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Abstract
This paper improves the performance of RRT∗-like sampling-based path planners by combining admissible informed sampling
and local sampling (i.e., sampling the neighborhood of the current solution). An adaptive strategy regulates the trade-off
between exploration (admissible informed sampling) and exploitation (local sampling) based on online rewards from previous
samples. The paper demonstrates that the algorithm is asymptotically optimal and has a better convergence rate than state-of-
the-art path planners (e.g., Informed-RRT∗) in several simulated and real-world scenarios. An open-source, ROS-compatible
implementation of the algorithm is publicly available.

Keywords Motion planning · Path planning · Sampling-based algorithms · Informed sampling · Online learning for motion
planning · Informed-RRT*

1 Introduction

Path planning is a fundamental problem in robotics and with
a heavy impact on a broad variety of applications. For exam-
ple, the recent developments in humanoid robotics require
fast planning tools to handle high-dimensional systems. Sim-
ilarly, industrial and service robotics often deal with dynamic
environments where the robot must plan the motion on the
fly. An example is a robot arm that picks objects from a con-
veyor belt or cooperates with humans to assemble a piece of
furniture. A common thread of these applications is the high
dimensionality of the search space and the limited available
computing time to find a solution.
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Path-planning problems are solved mainly through graph-
based or sampling-based approaches. Graph-based methods
(Hart et al., 1968; Likhachev et al., 2008) are used mainly
for navigation problems, while sampling-based methods are
the most widespread in robotic manipulation because they
aremore efficient with high-dimensional systems. Sampling-
based methods explore the search space by randomly sam-
pling the robot configuration space to find a sequence of
feasible nodes from start to goal. Different strategies for
sampling and connecting nodes have given birth to differ-
ent algorithms, such as RRT (LaValle, 1998), EST (Hsu et
al., 1997), and PRM (Kavraki et al., 1996).

Sampling-basedmethods are successful in robotics because
they do not require discretizing the search space, do not
explicitly require the construction of the obstacle space,
and generalize well to different robots’ structures and spec-
ifications. These advantages come at the cost of weaker
completeness and optimality guarantees. In particular, they
can provide asymptotic optimality; that is, the probability
of converging to the optimal solution approaches one as the
number of samples goes to infinity (Karaman & Frazzoli,
2011). The convergence rate of such algorithms is relatively
slow, and actual implementations usually stop the searchway
before they reach the optimum. A meaningful improvement
to optimal planners came with the introduction of informed
sampling (Gammell et al., 2018). Informed sampling-based
planners shrink the sampling space every time the solution
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cost decreases, making the convergence to the optimal solu-
tion faster. These planners show a slow convergence rate
when the cost heuristic is poorly informative. In the case
of path length minimization, the Euclidean distance can be
chosen as a heuristic of the cost between two points. How-
ever, with many obstacles, there is a large difference between
the Euclidean distance and the actual minimum path between
the two points. In these cases, the convergence speed resem-
bles that of uninformed planners (e.g., RRT∗ (Karaman &
Frazzoli, 2011)). This paper tackles this issue by proposing a
mixed strategy that alternates sampling the informed set and
the neighborhood of the current solution. The rationale is that
the cost of the solution improves by sampling its neighbor-
hood (i.e., local sampling),with a consequent quick reduction
of the measure of the informed set.

Alternating admissible and locally informed sampling is
an example of the classic exploration-versus-exploitation
dilemma, which is hardly solvable with a fixed ratio between
the usage of the two sampling strategies. To overcome this
issue, we propose an adaptive technique to dynamically bal-
ance the choice of one sampling strategy over the other. The
result is that the search algorithm prefers exploitation (i.e.,
local sampling) only as long as it is useful and switches
to exploration (i.e., admissible informed sampling) to avoid
stagnation.

The paper’s contribution is twofold. First, it defines a
mixed sampling strategy that combines global and local
informed sampling for asymptotically optimal sampling-
based path planners. Local informed sampling oversamples
the neighborhood of the current solution to quickly reach a
local optimum, while global informed sampling guarantees
asymptotic optimality. Second, It proposes an asymptotically
optimal algorithm that uses the mixed sampling strategy
and dynamically adjusts the trade-off between global and
local sampling, showing that this outperforms state-of-the-
art planners, such as Informed-RRT∗, on different classes of
problems.

