
Autonomous Robots (2023) 47:1387–1403
https://doi.org/10.1007/s10514-023-10140-6

Reinforcement learning with model-based feedforward inputs for
robotic table tennis

Hao Ma1 · Dieter Büchler2 · Bernhard Schölkopf2 ·Michael Muehlebach1

Received: 31 January 2023 / Accepted: 18 September 2023 / Published online: 17 October 2023
© The Author(s) 2023

Abstract
We rethink the traditional reinforcement learning approach, which is based on optimizing over feedback policies, and propose
a new framework that optimizes over feedforward inputs instead. This not only mitigates the risk of destabilizing the system
during training but also reduces the bulk of the learning to a supervised learning task. As a result, efficient and well-understood
supervised learning techniques can be applied and are tuned using a validation data set. The labels are generated with a variant
of iterative learning control, which also includes prior knowledge about the underlying dynamics. Our framework is applied for
intercepting and returning ping-pong balls that are played to a four-degrees-of-freedom robotic arm in real-world experiments.
The robot arm is driven by pneumatic artificial muscles, which makes the control and learning tasks challenging. We highlight
the potential of our framework by comparing it to a reinforcement learning approach that optimizes over feedback policies.
We find that our framework achieves a higher success rate for the returns (100% vs. 96%, on 107 consecutive trials, see
https://youtu.be/kR9jowEH7PY) while requiring only about one tenth of the samples during training. We also find that our
approach is able to deal with a variant of different incoming trajectories.

Keywords Reinforcement learning · Iterative learning control · Supervised learning · Table tennis robot · Pneumatic artificial
muscle · Soft robotics

1 Introduction

Reinforcement learning has been proven to be highly effec-
tive in a variety of contexts. An important example is
AlphaGo Zero (Silver et al., 2016, 2017), which man-
aged to completely overpower all human players in the
game of Go. Other examples include the work of Oh et al.
(2016), Tessler et al. (2017), Firoiu et al. (2017), Kansky et al.
(2017) that focused on video games, the work of Yogatama

B Hao Ma
hao.ma@tuebingen.mpg.de

Dieter Büchler
dieter.buechler@tuebingen.mpg.de

Bernhard Schölkopf
bernhard.schoelkopf@tuebingen.mpg.de

Michael Muehlebach
michael.muehlebach@tuebingen.mpg.de

1 Learning and Dynamical Systems, Max Planck Institute for
Intelligent Systems, Max-Planck-Ring 4, Tübingen 72076,
Germany

2 Empirical Inference, Max Planck Institute for Intelligent
Systems, Max-Planck-Ring 4, Tübingen 72076, Germany

et al. (2016), Paulus et al. (2017), Zhang and Lapata (2017)
that focused on natural language processing, and the work
of Liu et al. (2017), Devrim Kaba et al. (2017), Cao et
al. (2017), Brunner et al. (2018) that focused on computer
vision. Despite these successes, where reinforcement learn-
ing agents are shown to compete and outperform humans,
researchers have struggled to achieve a similar level of suc-
cess in robotics applications. We identify the following key
bottlenecks, which we believe hinder the application of rein-
forcement learning to robotic systems. This also motivates
our work, which proposes a new reinforcement learning
scheme that addresses some of these shortcomings.

The first factor is that the lack of prior knowledge causes
reinforcement learning algorithms to sometimes apply rel-
atively aggressive feedback policies1 during training. This
has the potential to cause irreversible damage to robotic
systems, which are often expensive and require careful
maintenance (Moldovan & Abbeel, 2012; Schneider, 1996).
Moreover, these aggressive policies are typically not effec-

1 The term“aggressive feedback policy" refers to a policy that generates
actions with the potential to induce harm or cause damage to real-world
systems.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-023-10140-6&domain=pdf
https://youtu.be/kR9jowEH7PY

1388 Autonomous Robots (2023) 47:1387–1403

tive, neither for revealing relevant system dynamics (explo-
ration) nor for maximizing reward.

Second, reinforcement learning is often data hungry
(Laskin et al., 2020), although the required amount of train-
ing data depends on the task at hand. In some cases, these
data requirements can lead to weeks or months of training:
For example, the work by Heess et al. (2017) reported that
approximately 100 hours of simulation time (possibly more
if conducted in real time) were required to train a 9-DoF
mannequin to achieve walking behavior within the simula-
tion environment. In a similar vein, Kalashnikov et al. (2018)
collected over 800 hours of robot training data intermittently
across seven robots over a span of four months to train the
robots for challenging grasping tasks. Combined with the
first factor, this also increases the possibility of destroying
the robotic system during training.

Third, the behavior of the robot is characterized by the
reward function. While in video games and board games,
a binary reward function (success or failure) can be used to
evaluate the performance of policies, it is muchmore difficult
to characterize the desired behavior of a robotic system with
a single reward function. For example, when two behaviors
of a robot return the same reward, there is no way of judg-
ing which one is better (Kober et al., 2013). As a result, it
often takes more effort to design the reward function of rein-
forcement learning in the field of robotics. More importantly,
results from optimal control suggest that optimizing for a sin-
gle criterion such as execution time, tracking error or energy
often results in policies that are brittle and lack robustness
with respect to modelling errors (Doyle, 1978).

To address the aforementioned first factor, our approach
includes a model-based part, where prior knowledge can
be incorporated. Model-based reinforcement learning meth-
ods have gained prominence in robotics research in recent
years (Levine & Koltun, 2014; Deisenroth et al., 2014;
Van Rooijen et al., 2014; Wilson et al., 2014; Kupcsik et
al., 2017; Boedecker et al., 2014). In contrast to model-free
reinforcement learning methods, model-based approaches
leverage the (approximate) system dynamics, sometimes
enabling faster convergence towards the optimal policywhile
reducing the number of interactions required between the
robot and its environment (Polydoros & Nalpantidis, 2017;
Luo et al., 2022; Wang et al., 2019b).

Numerous methodologies have emerged to address the
second factor, including the influential paradigm of meta-
learning (Vanschoren, 2018; Alet et al., 2018; Lake et al.,
2016). Meta-learning entails leveraging previously acquired
skills from related tasks, reusing successful approaches, and
prioritizing potential strategies based on accumulated experi-
ence. This paradigm is also considered to be a formof transfer
learning, often referred to as learning to learn (Zhuang et al.,
2021; Thrun & Pratt, 1998). However, research by Kaushik
et al. (2020) demonstrated that when faced with diverse and

complex dynamics, a substantial number of observations
from the real-world system might still be required to effec-
tively learn a reliable dynamics model. It is worth noting that
our work primarily focuses on the paradigm of learning from
scratch and is therefore not directly related to meta-learning.

Additionally, sim-to-real learning has gained significant
traction as a widely adopted technique in the realm of
reinforcement learning (Zhao et al., 2020; Matas et al.,
2018). This approach relies on collecting training data
from simulated environments and subsequently applying the
simulation-based policies to real-world scenarios. Nonethe-
less, the mismatches between simulated and real-world set-
tings pose substantial challenges. Ongoing research endeav-
ors concentrate on refining the fidelity of physics engines
within simulations to better approximate real-world dynam-
ics, aiming to facilitate the direct deployment of policies
trained in simulated environments (Shah et al., 2017; Doso-
vitskiy et al., 2017; Furrer et al., 2016; McCord et al., 2019;
Todorov et al., 2012). Another research direction involves
augmenting the safety measures associated with real-world
robot training, facilitating online training of robots in actual
environments, even in the presence of mismatches between
simulated and real-world systems (Garcia & Fernandez,
2015; Cheng et al., 2019; Ramya Ramakrishnan et al., 2020).
In the context of this article, the use of pneumatic artificial
muscles presents obstacles in accurately capturing dynamic
characteristics in simulations. Our work is not concerned
with optimizing the performance of physics engines and
operates directly with the real-world system, thereby avoid-
ing sim-to-real learning.

For the third factor, Laud (2004) and Grzes (2017) intro-
duced a process known as reward shaping, which includes
intermediate rewards in the reward function to guide the
learning process to a reasonable behavior. In addition, multi-
ple criteria are introduced to balance the essential factors of
the interactionwith the environment during learning (Bagnell
et al., 2006). Nonetheless, we believe that this still represents
an important open issue. In our setting, by contrast, we first
decompose the original problem into a subproblem (trajec-
tory tracking) that is easier to solve. As a result, we are able
to design the reward function (tracking error) in a principled
way and without any auxiliary terms.

The focus of our work is on alleviating and resolving
the three issues mentioned above. This is achieved by first
decomposing the original high-level problemof playing table
tennis into three subproblems: (i) prediction of incoming
ball trajectories, (ii) planning reference trajectories that lead
to successful returns, (iii) tracking the reference trajectories
with the robot arm. The latter subproblem (trajectory track-
ing) can by itself be formulated as a reinforcement learning
problem, as we highlight in Sect. 2 below. The decompo-
sition has the important benefits that each component can
be designed, tuned, and debugged individually. Moreover,

123

Autonomous Robots (2023) 47:1387–1403 1389

the decomposition enables us to incorporate task-specific
knowledge, which, as we will demonstrate in the follow-
ing, makes our learning sample efficient. For the subproblem
of trajectory tracking, we propose a reinforcement learning
framework that optimizes over feedforward inputs (actions)
instead of feedback policies and contains both amodel-based
and model-free part. In a first step, we use iterative learn-
ing control (ILC) to compute input commands (actions) that
minimize tracking error. Due to the fact that we can incor-
porate prior knowledge, the learning is very efficient and
requires typically to execute only about 20–30 iterations on
the robot. We balance the exploration and exploitation trade-
off by adjusting the distribution of reference trajectories and
the number of ILC iterations. For example, if we increase the
number of reference trajectories, and decrease the number of
ILC iterations, we shift towards more exploration and less
exploitation. This first step provides us with pairs of refer-
ence and input trajectories, which constitutes the data and
the labels for the second step. Here, we use a model-free
supervised learning approach for learning a parameterized
policy network that returns a sequence of nearly optimal
input commands for any given reference trajectory. By doing
so, we split the learning into two parts, both of which are
well-known and well-understood: An ILC part that produces
data and labels in a sample-efficient manner and a supervised
learning task, which can be tuned offline using a validation
data set. Exploration and exploitation is traded off in a direct
way by balancing the diversity and number of reference tra-
jectories with the number of ILC iterations. We will apply
our framework to control a table tennis robot that is actuated
by pneumatic artificial muscles (PAMs) as shown in Fig. 1.
The same robot arm has been used in prior works, see for
example Büchler et al. (2023). While playing table tennis is
a relatively standard task for humans, it is full of challenges
for robots. We show that, with the help of our framework, the
robot is able to successfully learn how to intercept and return
ping-pong balls in a safe and sample-efficient manner.

