
Autom Softw Eng (2009) 16: 323–356
DOI 10.1007/s10515-009-0051-2

An integrated crosscutting concern migration strategy
and its semi-automated application to JHOTDRAW

Marius Marin · Arie van Deursen · Leon Moonen ·
Robin van der Rijst

Received: 1 February 2009 / Accepted: 25 February 2009 / Published online: 17 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract In this paper we propose a systematic strategy for migrating crosscutting
concerns in existing object-oriented systems to aspect-oriented programming solu-
tions. The proposed strategy consists of four steps: mining, exploration, documenta-
tion and refactoring of crosscutting concerns. We discuss in detail a new approach to
refactoring to aspect-oriented programming that is fully integrated with our strategy,
and apply the whole strategy to an object-oriented system, namely the JHOTDRAW

framework.
Moreover, we present a method to semi-automatically perform the aspect-introdu-

cing refactorings based on identified crosscutting concern sorts which is supported
by a prototype tool called SAIR. We perform an exploratory case study in which we
apply this tool on the same object-oriented system and compare its results with the
results of manual migration in order to assess the feasibility of automated aspect
refactoring. Both the refactoring tool SAIR and the results of the manual migration
are made available as open-source, the latter providing the largest aspect-introducing
refactoring available to date.

M. Marin is a guest at Delft University of Technology.

M. Marin (�)
Technology Architecture, Accenture, Gustav Mahlerplein 90, 1082 MA, Amsterdam, The Netherlands
e-mail: marius.marin@accenture.com

A. van Deursen · R. van der Rijst
Delft University of Technology, Delft, The Netherlands

A. van Deursen
e-mail: arie.vandeursen@tudelft.nl

R. van der Rijst
e-mail: rvdrijst@gmail.com

L. Moonen
Simula Research Laboratory, Lysaker, Norway
e-mail: leon.moonen@computer.org

mailto:marius.marin@accenture.com
mailto:arie.vandeursen@tudelft.nl
mailto:rvdrijst@gmail.com
mailto:leon.moonen@computer.org

324 Autom Softw Eng (2009) 16: 323–356

We report on our experiences with conducting both case studies and reflect on the
success and challenges of the migration process.

Keywords Program analysis · Code refactoring · Cross cutting concerns · Concern
modeling · Aspect-oriented programming · Reverse engineering · Software
engineering

1 Introduction

Software systems change continuously to implement new requirements, to adapt to
new architectures and integrate with legacy applications or new systems, or to cor-
rect their behavior. The evolution of today’s software systems is challenged by their
growing size and complexity that stems from the multiple development cycles and
changes implemented over time.

1.1 Crosscutting concerns

The software engineering research and practice has long looked into techniques and
tool support to aid software evolution, such as software decomposition and modular-
ization techniques. Most recently, significant attention has been given to the problem
of crosscutting concerns—application concerns, such as functional or design ones,
that do not map onto any single module, e.g., class or method, in a given decomposi-
tion of the software system.

The implementation of crosscutting concerns using traditional programming para-
digms, such as object-oriented programming, is associated with inherent tangling
and scattering problems due to the limitations of their modularization mechanisms.
In a typical Java web application, for example, the implementation of concerns like
logging or security is scattered over multiple modules and tangled with the core func-
tionality of the module implementing these concerns.

One relatively recent approach to the problem of crosscutting concerns that has
gained significant attention is aspect-oriented software development (AOSD)1 (Fil-
man et al. 2005). Aspect-oriented programming techniques introduce several new
language constructs and mechanisms that allow to capture crosscutting concerns in
dedicated modules, called aspects. The modularization of crosscutting concerns helps
to more easily localize, understand and modify the implementation of these concerns.

1.2 Migration of crosscutting concerns

Adoption of aspect-oriented programming for handling crosscutting concerns in ex-
isting systems requires to migrate these systems, and transform the crosscutting im-
plementation of concerns into aspects, a process known as aspect refactoring.

Despite significant research efforts on various parts of the refactoring of crosscut-
ting concerns from existing systems, to date there exists no compelling show-case for

1http://www.aosd.net/.

http://www.aosd.net/

Autom Softw Eng (2009) 16: 323–356 325

such a complete migration. One of the main causes for this void is the fact that there
is no clearly defined, coherent migration strategy detailing the steps to be taken to
perform this process.

Successful migration requires a strategy comprising steps like identification of
the concerns (i.e., aspect mining), description of the concerns to be refactored, and
consistent application of refactoring transformations. Moreover, such a strategy re-
quires integrated migration steps, so that aspect mining results, for example, can be
consistently mapped onto concerns in code, and further refactored by general as-
pect solutions. The present state of the art prevents developers and practitioners from
experimenting with a complete migration process and assessing the benefits of mi-
grating to aspect-oriented programming.

In this paper, we propose such an integrated strategy for migrating crosscutting
concerns to aspects, which consists of four main steps: (1) idiom-driven identifi-
cation of crosscutting concerns in an existing system (also known as aspect min-
ing); (2) exploration of the concerns identified in the previous step and their context;
(3) query-based modeling and documentation of crosscutting concerns in the system;
(4) template-based refactoring of the object-oriented idioms into aspect-oriented pro-
gramming solutions.

Our strategy builds upon the classification and decomposition of crosscutting con-
cerns in so-called crosscutting concern sorts that we proposed earlier (Marin et al.
2005, 2007b). Each sort describes a typical implementation idiom and relation of
crosscutting concerns. Sorts act as glue between the successive steps of the migra-
tion: The mining step in our strategy uses the sort-specific idioms to define search-
goals for identifying crosscutting concerns that belong to a specific sort (i.e., sort
instances). To support the exploration and documentation steps, we have formalized
the concern sorts using queries over source code and implemented these in a tool for
browsing and modeling crosscutting concerns (Marin et al. 2007d).

1.3 Semi-automatic aspect refactoring

While the first three steps of our approach have been covered in our earlier work, this
paper focuses on the fourth step and its connection with the three preceding steps.
In particular, we define template solutions for the aspect refactoring of instances of
each of our sorts.2 Furthermore, we describe a case study in which we manually
apply the whole migration strategy to JHOTDRAW,3 an object-oriented application
used in other aspect mining and refactoring studies as well (Marin et al. 2006, 2007a;
Ceccato et al. 2006; Binkley et al. 2006). The results of our migration are available
as an open-source project called AJHOTDRAW. This is the largest aspect refactoring
publicly available to date that we are aware of.

Finally, we present an approach to semi-automatically perform such aspect-intro-
ducing refactorings based on identified crosscutting concern sorts. It is based on hav-
ing a human in the loop to guide the system through complex refactoring design deci-
sions. The automation of the refactorings to aspects aims at similar benefits as the one

2 Our templates target the AspectJ language.
3http://jhotdraw.org/.

http://jhotdraw.org/

326 Autom Softw Eng (2009) 16: 323–356

currently provided by many development environments for traditional object-oriented
refactorings, including automatic code transformations and verifications, or re-use of
standard refactoring solutions.

We discuss the implementation of our refactoring approach in a prototype tool
called SAIR (Sort-based Aspect-Introducing Refactoring), and conduct an exploratory
case study in which we apply this tool on the same object-oriented system as was
used for the manual migration. We compare the results of both approaches in order
to assess the feasibility and benefits of (semi-)automatic aspect refactoring. SAIR is
publicly available to enable repetition experiments and extension by others.

This paper extends our earlier work (Marin et al. 2007c) with (1) an approach
to semi-automatically conduct aspect-introducing refactorings, (2) details of the sort
specific algorithms for semi-automated refactoring of two sorts: Role Superimposi-
tion and Consistent Behavior, (3) the semi-automatic refactoring tool SAIR, and (4) an
exploratory case study in which we apply SAIR to JHOTDRAW and compare its re-
sults with the manually migrated AJHOTDRAW.

The remainder of the paper is organized as follows. In Sect. 2, we give a short
introduction into aspect-oriented software development concepts, aspect mining and
concern modeling. Then we revisit the previously published notion of crosscutting
concern sorts. We describe the migration strategy and elaborate on the first three
steps in Sect. 3. The sort-based aspect refactoring approach that we introduce for the
fourth step is presented in Sect. 4. Section 5 covers our experiences with migrating
crosscutting concerns in JHOTDRAW to aspect solutions. Section 6 presents our semi-
automatic aspect-introducing refactoring approach, the tool SAIR and our exploratory
case study conducted with SAIR on JHOTDRAW. Section 7 presents a second case
study that compares both the effort required and aspect-oriented code obtained from
a refactoring using SAIRversus a completely manual approach. Section 8 discusses
the results and outlines a number of lessons learned. We conclude with an overview
of related work and recommendations for future research.

2 Background

In this section, we give a short introduction into the topics of aspect-oriented pro-
gramming, aspect mining and concern modeling.

2.1 Aspect-oriented software development and AspectJ

Aspect-oriented software development techniques employ a set of new language con-
structs and composition mechanisms aimed at enhancing the modularization of con-
cerns in software systems. Most of these techniques extend existing object-oriented
languages, and particularly Java, using a join-point model to attach additional behav-
ior to specific places in the execution of a program.

A join-point in this model is a well-defined point in the control flow of a program,
such as a method call, a method execution, or a field access (get/set), that can be
matched using certain selection criteria. In aspect-oriented programming, join-points
are selected using pointcut definitions. Figure 1 shows an example of a pointcut in

Autom Softw Eng (2009) 16: 323–356 327

pointcut cmdExecute(AbstractCommand aCommand) :
this(aCommand)
&& execution(void AbstractCommand+.execute())
&& !within(*..DrawApplication.*);

Fig. 1 An AspectJ pointcut definition

before(AbstractCommand aCommand) : cmdExecute(aCommand) {
if (aCommand.view() == null) {

throw new JHotDrawRuntimeException("...");
}

}

Fig. 2 An AspectJ advice

the AspectJ language: The cmdExecute pointcut selects the execution of all the exe-
cute() methods declared in any class in the hierarchy of AbstractCommand, except
declarations in the DrawApplication class. The pointcut designator this and the point-
cut parameter provide to access the object of the executing method, as we shall see
next.

The join-points selected by a pointcut can be attached additional behavior by
means of an advice construct, as illustrated in Fig. 2. The advice specifies the code
to be executed automatically when the program reaches the join-point, as well as the
moment of the execution, e.g., before, after or around the join-point. The before ad-
vice in Fig. 2 uses the reference to the executing object captured by the pointcut to
check a pre-condition and throw a runtime exception.

An aspect-oriented program can declare pointcut and advice in dedicated mod-
ules called aspects. Aspects are modularization units akin to static classes, which in
AspectJ can be declared using the aspect keyword.

In addition to the pointcut and advice mechanism, aspects allow for so-called inter-
type declarations or introductions to extend a class or interface with new members or
to modify the type hierarchy of a class.