An open-source ROS-compatible version of the planner
is publicly available https://github.com/JRL-CARI-CNR-
UNIBS/cari_motion_planning.

The paper is organized as follows. Section2 introduces the
reader to optimal planning and informed sampling. Section3
discusses previous works on the acceleration of informed
sampling-based planners. Section4 discusses the motivation
of this work through some illustrative examples. Section5
describes the proposed method. Section6 compares it with
other methods. Section7 concludes and discusses future
works.

2 Informed sampling-based optimal path
planning

This section introduces the concepts of path planning,
informed sets, and informed sampling used throughout the
paper.

The path planning problem is formulated in the con-
figuration space, X ⊆ R

n , which denotes all possible
configurations x of the system (for robot manipulators, x
is usually a vector of joint angles). Let Xobs be the space
of all those configurations in collision with an obstacle, and
Xfree = cl(X \ Xobs) the obstacle-free configuration space,
where cl(·) denotes the closure of the set.
Definition 1 (optimal path planning) (adapted from Gam-
mell et al. 2018) Given a starting point xstart and a set of
desired goal points Xgoal ⊂ X , optimal path planning is the
problem of finding a curve σ ∗ : [0, 1] → Xfree such that:

σ ∗ = argmin
σ∈�

{
c(σ ) | σ(0) = xstart, σ (1) ∈ Xgoal

}
(1)

where c : � → R≥0 is a Lipschitz continuous cost func-
tion associating a cost c(σ ) to a curve σ ∈ �, � is the set
of solution paths, and R≥0 is the set of non-negative real
numbers.

Remark 1 Cost function c is often the length of the path so
that the optimalmotion plan is the shortest collision-free path
from xstart to Xgoal.

If an algorithm can find a solution to the optimal path plan-
ning problem, then it is said to be an optimal path planner.
Sampling-based path planners, such as RRT∗ (Karaman &
Frazzoli, 2011), can only ensure the probabilistic conver-
gence to the optimal solution. This weaker form of optimality
is referred to as (almost-sure) asymptotic optimality. The con-
vergence rate of an asymptotically optimal planner is related
to the probability of sampling points that can improve the
current solution. This set is referred to as the omnisicient set
(Gammell et al., 2018). RRT∗ and similar algorithms, as pro-
posed in Karaman and Frazzoli (2011), are very inefficient
at sampling the omniscient set (the probability that RRT∗
samples a point that belongs to the omniscient set decreases
factorially in the state dimension (Gammell et al., 2018)).
To increase the probability of sampling the omniscient set,
Gammell et al. (2018) coined the concept of informed sam-
pling; that is, sampling an approximation of the omniscient
set (the informed set) so that the probability of finding a point
that improves the current solution is higher. If the informed
set is a superset of the omniscient set, it is referred to as an
admissible informed set.

Definition 2 (admissible informed set)(adapted from Gam-
mell et al. 2018) An informed set X f̂ is a heuristic estimate
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of the omniscient set X f . If X f̂ ⊇ X f , the informed set is
said to be admissible.

In minimum-length path planning, it is always possible to
construct an admissible informed set by considering that the
shortest path through a sample x ∈ X is lower bounded by
the sum of Euclidean distances from xstart to x and from x
to xgoal ∈ Xgoal). As a consequence, all possibly improving
points lie in the so-called L2-informed set, X f̂ , given by:

X f̂ = {
x ∈ Xfree | ‖x − xstart‖2 + ‖xgoal − x‖2 < ck

}
(2)

where ck is the cost of the best solution at iteration k. Notice
that such an informed set is equivalent to the intersection
of the free space Xfree and an n-dimensional hyper-ellipsoid
symmetric about its transverse axis with focal points at xstart
and xgoal, transverse diameter equal to ck , and conjugate

diameters equal to
√
c2k − c2min, where

cmin = ‖xgoal − xstart‖2. (3)

The volume of the hyper-ellipsoid decreases progressively
as the solution cost ck decreases, improving the convergence
rate of the algorithm.