1.1 Related work

In this work, a dynamic model of the robot arm is intro-
duced as prior knowledge, which speeds up the convergence
of the learning process and enhances interpretability. How-
ever, the robot arm is actuated by artificial muscles, which
make the derivation of accurate models challenging. Since
1960s, researchers have tried various approaches for mod-
elling PAMs, which include first-principle models (Tondu &
Zagal, 2006; Nickel et al., 1963; Ganguly et al., 2012), grey-
box models (Hofer & D’Andrea, 2018; Kogiso et al., 2012),
and black-box models (Ba et al., 2016). Our framework only
requires a coarse model of the robot arm and, as we will
see, even a low-complexity linear model will be enough to

Fig. 1 The figure shows the structure of the robot arm. It has four
rotational joints, and each joint is actuated by a pair of PAMs. The unit
vectors Iex , Iey and Iez together form the global coordinate system {I}
with Io as the origin. When intercepting the balls, the third degree of
freedom is always above the line connecting the origin and end effector.
For simplicity we consider only DoF 1–3, whereas DoF 4 is controlled
with a proportional-integral-derivative (PID) controller. We note that
DoF stands for degree of freedom

effectively guide the learning process and reduce its sample
complexity.

In the first part of our two-step procedure we apply a
variant of ILC, which has been widely and successfully
used to tackle trajectory tracking problems in robotics. For
example, Mueller et al. (2012) and Schoellig et al. (2012)
achieved high-performance tracking of quadcopters using
ILC; a similar performance was also achieved with other
complex systems (Luo & Hauser, 2017; Zhao et al., 2015;
Jian et al., 2019) including a thrust-vectored flying vehi-
cle (Sferrazza et al., 2020). ILC stands for the repeatability of
operating a given system, which can be exploited to update
the control input based on previous data, thereby improving
the transient performance over a fixed time interval (Arimoto
et al., 1986; Bristow et al., 2006; Ahn et al., 2007). Due to the
high nonlinearity of PAMs, Hofer et al. (2019) and Zughaibi
et al. (2021) proposed the use of ILC to improve the tracking
performance for an articulated soft robot arm during aggres-
sive maneuvers. However, the most fatal flaw of ILC is that
it only works for fixed reference trajectories. If the reference
trajectory changes, ILC needs to be trained from scratch.
While Chen et al. (2021) used deep learning to reduce the
number of iterations required for ILC training, the approach
still requires a couple of ILC executions when presented with
a new trajectory.

In the context of robotics, researchers have also tried
different methods to transform reinforcement learning into
(semi-)supervised learning tasks. Finn et al. (2017) and
Konyushkova et al. (2020) managed to use reinforcement
learning to learn policies in labeled scenarios, and then gen-

123

1390 Autonomous Robots (2023) 47:1387–1403

eralized the policies to unlabeled scenarioswith a deep neural
network. However, their experiments are only carried out in
simulation and it is unclear how effective their approach is
for real-world robotic systems. Wang et al. (2019a) focused
on a few specific learning problems and applied tools from
supervised learning to address the problem of overfitting.
While the underlying ideas share some common ground with
our work, we apply ILC to transform a reinforcement learn-
ing task to a supervised learning problem in a very direct
and intuitive way. Of course, statistical results that quantify
uncertainty and/or sample complexity of supervised learn-
ing are also applicable in our setting (this is, however, not
the focus of our work). Moreover, Fathinezhad et al. (2016)
combined supervised learning and fuzzy control to generate
initial solutions for reinforcement learning, thereby reduc-
ing the failure probability during training. Piche et al. (2022)
made robots learn skills from a data set collected by poli-
cies of different expertise levels. However, this idea is more
similar to imitation learning (Ravichandar et al., 2020), and
the experiments are carried out only in simulation. In our
system, for example, an imitation learning approach is very
difficult to apply, since, due to the nonlinearity of PAMs and
the requirements on the bandwidth and execution speed of
motion, it is very difficult to generate expert policies.

Preliminary results from Sect. 3.2 have been presented in
the conference publication Ma et al. (2022). While the focus
in Ma et al. (2022) was on trajectory tracking, we apply our
framework to intercept and return ping-pong balls that are
played to the robot. We also compare the sample efficiency
of our learning to the reinforcement learning approach used
in Büchler et al. (2020). Finally, the article has a tutorial
character and highlights the different steps that are required
for solving a real-world robotic task with learning.

1.2 Contribution

The main contribution of this work is to demonstrate a
potential way to decompose a high-level learning problem
of playing table tennis into subproblems, which are eas-
ier to solve. To solve the trajectory tracking problem in
the decomposed subproblems, we propose a sample-efficient
reinforcement learning framework that transforms the given
task into a supervised learning problem. We successfully
apply our framework to a four-degrees-of-freedom robot arm
driven by PAMs, where we demonstrate accurate tracking of
a large number of reference trajectories relevant to our task.
Our approach includes a model of the system as prior knowl-
edge, which guides the ILC algorithm. The model can be
obtained fromfirst-principles, however, it can also be a black-
box or grey-box model. For our experiments we rely on the
black-box model that was identified in Ma et al. (2022). We
use ILC to learn optimal feedforward inputs for a large num-
ber of reference trajectories. The reference trajectories are

randomly sampled and are representative for the task at hand,
which is, intercepting and returning ping-pong balls. The
ILC learns and compensates repeatable disturbances when
tracking the trajectories, which includes unmodeled nonlin-
earities, actuation biases, delays, and unmodeled dynamics.
It achieves a remarkable tracking performance for a given ref-
erence trajectory, while requiring only 30 iterations. These
reference trajectories and the feedforward inputs learned by
the ILC will be used as data and labels for training a parame-
terized policy network in a supervisedmanner. This results in
a nonlinear feedforward controller that can handle different
reference trajectories and generalizes the excellent tracking
performance of ILC to non-fixed reference trajectories.

Key advantages of our framework are a low number
of hyperparameters, which have a physical interpretation
and can be tuned in a principled way. Moreover, compared
to so called model-free reinforcement learning algorithms,
our framework incorporates prior knowledge about the sys-
tem dynamics, which guides the learning by providing
closed-form gradient information. This not only avoids gra-
dient computations via finite differences or sampling-based
approaches, but also improves the sample complexity of the
learning. Due to the fact that our parameterized policy net-
work is only used for computing feedforward controls, the
method mitigates the risk of destabilizing the system. Thus,
our framework can be directly applied to the robot without
any pre-training in simulation.

In addition, we describe how our learning framework can
be integrated with an existing vision system to intercept and
return balls, achieving a 100% interception success rate for
the balls that are played to the robot arm. This interception
also requires the design of an extended Kalman filter (EKF)
to estimate the state of the ball, which includes the posi-
tion and velocity, as well as an impact model between the
ball and the table. We use a data-driven approach to build
the impact model. Finally, our interception also computes an
interception point within the reach of the robot arm and plans
a reference trajectory with minimum jerk.

1.3 Structure

This paper is structured as follows: in Sect. 2, we will intro-
duce themain concepts of our framework. The overall control
structure of our robot arm is based on the classical two-
degrees-of-freedom control loop and includes a feedforward
block and a feedback controller. The feedback controller will
be fixed and our learning framework will only optimize over
the feedforward block. Thus, unlike a classical reinforcement
learning approach, we only learn feedforward inputs, which
has numerous advantages. First, it allows us to incorporate
a model, which provides important gradient information and
reduces the sample complexity of the learning. Second, learn-
ing feedforward greatly reduces the risk of destabilizing the

123

Autonomous Robots (2023) 47:1387–1403 1391

underlying robotic system during training. This will also be
further discussed in Sect. 2. In Sect. 3, we apply our frame-
work to the task of playing table tennis with our robotic
arm. The section contains an implementation tutorial and
describes the ILC, the design of a convolutional neural net-
work (CNN) for parameterizing the policy, the EKF, as well
as the strategies for intercepting the balls. In Sect. 4, we com-
pare our method with a traditional reinforcement learning
algorithm that is also applied to the same robot arm. We also
highlight the modularity and stability of our framework in
this section. The aim of the comparison is not to argue that
our approach is generally superior to black-box reinforce-
ment learning, but to demonstrate, with a specific example,
how much in terms of sample efficiency can be gained by
incorporating task-specific knowledge in a principled way.
The article concludes with a summary in Sect. 5.

2 Reinforcement learning as a supervised
learning task

Reinforcement learning describes stochastic dynamic pro-
gramming problems whereby the transition function is
unknown (Bertsekas, 2019). The reinforcement learning task
that is considered herein is formulated as follows:

min
π

Jπ (x0) = min
π

E

⎧
⎨

⎩

q−1∑

k=0

gk
(
xk, uk, ωk, ydes,k

)

⎫
⎬

⎭
,

where xk ∈ R
n denotes the state and x0 is fixed, uk ∈

R
m denotes the control input, ωk ∈ R

w a stochastic dis-
turbance, π = (μ0, . . . , μq−1) the policy, and ydes =(
ydes,0, ydes,1, . . . , ydes,q−1

) ∈ R
l×q a reference trajectory

that we would like to track. The reference trajectory is
unknown and uncertain, which will be modeled by assuming
that ydes is random and distributed according to the distri-
bution pydes . The distribution pydes characterizes reference
trajectories that are likely for the given task at hand. In our
table tennis application, the reference trajectories arise from
typical interception and return motions of the robot arm. The
state xk evolves through the system equations

xk+1 = fk (xk, uk, ωk) ,

yk = hk (xk, ωk) , k = 0, 1, . . . , q − 1,

where yk ∈ R
l denotes the output of the system, which is

measured, and uk = μk(y0, . . . , yk, ydes) ∈ R
m denotes the

control inputs (actions). In contrast to the problem formula-
tion in Bertsekas (2019), for example, we do not assume to
have access to the state xk , which would allow for state feed-
back, and thus treat themore general case of output feedback.
In addition, our problem formulation allows for reference

tracking tasks, by allowing the running cost gk and the func-
tions μk to depend on ydes. The disturbance ωk is stochastic
and may explicitly depend on the state xk and input uk , but
not on the prior disturbances ωk−1, ωk−2, . . . , ω0. The sys-
tem equations are unknown.