2.2 Aspect mining

The identification of crosscutting concerns in source code is commonly known as
aspect mining. Many of the current aspect mining approaches employ static and dy-
namic program analysis techniques to search for typical symptoms of crosscutting
implementation of concerns, such as code scattering and tangling (Marin et al. 2007a;
Breu and Zimmermann 2006; Ceccato et al. 2006; Shepherd et al. 2005; Kellens et
al. 2007). Two of the techniques used in this paper, for example, analyze the method
call relations in a software system and look for scattered and/or regular patterns of
method invocations that are common with many examples of crosscutting concerns
such as logging or notification of events (Marin et al. 2007a).

The results of aspect mining consist of program elements and relations that are part
of the implementation of a concern. These results can then be used in combination
with software browsing and exploration tools to discover the full extent of a concern.

328 Autom Softw Eng (2009) 16: 323–356

2.3 Concern modeling

Concern modeling aims at enabling multiple decompositions of a software system
through methods and tool support that allow for grouping and navigating program
elements that belong to the implementation of a certain concern. These concerns are
typically not captured in the main decomposition of the system, as they do not map
onto dedicated modularization units, such as classes and methods. Concern model-
ing tools can use dedicated views where the user can associate code elements that
implement a specific concern.

Although concern modeling and aspect-oriented programming are similar in many
respects, and particularly in the shared goal of improving separation of concerns,
there are also several important differences (Marin 2008). For example, aspect-
oriented programming techniques allow one to ensure that certain behavior is exe-
cuted consistently for a given set of elements and that this behavior can be enabled or
disabled with minimal code changes.

Examples of approaches to concern modeling include concern graphs (Robillard
and Murphy 2007), the Concern Manipulation Environment (Harrison et al. 2005),
intentional views (Mens et al. 2003), and concern sort queries (Marin et al. 2007b).
The latter will be discussed in more detail in Sect. 3.3 of this paper.

2.4 Crosscutting concern sorts

A systematic migration strategy requires a consistent way to address crosscutting
concerns in source code. To this end, we distinguish a number of atomic crosscutting
concerns (i.e., concerns that cannot be split into smaller, still meaningful concerns)
that share properties like their implementation idioms and relations. We group con-
cerns that share such properties in categories called crosscutting concern sorts (Marin
et al. 2005). These sorts can be used on their own, but can also be composed to con-
struct more complex crosscutting designs, for example, the Observer pattern, often
used as a typical example of crosscuttingness.

The first two columns of Table 1 describe the identified sorts and show several
examples of instances (the other columns will be introduced in later sections). Con-
sistent behavior, for instance, groups concerns whose implementation consists of
scattered calls to a specific method implementing the crosscutting functionality. In-
stances of this sort include, for example, a logging concern, a simple authentication
or authorization concern implemented as a call to a method checking credentials, or
a mechanism for updating observers using calls to a notification method.

Similarly, the idiom for implementation of secondary roles, common in design pat-
terns like Observer or Visitor, as well as in mechanisms for persistence, is described
by the Role superimposition sort.

Composite crosscutting designs exhibit multiple sort instances in their implemen-
tation: the aforementioned Observer pattern, for example, comprises two instances
of Role superimposition, for the Subject and the Observer role respectively. Further-
more, it comprises instances of Consistent behavior, like the concern for notification
of observers, or the one for observers registration. Instances of our sorts are therefore
building blocks for modeling and describing crosscutting functionality.

Autom Softw Eng (2009) 16: 323–356 329

Ta
bl

e
1

C
ro

ss
cu

tti
ng

co
nc

er
n

so
rt

s

So
rt

an
d

In
te

nt
E

xa
m

pl
es

Id
io

m
Te

m
pl

at
e

as
pe

ct
so

lu
tio

n

(M
et

ho
d)

C
on

si
st

en
t

B
eh

av
io

r
(C

B
):

A
se

t
of

m
et

ho
ds

co
ns

is
te

nt
ly

in
vo

ke
a

sp
ec

ifi
c

ac
-

tio
n

as
a

st
ep

in
th

ei
r

ex
ec

ut
io

n.

L
og

gi
ng

of
ex

ce
pt

io
ns

;
W

ra
p-

pi
ng

bu
si

ne
ss

se
rv

ic
e

ex
ce

p-
tio

ns
an

d
re

-t
hr

ow
in

g
th

em
as

ne
w

ty
pe

s
(M

ar
in

et
al

.2
00

7a
);

N
ot

ifi
ca

tio
n

of
Fi

gu
re

ch
an

ge
ev

en
ts

.

M
et

ho
d

in
vo

ca
-

tio
ns

fr
om

se
t

of
m

et
ho

ds
.

Po
in

tc
ut

an
d

ad
vi

ce
m

ec
ha

ni
sm

.
a
r
o
u
n
d
(
.
.
)

:
c
a
l
l
e
r
s
C
o
n
t
e
x
t
(
.
.
)
{

i
n
v
o
k
e
C
B
(
.
.
)
;

/
/
b
e
f
o
r
e

p
r
o
c
e
e
d
(
)
;

/
/

o
r

a
f
t
e
r
:

i
n
v
o
k
e
C
B
(
.
.
)
;

}

R
ed

ir
ec

ti
on

L
ay

er
(R

L
):

A
ty

pe
ac

ts
as

a
fr

on
t-

en
d

in
te

rf
ac

e
ha

vi
ng

its
m

et
ho

ds
re

-
sp

on
si

bl
e

fo
r

re
ce

iv
in

g
ca

lls
an

d
re

di
re

ct
in

g
th

em
to

de
di

ca
te

d
m

et
ho

ds
of

a
sp

ec
ifi

c
re

f-
er

en
ce

,o
pt

io
na

lly
ex

ec
ut

in
g

ad
di

tio
na

lf
un

c-
tio

na
lit

y.

B
or

de
r

de
co

ra
tio

ns
fo

r
Fi

gu
re

el
em

en
ts

(D
ec

or
at

or
pa

tte
rn

);
C

om
m

an
d

w
ra

pp
er

fo
r

un
do

su
pp

or
t.

R
ed

ir
ec

to
r

ty
pe

w
ho

se
m

et
ho

ds
co

ns
is

te
nt

ly
fo

rw
ar

d
ca

lls
to

pa
ir

m
et

ho
ds

in
re

ce
iv

er
.

Po
in

tc
ut

an
d

ar
ou

nd
ad

vi
ce

re
pl

ac
es

re
di

re
ct

io
n.

a
r
o
u
n
d
(
.
.
)

:
c
a
l
l

R
e
c
e
i
v
e
r
.
m
(
.
.
)

&
&

f
i
l
t
e
r
e
d
C
a
l
l
e
r
s
(
.
.
)

{
a
d
d
B
e
h
a
v
i
o
r
1
(
)
;

p
r
o
c
e
e
d
(
.
.
)
;

/
/
r
e
d
i
r
e
c
t
i
o
n

a
d
d
B
e
h
a
v
i
o
r
2
(
)
;

}

E
xp

os
e

C
on

te
xt

(E
C

):
C

on
te

xt
Pa

ss
in

g:
M

et
ho

ds
in

a
ca

ll
ch

ai
n

co
ns

is
te

nt
ly

us
e

pa
-

ra
m

et
er

(s
)

to
pr

op
ag

at
e

co
nt

ex
t

in
fo

rm
at

io
n

al
on

g
th

e
ch

ai
n.

T
ra

ns
ac

tio
n

m
an

ag
em

en
t(

L
ad

-
da

d
20

03
);

C
re

de
nt

ia
ls

pa
ss

-
in

g
fo

r
au

th
or

iz
at

io
n;

Pr
og

re
ss

m
on

ito
r

fo
r

lo
ng

-r
un

ni
ng

op
er

-
at

io
ns

.

M
et

ho
d

in
ch

ai
n

pa
ss

es
pa

ra
m

et
er

as
ar

gu
m

en
t

to
ca

lle
e.

Po
in

tc
ut

an
d

ad
vi

ce
,w

he
re

th
e

po
in

tc
ut

co
lle

ct
s

th
e

co
nt

ex
t

to
be

pa
ss

ed
-

W
or

m
ho

le
(L

ad
da

d
20

03
)

a
r
o
u
n
d
(
<
c
a
l
l
e
r

c
o
n
t
e
x
t
>
,

<
c
a
l
l
e
e

c
o
n
t
e
x
t
>
)
:

c
f
l
o
w
(
c
a
l
l
e
r
S
p
a
c
e
(
<
c
a
l
l
e
r

c
o
n
t
e
x
t
>
)
)

&
&

c
a
l
l
e
e
S
p
a
c
e
(
<
c
a
l
l
e
e

c
o
n
t
e
x
t
>
)
{

/
/

.
.
.

a
d
v
i
c
e

b
o
d
y

}

R
ol

e
Su

pe
ri

m
po

si
ti

on
(R

SI
):

Ty
pe

s
ex

te
nd

th
ei

r
co

re
fu

nc
tio

na
lit

y
th

ro
ug

h
th

e
im

pl
e-

m
en

ta
tio

n
of

a
se

co
nd

ar
y

ro
le

.

Fi
gu

re
el

em
en

ts
ob

se
rv

ed
by

vi
ew

s
fo

r
ch

an
ge

s
(S

ub
je

ct
ro

le
);

V
is

ita
bl

e
el

em
en

ts
(V

is
-

ito
r

pa
tte

rn
);

St
or

ab
le

Fi
g-

ur
es

(P
er

si
st

en
ce

)
(M

ar
in

et
al

.
20

07
a)

.

Se
t

of
ty

pe
s

de
cl

ar
e

an
d

im
-

pl
em

en
t

m
em

be
r

ro
le

s
(p

os
si

-
bl

y
de

cl
ar

ed
by

a
di

st
in

ct
in

te
rf

ac
e)

.

In
tr

od
uc

tio
n

m
ec

ha
ni

sm
s.

d
e
c
l
a
r
e

p
a
r
e
n
t
s

:
T
y
p
e

i
m
p
l
e
m
e
n
t
s

S
e
c
o
n
d
a
r
y
R
o
l
e
;

M
o
d
i
f
i
e
r
s

T
y
p
e

T
y
p
e
.
r
o
l
e
F
i
e
l
d
;

M
o
d
i
f
i
e
r
s

T
y
p
e

T
y
p
e
.
r
o
l
e
M
e
t
h
o
d
(
.
.
)
{

.
.
.
/
/
o
r
i
g
i
n
a
l

i
m
p
l
e
m
e
n
t
a
t
i
o
n

}
;

330 Autom Softw Eng (2009) 16: 323–356

Ta
bl

e
1

(C
on

ti
nu

ed
)

So
rt

an
d

In
te

nt
E

xa
m

pl
es

Id
io

m
Te

m
pl

at
e

as
pe

ct
so

lu
tio

n

Su
pp

or
t

C
la

ss
es

fo
r

R
ol

e
Su

pe
ri

m
po

si
ti

on
(S

C
):

Ty
pe

s
im

pl
em

en
t

se
co

nd
ar

y
ro

le
s

by
en

cl
os

in
g

ne
st

ed
su

pp
or

t
cl

as
se

s.
T

he
ne

st
-

in
g

en
fo

rc
es

an
d

sp
ec

ifi
es

th
e

re
la

tio
n

be
-

tw
ee

n
en

cl
os

in
g

an
d

su
pp

or
tc

la
ss

.