3 Related works

Informed sampling stems from the simple but effective idea
of sampling only points with a higher probability of improv-
ing the solution. This is not a new idea, in principle, as several
works use heuristics to bias sampling (Urmson & Simmons,
2003; Rodriguez et al., 2008; Salzman & Halperin, 2013;
Shan et al., 2014; Ge et al., 2016; Santana Correia et al.,
2018; Yu et al., 2019; Lai et al., 2020; Faroni & Berenson,
2023).

The main issue with sampling bias is that, depending
on the geometry of the problem, the heuristic may discard
points of X f . (Gammell et al., 2018). This can be deleteri-
ous for the convergence speed, and it may even compromise
the optimality of the algorithm. Compared to these works,
admissible informed sampling never excludes any points
possibly belonging to the omniscient set; thus, it retains
asymptotic optimality regardless of the geometry of the prob-
lem. Nonetheless, convergence speed may be slow when the
admissible heuristic is not informative.

Few works attempted to speed up the convergence rate by
combining informed planning and local techniques. In (Kim
& Song, 2015, 2018), Kim and Song propose to run a deter-
ministic path short-cutter every time the algorithm improves
the solution. The short-cutting procedure acts as follows: i)
it considers three consecutive nodes on the path at a time;
ii) it discretizes the two corresponding edges; iii) it tries to

connect the extreme nodes to the sampled segment until it
finds a collision; iv) it moves the central node to the intersec-
tion of the two segments found in the previous step. Such an
approach has two main drawbacks. First, the computational
time owed to the short-cutting is significant as it requires an
iterative edge evaluation (i.e., collision checking) every time
it tries to refine a triple of nodes. Second, this approach is
suitable only for minimum-path problems, as it relies on the
triangular inequality applied to each triple of nodes. Hauer
and Tsiotras (2017) proposes to refine the current solution by
moving the nodes of the tree based on gradient descent. Yet,
every time a node is moved, the refinement process requires
an intensive edge evaluation.

The idea of combining global and local optimization was
also explored by Choudhury et al. (2016), who propose a
hybrid use of BIT∗ (Gammell et al., 2015), a lazy heuristic-
driven informed planner and CHOMP (Ratliff et al., 2009),
a gradient-based local planner. Roughly speaking, the local
planner is used to solve a two-point problem between a pair
of nodes. One main drawback is that the local planner is
called every time an edge is evaluated, which may be com-
putationally counter-effective. Other variants of BIT∗ were
proposed in Strub and Gammell (2020), and Strub and Gam-
mell (2020), but focusing on how to improve the heuristics by
experience. Faroni and Berenson (2023) uses online learning
(clustering of previous edges and Multi-Armed Bandits) to
oversample promising regions.

Finally, Joshi and Tsiotras (2020) and Mandalika et al.
(2021) propose approaches to focus the search on subsets of
the informed set. Mandalika et al. (2021) decomposes a plan-
ning problem into two sub-problems and applies informed
sampling to them. The union of the informed sets of the
sub-problems is strictly contained in the informed set of the
initial problem; thus, the search focuses on a smaller region.
However, the performance of such an approximation strongly
depends on the problem geometry, and the authors do not dis-
cuss how to retain asymptotic optimality. Joshi and Tsiotras
(2020) estimates the cost-to-come of the tree leaves to bias
the search towards a subset of the informed set, called the rel-
evant region. In this case, the trade-off between exploration
and exploitation is fixed. Thus, the performance depends on
the problem geometry, and it may be even worse than admis-
sible informed sampling.

Our approach is similar to the works mentioned above as
it alternates informed sampling and local refinement of the
path. Compared to Kim and Song (2015, 2018) and Hauer
and Tsiotras (2017), our method refines the path by sampling
the neighborhood of the current solution, and this allows for
gradient-free refinement, also with generic cost functions.
Moreover, Kim and Song (2015, 2018) and Hauer and Tsio-
tras (2017) tend to favor exploitation (i.e., path refinement)
rather than exploration, wasting time optimizing subopti-
mal solutions (see numerical results in Sect. 6). Similarly,
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Choudhury et al. (2016) and Joshi and Tsiotras (2020) use
a fixed balance between exploration and exploitation; thus,
the performance may vary a lot across different problems.
Our method adjusts the trade-off between exploration and
exploitation according to the cost progression, adapting to
different problems. In this sense, we could use our adaptive
scheme in Joshi and Tsiotras (2020) to dynamically balance
the trade-off between exploration and exploitation and in
Mandalika et al. (2021) to retain asymptotic optimality.

