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Abstract We analyse, for the first time, the popular loop

closing module of a well known and widely used open-source

visual SLAM (ORB-SLAM) pipeline. Investigating failures

in the loop closure module of visual SLAM is challenging

since it consists of multiple building blocks. Our meticu-

lous investigations have revealed few interesting findings.

Contrary to reported results, ORB-SLAM frequently misses

large fraction of loop closures on public (KITTI, TUM RGB-

D) datasets. One common assumption is, in such scenarios,

the visual place recognition (vPR) block of the loop closure

module is unable to find a suitable match due to extreme

conditions (dynamic scene, viewpoint/scale changes). We

report that native vPR of ORB-SLAM is not the sole rea-

son for these failures. Although recent deep vPR alternatives

achieve impressive matching performance, replacing native

vPR with these deep alternatives will only partially improve

loop closure performance of visual SLAM.

Our findings suggest that the problem lies with the sub-

sequent relative pose estimation module between the match-

ing pair. Surprisingly, using off-the-shelf SIFT based rela-

tive pose estimation (non real-time) manages to close most

of the loops missed by ORB-SLAM. This significant perfor-

mance gap between the two available methods suggests that

ORB-SLAM’s pipeline can be further matured by focussing

on the relative pose estimators, to improve loop closure per-

formance, rather than investing more resources on improv-

ing vPR. We also evaluate deep alternatives for relative pose
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estimation in the context of loop closures. Interestingly, the

performance of deep relocalization methods (e.g. MapNet)

is worse than classic methods even in loop closures scenar-

ios. This finding further supports the fundamental limitation

of deep relocalization methods recently diagnosed.

Finally, we expose the bias in the well known public

dataset (KITTI) due to which these commonly occurring

failures have alluded the community. We augment the KITTI

dataset with detailed loop closing labels. In order to com-

pentsate for the bias in the public datasets, we provide a

challenging loop closure dataset which contains challenging

yet commonly occurring indoor navigation scenarios with

loop closures. We hope our findings and the accompanying

dataset will help the community in further improving the

popular ORB-SLAM’s pipeline.

1 Introduction

Figure 1a shows a long (red) segment in the KITTI dataset

[8] where ORB-SLAM [20] misses 55 loop closing chances.

Even when the loop is closed, there are many subsequent

opportunities missed in the revisited area (KITTI-06, Fig

1b). The situation is not different with TUM RGB-D dataset

[27] (Fig. 1c-d). The KITTI dataset consists of relatively

structured motion, i.e., the car moving in a particular lane,

with little to no change in scene or viewpoint and scale. Our

results (Fig. 1e-f) indicate that these loop closure failures

are even more frequent in unstructured environments, i.e.,

SLAM performed in large open indoor spaces with small

changes in environment. In this work we investigate, for the

first time, the reason behind these failures.

ORB-SLAM [20] is an open-source and widely used vi-

sual SLAM pipeline. This open-source pipeline has been

the start-of-the-art visual SLAM for good part of the last

decade. Interest in this pipeline has led to a family of ORB-
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Fig. 1: Is ORB-SLAM closing all loops in KITTI? In KITTI-00, a large revisited sequence (red dots) containing 55 matching keyframes

is completely missed. After closing the loop, ORB-SLAM does not consider the next nine keyframes (black dots) for loop closure. There are many

missed opportunities (KITTI-05, and KITTI-06) even after these keyframes have passed. The situation remains same in TUM RGB-D. In NUST-

CLC, loop closing opportunities are relatively easy but limited (fewer red dots) in each sequence resulting in large fraction of missed loop closures.

SLAM systems (ORB-SLAM [20], ORB-SLAM2 [19], ORB-

SLAM3 [4]). This family of SLAM systems consists of many

building blocks/threads and has been mainly evaluated at

holistic level. The contribution of its individual building blocks

towards its success has seen little attention. Recently, Kan-

wal et al. [22] have demonstrated the limitations of its track-

ing module in unsupervised settings. They have proposed a

deep reinforcement learning approach to reduce its frequent

tracking failures. Similarly, Haris et al. [12] have shown the

vulnerability of its back-end optimization in case of percep-

tual aliasing.

In this work, we evaluate, for the first time, its loop clos-

ing module which has gained popularity as a separate en-

tity and has been adopted by multiple SLAM solutions. The

popularity of this loop closing module, from ORB-SLAM,

can be judged from the fact that it has been adopted, out of

the box, in many recent SLAM systems including monocu-

lar [23], stereo [10], direct [7], multi-sensor [24, 9] and rein-

forcement learning based [1] SLAM systems. Our analysis

reveals the performance gap between this module and the

other alternatives already available to the community, which

suggests that further attention to this loop closing module

can further improve the already popular open-source SLAM

pipeline.

Why have these frequent loop closing failures managed

to avoid attention? Interestingly, authors of ORB-SLAM re-

port closing all the loops in KITTI dataset. In our opinion,

KITTI dataset, although challenging in other aspects, pro-

vides long revisited areas (whole street revisited, Fig 1a-b).

This provides ample opportunities for loop closure routines

to work. Closing one loop in the whole street (containing

many opportunities) accounts for the major drift correction.

