Eliminating Synchronization Faults in Air Traffic Control
Software via Design for Verification with Concurrency Controllers *

Aysu Betin Can (aysu@ i . netu. edu.tr)
Informatics Institute, Middle East Technical University, 06531, Ankara, Turkey

Tevfik Bultan (bul t an@s. ucsb. edu)
Computer Science Department University of California Santa Barbara,CA 93106, USA

Mikael Lindvall (m Kkl i @ c- nd. und. edu), Benjamin Lux
(bl ux@ c- nd. und. edu) and Stefan Topp

(stopp@ c- nd. und. edu)
Fraunhofer Center for Experimental Software Engineering, College Park, MD 20742, USA

Abstract.

The increasing level of automation in critical infrastructures requires development of
effective ways for finding faults in safety critical software components. Synchronization in
concurrent components is especially prone to errors and, due to difficulty of exploring all
thread interleavings, it is difficult to find synchronization faults. In this paper we present an
experimental study demonstrating the effectiveness of model checking techniques in finding
synchronization faults in safety critical software when they are combined with a design for
verification approach. We based our experiments on an automated air traffic control soft-
ware component called the Tactical Separation Assisted Flight Environment (TSAFE). We
first reengineered TSAFE using the concurrency controller design pattern. The concurrency
controller design pattern enables a modular verification strategy by decoupling the behaviors
of the concurrency controllers from the behaviors of the threads that use them using interfaces
specified as finite state machines. The behavior of a concurrency controller is verified with
respect to arbitrary numbers of threads using the infinite state model checking techniques
implemented in the Action Language Verifier (ALV). The threads which use the controller
classes are checked for interface violations using the finite state model checking techniques
implemented in the Java Path Finder (JPF). We present techniques for thread isolation which
enables us to analyze each thread in the program separately during interface verification. We
conducted two sets of experiments using these verification techniques. First, we created 40
faulty versions of TSAFE using manual fault seeding. During this exercise we also developed
a classification of faults that can be found using the presented design for verification approach.
Next, we generated another 100 faulty versions of TSAFE using randomly seeded faults
that were created automatically based on this fault classification. We used both infinite and
finite state verification techniques for finding the seeded faults. The results of our experiments
demonstrate the effectiveness of the presented design for verification approach in eliminating
synchronization faults.

Keywords: model checking, concurrent programming, synchronization, design patterns, in-
terfaces

* This work is supported by the NSF grants CCF-0341365, CCF-0614002, and CCF-
0438933, the NASA funded High Dependability Computing Project (http://hdcp.org/) through
NASA cooperative agreement NCC2-1968, and the TUBITAK grant 106E032.

p;‘w (© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 23/02/2007; 21:52; p.1

1. Introduction

The use of software in critical infrastructures has been steadily increasing.
Automation is a necessity for most critical infrastructures in order to address
the demands to improve their capacity and efficiency. The ability to develop
highly dependable software systems is one of the most important roadblocks
in increasing the automation level in critical infrastructures. For example,
the failure of the power grid in northeastern U.S. on August 14th, 2003 that
caused the largest blackout in U.S. history was partly due to a software fault
(Neumann, 2004). This software fault caused the alarm system at the con-
trol center of an Ohio utility company to fail, delaying the response by the
operators that could have prevented the spread of the blackout. For other
critical infrastructures such as the air traffic control system, software faults
can have even more drastic and tragic consequences. It is necessary to develop
techniques and tools that can be used to eliminate faults in software systems
before they are deployed as part of such critical infrastructures.

In this paper we discuss techniques for detection and elimination of syn-
chronization faults in safety-critical systems using a design for verification
approach. In particular, we focus on a design for verification approach for
concurrent programming in Java with the goal of eliminating synchroniza-
tion faults from Java programs using model checking techniques. Concur-
rency is commonly used in safety critical systems, and synchronization of
concurrently executing threads is difficult to get right.

Concurrent programming in Java is especially error-prone. Misuse of Java
synchronization statements synchr oni zed,wai t ,noti fy,and noti f yAl
can lead to common errors such as nested monitor lockouts, missed or forgot-
ten notifications, slipped conditions, etc. (Lea, 1999). Such errors can cause
a software system to deadlock or may lead to loss of integrity of shared data
due to unsynchronized updates. One defensive programming approach is to
declare all methods of all shared objects to be synchr oni zed in order to
protect the integrity of the shared data. However, excessive use of synchro-
nization can degrade performance, and more importantly, can cause circular
dependencies among the threads that are holding and requesting locks, and,
therefore, lead to deadlocks.

In addition to such problems with lock acquire and release operations,
waiting and notification mechanisms in Java can also create problems. Many
concurrent Java programs use synchronization mechanisms that require con-
ditional waits. A conditional wait in Java can be implemented by creating
an object that corresponds to a condition, and then using that object’s wait
queue for waiting if the condition is false. In this approach, it is necessary to
notify the thread(s) that are waiting for a condition after the execution of any
action that might change that condition. In order to implement notifications
in a program correctly, a programmer has to understand the dependencies

paper.tex; 23/02/2007; 21:52; p.2

3

between all actions and all conditions that might depend on those actions,
and notify the corresponding threads accordingly. A forgotten notification
may cause a thread to get stuck at a wait statement and halt its progress.

The design for verification approach investigated in this paper is based
on the concurrency controller design pattern proposed in (Betin-Can and
Bultan, 2004). We believe that, for safety critical systems, the benefits of
obtaining a highly dependable software system outweigh the extra effort that
is required to learn and use this design for verification approach. Concurrency
controller classes developed based on the concurrency controller pattern spec-
ify synchronization policies for coordinating the interactions among multiple
threads. In the concurrency controller design pattern, software developers do
not use the error-prone synchronization statements in Java. Synchronization
statements are either provided in pre-defined classes, or generated automati-
cally. The behavior of a concurrency controller is specified as a set of actions
(forming the methods of the controller class) where each action consists of a
set of guarded commands. The controller interface is specified as a finite state
machine which defines the order that the actions of the controller can be exe-
cuted by each thread. The responsibility of the software developer is to write
the guarded commands that specify the synchronization policy and the finite
state machine that specifies how the threads should use this synchronization
policy.

The design for verification approach based on concurrency controllers
enables efficient model checking of Java programs for finding synchroniza-
tion errors. Model checking is an automated verification technique that has
been successful in finding synchronization errors in concurrent systems. One
difficulty in applying model checking to software verification is the issue
of scalability. The exponential increase in the state-space of a software sys-
tem due to increasing number of variables and concurrent components leads
to the state-space explosion problem, making it impossible to exhaustively
search all behaviors of the system. In order to achieve scalable software
model checking, it is necessary to find ways to extract compact models from
programs that hide the details that are not relevant to the properties that are
being verified. The model extraction problem is typically handled using a
reverse engineering step in which static analysis tools are used to rediscover
information about programs that may be known to software developers at
design time. A design for verification approach, that enables software devel-
opers to document the design decisions that can be useful for verification,
can improve the scalability and therefore the applicability of model checking
techniques significantly (Bultan and Betin-Can, 2005).

We use a modular verification strategy based on the concurrency controller
pattern. During behavior verification we verify automatically generated infi-
nite state models of concurrency controllers using the Action Language Ver-
ifier (ALV) (Bultan and Yavuz-Kahveci, 2001; Yavuz-Kahveci et al., 2005)

paper.tex; 23/02/2007; 21:52; p.3

4

assuming that the threads that use the controllers obey their interfaces. Dur-
ing interface verification we verify this assumption using the explicit and
finite state model checker Java PathFinder (JPF) (Visser et al., 2003). In this
modular verification strategy, the behavior and the interface verification steps
are completely decoupled. Moreover, during interface verification there is
no need to consider interleavings of different threads. For each thread, we
are only interested in the order of calls by that thread to the methods of its
private interface controller object, and the only interaction among different
threads is through the shared objects that are protected using the concurrency
controllers. Based on these observations, we are able to verify each thread
in isolation during interface verification. In this paper, we present techniques
for isolating threads in programs with GUI components, RMI connections
and network communication. We discuss generic environment models for
isolating both implicitly and explicitly created threads in such programs.
During thread isolation, we use a dependency analysis to identify the input
parameters that influence the synchronization behavior.

We conducted an experimental study with the goal of investigating the
effectiveness of the presented design for verification approach on a safety
critical air traffic control software. Our experimental study is based on a soft-
ware component called the Tactical Separation Assisted Flight Environment
(TSAFE). TSAFE is part of a framework developed by NASA researchers
which targets the automation of the air traffic control system. TSAFE is an
implementation of a safety critical component in this framework.

In order to use it in our experiments we first reengineered TSAFE based on
the concurrency controller design pattern. Then, we created 40 new versions
of the TSAFE source code by manual fault seeding. The faults were created
to resemble the possible errors that can arise in using the concurrency con-
troller pattern such as making an error while writing a guarded command or
forgetting to call a concurrency controller method before accessing a shared
object. We also created another 100 new versions of the TSAFE source code
by automatically seeding randomly generated faults. We used both infinite
and finite state verification techniques for detecting these faults based on our
modular verification strategy supported by the concurrency controller pattern.
The experimental study demonstrated the effectiveness of this modular verifi-
cation strategy. It also resulted in improvements to our verification techniques
by helping us focus on their weaknesses observed during the experiments.
During this experimental study we also developed a classification of the faults
that can be found using our framework.

The rest of the paper is organized as follows. In Section 2 we briefly
describe the TSAFE software. In Section 3 we give an overview of the con-
currency controller pattern and explain how we reengineered the TSAFE
software based on this pattern. In Section 4 we discuss the behavior verifi-
cation for the concurrency controllers used in TSAFE, and in Section 5 we

paper.tex; 23/02/2007; 21:52; p.4

5

discuss the interface verification for the client and server components. We
also present the techniques we used to isolate the threads during interface
verification in Section 5. We present and discuss the results of our experi-
ments in Section 6. After the discussion of the related work in Section 7, we
state our conclusions in Section 8.

2. Automated Airspace Concept and TSAFE

The main goal of the air traffic control system is to keep a safe distance
between the aircraft while achieving efficient air traffic movement in order
to minimize delays. In today’s airspace, human air traffic controllers control
the flight trajectories of the planes. Each controller is responsible for a sector
(i.e. a section of the airspace) and advises the trajectories of the planes in
that sector. The main bottleneck in increasing the capacity of the airspace in
the current air traffic control system is the cognitive limits of the human air
traffic controllers (Erzberger, 2004). Increasing the loads of the controllers
by assigning more planes to a sector increases the risk of accidents. On the
other hand, reducing the sizes of the sectors in order to increase the airspace
capacity is no longer feasible. Controllers need enough airspace to maneuver
the aircraft; hence, sector sizes cannot be reduced beyond a certain limit.
Also, decreasing the sector sizes increases the controller workload at the
sector intersections.

The future air traffic control systems will need to rely on automation
to increase the capacity of the airspace while preserving the high levels of
dependability required in this area. Researchers at NASA proposed a vision
for automating the decision-making in air traffic control system called the
Automated Airspace Concept (Erzberger, 2001; Erzberger, 2004). The basic
architecture of the Automated Airspace Concept is shown in Figure 1. The
automated Airspace Concept gives the responsibility of determining conflict
free trajectories for aircraft to a software system. Controllers are still able to
interact with the system to propose changes to the trajectories. The system
receives data from the radar feeds that track the aircraft. Controllers interact
with the system using a graphical user interface (GUI). The system stores
the four-dimensional trajectories of the aircraft in a database. The automated
trajectory server accesses the trajectory database to analyze and update the
trajectories.

Establishing dependability of such complex systems is extremely difficult,
yet it is essential for automation in this domain. Earlier efforts in automat-
ing the air traffic control system have resulted in costly failures due to the
inability of the contractors in making the software components highly de-
pendable (DOT, 1998). The Advanced Automation System that was being
developed during 1980s and 1990s was an ambitious effort by the Federal

paper.tex; 23/02/2007; 21:52; p.5

Radar
Feed

Automated Controller
Trajectory Interface TSAFE

Server

Trajectory
Database

Figure 1. Automated Airspace Concept.

Aviation Administration (FAA) to replace the computer hardware and soft-
ware in air traffic control facilities while increasing the level of automation.
After sustaining serious cost and schedule problems, the FAA dramatically
restructured the program and terminated its major segments. One of the main
problems in this project was the inability of the contractors to make the
Advanced Automation System software highly dependable.

To avoid a similar fate, the designers of the Automated Airspace Concept
at NASA introduced a failsafe short term conflict detection component in their
Automated Airspace Concept, which is responsible for detecting conflicts in
flight paths of the aircraft within 1 minute from the current time. If a short
term conflict is detected, this component takes over the trajectory synthesis
function from the automated trajectory server to direct the aircraft to a safe
separation. Since the goal of this component is to provide failsafe conflict
detection and resolution capability, it has to be highly dependable, even more
than the rest of the system.

The Tactical Separation Assisted Flight Environment (TSAFE) software
is a partial implementation of this component. Based on the design proposed
by NASA researchers, a version of TSAFE was implemented at MIT (Den-
nis, 2003). Later on, as a part of NASA’s High Dependability Computing
Project, TSAFE software was integrated into an experimental environment
at the Fraunhofer Center for Experimental Software Engineering, Maryland
(Lindvall et al., 2005). The TSAFE experimental environment contains soft-
ware artifacts including requirements specifications, design documentations,
source code (Java), as well as faults that can be seeded into various artifacts
for several versions of TSAFE.

paper.tex; 23/02/2007; 21:52; p.6

<<TCP/IP>>
Radar Feed ———> Server Feed
User Parser
\
- '
Clent e > 6 Flight
: Database

d :
H : <<RMI> !
é_ Graphical é_ Computation Timer
X Client

Figure 2. TSAFE architecture.

In our experimental study, we used a distributed client-server version of
TSAFE, called TSAFE III, that performs the following functions: 1) Dis-
play aircraft position (i.e. indicate where the aircraft is located at a certain
time); 2) Display aircraft planned route (i.e. indicate the route that the air-
craft intends to follow according to the flight plan); 3) Display aircraft future
projected route trajectory (i.e. display the probable trajectory that the aircraft
will follow); 4) Indicate conformance problems (i.e. indicate whether a flight
is conforming to the planned route or blundering).

The TSAFE III implementation consists of 21,057 lines of Java source
code in 87 classes. Figure 2 shows the architecture of TSAFE III. The server
component stores the trajectories of the flights in a flight database. The feed
parser thread in the server receives updates of the locations of the flights pe-
riodically from the radar feed through a network connection and updates the
trajectory database. A computation component in the server implements the
trajectory synthesis and conformance monitoring functions. The client side
implements the display functionality in a GUI. Multiple clients can connect to
the server at the same time via RMI. A timer thread at the server periodically
prompts the clients to access the flight database to obtain the current data.

3. Concurrency Controllers

In this section we will discuss the concurrency controllers used in reengineer-
ing of the TSAFE. We will use these examples to explain the concurrency
controller design pattern and the behavior of concurrency controller classes
written using this design pattern. The formal semantics for the concurrency
controllers is provided in (Betin-Can and Bultan, 2006).

The flight database in TSAFE is accessed by multiple threads. The in-
tegrity of the data stored in the flight database can be lost if the threads
accessing the database are not properly synchronized. As an example consider
the following scenario. While the thread running the feed parser is updating
the trajectory database, a thread serving an RMI call from a client may be
reading it. In such a scenario, an aircraft’s location may be displayed in-

paper.tex; 23/02/2007; 21:52; p.7

8

correctly on the client GUI. Since the client GUI provides the interaction
between the human air traffic controllers and the TSAFE system, the con-
sequences of displaying incorrect information on it could be disastrous. To
prevent such synchronization problems in Java programs, Java programmers
declare the methods of shared classes to be synchr oni zed. However, this is
not an efficient solution. If the methods of the database are synchr oni zed,
then at any given time at most one client thread can access the database. Since
client threads never update the database, this synchronization is unnecessary
and may slow down the GUI displays. A more appropriate synchronization
policy for such cases is to use a read-write lock. Using a read-write lock,
multiple readers can access a shared resource at the same time, but a writer
can access the shared resource only alone. In order to implement this solution
in Java, a programmer 1) has to write a class implementing the read-write
lock, and 2) needs to make sure that the appropriate methods of the read-write
lock class are called before accessing the database. The design for verification
approach we present below helps developers in eliminating faults in both of
these two steps.