4 Motivation for an adaptivemixed
sampling strategy

To understand the motivation behind this work, con-
sider the minimum-path problem in Fig. 1a. Because of the
presence of a large obstacle between xstart and xgoal, the L2-
informed set is large and poorly informative. Sampling the
neighborhood of the current solution would be much more
efficient than considering the whole L2-informed set, as the
path would quickly converge to the global optimum. This
situation is expected when the current and the optimal solu-
tions are homotopic. We will refer to this sampling strategy
as local sampling.

On the other hand, when the current solution is locally
optimal, any efforts on the local optimization would be use-
less. For example, in Fig. 1b, the optimal solution passes
through the narrow passage between the two obstacles; thus,
sampling the neighborhood of the current solution would
lead to a local optimum (yellow in Fig. 1c). As the solution
approaches the local optimum, the probability of improving
the solution via local sampling is equal to zero.

Notice that a fast convergence to a local minimum quickly
reduces the volume of the informed set. However, it is crucial
to understand when the local sampling is beneficial without
losing the asymptotic global optimality.

In this paper, we combine admissible informed sampling
and local sampling in a mixed sampling strategy. On the one
hand, sampling the admissible informed set guarantees that
all points from the omniscient set are taken into account. On
the other hand, local sampling has a twofold role. First, if the
local and the global optima correspond, it quickly converges
to the solution, as in Fig. 1c. Second, it reduces the size of
the admissible informed set. Indeed, the Lebesgue measure
of the L2-informed set is directly related to the best cost to
date ck as follows:

λ(X f̂ ) = ck (c2k − c2min)
n−1
2

ζn

2n
(4)

where ζn is the Lebesgue measure of the unit ball (dependent
only on n) (Gammell et al., 2018). Hence, improving the cur-
rent solution (even in the neighborhood of a local minimum)

enhances the convergence speed to the globally optimal solu-
tion.

5 Proposed approach

This section describes the proposedmixed sampling strategy.
First, it defines the local informed set. Second, it designs
an algorithm to dynamically change the local sampling
probability based on the cost evolution. Finally, it proves
asymptotic optimality.

5.1 Mixed-strategy sampling

Consider an n-dimensional path planning problem solved
by a sampling-based planner. Let σk ∈ Xfree be the current
solution at iteration k and ck = c(σk). An RRT∗-like planner
is asymptotically optimal if the algorithm that connects nodes
satisfies conditions on the minimum rewire radius and the
sampler draws nodes from a superset of the omniscient set. If
we drop the second condition, such a relaxed planner would
converge to a local optimum. To formulate this idea more
formally, we introduce the notion of local informed set. Then,
we combine it with admissible informed sampling to obtain
the adaptive mixed-strategy sampler used in the proposed
planner.

Definition 3 (local informed set) The local informed set of
the current solution σk is the intersection of the admissible
informed set and the set of points with distance smaller than
R from σk :

X f̂ ,l =
{
x ∈ X f̂

∣∣∣ min
y∈σk

(
‖x − y‖2

)
< R

}
. (5)

Lemma 1 (local optimality of local sampling) Consider an
asymptotically optimal path planner and let the sampling
algorithm draw samples only from the local informed set.
The planner converges to a local minimumwith a probability
equal to one.

Proof : If the current solution is not a local optimum, the
intersection of the omniscient set and any neighborhoods of
σk is not empty (c is Lipschitz):

X f ∩ X f̂ ,l �= ∅ with X f̂ ,l neighborhood of σk

It follows that local sampling improves the solution with a
probability greater than zero whenever the solution is not
(locally) optimal. 
�

We define hereafter a mixed-strategy sampler to combine
admissible and locally informed sampling soundly.
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Fig. 1 Examples of planning situations where local sampling is useful (a), deleterious (b), or unable to find the global optimum but useful to reduce
the measure of the informed set (c)

Definition 4 (mixed-strategy sampler) A local sampler and
a global sampler are algorithms that draw samples from X f̂ ,l
and X f̂ , respectively. A mixed-strategy sampler draws sam-
ples by using a local sampler with probability φ and a global
sampler with probability 1 − φ.