Therefore, the attention is not diverted towards the large

number of missed loop closure opportunities which offer di-

minishing returns.

In order to quantify number of missed loop closure op-

portunities, we augment the KITTI dataset [8] with detailed

loop closing labels. These labels were generated by match-

ing ≈ 27 million image pairs. These loop closing labels are

provided as scene graphs. These scene graphs clearly indi-

cate that each sequence contains large number of loop clos-

ing opportunities which are easily identified by image regis-

tration methods. What will happen when the revisited scene

contains limited loop closing opportunities? To fill this gap

we provide NUST-CLC dataset which contains 100 navi-

gation sequences, each having loop closures where the re-

visited scene is limited to 5-10 keyframes (Fig. 1e-f). Fur-

thermore, our dataset contains frequently occurring scene

changes (dynamic / viewpoint / scale). Results indicate loop
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closure is frequently missed (in 80 sequences out of 100) in

such situations.

Investigating the reason behind these surprising failures

is not trivial. Loop closing module of ORB-SLAM consists

of multiple blocks (visual place recognition (vPR), relative

pose estimation). After vPR provides a suitable matching

candidate, the subsequent relative pose estimation module

provides a constraint for the pose graph for map correction.

This relative pose estimation module is based on time tested,

handcrafted, robust optimization techniques.

Experiments with state-of-the-art loop closure embed-

ded SLAM system [20] show that the loop closure fails if

object/s are displaced/removed from the originally visited

scene. The displaced object/s do not need to occupy the

whole scene; these could be small objects (a mug, bag, book,

etc) occupying a small portion of the scene. What fails loop

closure in such situations? A general perception is that vi-

sual place recognition fails since the scene has been mod-

ified. Our experiments suggest even when vPR suggests a

valid loop closing candidate, many times the loop is not

closed due to subsequent relative pose estimation module.

Dynamic scenes are not the only challenge in loop clo-

sure. State-of-the-art loop closure enabled SLAM system

[20] provides limited viewpoint and scale invariance as indi-

cated by our experiments. In situations where a robot passes

a few inches/degrees (16.3 inches, 5◦) away from a previ-

ously visited place, despite finding the correct loop closing

candidate, the loop is not closed resulting in missing a good

drift reduction opportunity. Our experiments suggest visual

place recognition does not fail even in these situations. Sub-

sequent relative pose estimation module is the major reason

behind missed loop closure opportunities.

There has been a plethora of work on improving loop

closure for visual SLAM in the past two decades. The fo-

cus of the majority of these works has been on improv-

ing the accuracy and robustness of visual place recognition

(vPR) for improving loop closure. Consequently, amazing

vPR systems have been developed which can work in ex-

treme conditions (day-night [17, 2], virtual-real world [29],

across seasons [21, 14] and dynamic environments [16]).

The other part of loop closure routine, the relative pose es-

timation module, has received less attention. Our investiga-

tion suggests, this module is responsible for failing most of

the loop closures.

We evaluate state-of-the-art real-time deep vPR [16] against

ORB-SLAM’s vPR. Interestingly, ORB-SLAM’s vPR has

little precision. It provides candidates for almost every keyframe,

most of them being false positives. Deep vPR, on the other

hand, has excellent precision (little to no false positives)

and high recall (very few missed matches). Surprisingly, a

vPR module with a high recall only partially improves the

loop closure because the subsequent relative pose estimation

module fails the loop closing pipeline. Our analysis might

help the community dedicate attention to the relative pose

estimation block of the loop closing module similar to the

attention received by vPR block.

Interestingly, an off-the-shelf SIFT based image regis-

tration method (VSFM) manages to accurately estimate rel-

ative pose for the majority of the scenarios missed by ORB-

SLAM. This significant performance gap between the two

available methods suggests that ORB-SLAM’s pipeline can

be further matured by focussing on the relative pose esti-

mators. Perhaps the community may wish to explore using

multiple features, tailored for individual modules of SLAM

(tracking, mapping, loop closure), instead of the current one-

feature-for-all strategy. Managing multiple features will af-

fect the computation efficiency and memory requirements.

However, recent learning based feature-to-feature transform-

ers [5] might lead to more compact solutions. Additionally,

even though tracking in SLAM imposes a hard real-time

constraint, loop closure and pose graph optimization do not

impose hard real-time constraints [15], paving the way for

the use of non real-time SIFT for these modules.

How good are deep pose regressors such as SCoRe [26],

PoseNet [13], and MapNet [3] as an alternative to relative

pose estimation? We evaluate the use of MapNet [3] for rel-

ative pose estimation in visual SLAM. However, apart from

scene-specific training requirement of most of them being

a bottleneck, we come across the fundamental limitation of

these deep pose regressors reported in [25]: these deep meth-

ods fare no better than vPR methods. In other words, the

pose of the current keyframe is similar to the pose of the best

matching image in the training database. Our novel finding

suggests that this fundamental weakness of deep relocalizers

is much more severe than previously reported.

Contributions of our work:

– We provide in-depth analysis of ORB-SLAM’s loop clo-

sure routine, outlining its failure cases, finding out what

fails the loop closure and testing alternatives for vPR

and relative pose estimation. To the best of our knowl-

edge, this performance gap analysis is not available to

the community.

