this consistency by counting
what fraction of particular objects omitted from the model’s
answers to a given question type is also missing from the
corresponding long summaries about that episode. This frac-
tion is compared for different question types. We find that
questions which require generating both an action and an
object together have the highest degree of overlap in which
objects they fail to identify and which are also missing in
the long summaries; the temporal “just before / just after”
answers in particular show high consistency with the long
summaries. We hypothesize that the representations which
the model uses for summarization align better with those it
uses for the question types where there is higher overlap of
missing words.

3.2 Zero-shot summarization via question
answering

Can question answering improve the ability to summarize?
We find that when the model is trained to answer ques-
tions about episodes involving all objects, it is then able
to go on to summarize episodes with objects which it has
not been trained to include in summaries. Table 3 displays
a breakdown of zero-shot performance on long summaries.

For comparison, results when nothing is held out—the stan-
dard case detailed in table 1—and for a model not trained
to answer questions on the held out set are included. These
comparisons show that while zero-shot summarization is not
as accurate as fully supervised summarization, training on
the auxilliary question-answering task is significantly better
than not doing so. A model not trained to answer questions
on episodes with held out objects is unable to correctly sum-
marize episodes involving those held out objects. It is simply
not able to output any of the held out objects’ names without
having at least seen them during question answering. Train-
ing the model to learn to answer questions about the objects
through an auxilliary question-answering task leads to clear
improvement on the summarization task.

This result suggests that the model is learning representa-
tions of objects, or actions involving objects, while learning
to answer questions which it can then use when producing
summaries. There must be at least some transfer of represen-
tational knowledge between the question answering and the
summarization tasks within the model.

Clear improvement with transfer compared to without
transfer is also demonstrated in bleu and rouge scores of
both short and long summaries in seen and unseen environ-
ments (in only one case is there not improvement); see Table
5 in Appendix C for details.

3.2.1 Impact of question type on zero-shot transfer to
summarization

We have seen that transfer from question answering to sum-
marization occurs. Butwhich questions aremost important or
useful for transfer? In order to further investigate the sharing
of representations between question answering and summa-
rization, we rerun the experiments using the same held out
protocol, but using focused sets of particular question types.
Testing each question type separately allows us to measure
whether all questions are equally useful for promoting trans-
fer to summarization.

Interestingly, we find that not all questions are equally
useful: only the temporal “just before” and “just after”
questions—which ask what action was performed just before
or after a given action—exhibit transfer between tasks (see
Table 3 for accuracy metrics on temporal and non-temporal
questions). This is true of both subtypes of these questions,
i.e. both the simple and complex language versions. On their
own, the “yes/no” and “either/or” questions about objects
or actions do not lead to the same zero-shot summarization
ability. It is worth recalling here that the answers to the tem-
poral questions were also found to be especially consistent
with the long summaries in the missing object errors they
contained, which would also suggest a particularly aligned
representational space between these tasks (see Table 2).
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Table 3 Accuracy of zero-shot
long summarization when
transferring representations
learned from question answering
to producing long summaries,
broken down by question type
used to learn the objects held out
from summarization training.

Model trained on Seen envs Unseen envs

All questions .519 ±.067 .302 ±.156

Temporal questions .566 ±.118 .299 ±.085

All other non-temporal questions .006 ±.007 .000 ±.000

No Q&A training on held out objects .000 ±.000 .000 ±.000

All objects and questions - nothing held out .850 ±.005 .475 ±.035

Results shown for episodes containing held-out objects in the validation sets in seen and unseen environments.
The bottom two rows show a baseline with no question answering training on the held-out objects—and
therefore no transfer—and a comparison to the fully trained model with nothing held out

Fig. 3 Example errors in generated long and short summaries. Errors in the long summaries are indicated with strikethrough text (with the correct
text following in italics and parentheses). Generated short summaries appear to the left of the correct summaries, which are in italics

We also tested the transfer ability of a model trained in
a similar manner but which excluded episodes based on the
action verbs they contained rather than the objects. For these
experiments, only one action verb at a time and the episodes
which contained it were identified as held out items. In none
of these cases was the model able to transfer the use of the
verb to summaries of the held out episodes. This could be due
to the smaller number of actions in the dataset than objects.