Computing a policy π that minimizes Jπ is very difficult
in general, even when the system equations are known (Bert-
sekas, 2012). We therefore deliberately simplify the problem
at hand in two steps. First, we restrict our feedback functions
μk to only depend on ydes, which amounts to feedforward
control. In order to highlight this design choicewewill denote
the corresponding policy functions by μff,k and the policy
πff = (μff,0, μff,1, . . . , μff,q−1), where we added the sub-
script ff. Second, we define the running cost gk to be the
tracking error, that is,

gk
(
xk, μk, ωk, ydes,k

) = 1

2

∣
∣yk − ydes,k

∣
∣2 ,

where |·| denotes the �2-norm.
This allows us to reformulate the minimization of Jπ over

π as follows:

min
πff

E

{
1

2
|y − ydes|2

}

s.t. y = F (x0, u, ω) , u = πff(ydes),

(1)

where u = (u0, u1, . . . , uq−1) ∈ R
m×q concatenates the

entire sequence of inputs, y = (y0, y1, . . . , yq−1) ∈ R
l×q

the entire sequence of outputs, and ω = (ω0, ω1, . . . ,

ωq−1) ∈ R
w×q the entire sequence of disturbances. The tran-

sition dynamics of our robotic system are represented with
the function F : Rn ×R

m×q ×R
w×q → R

l×q . We note that
F is unknown, possibly nonlinear, and can even model non-
Markovian transition dynamics. The state of the system is
hidden in the function F , since we focus on the input–output
relationship and consider only trajectories of fixed length (we
will describe how to handle trajectories with different length
later on).

We note that the restriction of feedback policies π

to feedforward policies πff is suboptimal and therefore
minπ J (x0) ≤ minπff J (x0). If ω is deterministic, however,
we have minπ J (x0) = minπff J (x0).

Remark 1 In order to simplify the notation in the following
sections, we will flatten all multi-dimensional vectors into
one-dimensional vectors accordingly, that is u ∈ R

mq , y ∈
R
lq , ω ∈ R

wq , and ydes ∈ R
lq . Therefore, F can be re-

defined as F : Rn × R
mq × R

wq → R
lq .

Due to the fact that πff is an arbitrary function of ydes, (1)
is equivalent to

Eydes

{

min
u∈Rmq

Eω|ydes
{
1

2
|y − ydes|2

}}

, (2)

123

1392 Autonomous Robots (2023) 47:1387–1403

Fig. 2 The figure shows the open control loop (top) and the closed
control loop (bottom)

where the minimization is subject to y = F(x0, u, ω). This
motivates our reinforcement learning framework, since we
can solve the minimization over u in (2) with ILC in a very
sample-efficient manner. We therefore sample different ref-
erence trajectories, apply ILC to compute the minimization
in (2), which yields the minimizer u�(ydes), and finally fit
a parametrized policy network πff for predicting u�(ydes).
This addresses the two key challenges in our learning prob-
lem, which is that i) the dynamics F are unknown, ii) the
reference trajectories are unknown/uncertain.

The detailed procedure is summarized with the following
four steps:

1. Wedefine a distribution pydes that characterizes the uncer-
tainty about the reference trajectories.

2. We sample a data set yides, (u�)i , with i = 1, . . . , N ,
where yides ∼ pydes and (u�)i = u�

(
yides

)
is a minimizer

of (2). The minimization in (2) is done with ILC.
3. We split the data set yides, (u

�)i , with i = 1, . . . , N into a
training and validation data set, and train a parameterized
policy network πff : Rl×(2 h+1) → R

m , which predicts
the approximate optimal input (action) u�

k ∈ R
m at time

point k for a given reference trajectory over the horizon(
ydes,k−h, . . . , ydes,k, . . . , ydes,k+h

)
, where 2h + 1 refers

to the horizon length.
4. We integrate the parameterized policy network as the

feedforward block in the two-degrees-of-freedom con-
trol structure shown in Fig. 2b. The feedback controller
is fixed and not affected by the learning.

The following remarks are important. The distribution
pydes characterizes reference trajectories that are likely for the
given task at hand. In our table tennis example, the reference

trajectories arise from typical interception and returnmotions
of the robot arm. More precisely, pydes arises from sampling
different interception points and planning minimum jerk tra-
jectories that lead to these interception points. The procedure
will be explained in further details in Sect. 3.1.

During the minimization of (2) with ILC, the system is
operated in open loop, as shown in Fig. 2a. There are numer-
ous advantages and disadvantages for performing ILC either
on the open-loop or the closed-loop system. While in the
closed-loop setting the feedback controller can attenuate
measurement and process noise, and potentially pre-stabilize
an unstable system, the ILC results, as well as the parameter-
ized policy network πff are tailored to the specific feedback
controller in use. In contrast, we run the ILC in open loop,
which means that we can later change and adapt the feed-
back controller (see Fig. 2b and Step 4) without the need
of retraining and rerunning the above steps. Moreover, as
we will discuss later on, the ILC exploits a coarse model of
the system, which provides gradient information and guides
the learning. The model that we have at our disposal is
obtained from open-loop experiments, which further moti-
vates running ILC in open loop. The details about the ILC
implementation and the corresponding results are summa-
rized in Sect. 3.2.

The parameterized policy network πff computes a single
input uk ∈ R

m from a sliding window over the reference tra-
jectories,which includesh past values, ydes,k−h, . . . ,ydes,k−1,
the current values ydes,k , and h future values, ydes,k+1, . . . ,

ydes,k+h . The parameterized policy network πff can therefore
directly be used as a nonlinear feedforward block in Fig. 2b.
Further details are described in Sect. 3.3.

As is also highlighted with Step 4 (which is further
described in Sect. 3.3) our reinforcement learning approach
learns the feedforward block in Fig. 2b and does not affect
the feedback controller. This is in sharp contrast to traditional
approaches, which only optimize over feedback policies and
where, in many cases, feedforward is completely ignored.

A more extended discussion of the stability guarantees
of our framework can be found in Ma et al. (2022). In the
following, we assume the plant to be stable and use ILC to
optimize over feedforward inputs in open loop. However, if
the open-loop systemwas unstable, it could be pre-stabilized
with a feedback controller and our framework can be applied
nonetheless (see also the previous discussion on learning in
open loop versus learning in closed loop).

3 Implementation tutorial

In this section, we show how to decompose the problem of
intercepting and returning a table tennis ball into the dif-
ferent subproblems (predicting ball trajectories, generating
reference trajectories, and tracking), which are then solved

123

Autonomous Robots (2023) 47:1387–1403 1393

individually. The section follows Step 1–4 as described in
Sect. 2.

3.1 Sampling reference trajectories

In this section, we will introduce the way we generate ref-
erence trajectories, which arise from the task of intercepting
table tennis balls.We use a ball launcher, similar toDittrich et
al. (2022), and shoot ping-pong balls towards the robot. The
balls are trackedwith a vision system,Gomez-Gonzalez et al.
(2019), and the resulting ball trajectories are stored in a data
set that contains 43 trajectories. We now generate reference
trajectories according to the following process.

1. For each ball trajectory we compute the highest point
after impact with the table, and define this to be our inter-
ception point I pint ∈ R

3 in the global coordinate frame
{I}. If I pint is not in the reachable range of the robot arm
the trajectory is discarded.

2. Our robot arm has three main degrees of freedom, which
correspond toDoF1–3 in Fig. 1. For each of these degrees
of freedom we plan a trajectory yi1 (t) from the rest posi-
tion I pini ∈ R

3 of the end effector to I pint and a trajectory
yi2 (t) back to I pini, with i = 1, 2, 3. Here, yi1 (t) and
yi2 (t) denote the desired angles for degree of freedom d.

3. We merge the two trajectories yi1 (t) and yi2 (t) into one
complete trajectory yi (t), with i = 1, 2, 3.

Remark 2 We constrain the angle θ3 of the third degree of
freedom to be negative (see Fig. 1), which means that we
restrict ourselves to configurationswhere the joint of the third
degree of freedom is above the line connecting the origin Io
with the end effector. As a result, the mapping between the
position of the end effector in the global coordinate frame
and the angles of DoF 1–3 is bijective.

We note that the robot arm will intercept the table tennis
ball at the highest position after the ball collides with the
table for the first time. At this position, the ball has the low-
est velocity, which simplifies the interception task. The time
T1 from when the ball leaves the launcher to when the ball
reaches the interception position I pint is used to plan the first
segment of the trajectory, while the second segment of the
reference trajectory is set to a fixed duration T2 of T2 = 1.5 s.
Immediately afterwards, the robot arm is required to remain
stable at I pini for T3 = 0.2 s. To sum up, in our design, the
total time Ttotal required for the robot to complete a hit is
Ttotal = T1 + T2 + T3.

It will be convenient to model the motion of the end effec-
tor in a polar coordinate frame, where the z-axis is aligned
with DoF 1 (and the z-axis of the global frame {I}). The polar
coordinate frame is defined as {θ1, η, ξ}, where θ1 denotes the
angle coordinate (which coincides with the angle of DoF 1),

η denotes the radius coordinate, that is the distance between
the origin to the projection of the end effector along the z-axis
onto the x − y plane of {I}, and ξ denotes the height, which
coincides with the z-coordinate of {I}. The use of a polar
coordinate system for describing and planning the motion
of the end effector is motivated by the fact that the return
velocity in tangential direction is given by θ̇1η, independent
of where the ball is hit. We thus plan trajectories of the end
effector in a polar coordinate system by minimizing jerk.