– We release a challenging loop closure dataset, NUST-

CLC. The dataset can serve as a benchmark for eval-

uating loop closures in challenging yet common nav-

igation scenarios. We additionally augment KITTI se-

quences with loop closure ground truth.

2 Dissecting Loop Closure in ORB-SLAM

ORB-SLAM is current state-of-the-art in loop closure en-

abled visual SLAM and is widely known and used in re-

search community 1. The loop closure routine of ORB-SLAM

1 ORB-SLAM module is included in MATLAB R2020a release

making it the first visual SLAM system to appear in MATLAB.
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Fig. 2: Detailed flow-chart of loop closure routine in ORB-SLAM

is described in [18]. It uses DBoW2 [6] for place recog-

nition followed by many temporal and geometrical consis-

tency checks. These individual checks are hidden behind

programming intricacies making it difficult to analyze fail-

ure cases. This section provides a detailed description of the

checks on loop closure used in ORB-SLAM. Later in Sec-

tion 4, we provide loop closure failure cases of ORB-SLAM

and identify the checks that fail in those cases. This under-

standing is essential for developing opportunistic loop clo-

sure systems for visual SLAM.

Loop closure in ORB-SLAM contains seven checks which

have to be passed before the loop can be finally closed. The

complete flow diagram is given in Figure 2. Individual checks

are explained below.

1: Initialization: The first check is to avoid loop closure

at the same place without significant motion. The search

for the loop candidate starts after 9 keyframes have passed.

Every keyframe before that is being added to the central

keyframe database.

2: Search for Loop Candidate: To search for a viable

loop candidate, bag-of-words based matching score is calcu-

lated between the current keyframe and its three connected

frames in the co-visibility graph. The minimum of those

scores is selected as a reference score. With this reference

score, the algorithm queries the central keyframe database,

where bag-of-words based matching score is calculated be-

tween the current keyframe and every frame in the keyframe

database. Keyframe having a matching score greater than

the reference score is considered a loop candidate. If a loop

candidate is not found, the current keyframe is added to the

central keyframe database aborting the loop closure routine.

3: Temporal Consistency Test: If check 2 is passed,

we have the current keyframe and its loop candidate frame.

The loop candidate is validated through temporal consis-

tency check. Temporal consistency is established if three

previous keyframes (of the current keyframe) have also passed

check 2 and have valid loop candidates. Furthermore, co-

visibility graph (keyframes having common map features)

of loop candidates for these four keyframes (current and

three previous) should have at least one common keyframe.

If consistency test fails, the current keyframe is added to the

central keyframe database aborting the loop closure routine.

4: Finding ORB Matches: After validating the loop

candidate through a temporal consistency test, the next step

is to find ORB matches between the current keyframe and its

loop candidate. If at least 20 ORB matches are not found, the

current keyframe is added to the central keyframe database

aborting the loop closure routine.

5: Geometrical Consistency (Compute SIM(3)): At

this step, RANSAC iterations are performed with matched

features to find similarity transformation using method de-

scribed in [11] followed by a guided search for more cor-

respondences. This similarity transformation is essential to

estimate the error accumulated in the trajectory. The similar-

ity transformation should be found with enough inliers (at

least 20), failing which the current keyframe is added to the

central keyframe database aborting the loop closure routine.

6: Optimize SIM(3): With the matches (3D correspon-

dences) between current keyframe and loop candidate avail-
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Fig. 3: Sample original (top) and loop closing candidate (bottom) images in NUST-CLC dataset. Most of the dynamic scenes

contain frequently occurring daily life situations e.g. an additional notice placed on the board, door open/close, human

presence etc.

able, SIM(3) is optimized to minimize reprojection error

in both frames. ORB-SLAM uses g2o optimization tool for

the purpose. This optimization should result in at least 20

inliers, failing which the current keyframe is added to the

central keyframe database aborting the loop closure routine.

7: Map-point Projection using SIM(3): Finally map-

points of the loop candidate and its connected keyframes in

co-visibility graph are projected onto the current keyframe

using SIM(3). The number of matches after the projec-

tion should be greater than 40, failing which the current

keyframe is added to the central keyframe database abort-

ing the loop closure routine.

3 Challenging Loop Closure Dataset

Exploiting the scarcity of challenging loop closure datasets,

we release a new loop closure dataset, called NUST Chal-

lenging Loop Closures (NUST-CLC), containing loop clo-

sures that are not only challenging but also occur frequently

in indoor navigation 2. The dataset contains 100 indoor nav-

igation episodes (of length ≈ 319 mins, ≈ 0.27 million im-

ages), released as videos as well as ROS bags for ready us-

age. Each navigation episode contains one challenging loop

closure opportunity. The dataset has been divided into two

categories:

– Dynamic Scenes: Dynamic scenes include situations where

a robot revisits a place with exact same viewpoint but

the scene has changed slightly (e.g. few objects moved,

2 https://github.com/sarankhaliq2326/NUST-CLC

removed or added or replaced within the scene). Our ex-

periments show loop closure fails in such situations if

the disturbed part of the scene is feature rich compared

to the remainder of the scene.