4 RelatedWork

RoboNLP Tangiuchi et al. (2019) and Tellex et al. (2020)
offer thorough reviews of language use in the context of
robotics. Detailed descriptions of actions such as robots play-
ing soccer (Mooney, 2008) or automated driving (Barrett
et al., 2015, 2017) have been generated. These have not
involved learning how to report and condense a series of
actions into anything like a summary, however. DeChant
and Bauer (2021) propose robot action summarization as a
research direction, suggesting a set of tasks to pursue.

Instruction Following Our proposal is closely related to
learning to follow natural language instructions, which has
long generated a great deal of interest at the intersection of
robotics and natural language processing (Winograd, 1972;
Dzifcak et al., 2009). Shridhar et al. (2021a) train a robotic
arm in a virtual environment to perform a range of tasks fol-
lowing natural language instructions and transfer the learned
model to a real world robot. Mees et al. (2021) introduce a

benchmark for long horizon robotic manipulation tasks fol-
lowing natural language instructions.

Rich simulated environments for language-guided navi-
gation tasks have been introduced in recent years. Anderson
et al. (2018) introduced the Room to Room vision and lan-
guage navigation dataset, which became the basis for much
work in this area. Some of that work has involved learning to
generate natural language descriptions of navigation trajecto-
ries as a training signal or tool: Nguyen et al. (2021) provide
feedback to an agent in the Room to Room environment by
describing in natural language the paths the agent actually
takes so it can learn to compare that to the path it should
have taken; Fried et al. (2018) learn to generate instructions
to augment training data and then, at test time, to evaluate
the similarity of routes it might take with the description of
the desired route.

The alfred dataset (Shridhar et al., 2020) we repurpose
has inspired a great deal of work on its natural language
instruction following challenge. Shridhar et al. (2021b)
improve an agent’s ability to perform tasks in the virtual envi-
ronment by first training them to learn to act in the interactive
text onlyTextWorld environment (Côté et al., 2018) in similar
situations which are described there only in text. Pashevich
et al. (2021) learn to leverage the presence of the high level
pddl plans to produce better representations of the natural
language instructions by also training those representations
to be used to generate pddl plans from the natural language
instructions.
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Q&A in robotics Learning to ask questions has also been
worked on as a way for a robotic agent to ask for help or
clarification while performing a task (Tellex et al., 2014;
Thomason et al., 2019). Yoshino et al. (2021) use natu-
ral language questions to clarify aspects of how a simple
action was performed in response to a question. Datta et al.
(2022) introduce a form of question answering where the
questions are in natural language but the answers take the
form of visual highlights of amap to indicate locations. Carta
et al. (2022) propose filling in the blanks within structured
language instructions as an auxiliary task for reinforcement
learning agents in a 2-D grid world. Gao et al. (2021) intro-
duce a similar Q&A task in a virtual environment, though
without summarization; a slightly different embodied Q&A
task, requiring an agent to seek out answers to questions, is
proposed by Gordon et al. (2018).

Summarization There is an extensive body of work on
natural language summarization, providing examples and
resources for the new but related task of robot action sum-
marization (seeNenkova andMcKeown (2012) andGambhir
and Gupta (2017) for reviews). There are two main kind of
summarization. In extractive summarization, the summaries
are selected from the original text already present in a source
document. In abstractive summarization, by contrast, new
text is generated as the summary, allowing for a higher level
of description.Recurrent sequence to sequencemodels (Rush
et al., 2015; Gupta & Gupta, 2019) as well as Transformer
(Vaswani et al., 2017) models have been used to perform
abstractive summarization (Lewis et al., 2019; Raffel et al.,
2020).

Video understanding Work on understanding video is
relevant to our work since we are interested in using video
or selected images from video as an input to summarizing a
robot’s action in natural language. The task of ‘video summa-
rization’ in the computer vision community refers to selecting
important frames of a video that can, together, serve as a
visual summary of the whole video; see Apostolidis et al.
(2021) for a review of such techniques. Some work has been
done onmultimodal summarization from video and text tran-
scripts to natural language summaries; Palaskar et al. (2019)
is one example, going from video and text in the How2 video
dataset (Sanabria et al., 2018) to summaries. Bärmann and
Waibel (2022) assemble a large question answering dataset
for real world video of humans performing actions, requiring
significant effort to annotate.