Minimumjerk trajectories are desirable for their amenabil-
ity to path tracking and to limit robot vibration. They are also
used in order to ensure continuity of velocities and acceler-
ations (Piazzi & Visioli, 1997). This results in the following
optimization problem, which is solved separately for each
coordinate τ ∈ {θ1, η, ξ}:

min
j :[0,T]→R

∫ T

0
j(t)2 + α6

τT
τ(t)2dt, (3)

s.t. j(t) = ...
τ (t),

x0τ,T = (τ (0), τ̇ (0),
...
τ (0))T ,

x fτ,T = (τ (T), τ̇ (T),
...
τ (T))T ,

(4)

where T ∈ {T1, T2}.
We note that the term α6

τT
τ(t)2 is added to penalize large

motion ranges, which ensures that the physical constraints of
our robot arm are not violated. The boundary conditions are
set in such away that the robot starts from I pini at rest, reaches
I pint at time T1 with velocity η̇ (T1) = 0, η (T1) θ̇1 (T1) =
5m s−1, ξ̇ (T1) = 0 and returns to I pini, where it arrives with
zero velocity. In order to reduce impact, the initial and final
accelerations of all coordinates are set to zero. We noticed
that only θ1 needs a penalty term to constrain the range of
motion, while the rest of the coordinates are guaranteed to
move within the physical constraints due to the boundary
conditions. Therefore, in the experiment, αθ1,T1

and αθ1,T2
are set to one while the remaining ατT are set to zero.

The minimum jerk problem (3) can be solved in closed
form by applying Pontryagin’s minimum principle (Geering,
2007). This results in the following co-state equation:

...
λ (t) = −2α6

τT
τ (t) ,

and the stationary condition of the associated Hamiltonian

2 j (t) + λ (t) = 0, ∀t ∈ [0, T] ,

with T ∈ {T1, T2} andwhereλdenotes the co-state trajectory.
Combining these equations results in the following boundary
value problem

τ (6) (t) = α6
τT

τ (t) ,

123

1394 Autonomous Robots (2023) 47:1387–1403

subject to the boundary conditions listed in (4). This bound-
ary value problem can be solved in closed form; for coor-
dinates η and ξ , where the penalty term is set to zero, it is
particularly straightforward and optimal η and ξ are given by
fifth order polynomials; for θ1, where αθ1,T �= 0, the solution
is more involved and includes exponential terms.

The important advantage of having closed-from solutions
is that reference trajectories can be computed and generated
extremely quickly. We will take advantage of this fact when
performing interceptions and returns, where we will re-plan
the reference trajectories in real time.

3.2 Label generation with ILC

We generate a data set of yides, i = 1, . . . , N reference trajec-
tories sampled from pydes as described in the previous section.
For each of these reference trajectories we will compute and
learn anoptimal input trajectory thatminimizes tracking error
by applying ILC.

3.2.1 Formulation

The ILC formulation is inspired by Hofer et al. (2019) and
Schoellig et al. (2012). It assumes knowledge of a coarse
model of the underlying dynamical system, which describes
the output (the angles of DoF 1–3) in the following way:

y = F̃ (x0, u, d + nw) ,

where u ∈ R
mq is a sequence of inputs (actions) over a

horizon of length q, y ∈ R
lq the corresponding outputs,

x0 ∈ R
n the initial condition, and d + nw ∈ R

lq denotes
the disturbances. The disturbance d + nw is separated into a
repeatable part d (e.g. delays, friction and nonlinearity) and a
non-repeatable part nw (e.g. process noise). The disturbance
d is in many cases implicitly dependent on the state and input
of the robot. This dependence could, in principle, be arbitrar-
ily complex (even non-smooth, Quintanilla andWen (2007)).
The disturbance d also contains interactions between the dif-
ferent degrees of freedom, which may not be fully captured
in the nominal model F̃ (x0, u, 0). In particular, our model
arises from a description via transfer functions that neglects
the coupling between the degrees of freedom. It is given by:

yi (z) =
αi
0 + αi

1z
−1 + · · · + αi

nin
z−nin

1 + β i
1z

−1 + · · · + β i
nim
z−nim

z−nidui (z)

+di (z) + niw(z), (5)

where yi (z) denotes the z-transform of the angle of the i-th
degree of freedom, ui (z) denotes the z-transform of the input
of the i-th degree of freedom, and di (z) + niw(z) denotes the

disturbance acting on the i-th degree of freedom, again sepa-
rated in a repeatable and a non-repeatable part. The variable
nin, n

i
m, and nid denote the order of the numerator, the order

of the denominator and the delay of the i-th degree of free-
dom, with i = 1, 2, 3. All transfer functions are listed in
“Appendix A” for completeness.

We note that the input is given by pressure differences
that are sent to the low-level controller driving the PAMs.
Both inputs and outputs are normalized such that they take
the values zero when the robot is in its rest position x0 (x0
is an equilibrium). Thus as a result, the function F̃ is linear
and takes the form

y = A0x0 + Buu + Bd (d + nw) + ny, (6)

where thematrices A0 ∈ R
lq×n , Bu ∈ R

lq×mq , Bd ∈ R
lq×mq

are derived from (5) and are listed in “Appendix B”. Here,
ny ∈ R

lq denotes the measurement noise.
The ILC aims at learning the repeatable disturbances d by

applying the following principle:

1. We apply the input signal u to the system and record the
angle trajectories of the degrees of freedom 1–3.

2. We update the estimate for the repeatable disturbances d
in (6).

3. We update the input signal u and proceed with Step 1.

The repeatable disturbances d are learned with a Kalman
filter, which is based on the following process equation

dk+1 = dk + nkd, nkd ∼ N (0,
d) , d0 ∼ N (0,
) ,

and measurement equation

yk − A0x0 − Buu
k

︸ ︷︷ ︸
measurement data

= Bdd
k + nk, nk ∼ N (0,
mix) ,

where (·)k denotes the number of ILC iterations. We use the
following forms for the variance of nkd, the variance of d0,
and the variance of nk :

d = diag
{(

σd,i
)2

I
}3

i=1
,
 = diag

{
σ 2
i I
}3

i=1
,

mix = diag
{(

σw,i
)2

I
}3

i=1
BdB

T
d + diag

{(
σy,i

)2
I
}3

i=1
,

where I ∈ R
q×q denotes the identity matrix and diag {·}

refers to diagonal stacking. The concrete values of σi , σd,i ,
σw,i and σy,i with i = 1, 2, 3 can be found in Table 1, and can
be tuned in a principled manner. We note that if the model
F̃ was nonlinear we could apply the same approach with the
difference that themeasurement equationwouldbe linearized
ind about themean estimate d̂k−1 from the previous iteration.

123

Autonomous Robots (2023) 47:1387–1403 1395

Table 1 This table lists the variance parameters for the ILC

Vairance

σ 2
d,i σ 2

y,i σ 2
w,i σ 2

i

DoF 1 10−9 10−3 10−9 10−7

DoF 2 10−11 10−3 10−11 10−7

DoF 3 10−8 10−3 10−8 10−7

We then use the mean value of the Kalman filter estimate,
denoted by d̂k , at the k-th iteration to update the feedforward
input uk+1 for the next iteration. More precisely, we update
u in the following way:

uk+1 = argmin
u

1

2

∣
∣
∣ydes − A0x0 − Buu − Bdd̂

k
∣
∣
∣
2
,

where ydes ∈ R
lq denotes the reference trajectory. Although

there are pressure constraints on the input of the robot arm,we
do not consider these when solving the above optimization
problem. This leads to the following closed-form solution

uk+1 = B†
u

(
ydes − A0x0 − Bdd̂

k
)

, (7)

where (·)† denotes the Moore-Penrose pseudo inverse.

3.2.2 Learning results

In this section, we will show the learning results of ILCwhen
tracking trajectories that are sampled from pydes . We conduct
30 learning iterations for each sample, and the results forDoF
1–3 are shown in Fig. 3. It is worth mentioning that the input
for the first iteration is directly generated by solving (7) with
d̂0 = 0. The inputs for the last iteration are assumed to be
a good approximation of u� (ydes) as defined in (2) (we note
the almost perfect tracking of the reference trajectory after
30 iterations shown in Fig. 3). As can be seen from the figure,
our model F̃ (x0, y, 0) is a very coarse approximation of the
underlying dynamics, resulting in a relatively poor tracking
performance during the first couple of iterations.Nonetheless
the model is very effective at providing gradient information,
which the ILC can leverage, resulting in rapid improvement
of the tracking error in the first several iterations. We also
note that the learning converges, as the last two iterations
remain almost the same. Considering the high nonlinearity of
PAMs, and the fact that ILC only learns feedforward inputs,
we conclude that ILC is very effective at solving (2).

We sample 43 different reference trajectories from pydes ,
as described in Sect. 3.1. For each of these reference tra-
jectories we apply 30 ILC iterations and store the resulting
feedforward inputs u�

(
yides

)
, i = 1 . . . , 43. This provides

us with the data and the labels to train a machine learning
model as described in the next section.

0 0.5 1 1.5 2 2.5

−50

0

50

Time t in s

A
ng

le
θ
in

de
gr
ee ydes Nr.1 Nr.2

Nr.29 Nr.30

(a) First degree of freedom

0 0.5 1 1.5 2 2.5

−50

0

Time t in s

A
ng

le
θ
in

de
gr
ee ydes Nr.1 Nr.2 Nr.29 Nr.30

(b) Second degree of freedom

0 0.5 1 1.5 2 2.5

−60

−40

Time t in s

A
ng

le
θ
in

de
gr
ee

ydes
Nr.1
Nr.2
Nr.29
Nr.30

(c) Third degree of freedom

Fig. 3 The figure shows the learning results of ILC. The dashed line is
the fixed reference trajectory and the solid lines are the results of the
first and last two iterations

3.3 Generalization with parameterized policy
network

In this section, we demonstrate how to transform the origi-
nal interception task into a supervised learning problem. We
will use the data and labels obtained in the previous sec-
tion to train a CNN to approximate the optimal policy π�

ff ,
thereby generalizing the ILC results to all ydes ∼ pydes . The
43 trajectories obtained from Sect. 3.2.2 are divided into 30
trajectories for training and 13 trajectories for validation. To
speed up the convergence of the neural network and improve
accuracy, all inputs are normalized.