Remark 2 A mixed-strategy sampler is admissible if φ < 1.

Lemma 2 (optimality of admissible mixed-strategy sam-
plers) A sampling-based path planner that is asymptotically
optimal under uniform sampling distribution is asymptot-
ically optimal also under admissible mixed-strategy sam-
pling.

Proof : A mixed-strategy sampler samples Xfree with non-
uniformprobability densityd. If such a sampler is admissible,
d can be seen as a mixture of probability densities such that:

d = (1 − φ) d1 + φ d2

where d1 is a strictly positive uniform probability density
over Xfree and

d2 = d λ(Xfree) − 1 + φ

φ λ(Xfree)
.

Based on this consideration, the asymptotic optimality of
the path planner traces back to the proof of asymptotic opti-
mality of Janson et al. (2015) with non-uniform sampling.
In particular, the planner is still asymptotically optimal by
adjusting the rewire radius of a factor (1−φ)−1/n , as proved
in Appendix D of Janson et al. (2015). 
�

At each iteration, themixed-strategy sampler should select
an appropriate value of φ based on the likelihood of improv-
ing the current solution. This is important to exploit the
advantages of both admissible and local informed sam-
pling (respectively, global asymptotic optimality and fast
convergence to local optima) and mitigate the flaws (slow
convergence speed and stagnation into local minima). We
denote the guess that σk is not a local optimum at iteration k
by pk ∈ [0, 1]. If ck < ck−1,we increase pk+1 proportionally
to the relative improvement of the cost such that:

pk+1 = ν pk + (1 − ν)
ck−1 − ck
ck−1 − u

(6)

Algorithm 1: Mixed-strategy informed planner
Input: pk , σk−1, ck−1, ν, R0
Output: pk+1, σk , ck

1 j = rand.uniform([0, 1]);
2 if j < pk then
3 R = R0(ck − u);
4 x = localSampling(σk−1, R);
5 else
6 x = informedSampling(σk−1, ck);

7 (σk , ck) = connectAndRewire(x);
8 if ck < ck−1 then

9 pk+1 = ν pk + (1 − ν)
ck−1 − ck
ck−1 − u

10 else
11 pk+1 = ν pk

where ν ∈ [0, 1) is a forgetting factor that smooths the evo-
lution of p and u is an admissible estimate of the best cost c∗.
Note that the cost ck is non-increasing (namely, ck ≤ ck−1),
therefore pk is a strictly positive number (assuming p0 > 0).
Moreover, pk+1 ≤ 1 because ck ≤ u and p0 ≤ 1.

It follows that a selector that uses φ = pk is admissible.

5.2 Proposed algorithm

The proposed planner is the variant of Informed-RRT∗ in
Algorithm 1. It uses the guess pk as the probability to sample
the local informed set (lines 1–6). Sample x is used to extend
the tree (line 7); and pk+1 is updated according to (6) (lines
8 and 9).

ProceduresinformedSampling andlocalSampling
sample the admissible informed set (2) and the local informed
set (5), respectively. The former follows the implementation
of Gammell et al. (2018), and the latter uses Algorithm 2.

Algorithm 2 randomly samples a ball of radius R centered
at a random point along the current solution path. First, it
uniformly samples the n-dimensional unit ball and assigns
the value to b (lines 2–4). Then, it picks a random point,
σ(s), on path σ . Therefore, the final candidate sample is
obtained by scaling b, from the unit ball to the ball of radius
R and centered in σ(s) (lines 5–6). Finally, it uses rejection to
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Fig. 2 Robot manipulator benchmark. n is the robot’s number of degrees of freedom

Algorithm 2: localSampling procedure
Input: curve σ , radius R of the local informed set
Output: sample x ∈ X f̂ ,l

1 repeat
2 w = rand.normal(0, 1);
3 r = rand.uniform([0, 1]);
4 b =

(
n
√
r w

‖w‖2
)
;

5 s = rand.uniform([0, 1]);
6 x = σ(s) + R b;
7 until x ∈ X f̂ ;

ensure that x ∈ X f̂ . Note that the rejection of the candidate
is unlikely if R is small.