Natural languagequestion answering is also used for video
understanding. Originally stemming from similar work in
visual question answering (vqa) of natural language ques-
tions on still images (Antol et al., 2015), many video Q&A
works address factual questions about the presence of objects
or particular actions in video clips (Fan, 2019; Castro et al.,
2022). These questions are similar to the object and action
questions in our work.More recently, video question answer-

ing work has focused on more complex questions, including
questions about the order of actions which are similar to our
temporal questions (Xiao et al., 2021; Grunde-McLaughlin
et al., 2021). Work has also been done to answer causal and
related questions (e.g. "why didXhappen?")whichwe do not
address here and leave for future work (Wu et al., 2021; Li et
al., 2022). Video question and answering has also been done
with multimodal input which incorporates both video and at
least one other modality such as text captions or an audio
track (Choi et al., 2021; Yang et al., 2022). While our work
does not incorporate such multimodal sources, future robot
action summarization could do so, particularly for robots that
have natural language interaction with humans in the course
of their operation. Some video question answering datasets
contain questions which are automatically formed from nat-
ural language descriptions of video sequences (Zeng et al.,
2017; Zhao et al., 2017). Our automatic question generation
method is similar but also incorporates ground truth infor-
mation about the environment which are accessible because
the episodes take place in simulation. Pretrained language
models have been incorporated in models used to address
video question answering (Zellers et al., 2021). See a recent
survey by Zhong et al. (2022) for additional background on
question answering for video understanding.

Grounding language It has been recognized for some
time that grounding language to the real world is essential
for creating ai systems that actually understand the lan-
guage they processed (Harnad, 1990). Recent proposals on
the need to situate natural language processing in a grounded
or embodied context have brought renewed attention to this
issue (Bisk et al., 2020; Chandu et al., 2021; McClelland
et al., 2020; Lake & Murphy, 2021). Though these did not
discuss robots summarizing their actions, our work is a con-
tribution to this direction of research.

5 Conclusion

We develop a model that can be jointly trained to summarize
and answer questions about a virtual robot’s past actions. We
find that the model learns a representation space which is
shared across at least some of the question types and sum-
maries, leading to zero-shot summarization abilities.

This work helps begin a line of research on robot action
summarization and question answering. It is important that
robots operating in the real world be well supervised by
humans and that their actions be understandable. We suggest
that establishing a basic narrative of what an agent does is in
someways a prerequisite to further understandingwhy it does
something. Once answering questions about and summariz-
ing robot actions can be performed reliably, we expect these
capabilities to be useful in a variety of ways, including in
training robots. Learning representations for these tasks can
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serve as a form of pretraining for downstream robotic appli-
cations. New techniques for lifelong learning might enable
robots to receive and learn from feedback to the summaries
they generate. Our approach of making use of an existing
instruction following dataset naturally allows for this appli-
cation and is something we will pursue in future work on this
and other datasets.

Though this work took place in simulation, the summa-
rization and question answering tasks are not specific to
aspects of this or any simulated environment. Future work
will explore the application of these tasks to realworld robots.
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Appendix A Neural networkmodel and train-
ing details

A.1 Neural network

We train a bridge network to downsize and link the output
of the last convolutional layer of a pretrained clip Resnet-50
network (Radford et al., 2021) with a pretrained T5 trans-
former (“t5-base”) from the Hugging Face library (Raffel et
al., 2020; Wolf et al., 2020).

Bridge network architecture
Input: 2048 × 7 × 7 Resnet features
Conv layer 1 (2048, 1024, 1)
Conv layer 2 (1024, 128, 1)

Conv layer 3 (128, 32, 1)
Fully connected layer (1568, 768)
Total number of parameters
The clip Resnet-50 network has a total of 102,007,137

parameters.
The bridge network described above has a total of

3440,864 parameters.
The T5 Transformer network we fine-tune has a total of

222,903,552 parameters.
The bridge network and T5 networks together (the com-

plete model we train / fine-tune) have a total of 226,344,416
parameters.