When intercepting the balls that are played to the robot
arm, inference is done in real time. This motivates us to use
a CNN instead of fully connected layers or recurrent neural
networks. Moreover, the CNN is also found to be benefi-
cial for handling the coupling between the various degrees
of freedom and the temporal correlations. Our CNN has the
same architecture for each degree of freedom.Wewill denote
by πi the CNN for degree of freedom i , which has three
channels and maps R

3×3×(2 h+1) → R, where the output
approximates u� (ydes) at time point k for degree of freedom
i . The first channel takes a window of ydes of length 2h + 1

123

1396 Autonomous Robots (2023) 47:1387–1403

as input, that is,
(
ydes,k−h, . . . , ydes,k, . . . , ydes,k+h

)
, whereas

the second and third channels take the velocity and acceler-
ation of ydes (again over the same window of size 2h + 1)
as input. Both velocity and acceleration are computed with
finite differences. In principle, the addition of the second and
third channels is unnecessary, but we find in practice that
this speeds up training and improves training and validation
losses. The addition of velocity and acceleration components
can be viewed as prior knowledge that is incorporated in the
structure of the CNN. We believe that this is advantageous
in situations where the size of the training data set is limited
(30 trajectories). A slightly different type of prior knowl-
edge is included and discussed in Ma et al. (2022). Each πi

is designed with a simple structure, characterized by a low
number of parameters and a shallow architecture with few
layers. The simplicity of the architecture reduces the risk of
overfitting by limiting the model’s capacity to memorize the
training data. The architecture consists of six convolutional
layers and four fully connected layers. The convolutional lay-
ers do not contain any pooling layers, and the fully connected
layers do not have a dropout. We use ReLU as an activation
function for all the layers, except the output layer. Empirical
studies show that ReLU mitigates the risk of gradient disap-
pearance or explosion. We note that each πi incorporates the
behavior and coupling of all three degrees of freedom.

We train each πi , i = 1, 2, 3 on the training data set,
and substitute the resulting machine learning models as the
feedforward block in Fig. 2b. We apply the resulting control
loop to the robot arm and evaluate the tracking performance
on both training and validation data sets. The tracking error
of the end effector, which we will use as our performance
metric, is defined as follows:

δi = 1

qi

qi−1∑

k=0

∣
∣
∣
I p�

i (k) − I pi (k)
∣
∣
∣ , (8)

where I p�
i (k) denotes the i-th reference trajectory and

I pi (k)
the actual trajectory at time point k, where i = 1, . . . , 43.We
note that reference trajectories have sightly different lengths,
which is described by the variable qi .

The values of δi for all the trajectories are shown in Fig. 4.
As shown in the figure, when relying only on feedforward
control, the tracking accuracy of the neural network is much
worse than ILC even though the neural network generalizes
well (there is almost no performance difference between
training and validation trajectories). The results from our
two-degrees-of-freedom control loop (as shown in Fig. 2b)
are also included and labeled LBIC (learning-based itera-
tive control). The final tracking accuracy is as good as ILC,
reaching an average error of under 0.02m.

In Fig. 5 we compare the tracking results of the LBIC
framework and ILC on the same reference trajectory as

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

Index of ball

D
is
ta
nc
e
er
ro
r

δ
in

m ILC CNN LBIC

Fig. 4 The figure shows the tracking error in the global coordinate sys-
tem {I} of all reference trajectories. The left side of the dashed line
represents trajectories in the training set, whereas the right side corre-
sponds to trajectories in the validation set. The index (x-axis) is sorted
in ascending order according to the results of ILC on the training data
set and validation data set, respectively

0 0.5 1 1.5 2 2.5

−40
−20

0
20

Time t in s

A
ng

le
θ
in

de
gr
ee

ydes ILC LBIC

(a) First degree of freedom

0 0.5 1 1.5 2 2.5

−60

−40

Time t in s

A
ng

le
θ
in

de
gr
ee

ydes
ILC
LBIC

(b) Second degree of freedom

0 0.5 1 1.5 2 2.5

−60
−50
−40
−30

Time t in s

A
ng

le
θ
in

de
gr
ee

ydes
ILC
LBIC

(c) Third degree of freedom

Fig. 5 The figure shows the results of the LBIC framework and the
last iteration of the ILC. The fixed reference trajectories ydes are shown
with dashed curves. The results of the last iteration y obtained by the
different methods are shown in solid curves. "ILC" denotes the results
of the ILC method and "LBIC" our reinforcement learning framework.
This reference trajectory is from the validation data set.We note that the
movement range is large (−50◦ in the first degree of freedom, −65◦ in
the second degree of freedom, and−65◦ in the third degree of freedom)
and that the motion is dynamic reaching 5m s−1 at the interception
point

shown in Fig. 3 from the validation set. As can be seen from
the figure, the generalization results of the LBIC framework
are very close to the tracking results of ILC. It is also worth
noting that the average root-mean squared tracking error over
all ball trajectories obtained by theLBIC framework is almost
as good as the learning results of ILC in both the training and
validation data sets, see Fig. 4. This indicates that our LBIC
framework successfully generalizes the results from ILC to
reference trajectories sampled from pydes .

123

Autonomous Robots (2023) 47:1387–1403 1397

Fig. 6 The figure shows the interception control loop used to intercept the table tennis ball in real time. The interception control loop consists of
three parts that run independently at different frequencies, and exchange data through shared memory

3.4 Online planning for intercepting ping-pong balls

So far, we have successfully used our reinforcement learning
framework to achieve high-precision tracking of trajectories
sampled from pydes . However, there is still a step missing to
reach our ultimate goal of intercepting and returning table
tennis balls. Here, we propose the interception control loop
as shown in Fig. 6. We used the Python interface developed
by Berenz et al. (2021) for controlling the robot arm, and we
used the Pyhton package SharedArray to implement the
shared memory.

As can be seen from the figure, our interception control
loop consists of three parts, the feedforward computation
algorithm, the planning algorithm and the ball prediction
algorithm. These three parts operate independently at differ-
ent frequencies, and exchange data through shared memory.
A ball leaving the launcher is considered to be the start of the
round, while a successful interception or a miss is considered
to be the end of the round.

The ball prediction algorithm runs at 60Hz and works
as follows: While the table tennis ball is flying towards the
robot arm, the vision system (Gomez-Gonzalez et al., 2019)
tracks the table tennis ball through four RGB cameras hanging
from the ceiling. The vision system returns measurements of
the table tennis ball, which are processed with our EKF that

estimates the state ζT = (
I pT, IvT

)
of the table tennis ball,

where I p ∈ R
3 denotes the position and Iv ∈ R

3 the velocity.
It is worth mentioning that in our experiments the influence
of the ball’s angular velocity is negligible, and therefore,
not included in our model. A more detailed study about the
influence of spin can be found in Achterhold et al. (2023).

After getting an estimate of the state ζ of the table tennis
ball at time point k, we can predict the remaining part of the
ball’s trajectory using the ball’s motion model (Zhao et al.,
2017; Glover &Kaelbling, 2014). However, according to the
rules of table tennis, we must intercept the ball after the ball
collides with the table. In order to predict the ball’s trajectory
after the impact, an accurate impact model is required. We
use a data-driven approach to obtain this model, and collect
120 table tennis ball trajectories, which include an impact
with the table. We assume that the state ζ right before and
after the impact are ζ− and ζ+, respectively, where the posi-
tion remains unchanged, p+ = p−. We use the collected
data to derive a linear impact model � ∈ R

3×3, v+ = �v−,
by solving a least-squares problem. By combining the esti-
mate of the state ζ , the ball’s motion model and ball’s impact
model �, we can therefore predict its trajectory and calculate
the interception point I pint as defined in Sect. 3.1. The inter-
ception point will be saved in the shared memory, where we
overwrite I pint from the previous iteration.

123

1398 Autonomous Robots (2023) 47:1387–1403

0 0.5 1 1.5 2 2.5

−20
0

20

40

Time t in s

A
ng

le
θ
in

de
gr
ee

y
ydes

(a) First degree of freedom

0 0.5 1 1.5 2 2.5

−60

−50

−40

−30

Time t in s

A
ng

le
θ
in

de
gr
ee

y
ydes

(b) Second degree of freedom

0 0.5 1 1.5 2 2.5

−60

−50

−40

−30

Time t in s

A
ng

le
θ
in

de
gr
ee

y
ydes

(c) Third degree of freedom

Fig. 7 The figure shows the tracking performance of our reinforcement
learning framework in joint space for an interception round in real time.
The figure shows the tracking performance of the first, second and third
degree of freedom of the robot arm from top to bottom. The reference
trajectory as computed and updated by the planning algorithm is shown
with the dashed line, while the actual trajectory is shown with a solid
line

The planning algorithm runs at 30Hz. The algorithm will
first read the latest interception point from the shared mem-
ory. If the interception point has been updated, the planning
algorithmwill re-plan the trajectory as described in Sect. 3.1,
with the sole difference that the trajectory’s starting point is
changed from I pini to the planned position (according to the
reference trajectory from the previous iteration) at the cur-
rent time point. The updated trajectorywill be saved in shared
memory and overwrite the data from the previous iteration.

The feedforward computation algorithm runs at 10Hz.
The algorithm will read the current reference trajectory
from the shared memory, and then evaluates the functions
πi , i = 1, 2, 3 and computes feedforward inputs u� (ydes)
for the given reference trajectory (see Sect. 3.3). The result-
ing u� (ydes) are written to the shared memory, where they
are read by the underlying low-level controller. This low-
level control loop runs at 100Hz and combines the nonlinear
feedforward with the feedback from a PID controller (see
Fig. 2b).

Figure 7 shows the tracking performance of an inter-
ception round in the joint space. We note that the tracking

0
0.5 0

0.5
1

1.5
2

0

0.5

x in m
y in m

z
in

m

incoming return y ydes Ipint

Fig. 8 The figure shows the an interception round in the global coordi-
nate system {I}. The positions of the ping-pong ball before and after the
interception are indicated by red and black circles, respectively. Some-
times the vision system is not able to correctly identify the ping-pong
ball (due to occlusion), therefore some parts of the ball trajectory are
missing, which also increases the difficulty of ball’s trajectory predic-
tion. The reference trajectory ydes and the actual trajectory y of the
end effector are given by the black dashed line and the blue solid line,
respectively. The final interception point I pint is marked as a cross on
the planned trajectory

error increases compared to the static experiments presented
in Sect. 3.2.2, which is due to the re-planning algorithm
described in the previous paragraphs. The third degree of
freedomhas the largest tracking error,which can be attributed
to its high nonlinearity (it has the largest friction due to
the rope-pulley mechanism that connects the joints with the
PAMs).