In this design for verification approach, programmers use the concurrency
controller design pattern and write a set of guarded commands describing the
synchronization policy without using any of the error-prone Java synchro-
nization statements. The Java synchronization statements appear only in the
predefined helper classes provided by the concurrency controller pattern, and
they are automatically optimized to improve the performance.

Reader-Writer Controller: Using the concurrency controller pattern, the
reader-writer synchronization policy can be implemented as a controller class.
A typical implementation of the RW controller would have one integer vari-
able (nR) denoting the number of readers in the critical section, one boolean
variable (busy) denoting if there is a writer in the critical section, and four
guarded commands defining four actions w.ent er, wexi t, r enter, and
r _exit as shown in Figure 3. These four actions form the public methods
of the RW controller class which will be called by the threads to synchronize
their access to a shared resource. In the RW controller there is one guarded
command for each action; however, the concurrency controller pattern allows
declaration of multiple guarded commands for each action (which is neces-
sary if different updates have to be executed based on different conditions). In
the figure, the implementation of the last action of RW shows the mechanism
to declare multiple guarded commands although the r _exi t action has only
one guarded command.

When an action is called, one of the enabled guarded commands of that
action is executed. If none of the guarded commands of an action is enabled
(i.e. all the guards evaluate to false), then the behavior is different for blocking
and nonblocking actions. For example in the RW controller shown in Figure 3

paper.tex; 23/02/2007; 21:52; p.8

class RWController inplements ReaderWiter {
int nR bool ean busy;
Action act_wenter, act_wexit, act._r _enter, act.r _exit;
public RWController() {
act wenter = new Action (this, new GuardedCommand() {
publ i c bool ean guard() {return(nR==0&& !busy);}
public void update() { busy=true } });
act wexit = new Action(this, new GuardedCommand() {
publ i c bool ean guard() { returntrue }
public void update() {busy=fase } });
act _r_enter = new Action(this, new GuardedComand() {
publ i c bool ean guard() { return (busy); }
public void update() {nR=nR+1;} });
Vector gcs=new Vector();
gcs. add(new Guar dedCommand() {
publ i c bool ean guard() { returntrue }
public void update() {nR=nR-1;} });
act_r_exit = new Action(this, gcs);
nR=0;
busy=f al se;

public void wenter(){ act_wenter. blocking(); }
public bool ean wexit(){ return act _w.exit. nonblocking(); }
public void r_enter(){ act_r_enter. blocking(); }
public boolean r_exit(){ return act_r_exit. nonblocking(); }

Figure 3. Reader-Writer controller implementation.

actions w_ent er and r _ent er are specified as blocking actions and actions
wexit andr _exi t are specified as nonblocking actions. When a thread calls
a blocking action, if all the guards are false, then the thread waits until it is
notified by another thread. A nonblocking action does not cause the calling
thread to wait. If all the guards are false, a nonblocking action just returns
f al se, and returns t r ue otherwise. The caller of a nonblocking action can
determine if the action was executed or not by looking at this return value.
Note that, the developers are not required to implement the above se-
mantics in Java in order to write a concurrency controller. This semantics
is already implemented in the helper classes provided in the concurrency
controller pattern. For example the helper class Acti on shown in Figure
4 should be used as is without any modifications (Betin-Can and Bultan,
2004; Betin-Can and Bultan, 2006). The Act i on class implements the se-
mantics of the action execution as shown in Figure 4. In addition to Act i on
class the Guar dedConmand Java interface and the St at eMachi ne class are
provided with the concurrency controller pattern, and the developers should
use them as is without modifying them. To implement a controller, the de-
veloper only writes the guarded commands of the actions as shown in Figure
3 and specifies if the actions are blocking or nonblocking. This information
that needs to be provided by the programmer is shown as italic in the figure.

paper.tex; 23/02/2007; 21:52; p.9

10

public class Action{
protected final Object owner;
private final Vector gcV,
public Action(Object owner, Vector gcs){...}
public Action(Object owner, GuardedConmand gc){...}
private bool ean GuardedExecute(){
bool ean resul t =f al se;
for(int i=0; i<gcV.size(); i++)
try{

i f(((GuardedCommand)gcV.get(i)).guard()){
((Guar dedCommand) gcV. get (i)). update();
resul t=true; break; }

}catch(Exception e){}
return result;

publ i ¢ bool ean nonbl ocki ng() {
synchroni zed(owner) {
bool ean resul t =Guar dedExecut e() ;
if (result) owner.notifyAl();
return result; }
}
public void bl ocking(){
synchroni zed(owner) {
whi | e(! Guar dedExecute()) {
try{owner.wait();}
catch (Exception e){} }
owner.notifyAll(); }
}
}

Figure 4. Action class

w_enter r_enter @
release acquire
w_exit r_exit @
Reader-Writer Contoller Interface Mutex Controller Interface

Figure 5. Controller interfaces.

One concern in using the concurrency controller pattern could be the ef-
ficiency of the synchronization based on the Act i on class shown in Figure
4. In order to address the performance concerns, we automatically optimize
the concurrency controllers using a source-to-source transformation (Betin-
Can and Bultan, 2004). The optimized controller class 1) uses the specific
notification pattern (Cargill, 1996), 2) does not have any inner classes, and 3)
minimizes the number of method invocations.

The final step in the implementation of a controller is the declaration of
its interface. The interface of a concurrency controller defines the acceptable
call sequences to the public methods (i.e. actions) of the controller by a thread

paper.tex; 23/02/2007; 21:52; p.10

11

that uses the controller. These allowed call sequences are specified using
the finite state machine implementation provided in the helper classes of the
concurrency controller pattern.

A controller interface is a Java class which has the same set of methods as
the controller itself. When a method of a controller interface is called, it first
executes an assertion which checks that the current interface state is a state
where the corresponding action can be executed, and then updates the current
interface state according to the corresponding transition of the interface state
machine.

The interfaces of the two concurrency controllers we used while reengi-
neering TSAFE are shown in Figure 5. The interface of the RW controller
has three states: | DLE, READI NG, and WRI Tl NG with | DLE being the initial
state. The interface state machine shows how the interface state changes when
an action is executed. The RW controller interface, for example, states that a
thread using the RW controller can execute (i.e. call) the w_exi t action only
after executing the w_ent er action.

Note that, the interface machines shown in Figure 5 are not used as syn-
chronization mechanisms. The synchronization policy is specified in the con-
troller classes as shown in Figure 3. The interface machines just specify how
each single thread should interact with the synchronization policy. In particu-
lar, the interface machine for a controller shows the order a thread should call
the controller actions.

Another crucial point is that the interface machines show the acceptable
call sequence for a single thread. For example, the interface machine for
the RW controller shown in Figure 5 states that a thread cannot execute the
r _ent er action back to back without executing a r _.exi t action in between.
Le., this synchronization policy is not reentrant. Of course other threads are
allowed to execute the r _.ent er action while there is another thread in the
READI NGstate. This comes from the synchronization policy specified by the
controller shown in Figure 3.

As we stated above, the interface machines shown in Figure 5 do not
specify the synchronization policy and they are not shared among multiple
threads. One can think of them as auxiliary variables that are defined to
specify the acceptable call sequences for each thread. There is one separate
interface machine instance for each thread. I.e., interface machine instances
are not shared among multiple threads, each thread has its own local interface
machine instances. During interface verification we use these local interface
machine instances to check for interface violations in each thread separately
as discussed in Section 5 (see Figure 13).

The controller interface is also used to specify when the methods of the
shared data objects can be executed. For example, for the RW controller, a
method which updates the shared data can only be executed in the WRI Tl NG
state, a method which reads the shared data can be executed in the READI NG

paper.tex; 23/02/2007; 21:52; p.11

12

class MutexControl |l er inplenents Mitex {
bool ean busy;
Action act _acquire, act_release;
public MutexController() {
act _acquire = new Action (this, new GuardedCommand() {
publ i c bool ean guard() {return ('busy);}
public void update() { busy=true } });
act rel ease = new Action(this, new CGuardedCommand() {
publ i ¢ bool ean guard() { returnbusy; }
public void update() {busy=fase } });
busy=f al se;

}
public void acquire(){ act_acquire. blocking(); }
public void rel ease(){ act .rel ease. blocking(); }

Figure 6. Mutex controller implementation.

and WRI Tl NG states, and no method of the shared data can be executed in
the | DLE state. In the concurrency controller pattern, these constraints are
specified as assertions in a data stub class. In Section 3.1, this usage of con-
troller interfaces is explained and exemplified with a data stub class shown as
Runt i neDat abase_St ub in Figure 7.

Mutex Controller: The other synchronization policy used in TSAFE is the
mutual exclusion (mutex) lock. One scenario where this lock is used in TSAFE
is maintaining a consistent list of TSAFE clients. The clients subscribe to and
unsubscribe from the TSAFE server through RMI calls. Through these calls
the list of clients is accessed concurrently. This list is also accessed by another
thread. The TSAFE server notifies each subscriber at certain time intervals.
This mechanism is implemented in TSAFE through a Ti mer event which is
dispatched by the Event Thr ead. Using the concurrency controller pattern,
the mutex synchronization to protect this client’s list can be implemented as
a controller class. Figure 6 shows a possible implementation. This implemen-
tation has one boolean variable (busy) denoting if there is another thread in
the critical section, and two actions acqui r e and r el ease.

3.1. REENGINEERING TSAFE

We reengineered the TSAFE software as follows: 1) We identified all the
synchronization statements (synchroni zed, wai t, notify, notifyAll)
in the TSAFE code and we also identified the shared objects they are used
to protect. 2) We developed the concurrency controllers implementing the
synchronization policies required for accessing these shared objects. 3) We
replaced all the synchronization statements in the TSAFE code with calls to
the appropriate concurrency controller classes. All the synchronization state-

paper.tex; 23/02/2007; 21:52; p.12

13

T RWStateMachine
ReaderWriter| | DLEm -
I :
controller FW_enter ! RWController +READING:int StateMachine
I;"%ﬁ;g | “nRiint +WRITINGint +transition(t:String)
: —eni : —busy:boolean
TSAFE Client +r_exit : —acLywiemer:Actio < ?
! —act_w_exit:Action
7777777 N —act_r_enter:Action *
o —act_r_exit:Action — Action
sharedDatabase +RWController() blocking0void int
CKI VOl
sharedDatabase Databasel nterface +nonblo§<ing():boolean
—GuardedExecute():boolean
N
oo GuardedCommand
—| FeedParser L : | T guard();boolean
RuntimeDatabase RuntimeDatabase_Stub +Uupdate():void

+selech]?ghl(aircraﬂ:Slring) +selectFlight(aircraft:Stringy -{- -
+§elechl!ghlsIanunds(4..) +selectFlightsInBounds(...) |
+insertFlight(f:Flight) +insertFlight(f:Flight) .

i
' Flight selectFlight(String aircraft){

| assert(controller.inState(RWStateMachine. READING)II

: controller.inState(RW StateMachine. WRITING)); }
I

I
insertFlight(Flight f){
assert(controller.inState(RWStateMachine. WRITING)); }

Figure 7. Synchronization of the Flight Database in TSAFE using the Reader-Writer Con-
troller based on the Concurrency Controller Pattern.

ments in the reengineered TSAFE code are in the helper classes provided by
the concurrency controller pattern.

In the reengineered TSAFE code there are two concurrency controller
classes which are the RW controller and the MUTEX controller described
above. There are 2 instances of the RW controller and 3 instances of the
MUTEX controller protecting 6 shared objects.

Figure 7 shows a class diagram for a part of the reengineered TSAFE code
where the access to flight database is protected using the RW controller based
on the concurrency controller pattern. The Reader Wi t er is a Java interface
which defines the names of the controller actions. The RACont r ol | er class
contains the guarded commands specifying the controller behavior and the
RWEt at eMachi ne class is the controller interface.

The Runt i neDat abase is the implementation of the flight database in
TSAFE (see Figure 2). The methods of the Runt i meDat abase class were
synchronized in the original version. Figure 7 shows two of these meth-
ods: i nsert Fl i ght which updates the database by inserting a flight, and
sel ect Fl i ght which is used to read the information about a flight. In the
reengineered code the methods of the Runt i meDat abase are not synchro-
nized. The class Runt i meDat abase_St ub specifies the constraints on ac-
cessing shared data based on the interface states of the RW controller. Note
that, the shown assert statements imply that a thread has to call w.ent er
before calling i nsert Fl i ght and it has to call went er orr _ent er before
calling sel ect Fl i ght .

paper.tex; 23/02/2007; 21:52; p.13

14

controller

Mutex MutexStateMachine
"~ 7| +IDLE:int
controller +acquir ! :—LOCKED" t
+ felease(e? | o StateMachine
R I
TSAFE Client ZA | 0
e A —
|
R I
clients \% IClientList| ------ MutexController
clients I —busy:boolean i
E (Thread AN —act_acquire:Action Action
| EBEventlhrea T —act_release:Action
: +MutexController()
1
1

Timer :

ClientList ClientList_Stub

Figure 8. Use of the Mutex controller in TSAFE.

Figure 8 shows a class diagram for another part of reengineered TSAFE
code. Here, the access to the client list is protected using the MUTEX con-
troller based on the concurrency controller pattern. In this diagram, the Mut ex
is the Java interface defining the names of the controller actions, the Mut ex-
Control | er is the Java class that contains the guarded commands, and the
Mut exSt at eMachi ne is the Java class realizing the controller interface.
This concurrency controller protects the list of clients shown as | O i ent Li st
in Figure 8.

4. Behavior Verification

Based on the concurrency controller pattern we divide the verification of the
concurrent programs with respect to synchronization errors into two steps
(Betin-Can and Bultan, 2004; Betin-Can and Bultan, 2006): 1) Behavior ver-
ification: Verification of the properties of the controller classes assuming that
the user threads adhere to the constraints of their instances of the controller
interfaces; 2) Interface verification: Verification of the threads which use the
concurrency controllers to make sure that they access the methods of the
controllers and the shared data objects in the order specified by the controller
interfaces and the data stubs.

We use the Action Language Verifier (ALV) (Bultan and Yavuz-Kahveci,
2001; Yavuz-Kahveci et al., 2005) for behavior verification. We automati-
cally translate the concurrency controllers written based on the concurrency
controller pattern into the Action Language (Betin-Can and Bultan, 2004).

The Action Language is a specification language for reactive software
systems (Bultan, 2000; Bultan and Yavuz-Kahveci, 2001). An Action Lan-
guage specification consists of integer, boolean and enumerated variables,
parameterized integer constants, and a set of modules and actions which are
composed using synchronous and asynchronous composition operators. A

paper.tex; 23/02/2007; 21:52; p.14

15

module specification starts with variable declarations. A state of an Action
Language specification corresponds to a valuation of all the variables in the
specification. The initial expression of a module defines the set of initial states
of that module. Actions of a module are specified after the initial expression.

Actions of a module are written as logical expressions on primed and
unprimed variables. In an action expression primed variables (called next-
state variables) denote the next-state values and unprimed variables (called
current-state variables) denote the current-state values. An action expression
is written using current and next-state variables, arithmetic and relational
expressions and logical connectives and, or, and not .