– Viewpoint/Scale Changes: Revisiting a previously vis-

ited place with the exact same pose is a very rigid and

practically difficult requirement. In practice, a navigat-

ing robot can only see a previously visited place from

a different viewpoint and location. Current state-of-the-

art ORB-SLAM’s loop closing pipeline provide limited

viewpoint and scale invariance. Consequently, a navigat-

ing robot with a large drift, passes around the previously

visited place, capturing the same scene from a slightly

different viewpoint or position, without closing the loop,

and without even knowing there is a loop closure oppor-

tunity in the vicinity.

We have kept the revisited area limited to 5-10 keyframes

in each sequence. This feature along with carefully incor-

porated dynamic/viewpoint/scale changes make our dataset

useful in evaluating robust loop closing pipelines. There are

50 navigation episodes of each category. Each episode has

been flagged as low, medium, high, or very high depending

upon the difficulty of loop closure. The difficulty is assessed

by running ORB-SLAM and finding if the loop is closed.

Low difficulty flag is associated with those episodes where

ORB-SLAM closes the loop at standard thresholds. We suc-

cessively lower thresholds (see Section 4.4), and assess the

difficulty of loop closure. Episodes where loop closure fails

even at lowest thresholds are flagged with very high diffi-

culty. There are in total 20 low, 23 medium, 23 high, and 34

very high difficulty loop closures in our dataset. Some sam-

https://github.com/sarankhaliq2326/NUST-CLC
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KITTI-00
Total revisited areas: 5
Total matching frames: 13,070

KITTI-02
Total revisited areas: 2
Total matching frames: 2,068

KITTI-05
Total revisited areas: 3
Total matching frames: 4,751

KITTI-06
Total revisited areas: 1
Total matching frames: 1,332

KITTI-07
Total revisited areas: 1
Total matching frames: 190

KITTI-09
Total revisited areas: 1
Total matching frames: 19

Previously visited fram
es

Current frames

KITTI-00
Total revisited areas: 5
Total matching frames: 7,955

KITTI-02
Total revisited areas: 2
Total matching frames: 1,058

KITTI-05
Total revisited areas: 3
Total matching frames: 2,726

Fig. 4: Scene graphs of six KITTI sequences that include loop closure. Part of the figure below secondary main diagonal

shows number of SIFT matches surviving RANSAC between current frame and previously visited frames sampled @ 10 fps.

We have counted total matching frames @ threshold = 50. False negatives are manually shown in red color (KITTI-09), and

enlarged for better viewing. Figure is better viewed with a digital zoom.

ple loop closure scenes in our dataset are shown in Figure

3 for each flagged category. We release loop closure ground

truth along with the dataset.

4 Experimental Results

Experiments have been conducted on our dataset, NUST-

CLC, as well as on public datasets and are presented ac-

cordingly.

4.1 Augmenting KITTI for Loop Closures

Frame level inspection of KITTI sequences (Figure 4) for

loop closures reveals very interesting observations. There

are revisited areas in six KITTI sequences, some of them

containing multiple ones (yellow(ish) diagonals in the lower

triangle of scene graphs in Figure 4). Most of the revisited

areas are long enough (indicated by lengths of non-main di-

agonals in Figure 4) to provide many loop closure opportu-

nities. The performance is usually reported by closing one

loop (with any one of the multiple available opportunities)

in a revisited area. We augment KITTI with loop closure

ground truth by releasing scene graphs (Figure 4) for six

KITTI sequences which contain loop closures.

Each sequence is sampled at 10 fps as most of the SLAM

systems are evaluated at this or lower frame rates. Each frame

is compared with all previously visited frames, and SIFT

feature matches surviving RANSAC are counted and visu-

ally shown with a color scheme (Figure 4). Each yellow(ish)

color in the lower half indicates a revisited area. The yel-

low(ish) color in the secondary main diagonal (upper right

to lower left) indicates each frame matching with its nearby

frames and thus not considered as valid loop closures.

We have counted total matching frames in each sequence

with a threshold of 50 SIFT matches surviving RANSAC.

Besides these graphical representations, we release csv files

for all sequences containing exact SIFT matches surviving

RANSAC for all frames. Users can select threshold of their

choice and count loop closures from the csv files. Challeng-

ing cases of loop closures would be the cases with matches

close to or lower than 50. SIFT features have been used to

produce the ground truth because of their superior perfor-

mance and higher robustness to viewpoint and scale changes.
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Threshold = 50 Threshold = 10

Previously visited fram
es

Fig. 5: Scene graphs for NUST-CLC S4 sequence. Since the

loop closure is challenging, scene graph does not show sig-

nificant matches at threshold = 50. We lowered the threshold

down to 10, and plotted binary color graph (yellow for above

10, black for all others), showing revisited area (lower right

corner, threshold = 10). Please note that, lowering thresh-

old to 10 shows many irrelevant matching pairs (yellow dots

spread all over).

The generation of these scene graphs required significant

computing effort as ≈ 27 million image pairs required com-

putation of SIFT features and RANSAC survival. On our in-

tel(R) core(TM) i7-4720HQ processor with 2.60 GHz clock

frequency, it took ≈ 374 hours.