Figure 8 shows an interception round in the global coor-
dinate system {I}. We notice that the tracking error in the
initial phase of the trajectory is relatively high. We believe
that this is due to the poor prediction of the interception point
I pint at the beginning, which leads to large differences in ydes
when the trajectory is re-planned during the first several iter-
ations. As a result, the prediction accuracy of the model πi

also decreases compared with the static experiments.We find
that as the ball flies towards the arm, the prediction error of
I pint converges to zero, and the tracking error also decreases,
in particular after the ball has impacted the table.

In Fig. 9, we show the distance error δ of 60 interceptions,
and the results are sorted in ascending order. The average
accuracy is about 0.07m. Compared with the static experi-
ments, there is a 0.05m increase in average accuracy, which
is, however, still sufficient for intercepting table tennis balls.
In all 60 experiments, the robot managed to successfully
intercept the ball.

4 Discussion and context

The following section provides additional context to our rein-
forcement learning framework and discusses data efficiency,

123

Autonomous Robots (2023) 47:1387–1403 1399

0 10 20 30 40 50 60

6.8

7.2

7.6
·10−2

Index of ball

D
is
ta
nc
e
er
ro
r

δ
in

m

Fig. 9 The figure shows the tracking error of the end effector of the
robot arm in the Euclidean space for 60 interceptions. The results are
sorted in ascending order

modularity and stability of the resulting control loop shown
in Fig. 2b.

Data efficiency: As we discussed in Sect. 1, one of the
drawbacks of many reinforcement learning algorithms is
their high sample complexity resulting in training procedures
that sometimes take weeks or even months. In our approach,
the main part of the learning is done by the ILC. Due to the
fact that an approximate model of the underlying system is
incorporated, the ILC converges relatively quickly. We run
the ILC for 30 iterations, however, the tracking performance
improves only slightly over the last ten iterations. The obser-
vation that ILC is very data efficient is in line with numerous
prior works (see Sect. 1). As a reference, we compare the
sample complexity of our approach to Büchler et al. (2020),
which optimizes over feedback policies. In Fig. 10 we visu-
ally show the comparison of the data efficiency of the two
methods. The method in Büchler et al. (2020) was trained
for about 14 hours for an interception task. In our experi-
ments, we require about an hour for conducting an extended
system identification that derives a non-parametric frequency
response function and quantifies the nonlinearities, seeMa et
al. (2022). Themodel F̃ (x0, u, 0), which is used as a starting
point for the ILC, is obtained via a parametric fit through the
non-parametric frequency response function. However, if the
model structure is fixed, only about 15 min of data would be
enough for identifying the parameters in (5). As discussed
in Sect. 3.1 the trajectories ydes have about 2.5 s length. We
require about 1.5 s extra to return to the initial configuration,
which results in about 4 s for executing an ILC iteration.
Our data set for training contains 30 trajectories sampled
from pydes , which mean that the ILC takes 40 min to exe-
cute 20 iterations and 60 min to execute 30 iterations. We
find that running ILC for 20 iterations is in principle enough
for obtaining a reasonable approximation of u� (ydes). This
means that in total our approach requires only about 1.5− 2
hours, which includes the conservative estimate of the time
spent on the system identification. Alternatively F̃ (x0, u, 0)
could also be modeled from first principles. It is important to
note, however, that Büchler et al. (2020) did not focus on data
efficiency at all. The training could be made more efficient
and stopped at an earlier stage. We would like to highlight

Fig. 10 The figure shows the comparison of two reinforcement learning
algorithms in terms of sampling efficiency. Our method is denoted by
RL2. After learning for 20 iterations, we already obtain a reasonable
estimate of u� (ydes). However, we perform ten more iterations for each
trajectory to improve accuracy further

that while this approach proves to be feasible and beneficial
for the trajectory tracking task addressed in this paper, its
applicability and advantages may vary for different learning
tasks.

Modularity: Compared to black-box approaches, our
framework is much more modular. While this enables sepa-
rate tuning of the different components in a principlemanner,
it also requires engineering skills and insights into the robotic
platform (such as tuning the Kalman filter for the ILC or
the estimation of the ball’s state, defining the interception
point I pint, tuning the architecture of the CNN). An impor-
tant advantage, compared to a more black-box end-to-end
learning approach is, however, that the individual compo-
nents can be debugged separately.

Stability of the closed-loop: We note that our learn-
ing framework only optimizes over feedforward inputs.
This departs from the Hamilton–Jacobi–Bellman perspec-
tive, which is prevalent in reinforcement learning. While
feedforward cannot attenuate noise and disturbances, there
is also very little risk that the system is destabilized during
training. These observations even apply when running the
interception control loop described in Sect. 3.4. Although we
continuously re-plan feedforward commands, the reference
trajectories do not depend on the current state of the robot.

5 Conclusion

In summary,wepropose a new reinforcement learning frame-
work for complex dynamic tasks in robotics. The framework
transforms reinforcement learning into a supervised learning
task. Important advantages include data efficiency, modular-
ity and the fact that prior knowledge can be included to speed
up learning.

We apply our framework to perform a trajectory tracking
task with a robot arm driven by pneumatic artificial muscles.
We use our framework to intercept and return ping-pong balls
that are played to the robot arm and achieve an interception
rate of 100% on more than 107 consecutive tries.

123

1400 Autonomous Robots (2023) 47:1387–1403

While this article is focused on an offline method to train
the policy network, we believe that a fruitful and interesting
avenue for future work would be to design online learning
methods. Moreover, the results from this article form the
basis for developing interception policies that return incom-
ing balls to any predefined target on the table. This could then
also enable two robots to play table tennis with each other.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10140-
6.

Acknowledgements Hao Ma and Michael Muehlebach thank the Ger-
man Research Foundation, the Branco Weiss Fellowship, administered
by ETH Zurich, and the Center for Learning Systems for the support.

Author Contributions HaoMa did the experimental work and prepared
the first version of the manuscript. Hao Ma and Michael Muehlebach
then improved themanuscript with feedback fromDieter Büchler. Bern-
hard Schölkopf funded the experimental setup.

Funding Open Access funding enabled and organized by Projekt
DEAL. This work received funding from the German Research Foun-
dation, the BrancoWeiss Fellowship, administered by ETH Zurich, and
the Center for Learning Systems.

Availability of data and materials The robotics platform is made from
off-the-shelf components, as described in earlier works. The article con-
tains all the necessary material to reproduce the results.

Declarations

Competing Interests The authors have no competing interests to
declare that are relevant to the content of this article.

Code availability Important parts of our source code are available here:
https://github.com/intelligent-soft-robots. The remaining parts can be
reproduced from the article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Transfer functions

The deterministic part of transfer functions for all degrees of
freedom are shown as follows:

y1(z) =
(−0.27 + 0.39z−1 − 0.13z−2

) · 10−5

1 − 2.82z−1 + 2.67z−2 − 0.84z−3 u1(z),

y2(z) =
(−0.26 + 0.25z−1

) · 10−6

1 − 2.85z−1 + 2.71z−2 − 0.86z−3 u
2(z),

y3(z) =
(−0.52 + 0.97z−1 − 0.46z−2

) · 10−5

1 − 2.91z−1 + 2.84z−2 − 0.93z−3 u3(z).

Appendix B: State spacematrices

The parametric model (5) for each degree of freedom i at
time point k can be rewritten in the state-space as follows:

yi (k) =
(
ci
)T

Ai xi (k) +
(
ci
)T

biuu
i (k)

+
(
ci
)T

bid

(
di (k) + niw (k)

)
,

where ci , xi (k) , bid, b
i
u ∈ R

nin+nim, and Ai ∈ R

(
nin+nim

)×(nin+nim
)

.
Thus, the dimension of the state is defined as n =
∑3

i=1

(
nin + nim

)
. We note that both yi (k) and ui (k) are

scalar, since it is a single-input single-output system for each
degree of freedom. Next, the whole trajectory can be repre-
sented as follows:

y = A0x0 + Buu + Bd (d + nw) ,

where

(A0)
T = (

ATc, · · · , (Aq)T c
)
,

Bu =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cTbu
cTAbu cTbu

...
...

. . .

cTAq−2bu cTAq−3bu · · · cTbu
cTAq−1bu cTAq−2bu · · · · · · cTbu

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Bd =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cTbd
cTAbd cTbd

...
...

. . .

cTAq−2bd cTAq−3bd · · · cTbd
cTAq−1bd cTAq−2bd · · · · · · cTbd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

and for notational convenience, we omitted all superscripts
(·)i , which represent the degree of freedom. Finally, the
matrices in (6) can be represented as follows:

A0 = diag
{
Ai
0

}3

i=1
, Bu = diag

{
Bi
u

}3

i=1
,

Bd = diag
{
Bi
d

}3

i=1
, xT0 =

((
x10

)T
,
(
x20

)T
,
(
x30

)T
)

.

123

https://doi.org/10.1007/s10514-023-10140-6
https://doi.org/10.1007/s10514-023-10140-6
https://github.com/intelligent-soft-robots
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots (2023) 47:1387–1403 1401

References

Achterhold, J., Tobuschat, P., Ma, H., et al. (2023). Black-box vs. gray-
box: A case study on learning table tennis ball trajectory prediction
with spin and impacts. In:Proceedings of the learning for dynamics
and control conference, pp. 878–890.

Ahn, H. S., Chen, Y., &Moore, K. L. (2007). Iterative learning control:
Brief survey and categorization. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 37(6), 1099–1121.

