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Abstract A software product line (SPL) is a family of programs that share assets from a
common code base. The programs of an SPL can be distinguished in terms of features,
which represent units of program functionality that satisfy stakeholders’ requirements. The
features of an SPL can be bound either statically at program compile time or dynamically at
run time. Both binding times are used in SPL development and have different advantages.
For example, dynamic binding provides high flexibility whereas static binding supports fine-
grained customizability without any impact on performance (e.g., for use on embedded sys-
tems). However, contemporary techniques for implementing SPLs force a programmer to
choose the binding time already when designing an SPL and to mix different implementa-
tion techniques when multiple binding times are needed. We present an approach that inte-
grates static and dynamic feature binding seamlessly. It allows a programmer to implement
an SPL once and to decide per feature at deployment time whether it should be bound stat-
ically or dynamically. Dynamic binding usually introduces an overhead regarding resource
consumption and performance. We reduce this overhead by statically merging features that
are used together into dynamic binding units. A program can be configured at run time by
composing binding units on demand. We use feature models to ensure that only valid fea-
ture combinations can be selected at compile and at run time. We provide a compiler and
evaluate our approach on the basis of two non-trivial SPLs.
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1 Introduction

Software product line (SPL) engineering has been successfully applied to many domains.1

An SPL is a family of similar programs that are distinguished in terms of features. A feature
is a unit of program functionality that satisfies a requirement, implements a design decision,
and provides a potential configuration option [4]. In feature-oriented software development
(FOSD) [4], the programs of an SPL are generated by composing modules that implement
features. Depending on the underlying modularization and composition mechanism, features
are either bound statically (e.g., at compile time or in a preprocessing step) or dynamically
(e.g., when loading a program or at run time).

Both binding times have benefits: static binding facilitates customizability without any
overhead at run time, whereas dynamic binding allows a programmer to flexibly select and
bind features even at run time, however, at the cost of performance and memory consump-
tion [2]. Beside resource consumption and flexibility, there are other reasons that force pro-
grammers to use either static or dynamic binding. For example, when it is not known before
run time whether a feature is needed or not, programmers can use dynamic binding to avoid
deployment of all possible features. On the other hand, not every feature can be bound dy-
namically. For instance, some features related to the build and execution environment must
be chosen before compilation. Examples are the supported CPU architecture and compiler,
whether debugging support is needed, or which operating system libraries are used. These
decisions have to be made already at build time. We conclude that both binding times are
required in SPL development.

With commonly used SPL implementation techniques (e.g., preprocessors-based or
component approaches), a programmer is forced to choose between static and dynamic bind-
ing already at design time of an SPL [24]. The programmer must select an implementation
technique that corresponds to the chosen binding time. Changing the binding time after
development is not possible. However, relying only on a single binding time restricts the ap-
plicability of an SPL. We present an approach that seamlessly integrates static and dynamic
binding. We demonstrate how to bind features of an SPL dynamically or statically using the
same code base. In contrast to our previous work [37], we can choose a distinct binding time
per feature after development. We achieve this by statically composing the features that are
used in combination into a dynamic binding unit, which is bound at run time as a whole.
Dynamic binding units are similar to components but are generated at compile time from a
user-defined set of features. By statically generating binding units, we achieve fine-grained
customizability while maximizing performance; by dynamically applying the binding units,
we achieve a high flexibility at run time. Using code transformations, all features can be
implemented with the same technique independent of their binding time, which simplifies
SPL development and maintenance. The contributions of this article are:

1. We present code transformations for integrating static and dynamic feature binding in
SPLs at modeling and implementation level. Our approach allows developers to flexibly
switch the binding time per feature using the same code base. In contrast to existing
approaches [13,15,18,42], we statically generate dynamic binding units to reduce the
overhead of dynamic binding.

2. We provide composition safety of dynamic binding using a transformed feature model.
To generate such a model, we present transformation rules that correspond to the code
transformations that we use for creating dynamic binding units.