U
nd

o
su

pp
or

tf
or

C
om

m
an

d
el

-
em

en
ts

;
E

ve
nt

di
sp

at
ch

er
fo

r
ob

se
rv

er
s’

no
tifi

ca
tio

n.

Se
t

of
ty

pe
s

(i
n

hi
er

ar
ch

y)
im

pl
e-

m
en

t
R

ol
e

us
in

g
ne

st
ed

cl
as

se
s.

T
he

de
si

re
d

so
lu

tio
n,

in
tr

od
uc

tio
n

fo
r

ne
st

ed
cl

as
se

s,
is

no
t

su
pp

or
te

d
by

A
sp

ec
tJ

.
O

ur
so

lu
tio

n
is

to
m

ov
e

th
e

su
pp

or
t

cl
as

se
s

to
th

e
as

pe
ct

.

E
xc

ep
ti

on
P

ro
pa

ga
ti

on
(E

P
):

m
et

ho
ds

in
ca

ll
ch

ai
n

co
ns

is
te

nt
ly

(r
e-

)t
hr

ow
ex

ce
pt

io
ns

fr
om

th
ei

r
ca

lle
es

in
th

e
ab

se
nc

e
of

an
ap

-
pr

op
ri

at
e

an
sw

er
.

IO
E

xc
ep

tio
n

th
ro

w
n

if
Fi

g-
ur

e
el

em
en

ts
re

co
ve

ry
fa

ils
;

C
he

ck
ed

SQ
L

E
xc

ep
tio

n
th

ro
w

n
fr

om
m

et
ho

ds
in

th
e

JD
B

C
A

PI
.

M
et

ho
d

in
ca

ll
ch

ai
n

re
-t

hr
ow

s
ex

ce
pt

io
n

to
ca

lle
r.

So
ft

en
in

g
ex

ce
pt

io
ns

m
ec

ha
ni

sm
s.

d
e
c
l
a
r
e

s
o
f
t

:
E
x
c
e
p
t
i
o
n
T
y
p
e

:
(
c
a
l
l
(
*

r
o
o
t
E
x
c
e
p
t
i
o
n
(
.
.
)

t
h
r
o
w
s

E
x
c
e
p
t
i
o
n
T
y
p
e
)
)
;

Autom Softw Eng (2009) 16: 323–356 331

3 An integrated migration strategy

In this section, we define an integrated strategy for migrating crosscutting concerns
in existing systems to aspect-based solutions.

The strategy consists of four steps:

Step 1. Idiom-driven identification of crosscutting concerns (aspect mining).
Step 2. Concern exploration.
Step 3. Query-based concern modeling and documentation.
Step 4. Sort-based aspect refactoring.

The remainder of this section discusses the first three steps in more detail and the next
section presents the fourth step. We show how the steps are integrated via crosscut-
ting concern sorts using examples from our JHOTDRAW to AJHOTDRAWmigration
experience.

3.1 Aspect mining

In our earlier work we have proposed and implemented an idiom-driven approach to
aspect mining based on crosscutting concern sorts (Marin et al. 2006). The approach
supports the design of aspect mining techniques that target instances of a specific sort
by searching for the sort’s implementation idiom.

The third column in Table 1 shows the implementation idioms associated with
each of the sorts. Consider for example the commands in a drawing application, like
JHOTDRAW, that carry out tasks in response to user actions. Each command con-
cludes its execution with a call to the checkDamage method in the drawing view,
which updates the view with changes triggered by the command. The notification
concern is an instance of Consistent behavior whose implementation idiom is invo-
cation of a specific method from a large set of methods. Aspect mining techniques
such as Fan-in analysis (Marin et al. 2007a) or Grouped calls analysis (Marin et al.
2006) exploit idioms such as this one in their search process.

We have implemented the two mining techniques mentioned above and an addi-
tional technique that targets instances of Redirection layer in our aspect mining tool
FINT4 (Marin et al. 2006, 2007a). The results of applying FINT to JHOTDRAW are
the starting point of our migration case study.

Like the notification mechanism above, we have found the Consistent behavior id-
iom in multiple concerns implementing support for commands and undo operations.
Examples include consistently checking the reference to the active view before exe-
cution of each command, consistent initialization of Command objects by means of
super calls, or consistent checks implemented by all actions to undo a command. Our
search for idioms of the Redirection layer pointed us to wrapper objects for undo-able
commands: methods in the wrapper delegate calls to their wrapped command object.

4 Available from http://swerl.tudelft.nl/view/AMR/FINT.

http://swerl.tudelft.nl/view/AMR/FINT

332 Autom Softw Eng (2009) 16: 323–356

3.2 Concern exploration

Aspect mining often does not yield complete crosscutting concern instances, but just
concern seeds: a set of program elements that belong to a particular crosscutting
concern but not necessarily cover the complete concern.

The second step of our strategy, concern exploration, aims at expanding mining re-
sults (i.e., concern seeds) to the complete implementation of the associated concerns.
In this step, we start from the discovered seeds and use the specific relation of the sort
for the seed’s concern to identify all the participants in the concern implementation.

In our Consistent behavior example, this means looking at all call relations di-
rected to the method checkDamage (or another method, depending on the partic-
ular concern targeted). As it turns out, not all of the 28 calls to this method that we
found are part of the concern of interest, but around two-thirds of them, namely those
from Command classes. Similarly, the Grouped calls mining technique, which ap-
plies a more conservative search, covers only partially the set of calls participating in
the concern.

A number of tools provide, at least partial, support for exploring seeds and expand-
ing them to full concerns, and for querying source code for concern sort relations.
These include FINT (Marin et al. 2007a), the Eclipse IDE, the Concern Manipula-
tion Environment (CME) (Tarr et al. 2004), FEAT (Robillard and Murphy 2002),
JQuery (Janzen and De Volder 2003), CodeQuest (Hajiyev and Verbaere), and the
Sort Querying Tool SOQUET (Marin et al. 2007d). The same tools can be used to
further understand the context enclosing the discovered crosscutting concern. At this
step, we can see, for example, how the identified sort instances in command and undo
support relate to each other: commands that can be undone enclose a specialized Un-
doActivity class that knows how to revert the effects of the command’s execution. Two
of our mined sort instances cover the key methods of the two classes: the execute
method in a command, and the undo one in the enclosed undo activity.

3.3 Concern modeling and documentation

Most approaches to concern modeling and their tool support do not enforce con-
sistency across the representation of crosscutting concerns. The decision of what is
crosscutting in a system, and how to best represent that, lies with the user of such con-
cern modeling tools. Such a concern model can contain ad-hoc collections of program
elements, like methods and classes, that participate in a concern’s implementation.

However, to ensure generally applicable solutions for concern migration, we need
a coherent way to describe similar concerns and their common properties. To this
end, we have defined queries for each of our crosscutting concern sorts which search
for the sort’s specific relation between source code elements. For more information
on these sort queries, we refer to our earlier work (Marin et al. 2007b; Marin 2008),
which formalizes these queries using relation calculus over source models extracted
from the system’s source code.

We have implemented support for this third migration step in our concern mod-
eling tool SoQueT5 (Marin et al. 2007d). Figure 3 shows two of the main views of

5Available from http://swerl.tudelft.nl/view/AMR/SoQueT.

http://swerl.tudelft.nl/view/AMR/SoQueT.

Autom Softw Eng (2009) 16: 323–356 333

Fig. 3 SOQUET documentation of the concerns for Command support in JHOTDRAW

the tool. The Concern model view allows us to organize concerns hierarchically, with
sort instances and their associated queries as leaf-elements and composite concerns
describing more complex crosscutting designs as parents. The user can select a sort
instance in the concern model and execute its query; The results of the query are
displayed in the Search (Sorts Result) view, from where the user can navigate to the
corresponding source code. To add a new sort instance to the model, the user launches
the dialog providing the query templates for each sort, and parameterizes the query
for a given crosscutting concern. For example, to document our Consistent behavior
instance for notification of views, we use the knowledge gained at the previous steps
and search for all the calls to the checkDamage method from methods in the Com-
mand hierarchy. The method and the hierarchy are our input parameters to the query.
The instances can then be added to the model from the results view.

A part of the concern model built to document concerns in JHOTDRAW is shown
in Fig. 3. The complete model covers over 100 sort instances and is available from the
SOQUET web-site.6 In Sect. 5, we use this documentation to guide our refactoring
and configure the aspect solutions.

4 Aspect refactoring

We employ a sort-based, idiom-driven approach to aspect refactoring that allows for
consistent integration with the previous steps of our migration strategy. Furthermore,

6See footnote 5.

334 Autom Softw Eng (2009) 16: 323–356

we define template aspect solutions for each of our concern sorts that we can instan-
tiate to refactor an occurrence of that sort. Like the previous steps, the refactoring
approach addresses crosscuttingness at the level of atomic concerns, which provides
the optimal trade-off between complexity of the refactoring and comprehensibility of
the refactored element.

The template aspect refactorings for each sort are summarized in the last column
of Table 1. A solution basically consist of one aspect language mechanism. How-
ever, some sorts do not have an equivalent mechanism in AspectJ or any other aspect
language existing at this moment. Support classes, for example, cannot be introduced
similarly to role members, although, as we shall see in Sect. 8, this would be a desired
refactoring.

To refactor a sort instance, we start from its query-based documentation in SO-
QUET. The query points us to the elements participating in the concern, which we
use to configure the template aspect solution. For example, the query for a Consistent
behavior instance indicates the callers to be captured by a pointcut definition (the
source context) and the action to be introduced by the advice (the target context).
Other configurable elements, such as the type of advice to introduce the crosscutting
call (e.g., before, after, after throwing, etc.), are decided at the refactoring time.

The solution described in Table 1 for the Redirection layer sort is a common
approach to refactoring implementations of the Decorator pattern (Hannemann and
Kiczales 2002; Lesiecki 2005). This consists of replacing the redirector class by an
aspect that intercepts relevant calls to the methods receiving the redirection, and then
adds the redirector’s functionality by means of an advice.

The aspect solution for Expose context instances is discussed by Laddad as the
Wormhole pattern (Laddad 2003): the extra parameter used to pass context is replaced
by using a pointcut to obtain the context from the caller and an advice that makes the
context available to the caller’s control flow.

Two sorts in Table 1 can be refactored using so called static crosscutting: the
introduction and declare soft mechanisms of AspectJ are employed in the transfor-
mation templates for Role Superimposition and Exception propagation respectively.
As with the other refactorings, the elements to instantiate these templates are avail-
able through the sort-based documentation of the concerns. For Role Superimposition
these are the members of a type’s secondary role that have to be moved to, and intro-
duced from, the newly created aspect.