A.2 Training information

We primarily used two Titan Xp and three nvidia A6000
gpus. When training one of our models with all questions
and training data, a Titan Xp took approximately 3 days and
an A6000 approximately 1.5 days to train for 100 epochs.
Though we did not track it, a rough estimate of total gpu
time during initial exploration of this problem and the work
reported here is 5000h.

Hyperparmeters we tested variations of include the opti-
mizer (Adam, AdamW, AdaFactor, AdamW—Adam was
used in all experiments reported here); the learning rate
(.001 was used as the initial learning rate in all experi-
ments reported here); and network architecture choices for
the bridge network which connected the clip Resnet con-
volutional layer outputs and the T5 transformer (layer sizes,
number of layers, batchnorm, dropout). The randomseedwas
not one of the hyperparameters tuned; we used three random
seeds to produce all of the results in the paper, which are
averaged across three runs with different random seeds and,
in the case of the experiments involving held out objects,
three randomly chosen sets of five objects.

We use the dataset’s valid seen set as our validation set
with which to choose hyperparameters and select the epoch
for results to report. We use the accuracy metric of the long
summarization task as the measure to select the best epoch.
We then report the results of short summarization and all
questions in that epoch. These are not the best epochs reached
for each of the questions but we report the results from a
single epoch to be consistent. The epochwe report best results
from the valid seen set is also rarely the best epoch for the
valid unseen set but we report the results for the valid unseen
set from the same epoch.

Our automatic precision, bleu, and rouge metric was
generated from an implementation available through the
Hugging Face library.

The alfred dataset was released under an mit License
and we release our questions and answers dataset under the
same license.
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Appendix B Ablation of visual input

To investigate how the model would perform on summa-
rization and question answering tasks in the absence of any
meaningful input, we trained the model as usual but instead
of presenting a sequence of images corresponding to each
episode, we presented only one sequence of images from
one episode for every summarization prompt and question.
Therefore no useful information about each episode was
input to the model. The output on validation set summariza-
tion and question answering prompts would therefore only
be a reflection of what the model has learned about the reg-
ularities in the text portion of the dataset, e.g. what actions

are more likely to follow from other actions, regardless of
the episode visual data. Table 4 presents the results of the
ablation study on the seen and unseen validation set environ-
ments.

Some of the binary questions have accuracies very close
to 50%—these include the “simple action yes/no”, “com-
plex action yes/no”, and “simple action yes/no”. The “object
yes/no” and “object either/or” questions, on the other hand,
have slightly higher accuracies, approximately 63%, suggest-
ing that model has learned some patterns in the distribution
of objects in the dataset. Similarly, the temporal “just before”
and “just after” questions have higher accuracies than a
uniformly random choice among possible actions would

Table 4 Ablation of video
frames baseline: results for a
model trained to answer
questions and produce
summaries when trained with
questions and answers as usual
but with each question and
answer pair and summarization
task paired to identical visual
input (i.e. each episode’s
observations are replaced by a
single, static set of observations
that do not vary from episode to
episode), thereby completely
depriving the model of any
useful visual information with
which to answer the question

Question / prompt Seen envs Unseen envs
accuracy precision accuracy precision

Object yes/no .629 ±.034 – .636 ±.030 –

Object either/or .632 ±.010 .636 ±.034 .635 ±.008 .640 ±.012

Simple action yes/no .503 ±.029 – .533 ±.038 –

Complex action yes/no .486 ±.010 – .508 ±.032 –

Simple action either/or .526 ±.028 .710 ±.001 .535 ±.017 .725 ±.015

Simple action just before .479 ±.016 .752 ±.005 .517 ±.007 .775 ±.014

Complex action just before .539 ±.007 .766 ±.004 .613 ±.025 .826 ±.017

Simple action just after .315 ±.022 .706 ±.017 .349 ±.039 .728 ±.021

Complex action just after .256 ±.018 .658 ±.003 .325 ±.019 .695 ±.003

Long summary .005 ±.002 .492 ±.094 .000 ±.000 .471 ±.101

Rouge Precision Rouge Precision

Short summary .264 ±.027 .496 ±.058 .263 ±.022 .485 ±.059

Table 5 rouge and bleu scores of zero-shot long summarizationwhen
transferring representations learned fromquestion answering to produc-
ing long (at the top) and short (at the bottom) summaries, broken down

by question type used to learn the objects held out from summarization
training.