1 http://www.sei.cmu.edu/productlines/plp hof.html



3

3. We demonstrate practicality of our approach with an implementation of the transforma-
tion system based on feature-oriented programming.

4. Finally, we evaluate our approach regarding customizability and resource consumption.

2 Feature Binding in Software Product Lines

Feature binding is the process of including features in a concrete program at a specific
point in time, called the binding time [15]. There are different possibilities to categorize
the binding time of features in SPLs. We refer to static binding if a feature is bound in a
program before load time (e.g., at compile time) and to dynamic binding if it is applied at
load time or after loading a program. For example, the C/C++ preprocessor is frequently
used to support static binding in SPLs for embedded systems. The preprocessor removes
unneeded code from a program before compilation. In contrast, components and plugins
support dynamic binding at load time or run time of a program. In the following, we analyze
static and dynamic binding to motivate that a combination of both binding times is needed.

Static and Dynamic Feature Binding. Most SPL implementation techniques support either
static or dynamic binding of features. However, different features may require different bind-
ing times [39] and different application scenarios may require the same feature to be bound
at different times. Using static or dynamic binding exclusively is often not feasible for sev-
eral reasons. For example, static binding cannot be used if required features are not avail-
able or not known at deployment time, as it is the case for third-party extensions. Dynamic
binding enables independent deployment of features or extensions of a program without re-
building the whole program. It even provides means for loading extensions on demand (e.g.,
from a network) or when the configuration of an SPL has to be changed at run time such as
in dynamic SPLs [20].

However, it is also not feasible to rely exclusively on dynamic binding, e.g., for platform-
or compiler-specific features. This would limit possible target platforms of an SPL. Further-
more, some devices (e.g., deeply embedded systems) cannot load executable code at run
time. Hence, they only support dynamic binding of already loaded code (e.g., using condi-
tional statements), which reduces the benefits of dynamic binding. Finally, dynamic binding
usually means a higher development and maintenance effort, which makes it the more ex-
pensive alternative.

Resource Consumption. Both, static and dynamic binding, have benefits and drawbacks
with respect to resource consumption (e.g., CPU utilization, memory consumption) of a
program. Often only a subset of the features of a program is used at the same time and
some features may not be used at all. For example, the required functionality of a database
management system (DBMS), deployed on a smartphone, depends on the requirements of
the applications that use the DBMS. A Web browser that stores encrypted passwords in a
database requires a DBMS with data encryption. If the Web browser is never used, the en-
cryption feature of the DBMS is not required at all. The presence of unused functionality
can be avoided by loading features on demand and bind them dynamically. Unfortunately,
dynamic binding introduces an overhead to support dynamic composition [15]. Hence, de-
pending on the binding time, we observe either a functional or a compositional overhead:

– Static binding causes a functional overhead due to features that are not used but
present in a program. This results in increased binary size, working memory consump-
tion, and execution time (e.g., due to execution of initialization code).
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– Dynamic binding introduces a compositional overhead, which is caused by glue code,
indirections for binding features at run time, and code of the composition infrastructure.
This additional code increases binary size and execution time of a program. It may
also cause a higher memory consumption at run time (e.g., for storing virtual function
pointers in C++).

Mixing Static and Dynamic Binding. To cope with the limitations of current implementation
techniques, different approaches for static and dynamic binding are combined in practice,
e.g., in the Apache Web server2, Mozilla [39], and Oracle’s embedded database manage-
ment system (DBMS) Berkeley DB3. In these systems, the programmers use the C/C++
preprocessor for static binding (e.g., for platform specific features) and proprietary mech-
anisms for dynamic binding. For example, the Apache Web server comes with a special
module system to load extensions dynamically.