Alet, F., Lozano-Perez, T., & Kaelbling, L. P. (2018). Modular meta-
learning. In: Proceedings of the conference on robot learning, pp.
856–868

Arimoto, S., Kawamura, S.,Miyazaki, F. (1986). Convergence, stability
and robustness of learning control schemes for robotmanipulators.
In:Proceedings of the international symposiumon robotmanipula-
tors on recent trends in robotics: Modeling, control and education,
pp. 307–316

Ba, D. X., Dinh, T. Q., & Ahn, K. K. (2016). An integrated intelli-
gent nonlinear control method for a pneumatic artificial muscle.
IEEE/ASME Transactions on Mechatronics, 21(4), 1835–1845.

Bagnell, J., Chestnutt, J., Bradley, D., et al. (2006). Boosting structured
prediction for imitation learning. In: Proceedings of the advances
in neural information processing systems, pp. 1–8

Berenz, V., Naveau, M., Widmaier, F., et al. (2021). The o80 c++
templated toolbox: Designing customized python APIs for syn-
chronizing realtime processes. Journal of Open Source Software,
6(66), 2752–2755.

Bertsekas, D. (2012). Dynamic programming and optimal control: Vol-
ume I. Athena Scientific

Bertsekas, D. (2019). Reinforcement learning and optimal control.
Athena Scientific.

Boedecker, J., Springenberg, J. T., Wülfing, J., et al. (2014). Approxi-
mate real-time optimal control based on sparse gaussian process
models. In IEEE symposium on adaptive dynamic programming
and reinforcement learning pp. 1–8.

Bristow, D., Tharayil, M., & Alleyne, A. (2006). A survey of iterative
learning control. IEEE Control Systems Magazine, 26(3), 96–114.

Brunner, G., Richter, O., Wang, Y., et al. (2018). Teaching a machine
to read maps with deep reinforcement learning. In: Proceedings of
the AAAI conference on artificial intelligence, pp. 2763–2770

Büchler, D., Guist, S., Calandra, R., et al. (2020). Learning to
play table tennis from scratch using muscular robots. pp. 1–11.
arXiv:2006.05935v1

Büchler,D., Calandra, R.,&Peters, J. (2023). Learning to control highly
accelerated ballistic movements on muscular robots. Robotics and
Autonomous Systems, 159, 104230–104241.

Cao, Q., Lin, L., Shi, Y., et al. (2017). Attention-aware face hallucina-
tion via deep reinforcement learning. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 690–
698

Chen, Z., Liang,X.,&Zheng,M. (2021). Deep iterative learning control
for quadrotor’s trajectory tracking. In: Proceedings of the Ameri-
can control conference, pp. 1408–1413

Cheng, R., Orosz, G., Murray, R. M., et al. (2019). End-to-end safe
reinforcement learning through barrier functions for safety-critical
continuous control tasks. pp 1–11. arxiv:1903.08792v1

Deisenroth, M. P., Englert, P., Peters, J., et al. (2014). Multi-task pol-
icy search for robotics. In: Proceedings of the IEEE international
conference on robotics and automation, pp. 3876–3881

Devrim Kaba, M., Gokhan Uzunbas, M., Nam Lim, S. (2017). A rein-
forcement learning approach to the view planning problem. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 6933–6941

Dittrich, A., Schneider, J., Guist, S., et al. (2022). AIMY: An open-
source table tennis ball launcher for versatile and high-fidelity
trajectory generation. pp 1–14. arXiv:2210.06048v2

Dosovitskiy, A., Ros, G., Codevilla, F., et al. (2017). CARLA: An open
urban driving simulator. pp 1–16. arXiv:1711.03938v1

Doyle, J. (1978). Guaranteed margins for LQG regulators. IEEE Trans-
actions on Automatic Control, 23(4), 756–757.

Fathinezhad, F., Derhami, V., & Rezaeian, M. (2016). Supervised fuzzy
reinforcement learning for robot navigation. Applied Soft Comput-
ing, 40, 33–41.

Finn, C., Yu, T., Fu, J., et al. (2017). Generalizing skills with semi-
supervised reinforcement learning, pp. 1–11. arXiv:1612.00429v2

Firoiu, V., Whitney, W. F., & Tenenbaum, J. B. (2017). Beating the
world’s best at super smash bros with deep reinforcement learning,
pp. 1–7. arXiv:1702.06230v3

Furrer, F., Burri, M., Achtelik, M., et al. (2016). RotorS—A modular
Gazebo MAV simulator framework. In: Proceedings of the robot
operating system: The complete reference, pp. 595–625

Ganguly, S., Garg, A., Pasricha, A., et al. (2012). Control of pneumatic
artificial muscle system through experimental modelling. Mecha-
tronics, 22(8), 1135–1147.

Garcia, J., & Fernandez, F. (2015). A comprehensive survey on safe
reinforcement learning. Journal of Machine Learning Research,
16, 1437–1480.

Geering, H. P. (2007). Optimal control with engineering applications.
Springer.

Glover, J., & Kaelbling, L. P. (2014). Tracking the spin on a ping pong
ball with the quaternion bingham filter. In: Proceedings of the
IEEE international conference on robotics and automation, pp.
4133–4140.

Gomez-Gonzalez, S., Nemmour, Y., Schölkopf, B., et al. (2019). Reli-
able real-time ball tracking for robot table tennis. Robotics, 8(4),
90–102.

Grzes, M. (2017). Reward shaping in episodic reinforcement learning.
In: Proceedings of the international conference on autonomous
agents and multiagent systems, pp. 565–573.

Heess, N., Tb, D., Sriram, S., et al. (2017). Emergence of locomotion
behaviours in rich environments, pp. 1–14. arXiv:1707.02286v2

Hofer, M., & D’Andrea, R. (2018). Design, modeling and control of
a soft robotic arm. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems, pp. 1456–1463

Hofer, M., Spannagl, L., & D’Andrea, R. (2019). Iterative learning
control for fast and accurate position tracking with an articulated
soft robotic arm. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems, pp. 6602–6607

Jian, Y., Huang, D., Liu, J., et al. (2019). High-precision tracking of
piezoelectric actuator using iterative learning control and direct
inverse compensation of hysteresis. IEEE Transactions on Indus-
trial Electronics, 66(1), 368–377.

Kalashnikov, D., Irpan, A., Pastor, P., et al. (2018). QT-Opt: Scalable
deep reinforcement learning for vision-based robotic manipula-
tion, pp. 1–23. arXiv:1806.10293v3

Kansky, K., Silver, T., Mély, D. A., et al. (2017). Schema net-
works: Zero-shot transfer with a generative causal model of
intuitive physics. In: Proceedings of the international conference
on machine learning, pp. 1809–1818

Kaushik, R., Anne, T., Mouret, J. B. (2020). Fast online adaptation in
robotics through meta-learning embeddings of simulated priors.
In: Proceedings of IEEE/RSJ international conference on intelli-
gent robots and systems, pp. 5269–5276.

Kober, J. J., Andrew, B., & Peters, J. (2013). Reinforcement learn-
ing in robotics: A survey. The International Journal of Robotics
Research, 32(11), 1238–1274.

Kogiso, K., Sawano, K., Itto, T., et al. (2012). Identification procedure
for mckibben pneumatic artificial muscle systems. In Proceedings

123

http://arxiv.org/abs/2006.05935v1
http://arxiv.org/abs/1903.08792v1
http://arxiv.org/abs/2210.06048v2
http://arxiv.org/abs/1711.03938v1
http://arxiv.org/abs/1612.00429v2
http://arxiv.org/abs/1702.06230v3
http://arxiv.org/abs/1707.02286v2
http://arxiv.org/abs/1806.10293v3

1402 Autonomous Robots (2023) 47:1387–1403

of the IEEE/RSJ international conference on intelligent robots and
systems, pp. 3714–3721

Konyushkova, K., Zolna, K., Aytar, Y., et al. (2020). Semi-supervised
reward learning for offline reinforcement learning. pp. 1–12.
arXiv:2012.06899v1

Kupcsik, A., Deisenroth, M. P., Peters, J., et al. (2017). Model-based
contextual policy search for data-efficient generalization of robot
skills. Artificial Intelligence, 247, 415–439.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., et al. (2016).
Building machines that learn and think like people. pp. 1–58.
arXiv:1604.00289v3

Laskin, M., Lee, K., Stooke, A., et al. (2020). Reinforcement Learning
with Augmented Data. In: Proceedings of the advances in neural
information processing systems, pp. 19884–19895

Laud, A. D. (2004). Theory and application of reward shaping in
reinforcement learning. PhD thesis, University of Illinois at
Urbana-Champaign

Levine, S., & Koltun, V. (2014). Learning complex neural network
policies with trajectory optimization. In: Proceedings of the inter-
national conference on machine learning, pp. 829–837

Liu, F., Li, S., Zhang, L., et al. (2017). 3DCNN-DQN-RNN: A deep
reinforcement learning framework for semantic parsing of large-
scale 3D point clouds. In: Proceedings of the IEEE international
conference on computer vision, pp. 5678–5687

Luo, F. M., Xu, T., Lai, H., et al. (2022). A survey on model-based
reinforcement learning, pp. 1–28. arXiv:2206.09328v1

Luo, J., & Hauser, K. (2017). Robust trajectory optimization under fric-
tional contact with iterative learning. Autonomous Robots, 41(6),
1447–1461.

Ma, H., Büchler, D., Schölkopf, B., et al. (2022). A learning-based itera-
tive control framework for controlling a robot arm with pneumatic
artificialmuscles. In:Proceedings of robotics: Science and systems
XVIII, pp. 1–10

Matas, J., James, S., & Davison, A. J. (2018). Sim-to-real reinforce-
ment learning for deformable object manipulation, pp. 1–10.
arXiv:1806.07851v2

McCord, C., Queralta, J. P., Gia, T. N., et al. (2019). Distributed pro-
gressive formation control for multi-agent systems: 2D and 3D
deployment of UAVs in ROS/Gazebo with RotorS. In European
conference on mobile robots, pp. 1–6.

Moldovan, T.M.,Abbeel, P. (2012).Safe exploration inmarkov decision
processes, pp. 1–10. arXiv:1205.4810v3

Mueller, F. L., Schoellig, A. P., D’Andrea, R. (2012). Iterative Learn-
ing of feed-forward corrections for high-performance tracking. In:
Proceedings of the IEEE/RSJ international conference on intelli-
gent robots and systems, pp. 3276–3281

Nickel, V. L., Perry, J., & Garrett, A. L. (1963). Development of use-
ful function in the severely paralyzed hand. The Bone and Joint
Journal, 45(5), 933–952.