For Exception propagation, the template needs to be instantiated with the excep-
tion that is propagated. This exception will be wrapped into a, so called, soft exception
in AspectJ. Unlike normal exceptions, these soft exceptions do not need to be caught
or re-thrown. This allows us to remove the throws clauses from all transitive callers
of the method initiating the exception propagation. The method at the top of the call
chain that deals with the exception now has to catch the soft exception which wraps
the original checked one. The top method also needs to know the type of the original
exception in order to correctly unwrap it. After unwrapping, we no longer need to
care about the soft exception and the remaining code to handle the original exception
requires no modifications.

Autom Softw Eng (2009) 16: 323–356 335

5 Case study I: manual aspect refactoring of JHOTDRAW

In order to determine the usefulness of the sort-based migration strategy, we conduct
an explorative case study, involving the manual migration of selected crosscutting
concerns occurring in JHOTDRAW towards aspects.

5.1 Case study design

The questions that we would like to obtain answers to through the case study include:

RQ1: Are the template aspect solutions proposed in Sect. 4 applicable in practice?
RQ2: What are the risks and benefits of adopting refactoring strategy that is sort-

based?
RQ3: Do the refactorings carried out lead to a better separation of concerns?
RQ4: What level of automation of all four steps and the fourth refactoring step in

particular is feasible?

The case study is conducted by the first author of this paper. The subject sys-
tem, JHOTDRAW, is a drawing framework comprising approximately 20,000 non-
comment, non-blank lines of code. It is a system that is frequently used in other
aspect mining and refactoring research papers (Marin et al. 2006, 2007a; Ceccato et
al. 2006; Binkley et al. 2006).

In the present section, we report on our observations and experiences regarding the
manual migration of specific crosscutting concerns towards aspects in JHOTDRAW.
The answers to the questions, as well as an analysis of the threats to their validity are
provided in Sect. 8, where we also discuss the results of our case study concerning
the automated refactoring of some of these concerns (covered in Sects. 6 and 7).

5.2 AJHOTDRAW

We share AJHOTDRAW, the result of our refactoring, and all intermediate refactoring
steps as separate versions of an open-source project on sourceforge.7 To our knowl-
edge, this is the largest migration to aspects available to date.

A transparent, gradual migration process is important for building confidence in
the aspect-oriented solution. Therefore, our refactorings aim at maintaining the con-
ceptual integrity and stay close to the original design. In addition, by sharing the
concern model and publishing the refactoring steps in a versioned repository, we aim
provide insight in the migration process and enable traceability, making the refactored
system easier to understand.

The discussion below focuses on the refactoring of sort instances contained in the
implementation of the command and undo functionality, which we also used in Sect. 3
to explain the first three steps of the approach. We use the organization of concerns in
the concern model initiating the refactoring to design the package and type structure
of our aspect solutions. The solutions discussed below have been integrated with the
code in the public repository.

7http://sourceforge.net/projects/ajhotdraw/.

http://sourceforge.net/projects/ajhotdraw/

336 Autom Softw Eng (2009) 16: 323–356

5.3 Consistent behavior in command

JHOTDRAW makes use of the Command design pattern in order to separate the user
interface from the underlying model, and to support such features as undoing and
redoing user commands. Each command has to realize the Command interface, for
which a default implementation is provided in the AbstractCommand class. The key
method is execute, which takes care of actually carrying out the command (such as
pasting text, duplicating a figure, inserting an image, etc.).

A typical implementation of a command is highly crosscutting, with the Command
top interface defining three different roles: besides their core functionality, commands
are undo-able as well as observable elements. The support for the secondary roles
counts for half of the Command’s members. Similarly, the execute method in a
typical concrete command implements multiple concerns.

Each execute method should start with a consistency check verifying that the
underlying “view” exists. Therefore, each concrete implementation of execute
starts with a call to the execute implementation in the superclass, which is always
the one from the AbstractCommand. This is illustrated in Fig. 4.

We apply a Consistent behavior refactoring template from the last column in Ta-
ble 1 using a pointcut capturing all executemethods, and putting the check itself in
the advice. Observe that mimicking the implementation where the check is in a super

public class AbstractCommand implements Command {
...
public void execute() {

if (view() == null) {
throw new JHotDrawRuntimeException(

"execute should NOT be getting called when" +
"view() == null");

} } }

public class PasteCommand extends AbtractCommand {
...
public void execute() {

super.execute();
...

} }

Fig. 4 Consistent check—super method idiom

pointcut cmdExecute(AbstractCommand aCommand) :
this(aCommand)
&& execution(void AbstractCommand+.execute())
&& !within(*..DrawApplication.*);

before(AbstractCommand aCommand) : cmdExecute(aCommand) {
if (aCommand.view() == null) {

throw new JHotDrawRuntimeException("...");
} }

Fig. 5 Enforcing consistency using advice

Autom Softw Eng (2009) 16: 323–356 337

method is not possible in AspectJ: super methods cannot be accessed when advising
a method. The resulting solution is shown in Fig. 5.

The only surprise in this code may be the within clause in the pointcut. In the
exploration step, we learned that anonymous subclasses of AbstractCommand do not
implement the consistency check. Such classes are used for simple commands like
printing, saving, and exiting the application. Since AspectJ does not provide a direct
way to exclude anonymous classes in a pointcut, we used the within operator to
exclude executions occurring in the context of the top level object creating the full
user interface. One can also argue that the anonymous classes should include this
check in which case the exclusion can be omitted from the pointcut. However, as
stated before, we focus on keeping the behavior as it was, not on modifying it.

Besides the separation of the consistency check from the core logic of the com-
mands, another benefit of the aspect approach is that consistency checks cannot be
forgotten. This is illustrated by a number of the anonymous classes, but also by one
non-anonymous command,8 which does not extend the AbstractCommand default
implementation. Consequently, it cannot reuse the consistency check using a super-
call. Inspection of the execute implementation, however, clearly shows that the
code exits with a null pointer exception in case the check fails. This suggests that the
aspect that we are looking for should implement the check not only for the Abstract-
Command class, but for all the Command implementations.

5.4 Undo functionality

Support for “undo” functionality was added in JHOTDRAW version 5.4. As can be
imagined, it is a concern that cuts across many different classes. More than 30 el-
ements of the JHOTDRAW framework, comprising commands, tools and handles,
have associated undo constructs to revert the changes spawned by their underlying
activities. The commands group is the largest in terms of defined undo activities.

The participants of the “Undo” functionality have the following responsibilities:

– Each command is associated with one undo activity, whose method undo can be
invoked to revert the command. The undo activity is implemented in a nested class
of the command, which is instantiated using a factory method called create-
UndoActivity.

– Prior to the execution of the command’s core logic, the command saves a reference
to its associated undo activity, by calling a dedicated setter method.

– The primary abstraction in the undo activity is the list of affected figures: when the
command’s execute method is invoked, the relevant state of the affected figures
is stored in the undo activity.

– Undo activities are maintained on a stack by the undo manager.

5.4.1 Support classes for role superimposition

The refactoring that we propose for Undo consists of associating a dedicated undo-
aspect to each undo-able command. The aspect implements the entire undo function-

8 Namely, the UndoableCommand.

338 Autom Softw Eng (2009) 16: 323–356

ality for the given command, while the associated command class remains oblivious
to its secondary (undo) concern.

We use naming conventions to relate the aspect to its supported command class.
In a successive step, we refactor each of the sort instances in the undo support. The
command’s nested UndoActivity class belongs to a Support classes instance. In the
absence of introduction mechanisms for nested classes in AspectJ, our aspect solution
consists of moving the UndoActivity class into the aspect.

The factory methods for the undo activities (createUndoActivity()), as
well as the members for managing the reference to the command’s undo activity
belong to an instance of Role superimposition. The role members move to the aspect,
from where they are introduced back into the associated command classes using inter-
type declarations. The design, however, suffers modifications as the visibility of the
undo factory methods has been altered: ASPECTJ cannot be used to introduce the
required factory method as protected.

5.4.2 Consistent behavior

The invocations in the execute method that are responsible for setting up the undo
activity implement Consistent behavior concerns: the calls are taken out of the exe-
cutemethod, and woven into it by means of advice. In some cases the corresponding
pointcut simply needs to capture all execute method calls. However, in other cases
the pointcut is more complex, depending on the way the undo code is mixed with the
regular code.

As an example to illustrate that automating such refactorings is not at all straight-
forward, consider the paste-command, whose execute method consists of retriev-
ing the selected figures from the clipboard, inserting them into the current view, and
clearing the clipboard. All this is done in a single method, using local variables and
if-then-else statements to deal with situations like pasting from an empty clipboard.
The undo aspect will require the same conditional logic, and access to the same data
in the same order. The following alternatives are possible for aspect refactoring:

– if all getters are side effect free, an approach is to setup the undo activity in a simple
before advice. In JHOTDRAW, however, this is not the case, for example because
of figure enumerators that have an internal state.

– an alternative is to intercept relevant getters, keep track of the data locally in the
advice as well, and inject advice after all data has been collected. This is the ap-
proach we follow, but some of the pointcuts are somewhat artificial. Figure 7 shows
such a pointcut in the undo aspect for the PasteCommand, refactored from Fig. 6.
The clipboardGetContents() pointcut captures the call that sets the reference to be
checked by both the command’s core logic and the undo functionality in the aspect.

– The last possibility is to refactor the long execute method into smaller steps
using non-private methods. The extra method calls can be intercepted allowing
smooth extension with setting up the undo activity, at the cost of creating a larger
interface and breaking encapsulation. Moreover, we would still introduce artificial
pointcuts, as our intention is to enhance the behavior of the execute method, and
not of various steps created for supporting advice introduction.

Autom Softw Eng (2009) 16: 323–356 339

public class PasteCommand extends FigureTransferCommand {
public void execute() {

...
FigureSelection selection = (FigureSelection)

Clipboard.getClipboard().getContents();
if (selection != null) {

setUndoActivity(createUndoActivity());
... //core command logic and other undo setup
FigureEnumeration fe = insertFigures(...);
getUndoActivity().setAffectedFigures(fe);
...

} } }

Fig. 6 The original PasteCommand class

public aspect PasteCommandUndo {
//store the Clipboard’s contents - common condition
FigureSelection selection;

pointcut clipboardGetContents() :
call(Object Clipboard.getContents()) &&
withincode(void PasteCommand.execute());

after() returning(Object select):clipboardGetContents(){
selection = (FigureSelection)select;

}
...

pointcut executePasteCommand(PasteCommand cmd) :
this(cmd) && execution(void PasteCommand.execute());

// Execute undo setup
void after(PasteCommand cmd):executePasteCommand(cmd) {

// the same condition as in the advised method
if(selection != null) {

cmd.setUndoActivity(cmd.createUndoActivity());
...
cmd.getUndoActivity().setAffectedFigures(...);

} } }

Fig. 7 The undo aspect for PasteCommand

5.4.3 Redirection layer

The design of undo in JHOTDRAW uses wrapper objects to associate undo-able com-
mands to menu items and buttons in the user interface (UI). The wrappers share their
top level interface with regular commands, so they can connect to UI elements and
receive user actions. While most commands are undo-able and wrapped by an Un-
doableCommand object, there are a few exceptions, such as CopyCommand.