In the Action Language, the top level module is always called the mai n
module. A module expression (which starts with the name of the module)
defines the transition relation of the module. A module expression can be
written as a composition of submodules and actions. Actions and modules can
be composed using asynchronous and synchronous composition operators.
Asynchronous composition of two actions a1 and as, denoted a1 | as, is
defined as the disjunction of their transition relations. However, an action
preserves the values of the variables which are not modified by itself.

ALV supports only integer, boolean and enumerated types. This means
that we have to restrict the controller variables to these types in order to
verify them with ALV (we use static integers as enumerated variables in the
controller implementations). Since variables of the concurrency controllers
only need to store the state information required for synchronization, these
basic types have been sufficient for modeling concurrency controllers we have
encountered so far.

The automatically generated Action Language specifications for the RW
and MUTEX controllers are shown in Figures 9 and 10, respectively.

In these specifications the controller variables are defined in the mai n
module. The initial values of these variables are obtained from the construc-
tor of the controller class. Each instance of the the RACont r ol | er module
corresponds to one thread. The enumerated variable (pc) keeps track of the
thread state which is represented by a state of the controller interface (this
is the only state information we need to keep about a thread while we are
verifying the controller behavior).

The controller behavior is represented with a set of actions. Each of these
actions are generated from the guarded command definitions in the construc-
tor of the controller class and from the controller interface. Both in the RW
and the MUTEX controllers there is one guarded command per action. In these
specifications, the nonblocking actions have been translated to two actions in
Action Language. The translation of the r _.exi t action is represented with
r_exit O and r_exit_1 in Figure 9. The first one represents the execution
when the guard is satisfied, and the second one represents the execution when
the guard is not satisfied. L.e., the guard of r _.exi t _1 is the negation of the

paper.tex; 23/02/2007; 21:52; p.15

16

nmodul e mai n()
i nteger nR bool ean busy;
nodul e RWController()
enunerated pc {IDLE, READI NG WRI TI NG ;
initial: nR=0 and busy = fal se and pc=I DLE;
r_enter_0: pc=IDLE and !busy and nR =nR+1 and pc’ =READI NG
r_exit_0: pc=READING and true and nR =nR-1 and pc’ =I DLE;
r_exit_1: pc=READING and ! (true) and pc’ = | DLE;
w_enter_0: pc=IDLE and (nR=0 and !busy) and busy’ =true
and pc’ =WRI TI NG
w_exit_0: pc=WRI TING and true and busy’ =fal se and pc’ =I DLE;
w exit_1: pc=WRITING and ! (true) and pc’' = | DLE;
RWController:r_enter_O0 | r_exit_O | r_exit_1 | wenter_0
| wexit 0| wexit_1;
endnodul e
mai n: RWController() | RAMController() | RAController() |
RWController() | RAController() | RANontroller() |
RWController() | RAMontroller();
endnodul e

Figure 9. Automatically generated Action Language specification for the RW controller.

nmodul e mai n()
bool ean busy;
nmodul e MutexControl ler()
enunerated pc {IDLE, LOCKED};
initial: busy = false and pc=I DLE;
acqui re_0: pc=IDLE and !busy and busy’ =true
and pc’ =LOCKED;
rel ease_0: pc=LOCKED and busy and busy’ =fal se
and pc’ =I DLE;
Miut exControl I er:acquire_0 | rel ease_0;
endnodul e
mai n: MutexController() | MutexController() | MitexController() |
Mut exControl ler() | MiutexController() | MutexController() |
Mut exControl ler() | MutexController();
endnodul e

Figure 10. Automatically generated Action Language specification for the MUTEX controller.

guard of r _exi t 0. Note that, since the guard of the non-blocking action
r _.exit is never false, the action r _exi t _1 is never executed, hence action
r _exit _1 is redundant. However, in general, for a non-blocking action we
need to generate an extra action with a negated guard which corresponds to
the case where the guard evaluates to false (hence the negation of the guard
evaluates to true).

The Action Language translation of the RW controller shown in Figure 9
contains 8 instantiations of the RWCont r ol | er module that are composed
using asynchronous composition. The 8 instantiations of the R\Cont r ol | er
module correspond to 8 concurrently executing threads that execute the con-
troller actions concurrently and modify the shared variables nRand busy.

paper.tex; 23/02/2007; 21:52; p.16

17

modul e mai n()
i nteger nR bool ean busy;
paranet eri zed i nteger numl nstance;
nmodul e RWControl ler()
integer | DLE, READI NG WRI TI NG
initial: nR =0 and busy = fal se;
initial: |DLE=num nstance and READING = 0 and WRI TI NG = 0;
restrict: |DLE + READI NG + WRI TI NG=nunl nst ance
and nunl nst ance>=0;
r_enter_0: IDLE>0 and !busy and nR =nR+1
and READI NG =READI NG+1 and | DLE' = I DLE-1;
r_exit_0: READINGO and true and nR =nR-1
and | DLE =l DLE+1 and READI NG = READI NG 1;
r_exit_1: READINGO and !(true) and |IDLE = | DLE+1
and READI NG = READI NG 1;
w_enter_0: IDLE>0 and (nR=0 and ! busy) and busy’ =true
and WRI TI NG =WRI TI NG+1 and | DLE' = I DLE- 1;
w_exit_0: WRITINGO and true and busy’ =fal se
and | DLE =l DLE+1 and WRI TING = WRI TI NG 1;
wexit_1: WRITINGO and !(true) and |DLE = | DLE+1
and VWRI TI NG = WRI TI NG 1;
RWController:r_enter 0 | r_exit_O | r_exit_1 | wenter_0O
| wexit 0| wexit_1;
endnodul e
mai n: RWController();
endnodul e

Figure 11. Action Language specification generated with automated counting abstraction for
the RW controller.

ALV is an infinite state model checker which verifies or falsifies (by gener-
ating counter-example behaviors) CTL properties of Action Language speci-
fications with unbounded integer variables (such as nR). For the infinite state
systems that can be specified in Action Language, model checking is un-
decidable. Hence, ALV uses conservative approximations techniques during
verification. There are three outcomes when one uses ALV to verify a sys-
tem: 1) ALV verifies the property which means that the property is provably
correct, 2) ALV generates a counter-example which means that the property
is provably incorrect, and 3) ALV states that it is unable to verify or falsify
the property. The goal of the heuristics used in ALV are to minimize the
third outcome as much as possible. The undecidability of the model checking
problem for ALV implies that the fixpoint computations are not guaranteed to
converge. ALV uses several conservative approximation heuristics to achieve
convergence. For the experiments we conducted in this study ALV was able to
verify or falsify all the instances. L.e., all the fixpoint computations converged
and the approximations were precise enough to verify or falsify the given
properties.

Since ALV allows unbounded integer variables, it enables us to use an
automated abstraction technique, called counting abstraction, to verify the
concurrency controllers with respect to arbitrary number of threads (Yavuz-

paper.tex; 23/02/2007; 21:52; p.17

18

nmodul e mai n()
bool ean busy;
paranet eri zed i nteger numl nstance;
nmodul e MutexControl ler()
i nteger | DLE, LOCKED;
initial: busy = fal se;
initial: |DLE=num nstance and LOCKED = O0;
restrict: |DLE + LOCKED=num nstance and numl nst ance>=0;
acquire_0: IDLE>0 and !busy and busy’ =true
and LOCKED =LOCKED+1 and | DLE' = | DLE- 1;
rel ease_0: LOCKED>0 and busy and busy’ =fal se
and | DLE =I DLE+1 and LOCKED = LOCKED- 1;
Miut exControl l er:acquire_0 | rel ease_0;
endnodul e
mai n: MiutexController();
endnodul e

Figure 12. Action Language specification generated with automated counting abstraction for
the MUTEX controller.

Kahveci and Bultan, 2002). The counting abstraction technique (Delzanno,
2000) in ALV supports verification of parameterized systems with an arbi-
trary number of finite state modules. The basic idea is to define an abstract
transition system in which the local states of the threads (corresponding to
the states of the interface) are abstracted away, but the number of threads in
each interface state is counted by introducing a new integer variable for each
interface state. The specifications generated by the counting abstraction for
the RW and the MUTEX controllers are shown in Figure 11 and Figure 12,
respectively.

Note that, the local variable that encodes the thread state is replaced with a
set of integer variables, one for each state of the thread (i.e., one for each state
of the controller interface). For example, in the parameterized specification,
the integer variable | DLE denotes the number of threads in the interface state
| DLE. The initial states and the transition relation of the parameterized system
is defined using linear arithmetic constraints on these variables. A parameter-
ized integer constant, num nst ance, denotes the number of threads. This
parameterized constant is restricted to be positive and when the specification
is verified with ALYV, the results hold for any valuation of this parameterized
constant (i.e. the results are valid for any number of threads) for ACTL prop-
erties. If an ACTL property is violated, then this means that there exists a
valuation for the parameterized constant (i.e, there exists a specific number
of threads) for which the property is violated and a counter-example path is
generated.

Controller Properties: In order to verify the controllers with ALV we need
a list of properties that specify the correct behavior of the controllers, i.e.,
we need the class invariants for the controller classes. We allow the CTL
properties for the controllers to be either inserted directly to the generated Ac-

paper.tex; 23/02/2007; 21:52; p.18

19

Table I. RW Controller Properties

RP1 AG(busy = nR = 0)

RP2 AG(busy = AF(—busy))

RP3 AG(=busy AnR =0 = AF (busy V nR > 0))
RP4 | Vo AG(nR =z AnR>0= AF(nR # z))

RP5 | AG(pc = WRITING = AF(pc = IDLE))

RP6 AG(—(pcl = READING A pc2 =WRITING))
RP7 EF(pcl = READING A pc2 = READING)
RPS | AG(=(pcl = WRITING A pc2 = WRITING))
RP9 AG(pcl = READING = nR > 0)

RP10 | AG(pcl = WRITING = busy)

RP11 | AG(WRITING > 0= AF(WRITING = 0))

RP12 | AG(~(READING >0AWRITING > 0))

RPI13 | AG(~(WRITING > 1))

RP14 | AG(READING = nR)

RP15 | AG(WRITING = 1 < busy)

RP16 | Vo AG(READING =z A READING > 0 = AF(READING # z))

tion Language specification or written as annotations in the controller classes
(which are then automatically inserted into the Action Language translation).

The properties for the RW controller are shown in Table 1. The properties
RP1-4 only refer to the variables of the RWCont r ol | er class. For example,
the global property RP1 states that whenever busy is true nR must be zero.
The remaining properties refer to both the variables of the controller and also
to the states of the threads. Note that the representation of the thread state
is different in the concrete and the parameterized Action Language specifi-
cations. The properties RP5-10 are for concrete specifications and refer to
concrete thread states. For example the property RPS states that whenever
a thread is in the WRI Tl NG state it will eventually reach the | DLE state.
The properties RP11-16 are for the parameterized instances and refer to the
integer variables which represent the number of threads in a particular state.
For example property RP14 states that at any time the number of threads that
are in the reading state is the same as the value of the variable nR. Note that,
two of the properties shown in Table I contain universally quantified integer
variables. We are able to check such properties using ALV by declaring the
universally quantified variables as parameterized constants.

The properties for the MUTEX controller are shown in Table II. The prop-
erties MP1 and MP2 only refer to the variables of the Mut exControl | er
class. The remaining properties refer to both the variables of the controller
and the states of the threads. The properties MP3-6 are for concrete specifi-
cations and refer to concrete thread states. The properties MP7-10 are for the

paper.tex; 23/02/2007; 21:52; p.19

20

Table II. MUTEX Controller Properties

MP1 AG(busy = AF(—busy))
MP2 AG(—busy = AF (busy))

MP3 | AG(pc= LOCKED = AF(pc = IDLE))
MP4 | AG(~(pcl = LOCKED A pc2 = LOCKED))
MP5 AG(pc = LOCKED = busy)

MP6 AG(—busy = pc = IDLE)

MP7 | AG(LOCKED > 0 = busy)

MP8 | AG(-busy = IDLE > 0)

MP9 | AG(LOCKED >0 = AF(IDLE > 0))
MP10 | AG((LOCKED > 1))

Table III. Controller Property Classification

Referring to the variables of RW controller only RP1-RP4
Referring to concrete thread states and RW controller RP5-RP10
Referring to parameterized thread states and RW controller RP11-RP16
Referring to the variables of MUTEX controller only MP1-MP2
Referring to concrete thread states and MUTEX controller MP3-MP6

Referring to parameterized thread states and MUTEX controller | MP7-MP10

parameterized instances generated with counting abstraction and refer to the
integer variables | DLE and L OCKED which represent the number of threads in
the interface states | DLE and LOCKED, respectively.

5. Interface Verification and Thread Isolation

Interface verification assures that each thread conforms to the interfaces of
the concurrency controllers and shared data it uses. These interfaces encode
the assumptions about the thread behaviors that were used during behavior
verification. The behavior verification assumes that 1) threads execute the
actions of the concurrency controllers in the order defined by the controller
interfaces, and 2) threads access shared data objects only at the allowed in-
terface states of the concurrency controllers as specified in the data stubs. An
example for the first assumption is that, during the behavior verification of the
MUTEX controller, each thread is assumed to invoke the r el ease action only
after invoking the acqui r e action (see Figure 5). An example for the second
assumption is that, the Event Thr ead should access | Cl i ent Li st only at
the LOCKED state of the controller interface of the MUTEX controller that is

paper.tex; 23/02/2007; 21:52; p.20

21

controlling the access to | O i ent Li st . The goal of interface verification is
to verify (guarantee) that these assumptions are satisfied by all threads.

If a thread does not violate the above two assumptions, then we say that the
thread conforms to the controller interfaces. (Formal definition of interface
conformance is given in (Betin-Can, 2005).) During interface verification,
we check the interface conformance of each thread individually. I.e., we do
not have to worry about the thread interleavings during interface verification.
During behavior verification synchronization properties are verified on all
possible thread interleavings that conform to the controller interfaces.

During interface verification we verify each thread in the program sepa-
rately using the Java Path Finder (JPF) (Visser et al., 2003). If a thread invokes
the actions of a controller in an order that is not allowed by the interface of
that controller, then the thread does not conform to the controller interface.
For example, in a program using the MUTEX controller with the controller
interface shown in Figure 5, the following sequence will cause an interface
violation: Thread T} invokes acqui r e, thread T invokes r el ease, thread
T5 invokes r el ease, The violation here is in thread 75 since there is
no transition originating from the initial interface state with the r el ease
action. On the other hand, the thread T4 conforms to the controller interface
of MUTEX on part of the program trace shown above. If a thread invokes
a method of a shared data item at a controller interface state that is different
than the ones specified in its data stub, then the thread does not conform to the
controller interface. As explained in Section 3, the methods of the controller
interfaces and data stubs have assertions to check these criteria. If JPF reports
a violation of an assertion in a controller interface or a data stub, then we
know that the thread in question caused an interface violation. JPF outputs a
counter-example execution trace that leads to the violation of the assertion.

During interface verification we have to keep track of the interfaces of
all the controllers used by a thread. In fact, we check whether each thread
obeys an interface state machine that is the product of all the interface state
machines of all the controllers used by that thread. By default, this product
machine allows a thread to execute an action of a controller only when the
thread is in the initial states of the interface state machines of all the other
controllers it is using (Betin-Can and Bultan, 2006). For example, if a thread
is using both an RW and a MUTEX controller, then in order to execute an action
of the RW controller, it has to be in the | DLE state of the MUTEX controller.
Although this default policy was sufficient for TSAFE, it may not be suitable
for some other applications. For example, it may be necessary to modify two
shared data items protected by different controllers at the same time. There
are two ways of handling such situations in our framework. The first option
is to merge the behaviors of the two concurrency controllers and use one
concurrency controller to protect access to both shared data items. The second
option is to define a new product machine (that is different than the default

paper.tex; 23/02/2007; 21:52; p.21

22

one) by composing the interfaces of the two controllers as discussed in (Betin-
Can and Bultan, 2003). The interface verification technique we discuss below
works for both of these options and also for the default product machine we
used during the interface verification of TSAFE.