We manually inspected each frame (≈ 17,000 in total) to

remove any false negatives (loop closures missed by SIFT

matching). There is an initial part of the revisited scene in

KITTI-09 which should have been labeled as loop closure

but its SIFT matches are lower than threshold (of 50), as

indicated with red dots (Figure 4, KITTI-09, enlarged in-

set). Similarly, there are negligible false positives (12 in all

sequences) after manual inspection. These missed opportu-

nities a.k.a false negatives (FNs) and incorrect loop closures

a.k.a false positives (FPs) have been flagged in associated

csv files.

Interestingly, these scene graphs reveal that simple im-

age registration method manages to find large number of

correct matches (loop closures) in KITTI dataset. However,

as shown later ORB-SLAM missed large number of these

opportunities indicating a large performance gap.

Similar scene graph for one sequence of NUST-CLC

dataset is shown in Figure 5. Since NUST-CLC is purposely

generated loop closure dataset, simple image registration meth-

ods are unable to detect loop closures (Figure 5), as there are

no significant geometrically correct SIFT matches in revis-

ited area. The situation remains similar in other sequences

(not shown) of NUST-CLC. Therefore, in our opinion, gen-

erating scene graphs for our dataset does not provide ade-

quate loop closure ground truth. Manual labeling is, there-

fore, the most suitable method for the purpose. Figure 6

shows a visual representation of loop closure ground truth

D
ynam

ic C
ases

V
iew

point/Scale C
ases

Length of sequence in terms of number of frames @ 30 fps

Fig. 6: Loop closure ground truth for NUST-CLC dataset.

The ground truth is generated manually. The first and sec-

ond visit are indicated by same colors. Each sequence con-

tains at least one revisited region. There are large number of

revisited frames because of high frame rate (30 fps) we are

using to generate this ground truth.

for our NUST-CLC dataset generated manually. Each hor-

izontal bar represents the length of each sequence in our

dataset in terms of number of frames sampled at 30 fps. The

first visit, and the loop closures (revisited areas) are indi-

cated by the same color overlapped on the sequence bars.

The first bar indicates the first visit followed by the second

bar indicating second visit. Besides this graphical represen-

tation, we release the data in csv files for users.
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Table 1: Performance of ORB-SLAM’s loop closure on pub-

lic datasets and NUST-CLC. Good performance on public

datasets is due to many available opportunities in each re-

visited area.

Dataset No. of revis-

ited areas

No. of loop

closed

Total match-

ing KFs in all

revisited areas

KITTI-00 5 4 91

KITTI-02 2 2 42

KITTI-05 3 3 49

KITTI-06 1 1 44

KITTI-07 1 1 4

KITTI-09 1 1 6

TUM RGB-D

(3 sequences)

3 3 11, 14, 3

NUST-CLC

(100 sequences)

100 20 5-15 KFs in each

sequence

4.2 Evaluation on Public and Private Datasets

Table 1 shows performance of ORB-SLAM’s loop closure

routine on KITTI, TUM RGB-D and our NUST-CLC dataset.

Interestingly, the popular loop closing block misses a large

number of loop closing chances (last column). Note that

KITTI and TUM RGB-D sequences contain long revisited

trajectories resulting in abundant matching keyframes in each

revisited street (indicated by the length of non-main diago-

nals in Figure 4), and therefore the loop is eventually closed.

We encourage the reader to view our supplementary video.

Our NUST-CLC sequences contain short revisited areas, which

results in 80% (37/50 in dynamic, and 43/50 in viewpoint/scale

sequences) of the loop closures being missed. This is in-

triguing since our revisits consist of little variance (view-

point/scale/dynamics).

4.3 What Fails the Loop Closure?

Intrigued by this large-scale failure on both public and pri-

vate datasets, we dissected loop closure routine at modular

level to understand which particular component of the rou-

tine is failing the loop closure. Results are tabulated in Ta-

ble 2. Since this is failure analysis, only those sequences of

NUST-CLC dataset are analyzed where loop closure failed.

Interestingly, search for loop candidate and temporal consis-

tency test was successful for all sequences, indicating vPR

is providing a potential match. Apparently the loop closure

failure is triggered by subsequent geometrical registration

between the current keyframe and its matching candidate

(relative pose estimation). This trend is the same in both dy-

namic as well as viewpoint/scale changes sequences. This

raises interesting questions. Is the relative pose estimation

module rigid? Did the vPR module provide a valid candi-

date?

Table 2: Why loop closure fails in dynamic scenes and view-

point/scale changes? A large percentage of failure is trig-

gered by failure to geometrically register the two images

in both dynamic scenes as well as under viewpoint/scale

changes.