Oh, J., Chockalingam, V., Satinder, et al. (2016). Control of memory,
active perception, and action in minecraft. In: Proceedings of the
international conference on machine learning, pp. 2790–2799

Paulus, R., Xiong, C., & Socher, R. (2017). A deep reinforced model
for abstractive summarization, pp. 1–12. arXiv:1705.04304v3

Piazzi, A., & Visioli, A. (1997). An interval algorithm for minimum-
jerk trajectory planning of robot manipulators. In: Proceedings of
the IEEE conference on decision and control, pp. 1924–1927.

Piche, A., Pardinas, R., Vazquez, D., et al. (2022). Implicit
offline reinforcement learning via supervised learning, pp. 1–14.
arXiv:2210.12272v1

Polydoros, A. S., &Nalpantidis, L. (2017). Survey ofmodel-based rein-
forcement learning: applications on robotics. Journal of Intelligent
& Robotic Systems, 86(2), 153–173.

Quintanilla, R., Wen, J. T. (2007). Iterative learning control for nons-
mooth dynamical systems. In:Proceedings of the IEEE conference
on decision and control, pp. 245–251

Ramya Ramakrishnan, E. K., Debadeepta, D., Eric, H., et al. (2020).
Blind spot detection for safe sim-to-real transfer. Journal of Arti-
ficial Intelligence Research,67(1), 1–24.

Ravichandar, H., Polydoros, A. S., Chernova, S., et al. (2020). Recent
advances in robot learning from demonstration.Review of Control,
Robotics, and Autonomous Systems, 3(1), 297–330.

Schneider, J. (1996). Exploiting model uncertainty estimates for safe
dynamic control learning. In: Proceedings of the advances in neu-
ral information processing systems, pp. 1047–1053

Schoellig, A. P., Mueller, F. L., & D’Andrea, R. (2012). Optimization-
based iterative learning for precise quadrocopter trajectory track-
ing. Autonomous Robots, 33(1), 103–127.

Sferrazza, C.,Muehlebach,M.,&D’Andrea, R. (2020). Learning-based
parametrized model predictive control for trajectory tracking.
Optimal Control Applications and Methods, 41(6), 2225–2249.

Shah, S., Dey, D., Lovett, C., et al. (2017). AirSim: High-fidelity
visual and physical simulation for autonomous vehicles, pp 1–14.
arXiv:1705.05065v2

Silver, D., Huang, A., Maddison, C. J., et al. (2016). Mastering the
game of go with deep neural networks and tree search. Nature,
529(7587), 484–489.

Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017). Mastering the
game of go without human knowledge. Nature, 550(7676), 354–
359.

Tessler, C., Givony, S., Zahavy, T., et al. (2017). A deep hierarchical
approach to lifelong learning in minecraft. In: Proceedings of the
AAAI conference on artificial intelligence, pp. 1553–1561

Thrun, S., & Pratt, L. (1998). Learning to learn. US: Springer.
Todorov, E., Erez, T., & Tassa, Y. (2012). MuJoCo: A physics engine

for model-based control. In: Proceedings of the IEEE/RSJ inter-
national conference on intelligent robots and systems, pp. 5026–
5033.

Tondu, B., & Zagal, S. (2006). McKibben artificial muscle can be in
accordance with the Hill skeletal muscle model. In: Proceedings
of the RAS-EMBS international conference on biomedical robotics
and biomechatronics, pp. 714–720

Van Rooijen, J., Grondman, I., & Babuška, R. (2014). Learning rate
free reinforcement learning for real-time motion control using a
value-gradient based policy. Mechatronics, 24(8), 966–974.

Vanschoren, J. (2018). Meta-learning: A survey, pp. 1–29.
arXiv:1810.03548v1

Wang, T., Bao, X., Clavera, I., et al. (2019b). Benchmarking model-
based reinforcement learning, pp. 1–25. arxiv:1907.02057v1

Wang,H., Zheng, S., Xiong, C., et al. (2019a). On the generalization gap
in reparameterizable reinforcement Learning. In: Proceedings of
the international conference on machine learning, pp. 6648–6658

Wilson, A., Fern, A., & Tadepalli, P. (2014). Using trajectory data to
improve Bayesian optimization for reinforcement learning. Jour-
nal of Machine Learning Research, 15, 253–282.

Yogatama, D., Blunsom, P., Dyer, C., et al. (2016). Learning to com-
pose words into sentences with reinforcement learning, pp. 1–10.
arXiv:1611.09100v1

Zhang, X., & Lapata, M. (2017). Sentence simplification with deep
reinforcement learning, pp. 1–11. arxiv:1703.10931v2

Zhao, W., Queralta, J. P., Westerlund, T. (2020). Sim-to-real transfer in
deep reinforcement learning for robotics: A survey. In: Proceed-
ings of the IEEE symposium series on computational intelligence,
pp. 737–744.

Zhao, Y., Xiong, R., & Zhang, Y. (2017). Model based motion state
estimation and trajectory prediction of spinning ball for ping-pong
robots using expectation-maximization algorithm. Journal of Intel-
ligent & Robotic Systems,87(3), 407–423.

Zhao, Y. M., Lin, Y., Xi, F., et al. (2015). Calibration-based iterative
learning control for path tracking of industrial robots. IEEE Trans-
actions on Industrial Electronics, 62(5), 2921–2929.

123

http://arxiv.org/abs/2012.06899v1
http://arxiv.org/abs/1604.00289v3
http://arxiv.org/abs/2206.09328v1
http://arxiv.org/abs/1806.07851v2
http://arxiv.org/abs/1205.4810v3
http://arxiv.org/abs/1705.04304v3
http://arxiv.org/abs/2210.12272v1
http://arxiv.org/abs/1705.05065v2
http://arxiv.org/abs/1810.03548v1
http://arxiv.org/abs/1907.02057v1
http://arxiv.org/abs/1611.09100v1
http://arxiv.org/abs/1703.10931v2

Autonomous Robots (2023) 47:1387–1403 1403

Zhuang, F., Qi, Z., Duan, K., et al. (2021). A comprehensive survey on
transfer learning. Proceedings of the IEEE, 109(1), 43–76.

Zughaibi, J., Hofer, M., D’Andrea, R. (2021). A fast and reliable
pick-and-place application with a spherical soft robotic arm. In:
Proceedings of the IEEE international conference on soft robotics,
pp. 599–606.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Hao Ma received the B.Sc. from
Jilin University in 2017 and M.Sc.
from TU Munich in 2021. He
graduated with high distinction
from TU Munich. His master’s
thesis focused on modeling and
control of a robotic arm driven
by pneumatic artificial muscles.
Currently, he is a PhD student
of the ETH-Max Planck Center
for Learning Systems and is affil-
iated with both the Learning and
Dynamical Systems group at the
Max Planck Institute for Intelli-
gent Systems and the Institute for

Dynamic Systems and Control at ETH Zurich. His research interests
include the control of complex systems and machine learning in the
context of robotics.

Dieter Büchler received the B.Eng.
degree in information and elec-
trical engineering from the HAW
Hamburg, Hamburg, Germany, in
2012, the M.Sc. degree in biomed-
ical engineering from the Imperial
College London, London, U.K.,
in 2013, and the Ph.D. degree
from the Technische Universität
Darmstadt, Darmstadt, Germany,
in 2019 under the supervision of
Jan Peters. He is currently a
Research Group Leader with the
Department of Empirical Inference,
Max Planck Institute for Intelli-

gent Systems, Tübingen, Germany, led by Bernhard Schölkopf. His
research interests include control, machine learning, and robotics.

Bernhard Schölkopf scientific
interests are in machine learning
and causal inference. He has
applied his methods to a number
of different fields, ranging from
biomedical problems to compu-
tational photography and astron-
omy. Bernhard studied physics and
mathematics and earned his Ph.D.
in computer science in 1997,
becoming a Max Planck direc-
tor in 2001. He has (co-)received
the Berlin-Brandenburg Academy
Prize, the Royal Society Milner
Award, the Leibniz Award, the

BBVA Foundation Frontiers of Knowledge Award, and the ACM
AAAI Allen Newell Award. He is Fellow of the ACM and of the
CIFAR Program “Learning in Machines and Brains”, a member of the
German Academy of Sciences, and a Professor at ETH Zurich. He
helped start the MLSS series of Machine Learning Summer Schools,
the Cyber Valley Initiative, the ELLIS society, and the Journal of
Machine Learning Research, an early development in open access and
today the field’s flagship journal.

Michael Muehlebach studied
mechanical engineering at ETH
Zurich and specialized in robotics,
systems, and control during his
Master’s degree. He received the
B.Sc. and the M.Sc. in 2010 and
2013, respectively, before joining
the Institute for Dynamic Systems
and Control for his Ph.D. He grad-
uated under the supervision of Prof.
R. D’Andrea in 2018 and joined
the group of Prof. Michael I. Jor-
dan at the University of Califor-
nia, Berkeley as a postdoctoral
researcher. In 2021 he started as

an independent group leader at the Max Planck Institute for Intelligent
Systems. Michael recieved the Outstanding D-MAVT Bachelor Award
for his Bachelor’s degree and the Willi-Studer prize for the best Mas-
ter’s degree. His Ph.D. thesis was awarded with the ETH Medal and
the HILTI prize for innovative research. He was also awarded a Branco
Weiss Fellowship and an Emmy Noether Fellowship, which funds his
research group.

123

	Reinforcement learning with model-based feedforward inputs for robotic table tennis
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution
	1.3 Structure

	2 Reinforcement learning as a supervised learning task
	3 Implementation tutorial
	3.1 Sampling reference trajectories
	3.2 Label generation with ILC
	3.2.1 Formulation
	3.2.2 Learning results

	3.3 Generalization with parameterized policy network
	3.4 Online planning for intercepting ping-pong balls

	4 Discussion and context
	5 Conclusion
	Acknowledgements
	Appendix A: Transfer functions
	Appendix B: State space matrices
	References