Algorithm 2 does not sample the local informed set
uniformly. The points closer to the path have a higher prob-
ability of being sampled than points near the boundary
of the tube. Moreover, Algorithm 2 over-samples regions
“inside” the corners of the path. Non-uniform local sam-
pling does not affect the asymptotic optimality of the planner
(Lemma 2). Moreover, in minimum-length problems, over-
sampling regions inside the corners may be beneficial in
reducing the path length.

5.3 Algorithm tuning and convergence performance

Algorithm 1 has two parameters more than Informed-RRT∗:
the radius R0 and the forgetting factor ν. AppendixAppendix
A provides an illustrative example showing the effect of the
parameters on the convergence. Summarizing the results,
R0 ∈ [0.01, 0.02] and ν ≈ 0.999 consistently provide the
best results across problems of different dimensionality and
geometry.

6 Experiments

We test our Mixed-strategy Informed planner (MI-RRT∗)
with robot manipulators (6, 12, 18 degrees of freedom), nav-

igation of mobile manipulators, and a real manufacturing
case study. We demonstrate that MI-RRT∗ consistently out-
performs the baselines.

6.1 Robot manipulators

We consider three robotic cells (Fig. 2). Each cell has four
rectangular obstacles and a serial manipulator (6, 12, and
18 degrees of freedom, respectively). The cell descriptions
and usage examples are available at https://github.com/JRL-
CARI-CNR-UNIBS/high_dof_snake_robots.

We compare our planner (MI-RRT∗) with Informed-
RRT∗ (Gammell et al., 2018), which uses a pure admissible
informed sampling method, and wrapping-based Informed-
RRT∗ (Wrap-RRT∗) (Kim & Song, 2018), which applies a
shortcutting procedure whenever it improves the solution.
The additional parameters of MI-RRT∗ are tuned according
to Sect. 5.3, namely R = 0.02(ck − u) and ν = 0.999.

First of all, we show an example of a query to illustrate the
behavior of the algorithms. Figure3a shows the cost trend for
a random planning query with n = 6, repeated 30 times for
each planner. MI-RRT∗ provides a faster convergence rate
and a smaller variance. Moreover, the median cost of the
proposed algorithm is closer to the 10%-percentile than the
other strategies, highlighting the capability of MI-RRT∗ to
converge sooner to the global minimum. The same behav-
ior is clear also for n = 12, as shown in Fig. 3b. In this
case, Informed-RRT∗ suffers more from the curse of dimen-
sionality, while Wrapping-based RRT∗ gets stuck in a local
minimum for several iterations.

For an exhaustive comparison, we set up a benchmark
as follows. Thirty queries are generated randomly (queries
for which a direct connection between start and goal exists
are discarded). The queries are solved with different plan-
ning times, between 0.5 and 5s. Bounding the maximum
planning time instead of the maximum number of iterations
has been preferred because the algorithms perform different
operations during the iterations. Moreover, planning time is
more meaningful in practical applications.
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Fig. 3 Cost trends over iterations for the 6-dof and 12-dof manipulators for one query. Blue: Informed-RRT∗; Orange: Wrap-RRT∗; Red: Mixed-
strategy RRT∗. Solid lines denote the median; shaded regions denote the region between the 10% and 90% percentile

Fig. 4 Robot manipulators (6-, 12-, 18-dof): Cost trends over planning time for randomized queries

Each planner solves each query 30 times for maximum
planning times equal to 0.5, 1.0, 2.0, 5.0 seconds. The final
cost of each query is normalized by an estimate of the min-
imum cost, obtained by solving the query with a maximum
planning time equal to 60s.

The box-plots of Fig. 4 show that MI-RRT∗ has a faster
convergence rate as well as a smaller variance compared to
both Informed-RRT∗ and Wrap-RRT∗. Therefore, the pro-
posed approach finds better and more repeatable paths given
the same amount of time. This result is emphasized for larger
values of n, as shown in Fig. 4b, c.