No. (and %) of times the check fails

Loop Closure Checks Dynamic

Scenes

Viewpoint/Scale

Initialization 0/37 (0%) 0/43 (0%)

Search for Loop Candidate 0/37 (0%) 0/43 (0%)

Temporal Consistency Test 0/37 (0%) 0/43 (0%)

Finding ORB Matches 18/37 (48.64%) 2/43 (4.66%)

Geomet. Consistency Test 16/37 (43.24%) 27/43 (62.79%)

Optimize SIM(3) 3/37 (8.12%) 14/43 (32.55%)

Map-point Projection 0/37 (0%) 0/43 (0%)

Standard 15/15/15 10/10/10 5/5/5 VSFM

0%

10%

20%

30%

40%

50%

60%

70%

80%
Percentage of successful loop closures

Critical thresholds (lowering                )

Dynamic scenes

Viewpoint/scale changes

ORB-SLAM3

Fig. 7: Performance of ORB-SLAM’s loop closure on our

dataset at standard thresholds and after lowering thresh-

olds. We indicate our thresholds as a/b/c, where no. of

ORB matches required are (a), no. of inliers during geo-

metrical consistency test are (b), and no. of inliers during

SIM(3) optimization are (c). Improvement in performance

with lowering thresholds is evident. Using VSFM for rel-

ative pose estimation achieves performance comparable to

the lowest thresholds. ORB-SLAM3 [4], at standard thresh-

olds, does not outperform original ORB-SLAM despite im-

proved place recognition.

4.4 Relaxing Thresholds in ORB-SLAM

In order to investigate the rigidity of the relative pose es-

timation block, we reduced the thresholds involved in ge-

ometric registration. Table 2 shows that the most common

checks that cause loop closure failure in challenging situa-

tions are: a) inability to find ORB matches (at least 20 are

required), b) geometrical consistency test failure ( SIM(3)
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Table 3: Detailed analysis of what fails ORB-SLAM’s loop closure in challenging situations at various thresholds. It is

interesting to note that the three checks (bold faced) identified in Table 2 continue to be major causes of failure despite

lowering their required thresholds. Data at standard thresholds is repeated here for ready comparison.

Dynamic Scenes. No. (and %) of times the check fails

Loop Closure Checks Threshold Scheme:

Standard (20/20/20)

Threshold

Scheme: 15/15/15

Threshold

Scheme: 10/10/10

Threshold

Scheme: 5/5/5

Initialization 0/37 (0%) 0/37 (0%) 0/29 (0%) 0/26 (0%)

Search for Loop Candidate 0/37 (0%) 0/37 (0%) 0/29 (0%) 0/26 (0%)

Temporal Consistency Test 0/37 (0%) 0/37 (0%) 0/29 (0%) 0/26 (0%)

Finding ORB Matches 18/37 (48.64%) 9/37 (24.32%) 10/29 (34.48%) 4/26 (15.38%)

Geometrical Consistency Test 16/37 (43.24%) 17/37 (45.95%) 16/29 (55.17%) 19/26 (73.08%)

Optimize SIM(3) 3/37 (8.12%) 4/37 (10.81%) 3/29 (14.34%) 3/26 (11.54%)

Map-point Projection 0/37 (0%) 7/37 (18.92%) 0/29 (0%) 0/26 (0%)

Viewpoint/Scale Changes. No. (and %) of times the check fails

Loop Closure Checks Threshold Scheme:

Standard (20/20/20)

Threshold

Scheme: 15/15/15

Threshold

Scheme: 10/10/10

Threshold

Scheme: 5/5/5

Initialization 0/43 (0%) 0/36 (0%) 0/28 (0%) 0/19 (0%)

Search for Loop Candidate 0/43 (0%) 0/36 (0%) 0/28 (0%) 0/19 (0%)

Temporal Consistency Test 0/43 (0%) 0/36 (0%) 0/28 (0%) 0/19 (0%)

Finding ORB Matches 2/43 (4.66%) 1/36 (2.78%) 1/28 (3.57%) 0/19 (0%)

Geometrical Consistency Test 27/43 (62.79%) 16/36 (44.44%) 13/28 (46.42%) 10/19 (52.63%)

Optimize SIM(3) 14/43 (32.55%) 15/36 (41.62%) 14/28 (50%) 9/19 (47.37%)

Map-point Projection 0/43 (0%) 4/36 (11.11%) 0/28 (0%) 0/19 (0%)

should be computed with at least 20 inliers), and c) SIM(3)

optimization failure (again 20 inliers are required here). Our

experiments suggest lowering of these thresholds improves

the loop closure success rate. Figure 7 shows results after

lowering these three thresholds (a/b/c above) to 15/15/15,

10/10/10, and 5/5/5 in the same order.

Detailed analysis of the cause of each loop closure fail-

ure at various thresholds is provided in Table 3. It is interest-

ing to observe that despite lowering of thresholds, the three

checks identified at standard threshold continue to be the

major reasons of failure. The improvement in loop closure

success rate should be interpreted carefully as lowering the

thresholds increases the chance of false loop closure and ad-

versarial attacks [12]. There is, however, no false loop clo-

sure observed with these lowered thresholds in our dataset.

4.5 Reason Behind Strict Thresholds

We manually inspected ORB-SLAM’s loop closure (for more

than 10,000 keyframes) to establish how frequently a valid

candidate was provided by the native vPR. Results (Table 4)

show that the native vPR has very low precision (Figure 8),

providing a false candidate for a large number of keyframes

(high false positives). In our opinion, this low precision of

vPR places an additional burden of rejecting false candidates

on the subsequent geometric registration block. As a result

of this extra vigilance (strict thresholds), good candidates

are often rejected by subsequent geometric registration.