Wrappers are instances of Redirection layer. The refactoring of such instances
raises several important issues: first, we need to identify those commands that are
wrapped by an UndoableCommand object and accessed through this object; second,
we need to check if all clients of a command access its functionality via the wrapper.
Only those calls from command clients that are received by a wrapper in the original

340 Autom Softw Eng (2009) 16: 323–356

implementation need to be captured by the aspect solution to attach the wrapper’s
functionality by means of advice.

Further complications that limit feasibility of refactoring automation have to do
with the multiple roles in UndoableCommand: since the aspect solution completely
replaces the wrapper class, this means that introduction of roles is no longer possible.
Some of the original roles in the system are implemented by the wrapper only to com-
ply with the top interface of the wrapped element and add no specific functionality,
such as the Observable role of Commands. The aspect solution can safely omit these
roles. For other roles however, this is not desired and refactoring requires customized
redirector solutions.

6 Semi-automatic refactoring towards aspects

The refactorings presented in the previous section show promising results for the au-
tomation of our concern sort-based approach, as we have been able to reuse the pro-
posed refactoring templates for various sort instances. However, we notice a number
of challenges that need to be considered by an automatic or semi-automatic refac-
toring solution. For example, the description of a crosscutting concern by a query
in SOQUET and the refactoring template that gives the ASPECTJ mechanism to be
used for modularizing the concern, do not always suffice for a successful migration
of the concern’s implementation. The crosscutting element to be moved to an aspect
by refactoring might access members that are not visible from the aspect, and hence
the migration would result in a compilation error. While in a manual approach these
issues are typically easy to fix, it is desirable that any partially automated solution is
able to detect them and to assist the user in addressing them.

Due to the detailed knowledge that is required to solve migration subtleties like
the one sketched above, a completely automated approach is next to impossible to
achieve. Instead, we will focus an a semi-automated approach, with a human in the
loop to guide the system through the right decisions.

In the remainder of this section, we set out to design and implement tool support
for such a semi-automated aspect-introducing refactoring. We will focus on two of
our concern sorts: Consistent Behavior and Role Superimposition. These two sorts
are particularly relevant for investigating automation as they are the most commonly
encountered sorts in practice, including in the JHOTDRAW case (Marin et al. 2007b).
Moreover, these sorts are supported by most of the current aspect mining techniques
(Marin 2008). Finally, each of them requires a different language mechanism for its
refactoring to ASPECTJ, namely pointcut-and-advice, and introduction, respectively.

6.1 Approach

The automation of the refactoring process can be devised in five main phases:

Concern input: Describe the concern to be refactored as a sort instance, and map
the elements in the description of the concern into the refactoring template of that
sort. For example, the call sites in a Consistent behavior instance will be mapped
onto the pointcut definition, while the method invoked consistently will give us the
action to be implemented by the advice.

Autom Softw Eng (2009) 16: 323–356 341

Target selection: Select the target of the migration, i.e., the aspect module to which
the sort instance will be migrated.

Solution configuration: Analyze the mapping of the concern description onto the
refactoring template and collect information for configuring the aspect solution if
the mapping is not perfect. For example, certain concerns provided as input for
refactoring at the first step might require additional configuration, like the type of
advice to replace a Consistent behavior call. This could be the case when the posi-
tion of the call in the caller’s body does not indicate a clear before/after advice, but
the call might well be turned into such an advice. Yet, such a decision needs to be
provided as an input in the refactoring.

Challenge detection and resolution: Analyze the impact of the migration, report
on possible challenges, which could result in compilation errors after migration,
and provide a default set of alternative fixes to these challenges. Examples of chal-
lenges include changes to member access from the code to be migrated to aspects,
or references via the super keyword that cannot be preserved by the migration.

Concern migration: Apply code transformations to extract the crosscutting imple-
mentation of the concern into the aspect solution.

6.2 Algorithm

In order to illustrate the approach, the algorithm for refactoring instances of Consis-
tent Behavior to an aspect-based solution is shown in Algorithm 1. The algorithm
consists of the following parts:

lines 6–8: The information to create the pointcuts and advice is determined.
lines 11–15: If pointcut grouping was requested, the groupable pointcuts are deter-

mined. For each group, one pointcut and one advice is created.
lines 17–23: If advice grouping was requested, the pointcuts that can be grouped are

determined. For each context method a pointcut is created, but for each group, one
advice is created.

lines 25–28: If no grouping was requested, one pointcut and one advice is created
for each context method.

lines 31–33: Finally, the consistent calls are removed from the context since they are
now in the advice.

6.3 Implementation

Our refactoring support is implemented as an Eclipse plug-in called SAIR, a tool
to support Sort-based Aspect-Introducing Refactoring. The tool is freely available,9

together with a detailed description of the implementation (van der Rijst 2008).
The tool’s architecture consists of components designed to address each of the

steps in the migration process outlined above. The gathering of the input is realized
by accessing the concern description in SOQUET, exposed via a public interface and
the definition of “extension points” in Eclipse. For the current version of SAIR, we

9http://swerl.tudelft.nl/view/AMR/SAIR.

http://swerl.tudelft.nl/view/AMR/SAIR

342 Autom Softw Eng (2009) 16: 323–356

Algorithm 1 Migrating CB sort instances
1: procedure PERFORMMIGRATION(input)
2: sort ← input.sort
3: call ← sort.consistentCall
4: aspect ← input.targetAspect
5: contexts ← sort.contextMethods
6: for all contexts as context do
7: pcinfos[] ← DETERMINEPOINTCUTINFO(context)
8: end for
9:

10: if input.groupPointcuts then
11: grouped ← GROUPPOINTCUTS(pcinfos)
12: for all grouped as group do
13: CREATEGROUPEDPOINTCUT(group, aspect)
14: CREATEADVICE(group, aspect)
15: end for
16: else if input.groupAdvice then
17: grouped ← GROUPPOINTCUTS(pcinfos)
18: for all grouped as group do
19: for all grouped.pcinfos as pointcutinfo do
20: CREATEPOINTCUT(group)
21: end for
22: CREATEGROUPEDADVICE(group, aspect)
23: end for
24: else
25: for all pcinfos as pointcutinfo do
26: CREATEPOINTCUT(pointcutinfo, aspect)
27: CREATEADVICE(pointcutinfo, aspect)
28: end for
29: end if
30:
31: for all contexts as context do
32: REMOVECALLFROMCONTEXT(context, call)
33: end for
34: end procedure

use a customized version of SOQUET that provides SAIR with the description of a
concern by its extent, namely the sets of crosscut and crosscutting elements. If we
consider an instance of Consistent Behavior, such as notification of observers, the
description of the concern’s extent passed to SAIR is as follows:

CB : {{m1, . . . ,mi, . . . ,mn}, {notifyObservers(..)}} (1)

where, the first set in the description gives the caller-methods that consistently invoke
the notifier, and the second set consists of the notification method. SAIR is also aware
of the sort of the specific concern to be refactored, and hence, of the crosscutting
relation, which is specific to each sort.

Furthermore, SAIR implements a set of user interface “wizards” for collecting in-
formation from the user, such as the target aspect for migration. The integration with
SOQUET and the wizard page are shown in Fig. 8: the refactoring option can be acti-
vated from the Concern Model view of SOQUET, by selecting it in the context menu
of the sort-instance that documents the crosscutting concern to be refactored. This
action opens the wizard for configuring the refactoring solution.

Autom Softw Eng (2009) 16: 323–356 343

F
ig

.8
S

A
IR

’s
in

te
gr

at
io

n
w

ith
S

O
Q

U
E

T
an

d
us

er
in

te
rf

ac
e

fo
r

in
pu

tc
ol

le
ct

io
n

344 Autom Softw Eng (2009) 16: 323–356

Table 2 Challenge detection and resolution

Challenge Resolutiona

Visibility member enclosing class Use privileged access; Modify visibility of member; Add
public accessor

Visibility member enclosing package Use privileged access; Modify visibility of member; Add
public accessor; Move aspect to package

Visibility member nested class Use privileged access; Modify visibility of member

Visibility member package visible
nested class

Use privileged access; Modify visibility of member; Move
aspect to package

Access local variable Turn local variable into aspect field

References using super Add public accessor; Migrate super body; Create redirection
to super

Advise on inner code fragment Extract method for inner fragment and advise as before or
advise as after on extracted method

aAn additional resolution approach common to all challenges is the option to exclude the offending
element from the list of elements-to-refactor

The bottom of the figure shows the Search view, which displays the results of the
query documenting the selected concern. The query can be repeated, e.g., to account
for possible changes in the code, by selecting the Expand option from the context
menu.

The solution configuration step is supported through a set of wizard pages, some
of which are specific to each sort. The configuration of the refactoring for Consistent
Behavior instances allows the user to specify the type of advice to apply (e.g., after,
after returning, etc.). In addition it allows for configuration of the generated pointcut,
which includes options for grouping the call sites in one or multiple pointcuts.

Likewise, Role superimposition might require configuration for so-called virtual
roles. SOQUET allows the user to define a virtual role for documenting a set of mem-
bers in a type that implement a distinct role, but which are not declared by a dedicated
interface. Besides migrating the members making up a virtual role to ASPECTJ inter-
type declarations, SAIR also provides options for extracting the role members into an
interface declaration.

After configuring the solution, the component for challenge detection and resolu-
tion analyzes the impact of the migration, before applying any code changes. Table 2
shows a selection of challenges that are checked and the set of possible solutions for
each challenge proposed to the user. The set of choices also includes the exclusion of
some elements in the concern description that will, then, not be considered for refac-
toring. Figure 9 illustrates the dialog for challenge resolution, with a list of detected
challenges and a number of options for the selected one. After all the challenges are
resolved, the tool provides a preview of the changes.

The last step consists of code transformations that remove the crosscutting imple-
mentation and move it to an ASPECTJ module. Although the AspectJ Development
Tools for Eclipse10 provide support for parsing aspects, they currently do not support

10AJDT—http://www.eclipse.org/ajdt/, v.1.4.2.

http://www.eclipse.org/ajdt/

Autom Softw Eng (2009) 16: 323–356 345

Fig. 9 Challenge resolution in SAIR

aspect code generation for inter-type declarations, pointcuts and advice. As a result,
the largest part of this code generation had to be implemented from scratch, without
library support.

7 Case study II: refactoring JHOTDRAW using SAIR

In order to assess the usefulness of semi-automatic refactoring using SAIR, we set up
a second case study, which again was explorative in nature. This case study aims to
answer the following questions:

RQ5: How does the aspect-oriented code obtained through SAIR compare to code
obtained via a manual refactoring process?