We did not observe significant differences betweenWrap-
RRT∗ and Informed-RRT∗, probably because the improve-
ment of the convergence rate is counterbalanced by the
computational overload owed to the wrapping procedures,
as mentioned in Sect. 3.

6.2 Mobile manipulators

We consider navigation scenarios with mobile manipulators.
Each robot consists of a 6-degree-of-freedom manipulator
mounted on an omnidirectional mobile platform (two lin-

ear and one rotational degree of freedom). In the first case,
the robot has to move from one side to the other of a wall
with a narrow opening (see Fig. 5a). The problem has at least
three homotopy classes: two circumnavigate the wall, and
one passes through the narrow passage, requiring the re-
configuration of the robot to fit the passage. We compare
our MI-RRT∗ with Informed-RRT∗ (Gammell et al., 2018)
and Wrap-RRT∗ (Kim & Song, 2018) over 30 repetitions.
Results are in Fig. 5b: MI-RRT∗ has the best convergence
rate, followed by Wrap-RRT∗, and Informed-RRT∗.

We also consider a second scenario with two mobile
manipulators (for a total of 18 degrees of freedom) required
to move from one side to the other of a wall with two open-
ings. Results are in Fig. 5c: similarly to the single-robot case,
MI-RRT∗ has the best convergence rate, followed by Wrap-
RRT∗, and Informed-RRT∗, despite the greater number of
iterations required by all methods to solve the problem.

6.3 Real-world case study

We validated our algorithm in a manufacturing mock-up
cell designed within the EU-funded project Sharework. The
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Fig. 5 Mobile manipulators: cost trends over planning time with one and two robots

Fig. 6 Experimental setup. A Universal Robots UR10e mounted upside down works on the panel in front of it. a Actual setup; b first experiment:
table-shaped obstacle upon placing position; c second experiment: barrier with a narrow passage between picking and placing positions

cell consists of a 6-degree-of-freedom collaborative robot,
Universal Robots UR10e, mounted upside down and work-
ing on a work table in front of it (Fig. 6). The proposed
motion planner is implemented in C++ within ROS/MoveIt!
(Coleman et al., 2014). An open-source version of the code
is available at https://github.com/JRL-CARI-CNR-UNIBS/
cari_motion_planning. ROS/MoveIt! runs on an external
computer from which it sends the planned trajectory to the
robot controller.

The robot is tasked with a sequence of fifty pick-and-
place operations. We consider two experiments. In the first
one, a table-shaped obstacle is placed upon the placing goal
(Fig. 6b). In the second one, a barrier separates the picking
and placing goals (Fig. 6c). These scenarios simulate realis-
tic machine-tending operations, in which the robot needs to
access a confined space. From a planning perspective, they
introduce narrow passages, complicating the planning prob-
lem. For example, in the barrier experiment, the shortest path
passes through the narrow space below the barrier, close to
the table surface.

Figure 7 compares theperformanceofMI-RRT∗, Informed-
RRT∗, and Wrap-RRT∗ with different planning times, for
the table and the barrier experiments. Similar to Sects. 6.1
and 6.2, MI-RRT∗ has a faster convergence speed in both
experiments. In the table experiment, MI-RRT∗ reduces the
planning time up to−34%and−13%compared to Informed-
RRT∗ and Wrap-RRT∗. In the barrier experiment, MI-RRT∗
reduces the planning time up to −37% and −18% compared
to Informed-RRT∗ and Wrap-RRT∗. Note that, contrary to
the simulations, Wrap-RRT∗ showed a significant improve-
ment compared to Informed-RRT∗. This suggests that the
advantages of Wrap-RRT∗ are problem-dependent.

Overall, MI-RRT∗ finds better solutions with the same
maximum planning time. As a matter of example, Fig. 7c
shows the continuous trend of the normalized costs for
the barrier experiment. The key result is that MI-RRT∗
approaches the best cost faster in the initial phase. For
example, after 10 s,MI-RRT∗ reaches 1.4c∗, while Informed-
RRT∗ and Wrap-RRT∗ reach 1.6c∗ and 1.9c∗, respectively;
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Fig. 7 Experimental results: cost trends over planning time

Fig. 8 Narrow-passage example of Sect.A.1 for n = 2. The planning
problem has one global optimum (green line) and one local optimum
(yellow line). For the sake of readability, axis scales are not equal

after 60 s, MI-RRT∗ reaches 1.2c∗, while Informed-RRT∗
and Wrap-RRT∗ reach 1.35c∗ and 1.55c∗, respectively.