Our interface verification approach is thread modular, i.e., we check each
thread separately for interface violations. For this purpose, we isolate each
thread by a conservative approximation of the behavior of other threads in
the distributed program without modifying the thread code. To explain our
modular interface verification and thread isolation techniques, we first intro-
duce a simple model for distributed programs. Then, we present our thread
isolation techniques for conservatively approximating the environment of a
thread in Sections 5.1 and 5.2.

A distributed program DP = {Py, Ps, ..., P} is a set of local programs
running on different machines (in Java, different JVMs), where k is the num-
ber of machines. We assume that the local programs communicate with re-
mote procedure calls. In TSAFE, these remote procedure calls are performed
with Java RMI.

Each program P; consists of a set of threads, i.e., P; = {11, 75, ..., Ty, }
where n; is the number of threads in P;. There are three types of threads
in a program: 1) the main thread, 2) the threads that are created by other
threads explicitly, and 3) the threads that are created implicitly by, for ex-
ample, the Java Runtime Environment. In Java, an explicit thread is cre-
ated with the invocation of the start () method of a class that extends
java. |l ang. Thread or implements j ava. | ang. Runnabl e. In TSAFE,
there are two types of implicitly created threads: the event thread (1'g,) that
dispatches the GUI events and the threads created to serve RMI calls (T'rps1).

The threads communicate with each other through a shared store. Based
on the concurrency controller pattern, the shared store contains shared data
objects and controller objects. In addition to the shared store, each thread has
a local store which is accessed only by that thread. Each thread also has a
control state which represents the value of its program counter. The state of a
thread 7' is represented with the shared store, the local store, and the control
state of T', i.e., Stater € Shared x Local(T') xControl(T).

A thread execution e = opg, op1, . . . is a sequence of operations. A thread
can perform two kinds of operations: local operations which only change
the thread’s local store and control state, and interaction operations through
which the thread interacts with its environment. The interaction operation
types are 1) a read operation from the shared store, 2) a write operation to
the shared store, 3) RMI operation, 4) GUI operation, 5) file read and write
operations, 6) socket operation, and 7) thread creation operation. Another
form of environment interaction is through input events. The input events are
GUI events (e.g. button click event) and the incoming RMI events from other
remote programs. (We name the outgoing RMI call an RMI operation and the

paper.tex; 23/02/2007; 21:52; p.22

23

incoming RMI call an RMI event.) We isolate a thread from its environment
by modeling these interaction operations and input events.

5.1. MODELING INTERACTION OPERATIONS WITH STUBS

In modeling interaction operations, we use the transformations shown in Ta-
ble IV. We discuss these transformations below. The transformations in the
first two rows transform operations on shared store to assertions on local
controller interface state for detecting interface violations. We are able to
apply these two transformations since the elements of shared store are known
at verification time. These elements, which are controllers and shared data
protected by these controllers, are implemented explicitly in a program im-
plemented based on the concurrency controller pattern.

The first transformation on Table IV abstracts the interaction through a
concurrency controller. Let T be a thread that accesses controller C'. We
apply this transformation for each controller action act of C'. The transfor-
mation abstracts the internals of the controller action act (conditional waits,
guarded commands, etc.) with the action sequencing rules 7" has to obey.
This transformation enables us to detect interface violations as follows. Let
CI = (Q,qo0, A, R) be the controller interface of C. (Here @ is the set of
interface states, ¢y € () is the initial state, A is the set of controller actions,
and R C @ x A x @ is the transition relation. Although we can handle
nondeterministic interfaces, here, to simplify the discussion, we assume that
there is at most one next state for each state and action pair.) Based on
concurrency controller semantics (Betin-Can, 2005), whenever the control
state of 7" is at a controller action act of C, T updates its current interface
state (cur € Q) according to the transition relation R. (Note that, cur is a
local variable of T, i.e., as we mentioned above, we are checking interface
conformance separately for each thread.) The assertion in the transformed
operation checks whether such transitions are defined. If the assertion fails,
then T" does not conform to the controller interface C'I and an interface vio-
lation has occurred. To perform this transformation, we replace the controller
C in the program with C'I and create one C'I instance per thread. Note that,
although the instances of C' are shared, the instances of C'I are not shared.
Controller interfaces are in the local store of the thread and any interface
operation only influences the Local of the thread (i.e., cur is a local variable
of T as mentioned above). Therefore, the concurrency controller is removed
from the Shared (see Figure 13).

The second transformation on Table IV abstracts the interaction through
shared data. Let sho € Shared be a shared data. The transformation abstracts
the internals of the read or write operation on sho with rules of accessing sho
and a conservative approximation of the influence of other threads through
sho. In this transformation, generated assert statements check the access rules

paper.tex; 23/02/2007; 21:52; p.23

24

Table IV. Transformations to model interaction operations

Interaction Interaction & Substitution
type operation
Controller C.act(){body} : r Cl.act(){
action P assert (3¢’ € Q, (cur,act,q’) € R);
cur :=¢';
return choose(r);
}or
read/write on ms(ag, ai, ..., ar) my(ao, a1, ..., a)f
sho € Shared ° {body} : 1, E assert (cur € Qm);

i f (choose(bool))
then return choose(r);
el se throw choose(F);

i E
RMI operations | remote.mpai(ao, ..., a;) | remote’ . mrmi(ao, ..., ar){
{body} : r, E i f (choose(bool))

then return choose(r);
el se throw choose(F);
i E

operations 47 ¢ | m(ao, ..., a;){body} : 7, E | m'(ao, ..., ar){
i f (choose(bool))
then return choose(r);
el se throw choose(F);
}ir E

2 body denotes the method body, ao, a1, .., a; is the argument sequence of the method, is
the return type of the method, and F is the set of exception types that can be thrown by the
method.

bor= (@, qo, A, R) is the interface of the concurrency controller C, where @ is the set of
interface states, go € @ is the initial state, A is the set of controller actions, R C Q x A x @

is the transition relation, and act € A.
¢ mys is a read or write operation on sho, and @, is the set of allowed interface states to

invoke method m.
4 m is an operation of type 4-7.

paper.tex; 23/02/2007; 21:52; p.24

25

v
Thread1 Thread? Thread1 @

release @

[acquire

W, s

:MutexController :MutexController
ThreadN . @ N ThreadN
release @
Runtime Verification time

Figure 13. Local instances of interface machines are used as stubs for concurrency controllers
during interface verification.

of sho. These assertions check whether the thread in question (1) performs
a read or write operation on sho at an allowed interface state of C'I, where
C1 is the interface of the concurrency controller protecting sho. To reflect
the effect of the other threads on 7' through sho, we use the nondeterminism
function choose. The effects occur either through the return value of the
method invoked to perform a read or write operation on sho, or through the
exceptions thrown by that method. In the Table IV, this method is denoted
as mg. By using the nondeterminism function, we approximate the return
value of m, and the exceptions thrown by m. The function choose returns
a nondeterministically chosen value of its argument type and if its argument
is a set of types, a type is chosen nondeterministically before returning a
nondeterministic value of that type. (The values to be chosen nondeterministi-
cally are decided based on the data dependency analysis which is explained in
Section 5.3.) During the interface verification, each of these nondeterministic
choices are explored; hence, the stub methods conservatively approximate the
influence of other threads on 7". The realization of this transformation is as
follows. Based on the concurrency controller pattern, the assertion and the
allowed interface states are specified by the programmer in the data stub for

paper.tex; 23/02/2007; 21:52; p.25

26

sho. Therefore, the abstraction of the shared data is achieved by replacing the
shared data classes with their corresponding shared data stub classes.

These substitutions, however, are not sufficient to isolate a thread for some
distributed programs such as TSAFE. The steps above only abstract the in-
teraction operations 1 and 2. Below we explain how we model the rest of the
interaction operations.

An RMI operation is a method call on a remote object. In Table I'V, this op-
eration is shown as remote.mppyrr(a1, as, .., a;){body} : r, E where remote
denotes the remote object and mpys; denotes the remote method with an
argument sequence aj ...ag, return type r, and exception type set E. Therefore,
we identify the remote objects and their remote methods before applying
the transformation. When a thread 7' performs an RMI operation, it is only
affected by the return value and the exceptions thrown during the remote call.
The result of the transformation for RMI operations in Table IV conserva-
tively approximates these effects in the stub method with the nondeterminism
function. We substitute each remote object remote with a local stub object
remote’. This stub object includes a stub method for each remote method of
remote. In addition, since the stub remote’ is a local object that resides in
the local store, we also abstract the remote procedure call details.

Transformations for the rest of the interaction operations follow the same
principles. The interaction operation performed by the thread 7" with a method
call is replaced with a stub method call that overapproximates the return
value and exceptions thrown. This transformation is shown in the last row
of Table IV. Unlike the remote methods, the interaction methods for 4-7 are
predetermined. For example, in Java, the graphical methods are in libraries
such as the j ava. awt orj avax. swi ng library. Therefore, we use one-time-
implemented stub methods while transforming such operations. L.e., for these
operations we do not have to create new stubs for each program, we can use
the same generic stubs for every program. (We assume that any graphical
method outside the graphical library eventually reaches a method within the
library. If this assumption does not hold, e.g. the thread code implements
the actual bit placement on the screen, stubs for such methods should be
generated.)

For Java programs, we achieve the above abstractions for interaction oper-
ations 3—7 by stub class substitutions. A stub for a class contains every acces-
sible method declaration of that class. The methods of a stub class are the re-
sults of the transformations discussed above. We implemented choose with
the JPF’s nondeterminism utilities Verify.random(int) and
Veri fy. randonBool () . These utilities force JPF to exhaustively search for
every possible choice. Therefore, at verification time, the nondeterminism in
the code results in an exhaustive search, not in random testing. We developed
generic stubs for the file, socket, and GUI operations; and we automatically

paper.tex; 23/02/2007; 21:52; p.26

27

generate stubs for RMI operations. Since JPF is only able to handle pure Java,
we also replace all native calls with stubs.

5.2. MODELING THREAD INITIALIZATION AND INPUT EVENTS WITH
DRIVERS

Drivers are necessary to transform each thread execution into a standalone
program execution. Recall that, there are three types of threads in a Java
program: the main thread, explicit threads, and implicit threads. We create
different types of drivers for each thread type. The driver of the main thread
nondeterministically assigns values to the command line arguments using
the nondeterminism utilities of JPF. The drivers for the explicitly created
threads simulate the thread creation by assigning nondeterministic values
during the initialization of the thread. In other words, these drivers set the
initial configuration for Shared and Local.

Here we discuss the drivers for implicit threads. Such drivers model the
execution of an implicit thread by producing all possible sequences of in-
put events related to that kind of thread. In TSAFE, the implicitly created
threads are the event thread that dispatches the GUI events and the threads
created to serve RMI calls. When a Java program has GUI objects, a thread
(called Event Di spat chThr ead) is instantiated implicitly. The event thread,
denoted by T'r,, captures the user interactions which are the GUI events and
invokes the corresponding event listeners. An RMI thread, denoted as T'ryy7,
is responsible for serving the incoming RMI calls. We generate a driver for
these implicit threads that overapproximates their executions. The driver of
TR creates all possible event sequences, e = evy, evs, ..., ev; forall j > 0
where ev; is an element in the set of remote events created by other programs.
Similarly, the driver of the event thread T'g, overapproximates the execution
of Ty, by creating all possible GUI event sequences.

We generate the Java code for the drivers of implicit threads automatically.
A generated driver code consist of an initialization block and an event loop
which simulates the input event sequences. At each iteration of this loop one
input event is chosen nondeterministically by using Veri fy. randon{i nt)
and JPF will search all possible event sequences if this loop is infinite. How-
ever, most of the time JPF runs out of memory if we leave this loop as an
infinite loop. Hence, the user has to limit the number of iterations. Note that,
sometimes JPF is able to search the whole state space even for an infinite
event sequence since the state space may be finite.

Driver for Event Thread: The initialization block of the driver for an event
thread 7, has two responsibilities. Firstly, this block launches the GUI com-
ponents. Secondly, it finds all the visible and enabled GUI objects that have
registered event listeners. The second part of the driver, which is the event
loop, simulates the event thread. This loop is the essential part that simulates

paper.tex; 23/02/2007; 21:52; p.27

28

the behavior of the event thread. At each iteration, the driver first chooses one
of these GUI objects, chooses an event, and calls the listeners for that event
in this order.

We automatically generate an event thread driver and expect the user to
perform data value assignments using the results of a data dependency anal-
ysis explained in the next section. During driver generation, the GUI compo-
nent launch mechanism in the initialization block is created by copying the
relevant parts from the application code. The generator identifies all possible
user event types, i.e. the GUI events, by finding all different event listener
types in the code.

Driver for RMI Threads: In Java, the RMI calls that a program receives are
the invocations of the methods whose signatures are defined in the remote
Java interface that extends j ava. rm . Renot e. Whenever an RMI call is
received, it is directed to an instance of the concrete class that implements
this remote Java interface. The driver we generate simulates this behavior.

The driver of an RMI thread Tz, in the initialization block, instantiates
the concrete class implementing the remote interface. If the concrete class
looks up another RMI component (i.e. if there is a call to Nami ng. | ookup(
St ri ng) method), the initialization block of the driver should register the
RMI stub of that component to the Nami ng class. In the event loop, the driver
produces all possible remote event sequences and directs these RMI input
events to the concrete class instance.

Our automated RMI thread driver generator inspects the source code of the
remote interfaces to collect the RMI events. During this inspection, the gen-
erator finds the remote method signatures in the source code and uses them to
create RMI events. The generator also inspects the source code of the concrete
class to synthesize a piece of code for the aforementioned initializations.

If we try to verify a thread with respect to all possible inputs from its en-
vironment provided by generic or automatically generated stubs and drivers,
typically, JPF runs out of memory. We provide a data dependency analysis
to identify the input parameters that may influence the thread behavior with
respect to the interface correctness conditions. Using the results of this data
dependency analysis, the user is expected to restrict the domains of the input
parameters.

5.3. DATA DEPENDENCY ANALYSIS

It is possible that some of the input parameters (or the return values) that are
passed to a thread via drivers or stubs may not influence the synchronization
behavior of a thread. We are only interested in the influences that might lead
to an interface violation. Hence, we implemented a data dependency analysis
to identify the input parameters affecting the synchronization behavior.

paper.tex; 23/02/2007; 21:52; p.28

29

The analysis consists of multiple backward traversals on the program de-
pendence graphs (Ottenstein and Ottenstein, 1984). The starting point of each
traversal is determined as follows. For each method in the program, if there
are branching statements that determine whether a concurrency controller
or a shared data method is called or not, then each of these statements is
a starting point of a backward traversal. These starting points are the state-
ments that control the execution of a shared operation and computed using
the control flow graph of the method. During the traversal the control and data
dependency edges are followed backwards and the visited definition sites are
collected. The visited statements are marked to avoid entering infinite loops.
The result of this procedure is a backward dependence tree per starting point.
The vertices are the definition sites collected during the traversal. The leaves
are the influencing input parameters. A path in the tree shows how these input
parameters control the execution of the shared operations.

The traversal should be interprocedural and capture the implicit dependen-
cies between the methods of the same class. Such dependencies occur when
one method uses the value of a class field and another method sets the value
of the same field. For example, there is an implicit dependency between get
methods and set methods of the same class. A get method that returns the
value of a field is implicitly dependent on the set method that assigns a value
to the same field.

We implemented this analysis using the Soot Java optimization framework
(SOOT, 2005), which uses a 3-address representation for Java. The analysis
determines which statements, directly or indirectly, affect the reachability of
invocation of a method to perform a shared operation. The analysis we imple-
mented is context insensitive. In the implementation, instead of computing the
program dependence graph, the control and data dependencies are computed
on the fly.