RQ6: How does the manual effort involved in the use of SAIR compare to a com-
pletely manual refactoring approach?

This second case study was conducted by the fourth author of this paper, who was
not involved in the original manual refactoring of JHOTDRAW.

To conduct the case study, we selected a set of concerns from JHOTDRAW that
were also manually refactored. The aspect-based implementation of these concerns
in AJHOTDRAW, together with the set of unit tests to ensure behavior preservation,
give us the proper base for assessing our approach to automatic refactoring and for
comparing the results of SAIRwith the ones of the manual refactoring.

346 Autom Softw Eng (2009) 16: 323–356

public class DeleteCommand implements Command {
public void execute(){

// @SAIR: super.execute(); moved to advice in aspect
// org.jhotdraw.ccconcerns.commands.CommandContracts
setUndoActivity(createUndoable());
// ... [core logic to delete a selection of figs] ...

}
// ... [other Command methods] ...

}

Fig. 10 Consistent behavior instances in JHotDraw’s DeleteCommand class

public aspect CommandUndoSupport {
pointcut deleteCommand_execute(DeleteCommand deleteCommand) :

target(deleteCommand) &&
execution(void DeleteCommand.execute());

before(DeleteCommand deleteCommand): deleteCommand_execute(deleteCommand){
deleteCommand.setUndoActivity(deleteCommand.createUndoActivity());

}

pointcut changeAttributeCommand_execute(ChangeAttributeCommand
changeAttributeCommand) :

//...
}

Fig. 11 Aspect implementation of consistent behavior

Figure 10 shows the undo-setup concern to be refactored using SAIR. The con-
cern is an instance of Consistent behavior cutting across the execute methods in
Command classes. The first commented lines of code show the implementation of
a concern that has already been refactored. The comments are generated automat-
ically for each instance being migrated. The results of the automatic migration are
illustrated in Fig. 11.

The aspect implementation of the concern is fairly simple and consists of multiple
pointcuts that capture the execution of the context methods, and a before advice for
the consistent call to be applied at each captured joinpoint. The simple pointcuts could
also be grouped in composed ones. However, the current version of the tool does not
support more complex features like abstraction or wildcards.

The SAIR-aided migration targeted eight sort instances from the set of concerns
for Command support refactored in AJHOTDRAW. Seven of these instances could
be successfully migrated, while one instance of Consistent behavior implemented by
means of calls to the super(..) constructor could not be handled by the tool (nor by
AspectJ, as discussed earlier).

Two of the successful refactorings also required small manual adjustments in or-
der to improve on the final result; for example, certain declarations exclusively used
by the migrated code were moved manually to the aspect solution. In addition to
this, we excluded a few highly tangled elements from the set of elements to be refac-
tored for specific concerns using the exclusion option in SAIR. In most of these cases,

Autom Softw Eng (2009) 16: 323–356 347

the tangling could have been reduced by a preliminary restructuring of the original
JHOTDRAW source code for the refactored methods.

A step that also currently requires a manual solution consists of the ordering of
advice applying at the same joinpoints. This was the case for instances of Consistent
behavior originally implemented by successive method calls.

8 Discussion

In this section we reflect on our experience with migrating crosscutting concerns to
aspect-oriented programming and discuss the main challenges and limitations en-
countered in practice. The discussion covers general considerations of the refactoring
to aspects as well as considerations specific to our proposed approach. The discus-
sion is based on the research questions posed in our two case studies. Furthermore,
we include an analysis to the threats to validity involved in our cases.

8.1 RQ1: applicability in practice

The proposed template aspect solutions proved suitable for refactoring concrete sort
instances in the JHOTDRAW case and for separating the crosscutting code from the
core system. However, the difficulty of implementing the aspect solution and the qual-
ity of the result will vary from case to case. One of the issues is pointcut definitions:
Ideally, we would like to use pointcut definitions that describe a set of elements by
formalizing a common property instead of a brittle enumeration of the elements in the
set. In practice, such definitions will not always be feasible, either because of limita-
tions in the aspect language, or due to irregularities in the code under investigation.

Desired functionality included for example a pointcut to capture calls from “all
Command classes, except all anonymous classes”, or a pointcut for “all objects in-
terested in command events”. Irregularity in the code might require that for certain
methods the advice executes only if a specific condition holds. This is the case for a
few commands in JHOTDRAW that send notifications of their execution only if the
clipboard’s content is not empty. In such a situation, one has to make a trade-off be-
tween a generic pointcut definition that captures all commands, but ignores the partic-
ular condition, and a definition that enumerates all appropriate elements. The former
solution would execute the code in the advice in spite of its void effect. However, the
latter pointcut definition needs to be updated manually for every new element that is
added to the set of interest (i.e., every new command).

Similar observations can be made about the definition of advices: sometimes we
need to modify the original control flow of a method-to-be-migrated in order to intro-
duce an action to it by means of advice. Although the refactoring may have no effect
on the observable behavior of the method, the original flow could be more natural or
comprehensible.

8.2 RQ2: risks and benefits of sort-based refactoring

In comparison with refactoring approaches proposed by others, our sort-based mi-
gration strategy gives a clear definition of the input required for refactoring (i.e., an

348 Autom Softw Eng (2009) 16: 323–356

Table 3 Risks and possible limitations of the aspect solution

Sort Limitations and risks

Consistent Behavior Advice constructs in a privileged aspect can break encapsulation; High de-
gree of tangling might prevent automatic refactoring; Anonymous classes
cannot be referred to consistently, preventing generic pointcuts; Calls to
super class functionality cannot be migrated into advice; Modular reason-
ing affected by need to keep track of data set in the advised method; Check
required that omissions are not on purpose; Sophisticated pointcuts needed
to intercept all relevant state modifications in the advised methods; Check
required that precedence does not change due to new advice;

Redirection layer The repetitive logic of redirection for the redirector’s methods is not elim-
inated – the aspect solution addresses the redirection at method level and
not at type level; New redirector methods are not automatically covered
by the solution; The aspect solution is not dynamic (dynamic reordering
of redirectors) (Hannemann and Kiczales 2002); The aspect solution re-
places the redirector (wrapper) and hence changes the public interface of
the application to test against; The calls to the receiver to be advised for
redirection need to be detected;

Role superimposition Visibility affected since protected (/non-public) methods cannot be intro-
duced.

Support classes for
role superimposition

Not supported; Nesting the support class in the aspect breaks dependencies
(thus forcing the enclosing class to make more of its interface public) and
weakens the relation with the enclosing class;

Exception propagation Type of thrown exception is lost; Refactoring throws clauses in inheritance
hierarchy.

atomic concern) and describes it consistently using queries. This allows for the defin-
ition of reusable solutions and improves comprehension of refactoring by addressing
meaningful concerns instead of code fragments (Binkley et al. 2006; Monteiro and
Fernandes 2005). Moreover, the concern queries allow us to describe the context cut
across by a concern, and hence the concern’s intent. This gives a better insight into
the concern and its aspect solution than the simple enumeration of joinpoints common
with most previous refactoring approaches. We believe that a clearly specified input
for a refactoring solution is a necessary condition for ensuring consistent migration
of concerns.

Among the main risks of refactoring, we identify the high level of coupling and
complex dependencies between the base code and the crosscutting concern. We antic-
ipate that any non-trivial aspect refactoring will require object-oriented refactorings,
before the crosscutting concern can be taken out of the available system.

The issue with coupling is that, before migration, concern code can freely access
certain parts of the core code that may have limited visibility after the migration. Pos-
sible risks in such a case are weakening the visibility restrictions of those members or
violating encapsulation by declaring the aspect privileged. Other risks include code
duplication in advice and the advised method or definition of artificial pointcuts to
capture return values of calls from the advised method. This could be the case when
some control logic is required by both aspect and the advised method.

We encountered several complex dependencies while refactoring instances of Ex-
ception propagation in JHOTDRAW. One example is the propagation of the IOEx-

Autom Softw Eng (2009) 16: 323–356 349

ception rooted in the set of methods to read drawings from file. The methods in the
call chain re-throwing the exception override other methods, whose declared thrown
exceptions might only serve for compliance with the method to be refactored. In this
case, we also need to address their throws clause within our refactoring. Moreover,
the overriding elements of a method in the chain that throw the same exception need
to be refactored too, as their exception declaration is no longer allowed.

Table 3 provides a more complete overview of the risks and limitations in refac-
toring to aspects. Note that many of these limitations are independent of the strategy
employed for refactoring. In spite of that, we are not aware of other papers in the area
of refactoring to aspects that discuss these limitations.

The subject of our case study is a framework for drawing applications that was
developed as a showcase of design pattern use. Alternatively, most of the examples
of AspectJ aspects use web applications as their application domain. This raises the
question if the current aspect implementations are more suitable for certain applica-
tion domains and crosscutting concerns than for other? Based on the evidence we
collected thus far, we conjecture that this indeed could be the case. This also suggests
a further advantages of having templates and pattern solutions that can be integrated
with a tool: concerns that do not match the template might be better off with the
un-refactored implementation.

8.3 RQ3: separation of concerns

Our case study had a satisfactory outcome in achieving a better separation and mod-
ularization of concerns in the targeted application. As we were able to notice, the
crosscutting code is an important part of the refactored elements, in some cases, such
as the Command elements, the crosscutting part constituted over 50% of the original
code. The core code is easier to understand in the absence of the migrated cross-
cutting concerns because it isn’t entangled with code that is not related to the core
functionality. To understand the aspect code, on the other hand, one typically also
needs to understand the base code that it advises. This is increased further by high
coupling between the aspect and the base code, like for aspects that intercept calls
from advised methods to reuse the values returned by such calls.

While refactored, crosscutting-free code is easier to comprehend, modifications to
such code would still require awareness of the advice that applies to it. For instance,
aspects might assume a certain order of the calls from an advised method, which has
to be preserved to correctly introduce additional behavior.

Keeping track of the order of different advice in an aspect solution and preventing
accidental changes might prove difficult, particularly when the number of aspects
increases. The support from present development environments would not provide
much insight into violations of such ordering, or into the ordering itself. This becomes
more of an issue when the order is set using name-based wildcards, and new aspects
match an existing rule for aspect precedence that should not apply to them. A similar
situation might occur when changing an aspect solution that is already covered by a
precedence rule, and the changes would not be compliant with that rule. Changing
the position of an advice definition in an aspect could also modify precedence, if
multiple advices in the aspect apply to the same joinpoints. Unspecified precedence

350 Autom Softw Eng (2009) 16: 323–356

could also lead to interference between new advices introduced by refactoring and
existing ones (Storzer and Forster 2006). Automatic refactoring needs to be aware of
these issues.