Question / prompt Seen envs Unseen envs
ROUGE BLEU ROUGE BLEU

Long summaries

All questions .919 ±.007 .888 ±.018 .866 ±.006 .813 ±.068

Temporal questions .940 ±.004 .910 ±.035 .858 ±.005 .798 ±.004

All other (i.e. non-temporal) questions .810 ±.003 .697 ±.026 .765 ±.008 .651 ±.088

No Q&A training on held out objects .802 ±.004 .688 ±.022 .806 ±.003 .703 ±.022

All objects and questions - nothing held out .981 ±.000 .969 ±.000 .922 ±.004 .880 ±.010

Short summaries

All questions .483 ±.002 .370 ±.049 .412 ±.005 .314 ±.100

Temporal questions .465 ±.003 .378 ±.040 .421 ±.006 .347 ±.091

All other (i.e. non-temporal) questions .404 ±.003 .276 ±.041 .365 ±.005 .227 ±.052

No Q&A training on held out objects .401 ±.003 .277 ±.045 .427 ±.003 .288 ±.049

All objects and questions—nothing held out .571 ±.000 .556 ±.006 .517 ±.004 .504 ±.022

Results shown for episodes containing held-out objects in the validation sets in unseen and seen environments. The bottom two rows of the long and
short summary sections show baselines with no question answering training on the held-out objects—and therefore no transfer—and a comparison
to the fully trained model with nothing held out. This table complements Table 3 in the main body of the paper, which provides binary all-or-nothing
accuracy scores for long summaries
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demonstrate. Our actual model achieves much higher accu-
racy on all of these tasks, however, demonstrating that it has
learnedmuchmore thanmerely the regularities in the dataset.

We initially tested an additional form of question, a ques-
tion that asked if <Action A> happened before <Action
B> in a given episode (note that this type of question differs
from the temporal questions included in this work, which
require the model to output the action that happened imme-
diately before or after a given action, not a binary indicator
of whether an action happened at any point before a given
action). We had to exclude this form of question, however,
because the model was able to achieve over 80% accuracy on
validation set episodes under the ablated visual input regime.
This question was apparently simply too easy given the reg-
ularities in the dataset.

Appendix C Additional comparison metrics
for zero-shot transfer

In Table 5 we provide additional metrics to understand the
performance of zero-shot transfer from question answering
to summarization. Short summaries tend to have lower bleu
and rouge scores than the long summaries because the long
summaries use a standardized set ofwords to describe actions
and objects while the short summaries use a more diverse set
of words and provide varying levels of detail.

Appendix D Out of distribution negative
questions

Our model was trained on a set of questions which involved
a certain set of actions and objects in a particular (household)
environment. What would the model do if asked questions
about actions it did not engage in with objects it had not
seen, either at test time or during training? This would be a
particular issue for yes/no questions if an agent were asked
if it had engaged in an action it did not engage in and was not
familiar with, as it may be expected to respond essentially
randomly to such unfamiliar questions.

To begin to investigate how such a model deals with these
out of distribution negative questions, we developed two
small test sets of questions:

Table 6 Accuracy of one trained model on small test sets of out of
distribution negative questions, by question and environment type

Question type Val seen Val unseen

Ordinary Qs .83 .86

Extraordinary Qs .64 .76

1. Ordinary Out of Distribution Questions, consisting of
questions about actions a household robot may be expected
to take but which are not present in our dataset in any form,
such as:

“did you clean the attic?”
“did you move the toys?”
“did you do the laundry?”
“did you water the plants?”
“did you take out the garbage?”
2. ExtraordinaryOut of DistributionQuestions, consisting

of questions totally unrelated to robots or household chores,
such as:

”did you swim to the coral reef?”
“did you learn German?”
“did you fall in love?”
“did you kayak in the fjord?”
“did you graduate from college?”
Both test sets consist of fifty such questions (released

along with our larger set of questions and answers paired
to the alfred dataset). The correct answer to all of the ques-
tions is “no”. The questions were run through a fully trained
model (no held out objects). Results are shown in Table 6.