To capture the implicit dependencies, before the traversals, we compute
the set of methods updating each class field (and updating the elements of
that class field). We represent this set as DEF(field) where field denotes a class
field. Then we examine each method in detail. First, by using the control flow
graph of the method, we find all the branch conditions that determine whether
the controller or shared data stub method is called. If such a branch condition
exists, we find a backward dependency tree by using the findDependents func-
tion shown in Figure 14. We send the branching statement and the method
we are analyzing as the actual parameters for this function. This function is a
recursive backward dependence tree construction.

In the algorithm given in Figure 14 the function def(m)(var, stmt) denotes
the definition analysis utility of Soot. This function returns the definition sites
for the variable var at statement stmt in method m. The function use(stmt)
returns the variables that are used on the right hand side of the statement

paper.tex; 23/02/2007; 21:52; p.29

30

findDependents(Method m,Statement stmt)
returns ¢:Tree
t.root:=stmt
foreach var € use(stmt)
t.addChild(findDependentsH(m,var,stmt))
end for
foreach branching statement b effecting stmt
t.addChild(findDependents(m,b))
end for
return ¢

findDependentsH(Method m, Variable var,Statement stmt)
returns ¢:Tree
t.root:=var
foreach stmt’ € def(m)(stmt, var)
foreach u € use(stmt’)
if w is a local variable then
t.addChild(findDependentsH(m,u,stmt’))
end if
if w is a class field then
foreach m’ € DEF(u)
if m/ has not been visited for u then
foreach exit statement stmt’’ of m/’
t.addChild(findDependentsH(m ,u,stmt’’))
end for
end for
t.addChild(findDependentsH(m,u,stmt’))
end if
if u is a parameter of m then
foreach (m’, m) € CallGraph
if m/ has not been visited as a callee then
foreach statement stmt’’ of m/ that is a call to m
t.addChild(findDependentsH(m ,u,stmt’’))
end for
end if
end for
end if
end for
if stmt’ is a call site of some method m’ then
t.addChild(findDependentsH(m' ,var’,r))
where 7 is the return statement of m’ and var’ is the local used in 7
end if
return ¢

Figure 14. findDependents Algorithm

stmt. The CallGraph denotes the call graph of the program where an edge
(m’, m) denotes a call from m’ to m.

The analysis results are used in the construction of drivers and stubs. For
the input parameters that do not influence the synchronization behavior, a
constant value with the correct type is given in the driver or the stub imple-
mentations. For the ones that might influence the synchronization behavior

paper.tex; 23/02/2007; 21:52; p.30

31

there are two possibilities. If the domain of the input parameter is finite (e.g.
boolean) we enumerate all possible values and choose one value using JPF’s
nondeterminism utilities during verification. Otherwise, the analysis results
are inspected and an influencing value set is provided by the user. During
the execution of drivers or stubs, the value of the input parameter is chosen
from this predetermined value set with the Veri fy. randon{i nt) utility of
JPF. It is possible to automate this process with a theorem prover such as
(Paulson, 1994), or using the techniques described in (Visser et al., 2004; Xie
et al., 2005) for the input parameters of heap type.

We have tried to use the slicers available in the Bandera (Dwyer et al.,
2001) and Indus (Indus, 2005) toolsets in our dependency analysis. In our
experiments, however, we found that both of these tools, at the time this paper
was written, failed to capture the implicit interprocedural dependencies de-
scribed above, e.g., of some get Fi el d from its corresponding set Fi el d.

5.4. ISOLATING THREADS OF TSAFE

TSAFE is composed of a client component and a server component. The
client component interacts with a user through GUI objects. This component
also interacts with the server component through RMI calls. The server com-
ponent interacts with many client components through RMI. This component
also gets radar input feeds through a TCP/IP connection. The server also
interacts with its environment through timer events. In this section we discuss
the isolation of the threads in client and server components.

5.4.1. Client Component

The TSAFE’s client component is a program that consists of a main thread
and two implicitly created threads. The main thread instantiates the GUI ob-
jects and establishes RMI connection to the server component. The implicitly
created threads are the event thread and the RMI thread that serves the remote
calls initiated by the server component.

The environment of the main thread contains only GUI component stubs
and a stub for the j ava. r mi . Nam ng class. We provide these generic stubs
as a part of our framework, i.e., they are used as is without any modification
by the user. Using these stubs is the application of the transformation shown
in the last row of Table IV. However, there is some user intervention neces-
sary for the environment modeling of the event thread and the RMI thread as
explained below.

The Event Thread: We have isolated the event thread with a driver and using
the transformations for the GUI operations shown in Table IV. The transfor-
mations for GUI operations are applied through the GUI stubs provided by
our framework. The driver for the event thread is generated automatically as

paper.tex; 23/02/2007; 21:52; p.31

32

discussed in Section 5.2 and data value assignments are performed using the
results of the data dependency analysis.

In the end, the generated event thread driver simulates 4 different event
types to be directed to the instances of 9 different GUI classes. The event
types are ListSelectionEvent, ActionEvent, ItemEvent, and WindowEvent.
Some of the GUI classes to respond to the events are FlightList, Graphical-
Window and TsafeMenu.

The RMI Thread: The TSAFE’s client component has 2 RMI operations
and 4 RMI events. We have generated one stub to model the RMI operations
to be used by the server component and one driver to model the RMI thread
in the client component automatically. The generated RMI stub implements
the stub methods for the 2 RMI operations. This RMI stub is the stub class
shown as remote’ in Table IV. The generated RMI driver for the TSAFE
client registers an RMI stub of the TSAFE server component and instantiates
the client component in the initialization block. In the event loop, the driver
produces all possible event sequences with the 4 input events.

5.4.2. Server Component

The server component has two implicitly created threads, a main thread, and
an explicitly created thread. The implicitly created threads are the RMI thread
and the event thread. The explicitly created thread is the feed parser thread
which reads messages from a socket and updates the flight database.

The main thread creates a set of GUI components and instantiates the main
application. The main thread does not launch the actual TSAFE application.
The launching is done by clicking a Launch button in the GUL. Only after this
click event an RMI connection and a feed socket is opened. In other words,
the event thread performs the launch.

The event thread in the server component has two responsibilities. The
first one is to prepare and launch TSAFE. Since this task does not involve
concurrency, we have omitted these operations while creating the environ-
ment of the event thread. The second responsibility of this thread is to handle
the events created by a timer. Therefore, the initialization block of the event
thread driver finds the Ti mer object, and the event loop calls its registered
listener.

To isolate the RMI thread at the server component we have applied the
techniques discussed in Section 5.2. However, due to the launch mechanism
in the server component and our objective of not modifying the application
code during interface verification, we have inserted a piece of code that finds
the launch button and sends a click event into the RMI driver.

The feed parser thread is created at launch by the event thread. We have
separated this thread creation operation interaction with the stub substitu-

paper.tex; 23/02/2007; 21:52; p.32

33

tion discussed Section 5.1. In the following discussion, we explain how we
isolated the feed parser thread.

The Feed Parser Thread: The feed parser thread is isolated from its en-
vironment by 1) a driver that initializes its local and shared store and 2)
interaction operation models. In this section, we explain the socket operation
model tailored for Java programs. The principle in this model is the same as
the general stub model.

There are two types of communication protocols: TCP and UDP. Java pro-
vides a java.net.Socket class for TCP communications and a
j ava. net . Dat agr anSocket class for UDP communications. For TCP com-
munications, a program reads data from a Socket as a stream through a
j ava. i o. Reader object. (A typical Java program reads this stream through
an object of Buf f er edReader class, which is a subclass of Reader.) We
model this behavior for TCP clients as follows. First, we replace the Socket
with an empty stub. Then, we model reading streams from a socket through
a Buf f er edReader (or Reader) stub. This stub returns one of the possible
string values whenever the program requests data. Currently, these values are
inserted in the stub code based on the results of the data dependence analysis.
For UDP communications, programs read packets from a Dat agr anSocket
via a Dat agr anPacket . We model this behavior by using an empty stub for
Dat agr anSocket and a Dat agr anmPacket stub which returns one possible
byte array value. Currently, the set of possible byte array values are added in
the stub code based on the dependence analysis. Finally, sending data for both
communication types is modeled via the empty stubs of Qut put St r eamfor
Socket and Dat agr anSocket , respectively.

In TSAFE, the feed parser thread uses TCP sockets to get data supplied
by an external feed source. We have modeled this external feed source by
applying the TCP modeling methodology above. In this model, the contents
of the messages are determined by the data dependency analysis. The analysis
results have showed that among 5 attributes of a message received from the
feed source only the characters denoting the message type attribute (the first
attribute) and the exceptions thrown during the socket operations affect the
synchronization behavior.

6. Experiments

In this study, our goal was to experimentally evaluate the effectiveness of
the design for verification with concurrency controllers technology in find-
ing synchronization errors in safety critical air traffic control software. For
this purpose, we followed an approach similar to mutation testing which is
used for measuring the effectiveness of a test set (Kim et al., 2000; Budd,
1981; Ammann et al., 1998; DeMillo et al., 1978). In mutation testing, first,

paper.tex; 23/02/2007; 21:52; p.33

34

a number of slight variations of a program are generated. Then, the effective-
ness of a test set is measured by examining if the test set can distinguish these
variations, called mutants, from the original program. In our experiments,
we have created slight variations of TSAFE by fault seeding and examined
whether our technique can capture these faults.

We performed two sets of experiments based on fault seeding. During
the first study, 40 different versions of TSAFE were created by manual fault
seeding. The first set explored the types of faults that can be verified using
the presented design for verification approach.

We performed a new set of experiments as an extension to our conference
paper (Betin-Can et al., 2005b) to evaluate the presented verification tech-
niques in a larger scale. During this experimental study, we implemented a
random fault injection program based on the fault categorization of the first
study. We created 100 faulty versions of TSAFE automatically and verified
each version using the presented modular verification technique. Automated,
random fault seeding enabled us to generate a larger number of faulty versions
of TSAFE compared to manual fault seeding. Moreover, automated fault
seeding eliminated the possible human bias from the fault seeding process
and resulted in a repeatable experimental setup that can be used by other
researchers in the future.

In this section, we first explain the setup for both experiments and the
types of faults. Next we present the results of the manual fault injection ex-
periment and provide a more detailed analysis compared to our conference
paper (Betin-Can et al., 2005b). Then we proceed with the results of the new
study and present a discussion about the results of our experiments.

6.1. EXPERIMENTAL SETUP AND FAULT SEEDING

During the experimental study, the authors were divided into two teams: 1)
The University of California at Santa Barbara (UCSB) team which consists
of the developers of the presented verification technology, and 2) The Fraun-
hofer Center for Experimental Engineering, Maryland (FC-MD) team which
consists of the developers of the TSAFE testbed.

Before the experiments, the UCSB team reengineered the TSAFE soft-
ware as described in Section 3 and generated the drivers and the stubs for
thread isolation as explained in Section 5. During this reengineering process,
we found a synchronization error in TSAFE where a shared object used for
RMI connection was not protected by any synchronization statements. The
reengineering of the TSAFE software using the concurrency controllers was
done in 8 hours by one team member (5.5 hours for the server component and
2.5 hours for the client component). During the thread isolation process, the
inspection of the results of the data dependency analyses for the refactored
version of TSAFE took 13 minutes. Based on these inspection, restricting

paper.tex; 23/02/2007; 21:52; p.34

35

the input domains used in the drivers and stubs took 18 minutes. Originally,
TSAFE consisted of 87 classes with 21,057 lines of Java code.

Manual fault seeding set-up: In the manual fault injection study, the UCSB
team sent the reengineered TSAFE code to the FC-MD team. The FC-MD
team created modified versions of TSAFE using fault seeding. The FC-MD
team created two types of faults: controller faults were created by modifying
the controller classes and interface faults were created by modifying the order
of the calls to the methods of the controller classes. Each modified version
contained either no faults, or one controller fault, or one interface fault, or
one controller and one interface fault. Recall that we are focusing on errors
that might occur while using the concurrency controller pattern. We are not
trying to categorize errors in an arbitrary concurrent program.

There are four types of controller faults: 1) initialization faults (CI) which
were created by modifying the initialization statements in the controller classes,
2) guard faults (CG) which were created by modifying a guard in a guarded
command, 3) update faults (CU) which were created by modifying an assign-
ment in a guarded command, and 4) blocking/nonblocking faults (CB) which
were created by making a nonblocking action blocking or visa versa.

Interface faults are categorized as: 1) modified-call faults (IM) which were
generated by removing, adding or swapping calls to the methods of the con-
trollers, and 2) conditional-call faults which were generated by adding a
branch condition in front of a method call to a controller. The conditional-
call faults are further categorized as: a) program-variable faults (ICV) in
which the created branch conditions used existing program variables, and b)
new-variable faults (ICN) in which the created branch conditions used new
variables that were declared during fault creation.

After the fault seeding, the FC-MD team sent the modified versions back
to the UCSB team. Table V shows the fault distribution for the forty modified
versions of TSAFE (v1-40). The modified version v9 did not contain any
faults. The UCSB team did not know the faults and which types of faults
were in which version (or if there was any fault in a version). However, the
UCSB team knew about the fault classification.

Automated random fault seeding set-up: In the study with automated ran-
dom fault injection, we implemented a random fault seeding program to gen-
erate modified versions of TSAFE based on the fault types discussed above.
In the reengineered TSAFE, there were 21 places to insert controller faults. To
insert the interface faults, we used the classes that had references to concur-
rency controller or shared data instances. There were 7 classes (1373 SLOC)
of this kind. Each modified version generated by this program contained at
most four faults. The number of faults and the type of faults were selected
randomly for each version. The mutant generator did not check whether there
was an equivalent mutant. All of the mutants generated compiled success-

paper.tex; 23/02/2007; 21:52; p.35

36

Table V. Faulty versions

Type | Versions

CI v2, v4

CG v3, v6

CU v7,v13,v14, v16, v24, v25
CB v5, v21, v28, v34

M v7,v8, v10, vl1, v15, v22, v23, v29
ICV vl, v26, v27, v30, v31, v32, v33, v35-40
ICN v12, v17,v18, v19, v20

fully. We created 100 modified versions of TSAFE and applied our modular
verification technique. There were 30 CI faults, 38 CG faults, 41 CU faults,
33 IM faults, 22 ICV faults, and 24 ICN faults.

The automated fault injection program works as follows. The IM faults
are injected by adding, removing or swapping controller methods before or
after a shared data access by the program. To introduce an ICV fault, the
program chooses an integer or boolean class field and inserts a conditional
using this field before a controller method call statement. The ICN faults are
injected by creating a new unique integer variable, and adding a conditional
statement using this new variable before a method call to a controller. This
new variable is initialized to zero and is incremented every time the control
reaches the inserted conditional statement. The conditional is of the form i f
(-new.var00 < C) where Cis a constant integer value that can be 50,
60, 70, 80, 90, 100, 200, 300, 400, or 500. The purpose of using different
constant values is to evaluate whether there is a limit to the depth of faults we
can discover and whether we can generalize our results.

The controller faults are inserted as follows. To inject a CI fault, the pro-
gram chooses a controller variable and inserts an assignment statement at the
end of the controller’s constructor method. The program initializes boolean
variables to a randomly chosen boolean constant and the integer variables to
a randomly chosen integer value between -5 and +5. The fault injection for
CG is performed by first selecting a guard expression, which is the statement
inside one of the publ i ¢ voi d guar d() methods in the constructor of the
controller class. We change either a variable or an operator that occurs in the
guard expression with one of its possible alternatives randomly. The possible
alternative of an integer variable is another integer variable or an arithmetic
expression. The possible alternative of an operator is another operator of the
same type. For example, the relational operator >= can be replaced with an-
other relational operator such as ==. If the guard expression is a constant,
such as the guard expression of the r _.exi t action, then a boolean expression

paper.tex; 23/02/2007; 21:52; p.36

37

is generated using the controller variables (e.g. NR==5 && busy). The fault
injection for CU is performed in a similar manner where either an operator or
a variable is replaced with a possible alternative.