Recall

Precision

ORB - SLAM’s vPR

Deep LCD, threshold = 0.94 

00
02

05

06

07 09
ORB - SLAM’s vPR

Deep LCD, threshold = 0.94 

Fig. 8: Precision-recall comparison for Deep LCD and

ORB-SLAM’s vPR on KITTI sequences mentioned on data

points. Black curve represents Deep LCD PR curve at var-

ious thresholds for KITTI-00. Threshold 0.94 provides best

precision and recall and is, therefore, used for other se-

quences while comparing with ORB-SLAM’s vPR. High

number of false positives in ORB-SLAM’ vPR results in

close to zero precision.

4.6 How Much a Better vPR Improves Loop Closures?

For comparison, we evaluate the performance of a recent

real-time deep vPR method (Deep-LCD [16]). We used sta-

tistical analysis on KITTI-00 to find a suitable matching
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Original Keyframe Loop Candidate 3D-2D Projection
 (only connected KFs)

3D Reconstruction
(only connected KFs)

3D-2D Projection
 (Connected KFs + extra frames)

3D Reconstruction
(Connected KFs + extra frames)

Fig. 9: How good is the pose estimated by VSFM? Three cases from NUST-CLC where ORB-SLAM fails to close the loop

despite valid loop candidate due to failure of relative pose estimation. VSFM [28] not only manages to register the keyframes,

but reconstructs semi-dense map (second last column) using only connected keyframes and provides accurate relative pose as

shown by well aligned 3D-2D projection (third column). Visual comparison of 3D reconstructions (last two columns) shows

little improvement by adding intermediate frames indicating accurate pose estimation using only connected keyframes.

Table 4: How often a correct candidate is found by vPR of

loop closure in ORB-SLAM in comparison with deep ap-

proach [16]?

Sequence True Positives False Positives False Negatives

ORB-SLAM:Deep ORB-SLAM:Deep ORB-SLAM:Deep

KITTI-00 8 : 80 1685 : 1 83 : 11

KITTI-02 6 : 38 999 : 29 36 : 4

KITTI-05 3 : 45 1005 : 0 46 : 4

KITTI-06 1 : 39 372 : 10 43 : 5

KITTI-07 1 : 2 444 : 1 3 : 2

KITTI-09 2 : 4 815 : 1 4 : 2

Average 3.50 : 36.66 886.67 : 7.00 35.83 : 4.66

threshold for Deep LCD (black curve in Fig. 8), and gen-

erated precision-recall of all sequences of KITTI (Figure 8)

for ready comparison with ORB-SLAM. Deep vPR has im-

pressive precision (fewer false positives) and recall (fewer

missed chances) as compared to native vPR of ORB-SLAM.

Replacing native vPR of state-of-the-art SLAM with deep

vPR might partially improve the loop closing ability, due to

fewer false positives, allowing relaxed thresholds for geo-

metric checks. However, even at very low thresholds (5/5/5),

ORB-SLAM missed 50% of the chances, indicating im-

proving vPR might not substantially improve loop closure.

We have tested recently released ORB-SLAM3 [4], which

uses an improved place recognition for loop closure, on NUST-

CLC. There is no significant improvement over original ORB-

SLAM (Figure 7) despite improved place recognition, which

strengthens our view that improving place recognition only

partially improves loop closure.

4.7 How to Improve Relative Pose Estimation?

Lowering the registration thresholds results in substantial

correct loop closures. In this section, we evaluate SIFT based

registration for relative pose estimation. To this end, we se-

lected a SIFT based SfM pipeline [28], and tried to regis-

ter current keyframe, for which vPR provided a valid loop

closing candidate but ORB-SLAM was unable to estimate

SIM(3).

Instead of registering the corresponding keyframes di-

rectly, we extracted their connected keyframes (keyframes

having common features in ORB-SLAM map) for both coun-

terparts. Interestingly, off-the-shelf VSFM [28], without any

parameter tuning, managed to build a sub-map for the major-

ity of the cases missed by ORB-SLAM at standard thresh-

olds (Figure 7). Qualitative results (third and fifth column

in Figure 9) indicate that the connected keyframes contain

enough feature content to build a semi-dense map (third col-

umn in Figure 9), and estimate valid relative pose as shown

by well aligned 3D-2D projection (third column in Figure

9), whereas ORB-SLAM loop closure routine could only

match negligible features.
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In order to judge the quality of relative pose, we added a

few intermediate frames in addition to connected keyframes

of loop closing counterparts. Visual comparison of 3D re-

constructions (last two columns in Figure 9) shows little im-

provement, authenticating the accuracy of relative pose esti-

mate using only the connected keyframe sub-map.

These findings have exposed a performance gap between

the relative pose estimation module of ORB-SLAM and the

currently available (and implemented) relative pose estima-

tion to the community. Therefore, in order to further re-

fine the state-of-the-art visual SLAM, more attention may

be diverted towards the current open source ORB-SLAM

pipeline. Additionally, ORB-SLAM’s one-feature-for-all strat-

egy has its own advantages with respect to system com-

plexity, memory management, and computation. However,

with computational power increasing steadily, we argue us-

ing custom features for different modules of SLAM may im-

prove its performance.