The model generally demonstrates a (in this case, correct)
bias for answering “no” to these out of distribution questions.
Perhaps surprisingly, the model is much more likely to cor-
rectly answer “no” toOrdinaryOut ofDistributionQuestions
than it is to Extraordinary Out of Distribution Questions.

These results, though on a small test set, suggest that
the model has learned a bias toward answering, “yes”, only
when there is evidence in the input that an answer should be
answered affirmatively. This is, of course, what a user would
want. Further investigation of the circumstances under which
it correctly answers out of distribution questions iswarranted,
as well as ways to improve the performance on out of distri-
bution questions, especially unusual ones.

Appendix E Fine tuning with LoRA

In all experimentswepresent in themainbodyof the paperwe
fine-tune a pretrained T5 llm as well as train the bridge net-
work from scratch. In order to investigatewhether fine-tuning
the entire network is necessary, we also used the LoRA tech-
nique proposed by Hu et al. (2021). LoRA allows for more
efficient fine-tuning because it allows for freezing a model’s
original weights while only learning a much smaller num-
ber of parameters in rank decomposition matrices attached
to layers of the original model. In this case, the number of
trainable parameters associate with the T5 model is reduced
by 99.6%.

While trainingwith LoRA ismore efficient, we found that,
in all but one metric in one task, it reduces performance in
the tasks we train our model on, as can be seen in Table 7. In
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Table 7 Performance of our
multimodal model when its T5
transformer is trained using the
LoRA method by question or
prompt.

Question / prompt Seen envs Unseen envs
accuracy difference accuracy difference

Object yes/no .943 ±.02 −.011 .885 ±.005 −.022

Object either/or .980 ±.009 −.01 .950 ±.005 −.16

Simple action yes/no .965 ±.008 −.010 .846 ±.006 −.046

Complex action yes/no .922 ±.017 −.013 .877 ±.004 −.018

Simple action either/or .981 ±.004 −.007 .906 ±.013 −.017

Simple action just before .932 ±.015 −.016 .761 ±.019 −.104

Complex action just before .911 ±.009 −.016 .751 ±.006 −.067

Simple action just after .956 ±.011 −.003 .732 ±.007 −.083

Complex action just after .886 ±.015 −.025 .671 ±.021 −.059

Long Summary .754 ±.010 −.096 .394 ±.014 −.081

rouge Difference rouge Difference

Short Summary .571 ±.010 −.012 .500 ±.010 −.017

bleu Difference bleu Difference

Short Summary .981 ±.013 .009 .461 ±.013 −.043

Performance and the difference between training with LoRA and training with fine-tuning the entire T5 (See
Table 1) is shown for seen and unseen environment validation sets

some cases, particularly the long summary task, the degra-
dation in performance is dramatic, showing a decline of 9.6
and 8.1 percentage points in seen and unseen environments,
respectively. On many of the question and answer tasks the
difference is rather minor in the seen environments but, inter-
estingly, much more significant in the unseen environments.
Only in the case of the bleu score for the short summary task
in seen environments do we see a very small increase when
training with LoRA.

Further investigation is required to determine why LoRA
underperforms in some tasks rather than others and, why
it especially underperforms in unseen environments requir-
ing more generalization ability, and, more generally, why its
performance is nearly uniformly worse than fine-tuning the

entire T5 model. We hypothesize that our method, which
involves converting a uni-modal text-only llm to process
representations of video frames alongside text, benefits from
being fully fine-tuned because of the magnitude of the
domain change seen in its inputs.
We use the implementation of LoRA in the huggingface peft
(Mangrulkar et al., 2022) library with the settings found in
that library specified for the T5 model.

Appendix F Additional episode example

See Fig. 4 for examples of a selection of video frames and
questions from an episode in the valid unseen set.
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Fig. 4 Sample partial selection of input frames from an episode in an
unseen environment originally from the alfred dataset (at the top),
generated questions (on the left, in blue) and expected answers (on the

right, in green), broken up into question type, along with the prompts
for long and short summaries, at the bottom
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