In terms of mutation testing, our random fault seeding program uses the
following mutation operators to generate mutants: 1) add a controller method
call, 2) remove a controller method call, 3) swap controller methods before
or after a shared data access 4)insert a conditional on an existing integer
field before a controller method call, 5) insert a conditional on an existing
boolean field before a controller method call, 6) insert a conditional using a
new integer variable before a controller method call, 7) insert assignments to
controller fields in the controller’s constructor, 8) replace an integer variable
in a guard or update clause with another integer field, 9) replace an inte-
ger variable in a guard clause with an arithmetic expression, 10) change an
arithmetic operator in a controller class, 11) change a relational operator in a
controller class, 12) change a logical operator in a controller class, 13) replace
the constant guard expression with a boolean expression.

6.2. RESULTS

In this section, we first present the results of the manual fault seeding study
where the authors have worked as two teams. Then we present the results of
automated random fault seeding experiments.

6.2.1. Studyl: Manual Fault Seeding

We ran the experiments in three batches with 25 (v1-25), 10 (v26-35) and 5
(v36-40) modified versions. After the verification of each batch both teams
discussed the results. This allowed us to improve the experimental setup dur-
ing the study and also helped us identify and focus on the weaknesses of the
verification techniques.

As shown in Table V, there were a total of 14 controller faults and 26
interface faults in versions v1-40. When we verified the controllers in ver-
sions v1-40 with ALV we found 12 faults in the controllers. The faults that
were not found by ALV were the faults in versions v5 and v13 which were
spurious faults, i.e., they are modifications in the controller classes which
do not cause any failures in the controller behavior. The modification in v5
(see Figure 15) changed the r el ease action in the MUTEX controller from
blocking to nonblocking. This modification does not change the behavior of
the controller since the guard of the r el ease action is t r ue, i.e., it never
blocks. The modification in v13 (see Figure 16) changed an assignment in the
acqui r e action of the MUTEX controller from busy=t r ue to busy=! busy.
However, this modification does not cause any failures since busy is always
f al se when the updat e() of acqui r e is called.

paper.tex; 23/02/2007; 21:52; p.37

38

Table VI. Controller property violations

Type | Version | Violated Property

CI v2 RP1, RP3, RP6, RP9, RP11, RP12, RP14, RP16
CI v4 MP1
CG v3 MP2, MP8
CG v6 RP1, RP4, RP5, RP6, RP8, RP10, RP11, RP12, RP16
CU v7 RP6, RP9, RP11, RP12, RP16
CU v13 no error (spurious)
CU vl4 type error at MutexController, caught by translator
CU vl6 RP2
CU v24 RP1, RP3, RP6, RP9, RP11, RP12, RP16
CU v25 RP6, RP9, RP11, RP12, RP16
CB v5 no error (spurious)
CB v21 MP2
CB v28 MP3, MP4, MP5, MP6, MP7, MP8, MP10
CB v34 MP1, MP3, MP9
(1) public void release() { (1) public void release() {
(@) act rel ease. bl ocking();} (2 act _rel ease. nonbl ocki ng(); }
(a) Original code (b) Code with seeded fault

Figure 15. Original and fault seeded code segments for the spurious controller fault in version
v5.

(1) gcs. add(new Guar dedCommand() {

2) public bool ean guard() {
3) return (!busy);}

@ public void updates() {
(5) busy = true;}

(6) BB

(7) act_acquire = new Action(this, gcs);
(a) Original code

(1) gcs. add(new Guar dedCommand() {

2) public bool ean guard() {
3) return (!busy);}

(€)) public void updates() {
(5) busy = !busy; }

(6) hE

(7) act_acquire = new Action(this, gcs);
(b) Code with seeded fault

Figure 16. Original and fault seeded code segments for the spurious controller fault in version
v13.

paper.tex; 23/02/2007; 21:52; p.38

39

To show which properties were more effective in discovering faults, Table
VI gives the controller faults and the properties from Table I and Table II that
were violated by these faults. The controller properties MP1 and MP2 were
crucial for finding the seeded faults in the MUTEX controller. However, these
two controller properties were not sufficient for finding all the seeded faults
in the MUTEX controller. For example, the seeded fault in the version v28
does not cause violation of the properties MP1 and MP2. Note that, all the
properties of the MUTEX controller that were violated by the seeded fault in
version v28 refer to the thread states. The properties MP1 and MP2, on the
other hand, do not refer to the thread states; they only refer to the variables of
the controller. In order to find all the seeded faults it was necessary to have at
least one property that refers to the thread states.

The properties RP6, RP9, RP11, RP12, and RP16 were the most effective
group of properties for finding the seeded faults in the RW controller. Apart
from the seeded fault in version v16, all the seeded faults in the RW controller
result in violation of at least one of these properties. The only property that is
violated by the seeded fault in version v16 is RP2. Interestingly, none of the
other seeded faults lead to violation of the property RP2.

Interface verification using JPF caught 22 of the 26 seeded interface faults.
Table VII lists the 26 versions, the type of the seeded interface fault for each
version, and the violation caused by the seeded fault that was found during
the interface verification. For example, the violation in v1 is an access to the
Runt i meDat abase object at an illegal RWCont r ol | er state. To be specific,
in this version, the Server-RMI thread invokes the sel ect Fl i ght sl nBounds
method of the Runt i neDat abase while the thread is in the | DLE state of the
RW controller. This interface violation occurred because the seeded fault was
the removal of the r _ent er method of the RW controller.

Among the seeded interface faults, one of them (v33) that was not caught
by JPF was a spurious fault. However, the faults in versions v18, v19, and
v20 were real faults which can cause interface violation but were not found
by JPE. We will discuss these faults in detail in Section 6.3.

As aforementioned, the seeded interface fault in v33 was a spurious fault.
Figure 17(a) shows the original code fragment and Figure 17(b) shows the
seeded interface fault in v33. The seeded fault in v33 is the addition of the
if-else-statement at lines (4.1) and (4.2). Originally, there was only the
mut ex_st opped. r el ease(); statement instead of these lines. This modi-
fication does not cause an error since the MUTEX lock is always released after
accessing the shared data as it was originally implemented.

Table VIII shows the performances of ALV and JPF. The first part of the
table shows the performance of ALV during behavior verification for different
controller instances and the second part shows the performance of JPF during
interface verification for different threads. The first four columns show the
memory and time consumption (mean and standard deviation) for the verifi-

paper.tex; 23/02/2007; 21:52; p.39

40

Table VII. Interface violations

Version | Violated interface Type
vl accessing RuntimeDatabase at wrong RW state ICvV
v7 wrong action sequence at RWController M

v8 wrong action sequence at RWController M

v10 wrong action sequence at RWController ™M

vll wrong action sequence at RWController M

v12 wrong action sequence at RWController ICN
vl5 wrong action sequence at RWController M

v17 wrong action sequence at RWController ICN
v18 not detected ICN
v19 not detected ICN
v20 not detected ICN
v22 wrong action sequence at MutexController M

v23 accessing Bool (stop flag) at wrong Mutex state M

v26 accessing RuntimeDatabase at wrong RW state ICvV
v27 wrong action sequence at MutexController ICvV
v29 accessing RuntimeDatabase at wrong RW state M

v30 accessing RuntimeDatabase at wrong RW state Icv
v31 wrong action sequence at MutexController ICvV
v32 accessing ClientList/Vector at wrong Mutex state | ICV
v33 no interface violation (spurious fault) Icv
v35 wrong action sequence at RWController ICvV
v36 accessing RuntimeDatabase at wrong RW state ICV
v37 accessing RuntimeDatabase at wrong RW state ICvV
v38 wrong action sequence at MutexController ICvV
v39 accessing RuntimeDatabase at wrong RW state ICV
v40 accessing RuntimeDatabase at wrong RW state ICvV

() private final boolean isStopped() {
?2) nmut ex_st opped. acqui re();
3) bool ean resul t =st opped. get () ;
4 mut ex_st opped. r el ease();
(5) return result; }
(a) Original code

(1) private final bool ean isStopped() {
2) mut ex_st opped. acqui re();
(3) bool ean resul t =st opped. get () ;
(41) if (false) nutex_stopped.release();
(42) else mutex.stopped.release();
5) return result; }

(b) Code with seeded fault

Figure 17. Original and fault seeded code segments for the spurious controller fault in version
v33.

paper.tex; 23/02/2007; 21:52; p.40

41

Table VIII. Verification and falsification performance for modified versions with manual

fault seeding

Controller Instance Verify (using ALV) Falsify (using ALV)
Memory(MB) Time(sec) Memory(MB) Time(sec)
Mean | StDev | Mean | StDev | Mean | StDev | Mean | StDev
RW-8 3.70 0.10 2.26 0.17 3.67 0.70 1.65 1.86
RW-16 9.36 0.04 3.42 0.03 13.06 | 0.56 9.94 1.26
RW-P 12.05 | 1.01 0.21 0.02 5.48 0.28 5.21 0.05
MUTEX-8 0.22 0.00 0.02 0.00 0.20 0.02 0.02 0.00
MUTEX-16 0.62 0.01 0.02 0.00 0.60 0.01 0.03 0.00
MUTEX-P 0.24 0.01 0.03 0.00 0.28 0.00 0.03 0.00
Component-Thread Verify (using JPF) Falsify (using JPF)
Memory(MB) Time(sec) Memory(MB) Time(sec)
Mean | StDev | Mean | StDev | Mean | StDev | Mean | StDev
Client-Main 2.32 0.01 2.00 0.00 - - -
Client-Event 33.09 | 5.13 663.21 | 10.27 12.2 0.00 15.63 | 0.00
Client-RMI 40.96 | 3.70 25.39 4.71 42.64 | 0.00 10.12 | 0.00
Server-Main 67.72 | 0.01 17.08 0.00 - - -
Server-Event 1095 | 1.84 7.57 0.98 9.56 0.00 6.88 0.00
Server-RMI 26.80 | 9.97 136.90 | 38.82 | 24.92 | 9.51 29.74 | 29.12
Server-Feed 83.49 | 30.32 123.12 | 49.57 | 94.72 | 93.99 18.51 | 10.11

cation of an instance without any property or interface violations and the last
four columns show the memory and time consumption (mean and standard
deviation) for counter-example generation for the instances with property or

interface violations

Table IX. Average falsification performance with respect to
the fault categories in manual fault seeding

Model Checker | Type Memory(MB) Time(sec)
Mean | StDev | Mean | StDev
ALV CI 2.33 2.60 2.80 1.60
ALV CG 2.33 2.07 3.33 1.86
ALV CU 0.22 0.06 2.96 0.15
ALV CB 0.22 0.06 0.02 0.01
JPF M 4445 | 59.16 | 1443 | 691
JPF ICV | 2350 | 9.84 31.85 | 3225
JPF ICN | 27.21 | 451 56.80 | 53.54

paper .t ex;

23/ 02/ 2007; 21:52; p.41

42

Falsification performance with respect to the fault categories are shown in
Table IX. The first part gives the time and memory consumption to falsify
the TSAFE versions during behavior verification. The values are averaged
over the versions that have the same type of controller fault. For example, the
average time spent to falsify each of the 6 versions defected with a CU fault
is 2.96 seconds. Similarly, the second part shows the average resource con-
sumption during interface verification to falsify the instances of each of the
interface fault category. For ICN faults, the memory consumption is higher
than the other fault categories. The performance for the fault in version v17
appears in this group. This fault is a deep fault and the state space JPF has to
search until finding the error is huge. In Section 6.3 we discuss this type of
seeded faults in these experiments.

6.2.2. Study2: Automated Random Fault Seeding
We created 100 modified versions of TSAFE for the experimental study with
automated random fault seeding. The number of faults and the type of faults
were selected randomly for each version. Each modified version contained at
most four faults. The random fault generator implemented for this study used
the fault types determined in the manual fault seeding study. Three versions
had no faults. Among the rest of the modified TSAFE versions, 75 of them
had controller faults and 61 of them had interface faults. There were a total
of 109 controller faults and 79 interface faults in versions vr1-vr100.

When we verified the controllers in versions vr1-100 with ALV we found
76 faults in the controllers. The 33 faults that were not found by ALV were
spurious faults. Among the 33 spurious faults, 12 of them were in the RW con-
troller. The fault seeding program changed the update statement of w_exi t
action from busy = fal se into busy=! busy in 4 versions. This modi-
fication did not cause any faults since busy was always true when the
update of this action was invoked. A similar spurious seeded fault occurred
in the w_ent er action where busy=t r ue was changed to busy=! busy in 3
versions. This modification did not cause any faults since busy was always
f al se when the update of the w.ent er action was invoked. In 2 versions,
the initialization statement for the variable busy was changed to an expres-
sion what was equivalent to the original one. Another fault was changing the
guard expression of w_exi t action from t r ue into busy in 3 versions. The
assumption of the RW controller on the user threads prevented this change to
be an error since according to the interface specification this action could be
executed only if there is a preceding w_ent er action. In other words, busy
was always t r ue whenever the guard of the w_exi t action was invoked.

There were 21 spurious faults in the MUTEX controller versions. In one
version, the guard of the the r el ease action was changed from busy to
I'l busy. This was the result of applying the same CG fault that negates a
boolean expression twice on the same guard expression. In 8 versions the up-

paper.tex; 23/02/2007; 21:52; p.42

43

Table X. Controller verification and falsification performances for the modified versions
with random fault seeding

Controller Instance Verify (using ALV) Falsify (using ALV)
Memory(MB) Time(sec) Memory(MB) Time(sec)
Mean | StDev | Mean | StDev | Mean | StDev | Mean | StDev
RW-8 3.01 0.80 0.16 0.09 3.05 0.95 0.18 0.17
RW-16 9.08 1.64 1.24 0.65 4.70 1.14 0.21 0.21
RW-P 3.76 0.97 0.21 0.01 17.52 | 8.59 0.05 0.02
MUTEX-8 0.22 0.06 0.01 0.00 0.19 0.06 0.01 0.01
MUTEX-16 0.62 0.16 0.02 0.01 0.68 0.59 0.03 0.03
MUTEX-P 0.37 0.08 0.02 0.00 0.47 0.37 0.03 0.04

date of the r el ease action was changed from busy=f al se to busy=! busy
and in 7 versions the update of acqui r e action was changed from busy=t r ue
to busy=! busy. In 5 versions, the automated fault seeding changed the ini-
tialization busy=f al se to busy=f al se.

Table X shows the ALV performance during behavior verification of the
concurrency controllers in the modified versions with random fault seed-
ing. The second column shows average memory consumption during the
behavior verification of the instances with no property violations in these
experiments. The sixth column shows the average memory consumption for
counter-example generation for the instances with property violations. The ta-
ble also shows average time spent both during the verification of the instances
with no property violations and the counter-example generation for the ran-
domly modified concurrency controller versions. The standard deviations for
the time spent and the memory used both in verification and falsification are
shown in columns marked with StDev.