Some concerns might be crosscutting for advices, similarly to the way they are
crosscutting for methods. For instance, the re-use of specialized enumerations in
JHOTDRAW requires to reset them after each iteration. Such enumerations are used
by some advices in the aspect solutions. Applying aspect solutions to aspects might
prove challenging for both tool support and comprehensibility.

8.4 RQ4/RQ6: level of automation

We showed that our approach supports a semi-automated implementation of all steps,
including the final, refactoring one. The refactoring tool provides an open implemen-
tation for aspect code generation, which complements the incomplete support avail-
able in the AspectJ Development Tools (AJDT).

The tool support for refactoring, in particular, can be enhanced in a number ways,
such as detection and ordering of multiple advice that apply at the same join point,
or pointcut definitions that would allow us to capture a concern’s intent rather than
its extent. The latter feature requires that the pointcut definition in SAIR would be
based on the query definition documenting a concern in SOQUET, rather than on the
explicit set of results of the query that gives the crosscut elements.

The tool can also be improved to better deal with complex dependencies of the
code to be extracted to aspects, such as conditional triggering of the advice.

However, some refactorings would unavoidably be difficult to execute automati-
cally, such as the undo support concern in the PasteCommand example discussed in
Sect. 5.4.2. In this case, due to a high degree of tangling, we needed to implement a
helper-advice to capture the value of a local variable required both by the core func-
tionality as well as by the crosscutting undo setup. This advice does not map onto a
crosscutting concern, and so will not fit into any of our refactoring templates. This
implies a manual solution, as well as a manual integration with the aspect solution of
the undo crosscutting concern that uses the value captured by the helper-advice.

A particularly challenging automatic refactoring would be the one for Redirec-
tion layer instances: the original, dynamic solution uses a common interface for both
redirectors and potential receivers. This interface hides the identity of the object for
which a call is made. However, the refactoring of redirectors requires to know which
calls are meant for a redirector and so need to be attached an advice introducing the
functionality of the refactored redirector.

We believe that the case study presented in this paper is a required step before
setting out to design semi-automated aspect refactoring tooling. The study gives us
insight into the complexity of each refactoring and the trade-offs to be made. The
challenges and limitations discussed in the previous sections also indicate that com-
pletely automated aspect refactoring is unfeasible in any practical situation, since the
process requires a significant level of interaction with the users to guide the system
through the right decisions.

An important benefit of the implemented automation consists of the challenge
detection and resolution mechanisms, which allow the user to assess the impact of
the refactoring, and assist with common solutions to the encountered problems.

Autom Softw Eng (2009) 16: 323–356 351

8.5 RQ5: differences between manual and semi-automatic results

The tool-supported refactoring delivered to our expectations of enabling automatic
transformation of the crosscutting Java implementation of concerns to AspectJ con-
structs. With this goal in mind, the results of the semi-automatic refactoring do not
differ substantially from those of the manual approach.

Most differences appear in the design of the final aspect solution, where the man-
ual approach provides more generic and flexible solutions. However, it is important
to notice that most refactoring tools, ours included, aim at a basic solution that elim-
inates the tedious and error-prone work of code transformations. This is particularly
relevant in the context of concerns scattered over a large number of modules. The
tool’s solution can then be improved through successive iterations, for example by
abstracting reusable aspects and pointcut definitions.

Major differences in results as covered in earlier sections include the definition
of pointcuts, where the current tool solution provides an enumeration of joinpoints,
ordering of advice, or the current lack of support in the tool for nested type definitions
in an aspect.

8.6 RQ6: manual effort with SAIR

SAIRuses a wizard-guided approach to refactoring, with each page of the multi-step
refactoring process prompting the user for input to design the aspect-oriented solu-
tion. While some steps are straightforward to complete, such as selecting the aspect
module to migrate the concern to, some other steps could be more challenging. In
particular, the resolution step for steering the mapping of the concern to be refac-
tored onto the template solutions provided by the tool requires a trade-off between
the different solutions proposed by the tool.

However, most part of the manual work possibly needed for migrating to aspects
would consist of code restructuring using object-oriented refactorings to allow for
clear definitions of pointcuts and advice. This effort depends from case to case, on
the level of tangling of the crosscutting concern to be refactored.

It is important to notice that the descriptions of concerns being passed to SAIR

are created in SOQUET and this description directly impacts the complexity of the
aspect-based solution to refactor the concern. The integrated approach to migration
allows for a good matching between the sort queries in SOQUET and the template
refactorings in SAIR; however, the goal of SOQUET to provide a comprehensive de-
scription of concerns can pose challenges to turning these descriptions (e.g., the set of
call sites of a crosscutting method invocation) into a pointcut definition supported by
AspectJ. Future work in improving the expressiveness of concern descriptions in SO-
QUET will not necessarily reduce the manual work required to restructure the code
for refactoring.

8.7 Threats to validity

A threat to external validity is that we studied only one system, JHOTDRAW, of
moderate (20,000 lines of code) size. The choice for this case was primarily motivated

352 Autom Softw Eng (2009) 16: 323–356

by the common use of this system in other aspect mining and aspect refactoring
research papers.

We furthermore conjecture that the size of the system is not the limiting factor. It
may sometimes impose constraints on the aspect mining phase, which has to process
the full code, but we have previously shown that our fan-in analysis method scales up
to half a million lines of code (Marin et al. 2007a). For the subsequent steps, the size
and spread of the concerns is what matters. Hence, it may be the case that the level
of scattering could become a limiting factor: The more classes involved, the more
complex the refactoring might be. Thus, in future work, cases in which a high level
of scattering occurs would be of particular interest.

Related to this is the fact that JHOTDRAW has the particular characteristic that
it was developed as a showcase for design pattern use. As a result it is very cleanly
designed which may make it easier to recognize particular concerns and templates
that form the basis for our migration. This may be different in other, less cleanly
designed systems and needs to be investigated in future case studies.

Since our case study was explorative in nature and aimed at demonstrating the fea-
sibility of semi-automated refactoring, our analysis is primarily qualitative, which can
be considered a threat to construct validity. The identification of metrics for demon-
strating improved separation of concern, however, is, to the best of our knowledge,
an open research area. Nevertheless, in future studies more quantitative data would
be highly desirable.

Last but not least, we attempted to mitigate threats to reliability by making as
much material available on line as possible, including the concern models and the
resulting refactored code.

9 Related work

While each step in the migration of crosscutting concerns has been addressed by
related research, we are not aware of an integrated strategy like the one proposed in
this paper.

The present approaches to aspect refactoring can generally be distinguished by
their granularity. Laddad’s set of refactorings cover both low level ones, such as ex-
tract method calls into aspects or extract interface implementation, as well as more
complex refactorings, like design patterns, transactions management, or business
rules (Laddad 2003). Although the latter subset typically involves multiple concerns
to be refactored, there is no categorization of these concerns or refactorings and they
sometimes consist of nothing more than a name and motivation. This makes them less
directly applicable to source code and requires more interpretation from the developer
which cannot be automated.

Hannemann et al. propose an approach to the aspect refactoring of design patterns
based on a library of abstract roles (Hannemann et al. 2005; Hannemann and Kicza-
les 2002). The role-based refactoring requires one to map a pattern’s implementation
onto the predefined roles describing the pattern, and then applies a set of instructions
to refactor the implementation to aspects. The approach is a step further towards
generic, abstract solutions to typical problems that involve crosscutting functional-
ity. However, as we have already seen, these patterns typically have a complex and

Autom Softw Eng (2009) 16: 323–356 353

variable structure in source code. Moreover, they generally consist of more than one
atomic crosscutting concern. Refactoring a whole pattern in one step might prevent
complete comprehension of the concerns involved. Moreover, our experience sug-
gests that pattern implementations can vary significantly from a standard description
and one-step refactoring could be hampered by complex dependencies. We cannot
make a full assessment of this approach as the implementation and the experimental
results are not available, but we believe that all the limitations discussed in this paper
would equally apply to it.

Finer-grained refactorings have been proposed in the form of code transforma-
tions catalogs (Hanenberg et al. 2003; Monteiro and Fernandes 2005) and AspectJ
laws (Cole and Borba 2005). These transformations can occur as part of the aspect
refactoring of an atomic crosscutting concern, but remain oblivious to the refactored
concern. They describe the mechanics of migrating Java specific units to AspectJ
ones (e.g., Extract Fragment into Advice, Move Method/Field from Class to Inter-
type). Such small step transformations might benefit the implementation of automatic
refactorings by preventing complex dependencies and ensuring behavior preservation
as discussed by Cole and Borba (2005). However, more effort is required to assess
their general applicability: for example, the case-study used for the refactoring in
Monteiro and Fernandes (2005), is an Observer pattern implemented in a demonstra-
tive application, which lacks the complexity of a real system like JHOTDRAW.

Finally, Tonella and Ceccato describe a list of refactorings based on the assumption
that interfaces are often related to crosscutting concerns (Tonella and Ceccato 2004).
In Monteiro and Fernandes (2005) this is referred to as the Interface Implementation
code smell and the authors provide refactorings to migrate part of the interface to
an aspect in case it can indeed be regarded as a crosscutting concern. The authors of
Tonella and Ceccato (2004) describe a prototype tool for the refactoring of interfaces,
which unfortunately is not publicly available. They have applied the tool to three
Java packages from the discussion it follows that the concept works but some manual
refinement of the resulting aspects was still required.

The idea of using program slicing for the extraction of crosscutting concerns was
briefly discussed in van Deursen et al. (2003). Ettinger and Verbaere (2004) describe
how program slicing can be used to extract aspects in the same way as is done for
method or object extraction only to a new advice instead of a class. To make point-
cut definition easier, standard object-oriented refactorings can be applied first. The
authors provide no study on the general applicability of this approach, other than a
simple example. The granularity is comparable to that of catalogue-based refactor-
ings, i.e., acting on method level.

In comparison to the work on the fine-grained refactorings discussed above, the
sort-based approach presented in this paper emphasizes concerns and identifies com-
mon properties at a consistent granularity level. This allows us to design a complete
migration strategy, where the refactoring is integrated with steps for concern identifi-
cation and comprehension.

Similar observations also apply to the comparison with the refactoring approach
by Binkley et al. (2006). Their emphasis is on full automation, and they offer an
Eclipse plugin for conducting six elementary refactorings. They focus on our fourth
step only, and assume aspect mining has resulted in @begin-aspect and @end-
aspect annotations in the code. As an example, one of their six refactorings moves

354 Autom Softw Eng (2009) 16: 323–356

individual calls to separate aspects, after which a non-trivial pointcut abstraction step
is needed to merge the results. Our approach eliminates the need for this complex ab-
straction step thanks to the sort-based integration between aspect mining and refac-
toring, which allows our refactoring to be based on a full concern model. Like us,
they use JHOTDRAW as one of their case studies. Somewhat surprisingly, they do not
report any of the limitations that we identified, although their results exhibit the same
limitations.