7 Conclusions

Comparisons with state-of-the-art methods highlight the
effectiveness of the proposed method in improving the con-
vergence speed, especially in high-dimensional problems.
The method is implemented in a manufacturing-oriented
case study, where the robot is tasked with a sequence of
pick-and-place operations. Results show that the proposed
planner converges quicker to the optimal solution, allowing
for shorter planning latencies in online applications.

An open-source implementation of the algorithm is avail-
able at https://github.com/JRL-CARI-CNR-UNIBS/cari_
motion_planning. The algorithm is implemented in C++ and
is fully compatiblewithROS/MoveIt! (Coleman et al., 2014).
Examples of usage and benchmarking are also available at
https://github.com/JRL-CARI-CNR-UNIBS/high_dof_
snake_robots.

Appendix A Effect of the tuning parameters

We analyze the effect of the parameters R0 and ν used in
Algorithm 1. To do so, we use an illustrative example con-
sisting of a narrow-passage problemwith one local minimum
clocal and one global minimum cglobal. Different cardinalities

of the configuration spaces are tested. We run 200 queries
for each parameter set; each time, the algorithm runs for 106

iterations with an early stop condition if the cost ck satis-
fies the condition ck < 1.01cglobal. Although this analysis
is limited to an illustrative example, the results can serve as
tuning guidelines for parameters R0 and ν, as demonstrated
in Sect. 6.

A.1 Narrow-passage example

We consider the configuration space

X = {
x ∈ X ⊆ R

n
∣∣ − 5 ≤ xi ≤ 5

}
(A1)

and an hollow hyper-spherindrical obstacle:

Xobs =
{

x ∈ X
∣∣ |x1| ≤ lc

2
, r2c1 ≤

n∑

i=2

x2i ≤ r2c2

}

(A2)

where lc = 1 is length of the hyper-spherinder, rc2 = 1 is
the external radius, and rc1 is the cavity radius. The cavity
radius is such that the ratio between the volume of the cavity
and that of the external cylinder is equal to 0.5 for all values
of n. The starting and goal points are set equal to

xstart = [−0.6lc, a, 0, ..., 0] , xgoal = [0.6lc, a, 0, ..., 0]

with

a = rc2 + 3rc1
4

The problem has a local and a global minimum:

clocal = lc + 2
√

(0.1lc)2 + (rc1 − a)2

cglobal = lc + 2
√

(0.1lc)2 + (rc2 − a)2.

An example of the planning problem for n = 2 is in Fig. 8.
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Fig. 9 Effect of the parameters R0 and ν. Iterations needed to reach ck = 1.01cglobal (90%-percentile from 200 tests) for different values of R0 and
ν. Blue line: n = 2; orange line: n = 3; green line: n = 4, red line: n = 7

A.2 Effect of R0

R0 should be adequately small compared to the current cost.
We run tests for R0 ∈ [10−3, 10−1] and ν = 0.999. For
each test, we count the number of iterations needed to reach
ck ≤ 1.01cglobal. The 90%-percentile, computed over 200
tests, is used as the performance index. Figure9a shows the
performance obtained for different values of R0 = R

ck−u and
n. Values around 0.02 provide the best results, while the local
optimization is less effective with higher values. Smaller val-
ues of R0 provideminimal improvements to the cost function.

A.3 Effect of forgetting factor �

The forgetting factor allows smoothing the switchingbetween
the two sampling strategies by averaging out the cost changes
overmultiple iterations. Figure9b shows the relation between
the forgetting factor ν and the number of iterations required
to reach ck = 1.01cglobal (90%-percentile), the tube radius
R0 was set equal to 0.02 according to Sect.A.2. If ν > 0.999,
results do not vary significantly; however, selecting values of
ν too close to 1 could lead the solver to get stuck in local min-
ima for many iterations. ν = 0.999 is a reasonable value for
most cases in our experience.
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