Interface verification using JPF recognized 55 of the 61 versions with
interface faults. Among the modified versions that were not recognized, 5
versions had spurious faults. In 3 versions, the errors introduced were ICV
faults where an integer field is used in the branch condition. This field was a
constant field and the branch condition always evaluated to true, which made
the if-statement redundant. In the other 2 versions, the fault inserted were
ICV faults using the boolean fields of the classes. Within the methods where
the ICV faults were seeded, these variables always had the boolean value that
satisfied the inserted branch condition. However, the faults in one version
(vr86) were real faults that can cause interface violations. These faults were
the same type of faults that were not caught in the first experiment as well (the
faults v18—v20). These faults were deep faults and the state space JPF had to
search to find an interface violation was huge. In Section 6.3 we discuss this
type of seeded faults in both of our experiments. There were other deep faults

paper.tex; 23/02/2007; 21:52; p.43

44

Table XI. Interface verification and falsification performances for the modified versions with
random fault seeding

Component-Thread Verify (using JPF) Falsify (using JPF)
Memory(MB) Time(sec) Memory(MB) Time(sec)
Mean | StDev | Mean | StDev | Mean | StDev | Mean | StDev
Client-Main 3.46 0.12 1.92 0.05 - - - -
Client-Event 26.39 | 4.68 489.62 | 48.47 16.74 | 0.00 241.35 | 0.00
Client-RMI 52.04 | 3.10 14.19 2.26 84.73 | 78.84 10.30 6.71
Server-Main 3526 | 2.01 12.19 0.04 - - - -
Server-Event 4991 | 5.22 12.93 0.55 89.89 | 73.42 11.29 6.24
Server-RMI 2594 | 1091 78.30 5.04 29.27 | 8.13 12.62 13.94
Server-Feed 61.79 | 6.30 201.88 | 0.578 | 20.16 | 40.39 | 4.37 4.00

in this experiment. However, 7 of these deep faults occurred on the same
path with a shallow fault. Since JPF stopped the execution when it caught the
first interface violation, these deep faults were masked by other faults. JPF
recognized the faulty version because the shallow fault caused an interface
violation earlier than the deep fault. The deep faults were introduced with
ICN faults. The rest of the deep faults are caught since JPF could handle the
increase in the state space. In these faults, the constant used in the conditional
statement inserted was less than 100, except from two ICN faults. In the first
of these two, the constant used was 200, while in the second one the constant
was 400 and the fault occurred within the scope of event thread of the server
component. In this study, the deep faults appeared on the execution path of
the RMI thread of the client component, and of the event and feed parser
threads of the server component.

Table XI shows the performances of JPF during interface verification for
the threads of TSAFE. The first four columns show the mean and standard
deviations for the memory and time consumptions for the verification of the
instances with no interface violations. The last four columns show the mean
and standard deviations for the memory and time consumptions for counter-
example generation for the instances with interface violations. During the
falsification of the RMI thread of the client component and the event thread of
the server component, the memory consumption increased since these threads
had deep ICN faults. A more detailed information about the JPF performance
during these experiments is shown in Figures 18 and 19. Figure 18 shows
the time and memory usage during the interface verification of the randomly
modified TSAFE versions that do not have an interface violation. Figure 19
shows the time and memory usage during counter-example generation for the
randomly modified TSAFE versions that do have interface violations. In this
figure, the outliers in three graphs are due to the ICN faults, which increase

paper.tex; 23/02/2007; 21:52; p.44

45

Figure 18. Interface verification performance for vrl-vr100 with JPF

the state space. However, in the graph for RMI threads of the server compo-
nent, the outlier is due to an ICV fault. Although this fault is quickly caught,
the number of states visited by JPF was close to the number of states visited
while checking an RMI thread of the server component with no interface
violations. In the falsification performance graphs, falsification of the event
thread in the client component is not shown since there is only one version
with an error in this thread.

Table XII shows time and memory consumption required to find an error
in the faulty versions with respect to the fault categories. The values are aver-
aged over the versions that have the same type of controller or interface fault.

paper.tex; 23/02/2007; 21:52; p.45

20 206
Server Event . 205 | R Server Feed
g 15 - .
< cone SOP> g 204
o
810+ 8 203 | 1223
o @
£ E 202
£ e ”.
*
201 *
0 ‘ ‘ ‘ 200 ‘ ‘ : :
0 20 40 60 80
0 20 40 60 80 100
Memory (MB) Memory (MB)
42 90
Client RMI Server RMI
351 - 87 *
@ 0
2 287 2
) c 84
8 8
a2 . e
5} o 814 °
Eld E . L4
e [s o
7 787 oo N
L iR 3 wot
0 . . . 75 . .
0 20 40 60 80 0 20 40 60
Memory (MB) Memory (MB)
500
. .
Client Event .
495 .
@ * .
2 .
5 490
2 .
L
o 485 4 .
£ .o o %
480 1 G
475 . . !
0 10 20 30 40
Memory (MB)

46

35 21
Server Event Server Feed

30 * 18 .
» 25 4 » 154
© =]
c c
3 20 A 8 12
5 3
215 - o 9
£ * £
= 10 Y F 6

54 3 ”
0 T T T 0 T T T
0 100 200 300 400 0 50 100 150 200
Memory (MB) Memory (MB)
35 - 70
Client RMI . . Server RMI

30 60
» 25 4 » 50 4
© =]
c c
3 20 A 3 40 -
3 b4 b3
L 15 ~ 30
[(]
£ » £
= 10 F 20 .

s ¢ 10 - e

*
T T T 0 T T
0 100 200 300 400 0 20 40 60
Memory (MB) Memory (MB)

Figure 19. Interface falsification performance for vr1-vr100 with JPF

Table XII. Average falsification performance with respect to
the fault categories in random fault seeding

Model Checker | Type Memory(MB) Time(sec)
Mean | StDev Mean | StDev
ALV CI 1.55 0.42 0.09 0.06
ALV CG 1.60 0.51 0.10 0.10
ALV CU 1.40 0.48 0.06 0.08
JPF M 30.29 20.72 13.56 | 40.36
JPF ICV 46.26 19.86 7.93 1.97
JPF ICN 135.81 | 100.75 | 15.25 | 8.33

These numbers show that the falsification performance during the random
fault seeding was similar to the falsification performance during the manual
fault seeding experiment, see Table IX.

6.3. DISCUSSION

In this section we discuss the results of our two experimental studies. Through
these studies, we investigated the effectiveness of the presented modular ver-

paper .t ex;

23/ 02/ 2007; 21:52; p.46

47

ification technique using a similar approach to mutation testing. In our ex-
periments, we used our fault categorization to create faulty versions. Using
the terminology of the mutation testing, the experiments showed that our
verification technique killed almost all the mutants (except for some of the
ICN faults, which were missed due to the resource constraints of the JPF
program checker). These experiments also enabled us to analyze verification
performances on a real software and demonstrate the possible difficulties.

ALV Performance: For behavior verification we generated three instances
of each controller: two concrete instances with 8 and 16 threads and a pa-
rameterized instance using counting abstraction (denoted with suffixes 8, 16,
and P in Tables VIII and X). We checked 6 properties on both the concrete
and parameterized instances of the MUTEX controller. For the RW controller
we checked 10 properties on the concrete instances (RP1-10 in Table I) and
11 properties on the parameterized instance (RP1-4 and RP11-16 in Table I).
Both verification and falsification of the MUTEX controller was more efficient
compared to RW controller since it was a smaller specification with fewer
variables.

Concrete vs. Parameterized Instances: Both verification and falsification
performance for the parameterized instances are typically between the con-
crete cases with 8 and 16 threads. Note that, the verification results for the
parameterized instances are stronger compared to the concrete cases since
they indicate that the verified properties hold for an arbitrary number of
threads. However, for falsification the results of the concrete and parame-
terized instances are equivalent, both of them generating a counter-example
behavior demonstrating the fault. Note that it is possible for the concrete in-
stances to miss a fault. However, in our experiments we did not observe this.
Every fault that was found by the parameterized instance of a controller was
also found by the instance with 8 threads. Hence, our experiments indicate
that concrete instances can be used for efficient and effective debugging of the
controller behavior. After eliminating all the faults by the concrete instances,
one could use the parameterized instances to guarantee correct behavior for
an arbitrary number of threads.

JPF Performance: Table XI and the second part of Table VIII show the
performance of JPF during the interface verification of each isolated thread
(see Section 5). Main threads do not have access to any controllers or shared
objects so they cannot have any synchronization faults. We still list the verifi-
cation time for the main threads to indicate the time it takes JPF to cover their
state space. Typically falsification time with JPF is better than the verification
time. This is expected since in the presence of faults JPF quits after finding
the first fault without covering the whole state space. However, in some of the
instances, JPF consumed more resources for falsification since the inserted
faults either caused the execution of a piece of code which was not executed
otherwise, or created new dependencies which increased the range of values

paper.tex; 23/02/2007; 21:52; p.47

48

160000 1400
140000 1200
120000 1000
B B
2 100000 Z 800
£ >
2
590000 £ 600
g g
@ 60000 a
2} 400
40000
200
20000
0
0 —— — 38883823838 238383838R88¢E
o' o o o' g o o' o' o o SARESE BT BESEREEBIEEE
8888 838¢8¢%§§ Search Dept 7t
Search Depth P
(a) (b)
40 25
354 04
30 4
234
ﬁzs— z
k1 222
g £
220 £
£
15 2.1
10 2
5
19+
c's’c’g’'c’gs’cgs o g s g g 99999 g s
0 8888383883838 38383838¢
o o o © o o o o o o o SARASESIBEEEREEESESE
P2 AR & 8 & F ¥ 3 3 Search Depth e
Search Depth P!
(© (d)

Figure 20. JPF performance using actual controller instance ((a),(c)) and instances of the
controller interface as stubs ((b),(d))

used in the environment. Still, overall, falsification performance is better than
the verification performance.

Our experiments on TSAFE show that our verification approach is able to
handle large programs. Note that, JPF is not able to analyze TSAFE without
our modular verification approach and thread isolation, and ALV is not di-
rectly applicable to verification of Java synchronization operations. Separat-
ing controllers and threads using controller interfaces improves the scalability
and applicability of the model checking techniques we have used. To further
demonstrate how our technique improves the scalability of verification, we
performed another experiment on a small sized concurrent program. This
program consisted of two threads, one shared data buffer instance, and one
concurrency controller instance. The threads just access the controller and the
data instance (put an item into or take an item from the buffer) in an infinite
loop. We tried to verify this program 1) directly with JPF where the controller
instance is not replaced with a stub, and 2) using our modular verification
approach where instances of the controller interface are used as stubs for the

paper.tex; 23/02/2007; 21:52; p.48

49

controller. JPF ran out of memory when we did not use our modular verifica-
tion approach. Therefore, we experimented with limited search depths. While
using the controller instance directly, JPF ran out of memory when the search
depth is 600 or over. This problem never occurred when using stubs, since
stubs have finite reachable state spaces. JPF successfully verified the problem
instance with stubs without a limit on the search depth. The results are given
in Figure 20. The graphs on the left are using the actual controller instances
for different search depths. The graphs on the right are using interfaces as
stubs for different search depths. Figure 20(a) and Figure 20(b) show the
growth of unique states visited. Number of visited states grows exponentially
in (a), whereas in (b) it stabilizes. Figure 20(c) and Figure 20(d) show the
execution time of JPF with respect to increasing search depth.

Fault Categorization: One of the outcomes of this experimental study was
a clarification of the types of faults that can be verified using the presented
approach. For example, during behavior verification we only check for errors
in the initialization statements, guards, updates and blocking/nonblocking
declarations. If a developer changes the predefined helper classes (such as the
Action class) and makes an error, the presented approach cannot find such
an error. However, such errors can be avoided by using the automated opti-
mization step (see Section 3.1), which generates optimized controller classes
using a source-to-source transformation (Betin-Can and Bultan, 2004), since
this step only uses the parts verified during behavior verification.

Unknown Shared Objects: The developers may not realize that some ob-
jects are shared and therefore not use concurrency controllers to protect them.
In that case, the presented verification approach will not be helpful since it
only checks access to shared objects identified by the developers using the
data stubs. Similar errors happen in standard Java programming when pro-
grammers do not use the Java synchronization primitives to protect access to
shared objects. In fact, during the refactoring process, we found such an error
in TSAFE where a shared object used for RMI connection was not synchro-
nized. We fixed this error by introducing a mutex controller. We are working
on extending our verification framework with an escape analysis technique
to handle such situations. Escape analysis techniques are used to identify
the objects which escape from a thread’s scope and become accessible by
another thread. Such analysis can be used to identify the objects which need
to be synchronized. The analysis techniques we investigated so far (Bogda,
2001; Indus, 2005) either do not scale to programs as big as TSAFE or iden-
tify too many objects as shared. We think that this is a promising direction for
future research.

Completeness of the Controller Properties: Another problem we identified
during the experimental study was the difficulty of listing all the properties
that are relevant to the behavior of a controller. The initial set of properties
we had about controllers was all about the variables of the controllers and did

paper.tex; 23/02/2007; 21:52; p.49

50

not relate the interface states to the variables of the controllers. During the
experimental study we quickly realized that we needed to specify more prop-
erties to find all faults that can be introduced. Eventually, the set of properties
we identified found all the seeded faults; however, they are not guaranteed
to find all possible faults. Our experience in this experimental study suggests
that one could test the completeness of a set of properties for a controller by
inserting faults to the controller and checking the modified controller with
respect to the specified properties as we did in this experimental study. This
is similar to mutation testing for measuring the effectiveness of a test set.

Difficulty of Finding Deep Faults: Finally, we would like to discuss the real
faults that were missed by the presented verification approach: the interface
faults in versions v18, v19, and v20 in the manual fault seeding study and
in version vr86 in the random fault seeding study. These faults were all ICN
faults with branch conditions in front of a method call to a controller. The
only difference between the faults in the versions v17, v18, v19, and v20 was
the constant value in the branch conditions which was 100, 1000, 10000, and
100000, respectively. In the random fault seeding study, the constant used
was 400 and the fault occurred on the execution path of RMI thread of the
server component.

Interface verification with JPF identifies the fault in v17 however misses
the faults in v18, v19, v20 in the first experiment. In the second experiment,
JPF misses the faults in version vr86. Clearly, these are convoluted faults.
This fault type was suggested by the UCSB team as a way to challenge the
interface verification step. These faults demonstrate that there is a limit to
the depth of the faults that can be identified using explicit state verification
techniques without running out of memory. In order to deal with this type of
faults symbolic analysis of the branch conditions may be necessary.

Thread Isolation: When we automatically isolate threads by generating
environment models which allow the maximum amount of nondeterminism,
JPF runs out of memory. The user needs to provide some guidance in limiting
the input domains and the input length. The dependency analysis we used
was crucial for this task. Without a dependency analysis it is not possible
to identify what part of the input may be relevant to the synchronization
behavior. One can approach this problem also from the design for verification
perspective by developing interfaces for threads during the design phase. We
use the controller interfaces to model the environments of the concurrency
controllers and shared objects. Similarly, interfaces can be used for modeling
the environments of threads.

These experimental observations help us to identify the strengths and weak-
nesses of our verification technique. One of the weakness of our technique is
that it will not be helpful when not all of the shared data objects are not
identified and, therefore, not protected by a concurrency controller. Another
weakness is the difficulty in finding deep faults due to the program checker

paper.tex; 23/02/2007; 21:52; p.50

51

used in interface verification that employs explicit state verification tech-
niques. One positive observation about the presented technique is its ability
to distinguish the spurious faults. In addition, the modularity in our technique
enables us to discover the faults in different categories in a reasonable amount
of time.

7. Related Work

This paper is an extended version of our conference paper (Betin-Can et al.,
2005b). The concurrency controller pattern was proposed originally in (Betin-
Can and Bultan, 2004). In (Betin-Can and Bultan, 2006) a formal model for
the concurrency controller pattern is presented and the correctness criteria for
the behavior and interface verification steps are formally defined. In (Betin-
Can et al., 2005a), a related design pattern, called the peer controller pattern,
is proposed for design and verification of asynchronously communicating
web services. The work in (Betin-Can et al., 2005a) demonstrates that the
basic principles used in the design for verification approach discussed in
this paper can be extended to other domains. Our main contributions in this
study are: 1) Two experimental studies demonstrating the applicability of the
presented design for verification approach to safety critical air traffic control
software and empirical results demonstrating the effectiveness of the mod-
ular verification strategy based on the concurrency controller pattern. One
set of experiments was done using manual fault seeding and another set of
experiments was done using random fault seeding. 2) Techniques for thread
isolation, including a data dependency analysis and generic drivers, and stubs
for modeling the environments of threads for GUI components, RMI connec-
tions and network communication. 3) A fault classification for identifying the
types of faults that can be discovered by our approach. 4) Identification of the
strengths and weaknesses of the verification techniques used in the presented
design for verification approach, based on the observations made during the
experiments. Preliminary results from this study were published in (Betin-
Can et al., 2005b). This extended version contains a new set of experiments
with random fault seeding, a more thorough analysis of the experimental
results, the specification and discussion of an additional concurrency con-
troller, a more detailed discussion on the TSAFE software component, and
more detailed explanations of the concurrency controllers, the verification
techniques, the thread isolation techniques and the dependency analysis used
during thread isolation.