A refactoring approach for migrating crosscutting concerns in C code to domain-
specific aspects is described by Bruntink et al. (2005). Their approach involves the
recognition of specific concerns implemented by means of C code idioms, the design
of a domain-specific aspect language to represent them, and the automatic migration
of idioms to this new language. They apply their approach to an idiom used to conduct
null checks on parameters for C functions. An in-depth account of the difficulty of
migrating the return code idiom as used in C to mimic exception handling towards
a more declarative, aspect-based solution is described in a later paper by Bruntink
(2008).

10 Conclusion

In this paper, we proposed an integrated strategy for migrating crosscutting concerns
to aspect-oriented programming. We presented in detail the refactoring step of our
strategy, and applied the entire migration process to concerns in an open-source appli-
cation. Furthermore, we discussed the challenges of refactoring crosscutting concerns
to aspects and how these could impact the design and implementation of automatic
aspect refactoring.

The contributions of this work can be summarized as:

– An integrated strategy for migrating crosscutting concerns to AOP solutions;
– An aspect refactoring approach based on crosscutting concern sorts and a set of

refactoring templates and the translation of this approach into a method to semi-
automatically perform aspect-introducing refactorings based on crosscutting con-
cern sorts;

– A report on our experience with manually migrating concerns in a real system to
aspects and the challenges of this process. This report is useful for both assessing
existing support for aspect refactoring as well as for determining how one can
automatically refactor various categories (that is, sorts) of crosscutting concerns;

– AJHOTDRAW, a manually created show-case for aspect refactoring in an open-
source implementation that can be further used by researchers and practitioners to
evaluate aspect-based solutions to crosscutting concerns;

– Details of aspect refactoring algorithms for two crosscutting concern sorts which
are implemented in our semi-automatic refactoring tool SAIR. The tool also imple-
ments a resolution mechanism that assists the user in dealing with the challenges
that raise from complexity of refactoring by providing a set of predefined solutions
to common challenges.

– A report on our exploratory case study in which we applied SAIR on JHOTDRAW

and compared its results with the manually migrated AJHOTDRAW.

Autom Softw Eng (2009) 16: 323–356 355

Opportunities for future work AJHOTDRAW provides a code base for related re-
search to measure code improvements due to aspect code. Furthermore, this work
provides us with the hands-on experience for designing and implementing sort-based
aspect refactoring. We plan to integrate the refactoring tool SAIR with SOQUET, our
tool for concern documentation. The refactorings would apply to each query docu-
menting a sort instance, and hence benefit from the description of the concerns avail-
able by the query results. We aim to implement refactoring support for all the sorts
available in SOQUET. Additional work will be carried out to identify additional chal-
lenges that could occur in automatic refactoring to aspects, and to include solutions
to these potential challenges in the tool.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P.: Tool-supported refactoring of existing object-
oriented code into aspects. IEEE Trans. Softw. Eng. 32(9), 698–717 (2006)

Breu, S., Zimmermann, T.: Mining aspects from version history. In: Proceedings of the 21st International
Conference on Automated Software Engineering (ASE), pp. 221–230. IEEE Computer Society, New
York (2006)

Bruntink, M.: Reengineering idiomatic exception handling in legacy C code. In: Proceedings of the 12th
European Conference on Software Maintenance and Reengineering (CSMR’08), pp. 133–142. IEEE
Computer Society Press, New York (2008)

Bruntink, M., van Deursen, A., Tourwé, T.: Isolating idiomatic crosscutting concerns. In: Proceedings
of the International Conference on Software Maintenance (ICSM’05), pp. 37–46. IEEE Computer
Society, New York (2005)

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., Tourwé, T.: Applying and combining three
different aspect mining techniques. Softw. Qual. J. 14(3), 209–231 (2006)

Cole, L., Borba, P.: Deriving refactorings for AspectJ. In: Proceedings of the 4th International Conference
on Aspect-Oriented Software Development (AOSD), pp. 123–134. ACM, New York (2005)

Ettinger, R., Verbaere, M.: Untangling: a slice extraction refactoring. In: Proceedings of the 3rd Interna-
tional Conference on Aspect-oriented Software Development (AOSD), pp. 93–101. ACM Press, New
York (2004)

Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software Development. Addison-
Wesley, Reading (2005)

Hajiyev, E., Verbaere, M., de Moor, O. (eds.): Codequest: Scalable source code queries with datalog. In:
Proceedings of the 20th European Conference on Object-Oriented Programming (ECOOP), pp. 2–27
(2006)

Hanenberg, S., Oberschulte, C., Unland, R.: Refactoring of aspect-oriented software. In: Proceedings of the
4th Annual International Conference on Object-Oriented and Internet-based Technologies, Concepts,
and Applications for a Networked World(Net.ObjectDays), pp. 19–35. Springer, New York (2003)

Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ. In: Proceedings of 17th
Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA), pp.
161–173. ACM Press, New York (2002)

Hannemann, J., Murphy, G.C., Kiczales, G.: Role-based refactoring of crosscutting concerns. In: Proceed-
ings of the 4th International Conference on Aspect-Oriented Software Development (AOSD), pp.
135–146. ACM Press, New York (2005)

Harrison, W., Ossher, H., Sutton, S., Tarr, P.: Concern modeling in the concern manipulation environment.
In: MACS ’05: Proceedings of the 2005 workshop on Modeling and analysis of concerns in software,
pp. 1–5. ACM Press, New York (2005)

Janzen, D., De Volder, K.: Navigating and querying code without getting lost. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD), pp. 178–187. ACM
Press, New York (2003)

356 Autom Softw Eng (2009) 16: 323–356

Kellens, A., Mens, K., Tonella, P.: A survey of automated code-level aspect mining techniques. Trans. Asp.
Oriented Softw. Dev. 4640, 143–162 (2007)

Laddad, R.: AspectJ in Action—Practical Aspect Oriented Programming. Manning Publications Co.
(2003)

Lesiecki, N.: Aop@work: Enhance design patterns with AspectJ. www-128.ibm.com/developerworks
(May 2005)

Marin, M.: An integrated system to manage crosscutting concerns in source code. PhD thesis, Faculty of
Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology (Janu-
ary 2008)

Marin, M., Moonen, L., van Deursen, A.: A classification of crosscutting concerns. In: Proceedings of
the 21st International Conference on Software Maintenance (ICSM), pp. 673–677. IEEE Computer
Society, New York (2005)

Marin, M., Moonen, L., van Deursen, A.: A common framework for aspect mining based on crosscutting
concern sorts. In: Proceedings of the 13th Working Conference on Reverse Engineering (WCRE),
pp. 29–38. IEEE Computer Society, New York (2006)

Marin, M., van Deursen, A., Moonen, L.: Identifying crosscutting concerns using fan-in analysis. ACM
Trans. Softw. Eng. Methodol. 17(1), 1–37 (2007a)

Marin, M., Moonen, L., van Deursen, A.: Documenting typical crosscutting concerns. In: Di Penta, M.,
Maletic, J.I. (eds.) Proceedings 14th Working Conference on Reverse Engineering (WCRE), pp. 31–
40. IEEE Computer Society, New York (2007b)

Marin, M., Moonen, L., van Deursen, A.: An integrated crosscutting concern migration strategy and its ap-
plication to JHotDraw. In: Korel, B., Godfrey, M.W. (eds.) Proceedings of the 7th International Work-
ing Conference on Source Code Analysis and Manipulation (SCAM), pp. 101–110. IEEE Computer
Society, New York (2007c)

Marin, M., Moonen, L., van Deursen, A.: SoQueT: Query-based documentation of crosscutting concerns.
In: Proceedings of the 29th International Conference on Software Engineering (ICSE). IEEE Com-
puter Society, New York (2007d)

Mens, K., Poll, B., González, S.: Using intentional source-code views to aid software maintenance. In:
Proceedings of the 19th International Conference on Software Maintenance (ICSM), pp. 169–178.
IEEE Computer Society, Washington (2003)

Monteiro, M.P., Fernandes, J.M.: Towards a catalog of aspect-oriented refactorings. In: Proceedings of
the 4th International Conference on Aspect-Oriented Software Development (AOSD), pp. 111–122.
ACM Press, New York (2005)

Robillard, M.P., Murphy, G.C.: Representing concerns in source code. ACM Trans. Softw. Eng. Methodol.
16(1), 3 (2007)

Robillard, M.P., Murphy, G.C.: Concern graphs: finding and describing concerns using structural program
dependencies. In: Proceedings of the 24th International Conference on Software Engineering (ICSE),
pp. 406–416. ACM Press, New York (2002)

Shepherd, D., Palm, J., Pollock, L., Chu-Carroll, M.: Timna: a framework for automatically combining
aspect mining analyses. In: Proceedings of the 20th International Conference on Automated Software
Engineering (ASE), pp. 184–193. ACM Press, New York (2005)

Storzer, M., Forster, F.: Detecting precedence-related advice interference. In: Proceedings of the 21st In-
ternational Conference on Automated Software Engineering (ASE), pp. 317–322. IEEE Computer
Society, New York (2006)

Tarr, P., Harrison, W., Ossher, H.: Pervasive query support in the concern manipulation environment. Tech-
nical Report RC23343, IBM TJ Watson Research Center, Yorktown Heights, NY (2004)

Tonella, P., Ceccato, M.: Migrating interface implementation to aspects. In: Proceedings of the 20th Inter-
national Conference on Software Maintenance (ICSM), pp. 220–229. IEEE Computer Society, New
York (2004)

van der Rijst, R.: Sort-based refactoring of crosscutting concerns to aspects. Master’s thesis, Faculty of
Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology (2008)

van Deursen, A., Marin, M., Moonen, L.: Aspect mining and refactoring. In: Thavildari, L., Kontogiannis,
K. (eds.) Proc. WCRE Workshop on REFactoring: Achievements, Challenges, Effects, Waterloo,
Canada, 2003. University of Waterloo

http://www-128.ibm.com/developerworks

	An integrated crosscutting concern migration strategy and its semi-automated application to JHotDraw
	Abstract
	Introduction
	Crosscutting concerns
	Migration of crosscutting concerns
	Semi-automatic aspect refactoring

	Background
	Aspect-oriented software development and AspectJ
	Aspect mining
	Concern modeling
	Crosscutting concern sorts

	An integrated migration strategy
	Aspect mining
	Concern exploration
	Concern modeling and documentation

	Aspect refactoring
	Case study I: manual aspect refactoring of JHotDraw
	Case study design
	AJHotDraw
	Consistent behavior in command
	Undo functionality
	Support classes for role superimposition
	Consistent behavior
	Redirection layer

	Semi-automatic refactoring towards aspects
	Approach
	Algorithm
	Implementation

	Case study II: refactoring JHotDraw using sair
	Discussion
	RQ1: applicability in practice
	RQ2: risks and benefits of sort-based refactoring
	RQ3: separation of concerns
	RQ4/RQ6: level of automation
	RQ5: differences between manual and semi-automatic results
	RQ6: manual effort with sair
	Threats to validity

	Related work
	Conclusion
	Opportunities for future work

	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