4.8 How Good are Deep Alternatives for Relative Pose

Estimation?

In this section, we evaluate the relative pose estimation by

deep pose regressor [3]. Deep learning based methods have

shown impressive invariance (viewpoints, light conditions).

However, recently deep pose regressors have been diagnosed

with a fundamental limitation [25] i.e. for a given frame, the

pose provided by these deep methods is similar to the pose

of the best matching frame in the training database. We eval-

uate a well known deep pose regressor (MapNet [3]) in an

even simpler scenario of loop closures where the training set

contains an image similar to the query image since the place

has been revisited.

Details of training and inference of MapNet are given

in Algorithm 1. For every keyframe Ki, we train a pose re-

gressor Mi using the MapNet architecture. Input to this deep

pose regressor is a 2D image and its output is 6 DoF pose.

The training data for Mi consists of the keyframe Ki (2D

image) and its accompanying 6 DoF absolute pose Pi. Train-

ing MapNet using this single image will lead to over-fitting.

Therefore, in order to increase the robustness, we extract the

connected keyframes of Ki, i.e., Kα, Kβ , ..., Kζ , and their

accompanying poses (Pα, Pβ , ..., Pζ) from the ORB-SLAM

map.

Assuming ORB-SLAM’s vPR proposes keyframe Ki as

the potential loop closing candidate for the now current keyframe

Kj . Our aim is to estimate the relative pose between Kj

and Ki. We assume that the ORB-SLAM’s map has drifted

therefore, Pi and Pj do not provide valid constraint for im-

proving the posegraph of ORB-SLAM. Instead we use Mi

to estimate the pose P̃
j

of the current keyframe Kj .

Algorithm 1 Estimating pose using MapNet

INPUT: Kj current keyframe, Ki loop candidate keyframe, Pi pose of the ith frame

{Kα, Kβ , ..., Kζ , Pα, Pβ , ..., Pζ} ⇐ getConnectedKeyframesData(Ki, 3D Map)

Mi ⇐ trainMapNet(Ki, Kα, Kβ , ..., Kζ , Pi, Pα, Pβ , ..., Pζ )

P̃
j
⇐ getDeepPose(Kj , Mi)

return P̃
j

If we trust our vPR and are unable to estimate the rela-

tive pose between Kj and Ki, we can assume identity rel-

ative pose between these two keyframes. We call this naive

vPR solution. Considering the simple scenario of only trans-

lational motion between the current keyframe and its loop

closing candidate, the amount of error introduced in the ORB-

SLAM’s pose graph, due to this noisy identity constraint,

is equal to translation error between the current keyframe

and its vPR candidate using their ground truth poses (red

bars in Figure 10). Does MapNet provide a better solution

than this naive approach? To estimate this we calculated the

translation error between the actual ground truth pose of the

keyframe Pj and the estimated pose P̃
j

provided by MapNet

inference (blue bars in Figure 10).

Results show that 33 times out 65, naive vPR solution,

i.e., assigning the current keyframe the pose of its vPR match-

ing keyframe, is better than deep solution. Although 32 times

(out of 65) deep solution is better than the naive vPR so-

lution, on average its performance is worse. Deep pose re-

gressors are improving but they are not as accurate as hand-

crafted image registration solutions yet.

5 Conclusion

Visual SLAM has evolved into a sophisticated application

consisting of numerous carefully developed blocks (track-

ing, mapping, loop closing etc). SLAM family has dedicated

commendable effort into optimizing each building block.

However, SLAM systems are still mainly evaluated on a

holistic level using aggregate metrics (average trajectory er-

ror (ATE)). In our opinion, this holistic evaluation, although

informative, might drown the limitation of the individual

building blocks. Individual block level evaluation is tedious

and perhaps less glamorous. On the other hand, building

a brand new SLAM system (feature based, direct, deep) is

perhaps more attractive, which again is evaluated at a holis-

tic level. In our opinion, the time and effort invested by the

SLAM community in building complete SLAM systems is

substantial. Instead of reinventing the entire pipeline, in this

work, we performed in-depth analysis of the loop closure

block of state-of-the-art SLAM which resulted in interest-

ing findings. Firstly, in addition to (suspecting and) maturing

vPR solutions, further investigation to develop robust real-

time relative pose estimation modules might be more benefi-

cial. Furthermore, pushing for All-Deep solutions is perhaps

not the way forward. While deep vPR partially improves the
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Scale / viewpoint changes Dynamic scenes

MapNet inference

Naive  place  recognition

Translation error

Fig. 10: Understanding the limitations of deep relocalizers in loop closing scenarios. Comparing the translation error

shows that inferring pose of a given frame using the deep approach (MapNet) fares no better than naive place recognition

solution, where the query frame is assigned pose of its nearest neighbour (best match) frame in the database. Note that the

training dataset of MapNet already contains the image similar to the query image since it is a revisited location. vPR solution

is better 33 times out of 65.

loop closures, deep relocalizers still suffer from fundamen-

tal limitations. This finding vindicates the decades-long ef-

fort of the SLAM community in designing robust registra-

tion methods. We hope our findings and the accompanying

datasets will assist the community in further improving the

popular ORB-SLAM’s pipeline.
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