There have been other studies on design for verification. The approach
in (Sharygina et al., 2001) focuses on verification of UML models whereas
we focus on verification of programs. Use of design patterns to improve the
efficiency of automated verification was also proposed in (Mehlitz and Penix,

paper.tex; 23/02/2007; 21:52; p.51

52

2003). However, our interface-based modular verification technique is differ-
ent than the approach presented in (Mehlitz and Penix, 2003). They suggest
using design patterns for code separation, to partition a large program into
independently verifiable components. On the other hand, through the concur-
rency controller pattern, our modular verification strategy not only separates
concurrent threads but also checks the properties of their collaboration, i.e.
the synchronization policy.

In (Chakrabarti et al., 2002) interfaces of software modules are specified
as a set of constraints, and algorithms for interface compatibility checking
are presented. In (DeLine and Fahndrich, 2004) type systems are extended
with stateful interfaces and interface checking is made part of type checking.
We use interfaces as part of a design pattern for concurrency controllers and
use finite and infinite state model checking techniques together to verify both
controller behaviors and interfaces.

Model checking finite state abstractions of programs has been studied in
(Ball and Rajamani, 2001; Chaki et al., 2003; Dwyer et al., 2001). We present
a modular verification approach where behavior and interface checking are
separated based on the interface specification provided by the programmer.
Also, using infinite state verification techniques, we are able to verify con-
currency controller classes with respect to arbitrary number of threads.

In (Godefroid et al., 1998) an open reactive program is converted to a
closed program by inserting nondeterminism into the code and eliminating
procedure arguments. Unlike this work, we have restrictions on the envi-
ronment interactions caused by controllers via interfaces. The techniques
presented in (Tkachuk and Dwyer, 2003; Tkachuk et al., 2003) generate en-
vironments for components by using side effect and points-to analyses. Al-
though the techniques we discuss for thread isolation are similar to these, we
base our techniques on the controller interfaces and the design for verification
approach.

Stoller (Stoller and Liu, 2001) transforms distributed programs commu-
nicating with RMI into one program for model checking. Unlike this cen-
tralization approach, we apply thread modular model checking, decouple the
remote processes, and reduce the state space.

The program dependence-based abstraction selection methodology dis-
cussed in (Dwyer et al., 2001) guides the user to choose abstractions to the
variables affecting the property and the control flow. This is similar to our ap-
proach in which the user inspects the analysis results and chooses appropriate
valuations.

The graphical user model in (Dwyer et al., 2004) is similar to our generic
GUI driver. That model, however, creates all types of user events after choos-
ing a GUI object. The actual event thread, on the other hand, dispatches only
one user event at a time. The other difference is that our driver is used for

paper.tex; 23/02/2007; 21:52; p.52

53

interface verification whereas their model is used for analyzing interaction
orderings.

The thread-modular reasoning discussed in (Flanagan and Qadeer, 2003)
verifies each thread separately with respect to safety properties. The effects of
other threads are modeled as environment assumptions whereas we use stubs
and drivers to reflect these effects. Besides, we check the thread behavior
against the interface rules and leave the assurance of the safety properties to
behavior verification.

To avoid the error-prone usage of low-level synchronization primitives,
the recently released J2SE 5.0 includes a concurrency utilities package. The
package involves a Lock interface and a ReadW i t eLock among other util-
ities. Similar to our framework, developers can create their own synchro-
nization policies by implementing these interfaces. Our approach to behavior
verification can be adapted to automated verification of these custom imple-
mentations. With the concurrency utilities package, the lock acquisitions in
the programs have to be explicit as well. Interface verification can be used to
detect errors such as missing lock operations and unprotected data access.

Mutation testing and manual fault seeding are the frequently used tech-
niques to measure the effectiveness of a test set (Kim et al., 2000; Budd,
1981; Ammann et al., 1998; DeMillo et al., 1978). For example, in (Do and
Rothermel, 2006), both manual fault seeding and automated mutant gen-
eration techniques are used to compare test case prioritization techniques
empirically. Memon et al. used fault seeding to evaluate an automated regres-
sion tester for GUI applications (Memon and Xie, 2005). In our experiments,
we have created slight variations of TSAFE by manual fault seeding and by
random mutant generation. We examined whether our technique increase the
scalability of model checking and able to capture these variations.

Our fault categorization, as opposed to general fault classifications such
as (IEEE, 1993), is focused on the fault types that are possible to occur when
using the concurrency controller pattern. We do not consider the faults that
do not affect the synchronization aspect of a concurrent program. Our fault
categorization is orthogonal to other concurrency faults identified in the lit-
erature, such as the ones in (Long and Strooper, 2003). Many of those faults
are due to erroneous use of the synchronization primitives and are eliminated
by our pattern (e.g., premature release of locks).

8. Conclusions

In this paper we experimentally evaluated the effectiveness of the design
for verification with concurrency controllers in finding synchronization er-
rors in safety critical software. The concurrency controller pattern supports a
modular verification strategy by identifying the stateful interfaces of concur-

paper.tex; 23/02/2007; 21:52; p.53

54

rency controllers. Based on these interfaces, verification of the synchroniza-
tion policies (implemented as concurrency controllers) are separated from
the verification of their correct usage by different threads. We presented tech-
niques for thread isolation which enables verification of each thread sepa-
rately.

We reengineered an automated air traffic control software component called
TSAFE using the concurrency controller design pattern. We conducted two
sets of experiments based on fault seeding. First, we created 40 faulty versions
of TSAFE using manual fault seeding. During this exercise we also devel-
oped a classification of faults that can be found using the presented design
for verification approach. Next, we generated another 100 faulty versions of
TSAFE using randomly seeded faults that were created based on this fault
classification. The presented verification techniques were able to find almost
all of the seeded faults. In addition to demonstrating the effectiveness of
the presented design for verification approach in eliminating synchronization
faults, the results of our experiments helped us identify new directions for
improvement.

References

Ammann, P. E., P. E. Black, and W. Majurski: 1998, ‘Using Model Checking to Generate
Tests from Specifications’. In: ICFEM ’98: Proceedings of the Second IEEE International
Conference on Formal Engineering Methods.

Ball, T. and S. K. Rajamani: 2001, ‘Automatically Validating Temporal Safety Properties of
Interfaces’. In: Proceedings of the SPIN Workshop. pp. 103-122.

Betin-Can, A.: 2005, ‘Design for Verification for Concurrent and distributed programs’. Ph.D.
thesis, University of California Santa Barbara.

Betin-Can, A. and T. Bultan: 2003, ‘Interface-Based Specification and Verification of Con-
currency Controllers’. In: Proceedings of the Workshop on Software Model Check-
ing(SoftMC), Electronic Notes in Theoretical Computer Science (ENTCS), Vol. 89.

Betin-Can, A. and T. Bultan: 2004, ‘Verifiable Concurrent Programming Using Concurrency
Controllers.”. In: Proceedings of the 19th IEEE International Conference on Automated
Software Engineering (ASE). pp. 248-257.

Betin-Can, A. and T. Bultan: 2006, ‘Highly Dependable Concurrent Programming Using
Design for Verification’. Technical Report 2006-05, Computer Science Department,
University of California, Santa Barbara, (Submitted for publication).

Betin-Can, A., T. Bultan, and X. Fu: 2005a, ‘Design for Verification for Asynchronously
Communicating Web Services’. In: Proceedings of the 14th International World Wide
Web Conference (WWW). pp. 750-759.

Betin-Can, A., T. Bultan, M. Lindvall, S. Topp, and B. Lux: 2005b, ‘Application of Design
for Verification with Concurrency Controllers to Air Traffic Control Software’. In: Pro-
ceedings of the 20th IEEE International Conference on Automated Software Engineering
(ASE).

Bogda, J. G.: 2001, ‘Program Analysis Alleviates Java Synchronization’. Ph.D. thesis,
University of California, Santa Barbara.

Budd, A. T.: 1981, ‘Mutation Analysis: Ideas, Examples, Problems and Prospects’. In:
Computer Program Testing. pp. 129-148.

paper.tex; 23/02/2007; 21:52; p.54

55

Bultan, T.: 2000, ‘Action Language: A Specification Language for Model Checking Reactive
Systems’. In: Proceedings 22nd International Conference on Software Engineering.

Bultan, T. and A. Betin-Can: 2005, ‘Scalable Software Model Checking Using Design for
Verification’. In: Proceedings of the IFIP Working Conference on Verified Software:
Theories, Tools, Experiments.

Bultan, T. and T. Yavuz-Kahveci: 2001, ‘Action Language Verifier’. In: Proceedings 16th
IEEE International Conference on Automated Software Engineering (ASE). pp. 382-386.

Cargill, T.: 1996, ‘Specific notification for Java thread synchronization’. In: Proceedings 3rd
Conference on Pattern Languages of Programs (PLoP).

Chaki, S., E. Clarke, A. Groce, S. Jha, and H. Veith: 2003, ‘Modular Verification of Software
Components in C’. In: Proceedings of International Conference on Software Engineering
(ICSE). pp. 385-395.

Chakrabarti, A., L. de Alfaro, T. Henzinger, M. Jurdzinski, and F. Mang: 2002, ‘Interface
compatibility checking for software modules’. In: Proceedings of the 14th International
Conference on Computer Aided Verification (CAV 2002). pp. 428-441.

DeLine, R. and M. Fahndrich: 2004, ‘Typestates for Objects’. In: Proceedings of the 18th
European Conference on Object-Oriented Programming (ECOOP). pp. 465-490.

Delzanno, G.: 2000, ‘Automatic Verification of Parameterized Cache Coherence Protocols’.
In: Proceedings 12th International Conference on Computer Aided Verification, Vol. 1855
of LNCS. pp. 53-68.

DeMillo, R. A., R. J. Lipton, and F. G. Sayward: 1978, ‘Hints on Test Data Selection: Help
for the Practicing Programmer’. |IEEE Computer pp. 34—41.

Dennis, G.: 2003, ‘TSAFE: Building a Trusted Computing Base for Air Traffic Control
Software, Master’s Thesis, Massachusetts Institute of Technology’.

Do, H. and G. Rothermel: 2006, ‘On the use of mutation faults in empirical assessments of test
case prioritization techniques’. |IEEE Transactions on Software Engineering pp. 733-752.

DOT: 1998, ‘Advance Automation System’. Dep. of Transportation, Office of Inspector
General, Audit Report, AV-1998-113.

Dwyer, M. B., J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, Robby, W. Visser, and
H. Zheng: 2001, ‘Tool-supported Program Abstraction for Finite-state Verification’. In:
Proceedings of International Conference on Software Engineering (ICSE). pp. 177-187.

Dwyer, M. B., Robby, O. Tkachuk, and W. Visser: 2004, ‘Analyzing Interaction Orderings
with Model Checking’. In: Proceedings of the 19th IEEE International Conference on
Automated Software Engineering (ASE). pp. 154-163.

Erzberger, H.: 2001, ‘The Automated Airspace Concept’. In: Proceedings of USA/Europe Air
Traffic Management R&D Seminar.

Erzberger, H.: 2004, ‘Transforming the NAS: The Next Generation Air Traffic Control
System’. In: Proceedings of the 24th International Congress of the Aeronautical Sciences.

Flanagan, C. and S. Qadeer: 2003, ‘Thread-modular Model Checking’. In: Proceedings of the
SPIN Workshop. pp. 213-224.

Godefroid, P., C. Colby, and L. Jagadeesan: 1998, ‘Automatically Closing Open Reactive
Programs’. In: Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). pp. 345-357.

IEEE: 1993, ‘IEEE Standard Classification for Software Anomalies’. IEEE Standard 1044-
1993.

Indus: 2005, ‘Indus’. http://indus.projects.cis.ksu.edu.

Kim, S., J. Clark, and J. McDermid: 2000, ‘Class mutation: Mutation testing for object-
oriented programs’. In: Proceedings of the FMES.

Lea, D.: 1999, Concurrent Programming in Java. Reading, Massachusetts: Addison-Wesley.

Lindvall, M., I. Rus, F. Shull, M. V. Zelkowitz, P. Donzelli, A. Memon, V. R. Basili, P. Costa,
R. T. Tvedt, L. Hochstein, S. Asgari, C. Ackermann, and D. Pech: 2005, ‘An Evolutionary

paper.tex; 23/02/2007; 21:52; p.55

56

Testbed for Software Technology Evaluation’. NASA Journal of Innovations in Systems
and Software Engineering 1(1), 3—-11.

Long, B. and P. Strooper: 2003, ‘A Classification of Concurrency Failures in Java Com-
ponents’. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS03).

Mehlitz, P. C. and J. Penix: 2003, ‘Design for Verification Using Design Patterns to Build
Reliable Systems’. In: Workshop on Component-Based Software Engineering.

Memon, A. M. and Q. Xie: 2005, ‘Studying the Fault-Detection Effectiveness of GUI Test
Cases for Rapidly Evolving Software’. IEEE Transactions on Software Engineering pp.
884-896.

Neumann, P. G.: 2004, ‘Risks to the Public in Computers and Related Systems’. ACM Software
Engineering Notes 29(4), 7-14.

Ottenstein, J. and L. M. Ottenstein: 1984, ‘The Program Dependence Graph in a software
Development Environment’. ACM Software Engineering Notes pp. 177-184.

Paulson, L. C.: 1994, Isabelle: A Generic Theorem Prover, Vol. 828 of Lecture Notes in
Computer Science.

Sharygina, N., J. C. Browne, and R. P. Kurshan: 2001, ‘A Formal Object-Oriented Analy-
sis for Software Reliability: Design for Verification’. In: Proceedings of Fundamental
Approaches to Software Engineering (FASE). pp. 318-332.

SOOT: 2005, ‘Soot: a Java Optimization Framework’. http://www.sable.mcgill.ca/soot/.

Stoller, S. D. and Y. A. Liu: 2001, ‘Transformations for Model Checking Distributed Java
Programs.’. In: Proceedings of the SPIN Workshop. pp. 192-199.

Tkachuk, O. and M. B. Dwyer: 2003, ‘Adapting Side-Effects Analysis for Modular Pro-
gram Model Checking’. In: Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (ASE). pp. 188-197.

Tkachuk, O., M. B. Dwyer, and C. Pasareanu: 2003, ‘Automated Environment Generation for
Software Model Checking’. In: Proceedings of the 4th Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003). pp. 116-129.

Visser, W., K. Havelund, G. Brat, and S. Park: 2003, ‘Model Checking Programs’. Automated
Software Engineering Journal 10(2), 203-232.

Visser, W., C. S. Pasareanu, and S. Khurshid: 2004, ‘Test input generation with Java
PathFinder’. In: Proceedings of International Symp. on Software Testing.

Xie, T., D. Marinov, W. Schulte, and D. Notkin: 2005, ‘Symstra: A Framework for Generat-
ing Object-Oriented Unit Tests using Symbolic Execution’. In: Proceedings of the 11th
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems.

Yavuz-Kahveci, T., C. Bartzis, and T. Bultan: 2005, ‘Action Language Verifier, Extended’. In:
Proceedings of the 17th International Conference on Computer Aided Verification (CAV
2005). pp. 413-417.

Yavuz-Kahveci, T. and T. Bultan: 2002, ‘Specification, Verification, and Synthesis of Concur-
rency Control Components’. In: Proceedings of the 2002 ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2002). pp. 169-179.

paper.tex; 23/02/2007; 21:52; p.56