In general, mixing dynamic and static binding provides several benefits. Dynamic bind-
ing can be used to achieve extensibility (e.g., for plugins), while other features, such as
platform-specific features, are bound statically. Applying static binding to dynamically
bound components allows a user to customize the components, e.g., when many compo-
nents are affected by a crosscutting feature. This is problematic when using only dynamic
binding [19]. However, mixing different implementation mechanisms increases complexity
of SPL development:

– it forces developers to use different implementation mechanisms for different features
within an SPL (e.g., preprocessors, design patterns, components, aspect-oriented pro-
gramming [23], etc.),

– a developer has to choose the binding time per feature at design time before develop-
ment [24],

– it hinders reuse because a feature developed for a particular binding time cannot be
easily reused in an application scenario or in a different SPL that requires a different
binding time.

To summarize, an integration of static and dynamic binding is already used in practice, but
without proper support at the implementation level. Relying on a single binding time may
increase execution time and memory consumption, which is unacceptable when resources
are limited. A combination of both binding times can reduce resource consumption and
improve customizability. Additionally, supporting different binding times based on the same
implementation mechanism simplifies SPL development and maintenance. Changing the
binding time of an implementation unit is supported by a few approaches [13,15,18,42].
However, these approaches do not consider the specifics of SPLs. For example, they do
not address static and dynamic binding of entire features. Furthermore, the approaches only
support either static or dynamic binding of a code unit, but do not support static composition
between multiple dynamically bound units. Moreover, there is no approach that integrates
static and dynamic binding with respect to the SPL configuration process. For example,
existing approaches do not offer a mechanism to validate a configuration with respect to the
feature model statically and dynamically.

2 http://httpd.apache.org/
3 http://www.oracle.com/technology/products/berkeley-db/
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Fig. 1 Feature model of a simple DBMS.

3 Integration of Static and Dynamic Binding

We address the trade-off between static and dynamic binding with an approach that seam-
lessly integrates both binding times. Our approach allows a programmer to choose the bind-
ing time per feature and to optimize resource consumption and customizability. It is based
on feature-oriented programming (FOP) [33,10], which allows programmers to modular-
ize the features of an SPL. We implemented our approach on top of FeatureC++4, an FOP
extension of the C++ programming language. We first introduce FOP and describe how we
achieve static and dynamic binding of features based on the same feature-oriented imple-
mentation of an SPL. We continue with an approach that integrates both binding times at
modeling and implementation level.

3.1 Feature-oriented Programming

A feature model describes the variability of an SPL, as shown in Figure 1 for a DBMS. It is
a hierarchical representation of mandatory (shown with a filled bullet) and optional (shown
with an empty bullet) features and relations between them [15]. A feature model thus defines
the valid configurations of an SPL. For example, the XOR relation between features BTREE

and HASH means that exactly one of the features has to be selected when their parent feature
INDEX is selected.

In FOP, features are implemented as increments in functionality [10]. A user specifies
a program by selecting a set of features that satisfy her requirements. Based on the feature
selection, a generator composes the corresponding feature modules (i.e., the modularized
implementation of a feature) to yield a concrete program. In Figure 2, we depict a decom-
position of a DBMS along multiple features (displayed as layers). The DBMS consists of
a CORE implementation and two features QUERYENGINE and TRANSACTION. The two
features cut across the implementation of the classes DB, Txn, QueryProcessor (shown as
dashed boxes). A programmer thus decomposes a class into a base class and class refine-
ments, shown as white boxes in Figure 2. Refinements implement extensions of a base class
necessary for a particular feature. For example, the base implementation of class DB is de-
fined in CORE and extended in QUERYENGINE and TRANSACTION (depicted with arrows).

In Figure 3, we depict the FeatureC++ code of class DB (cf. Figure 2). Method Put is
used to store data provided as key-value pairs. The refinement in feature QUERYENGINE

(Lines 5–10) adds a new field queryProc and a new method ProcessQuery for processing
SQL queries. Feature TRANSACTION defines a refinement of method Put (Line 14) and in-
vokes the refined method using the keyword super (Line 16). Based on the implementation
shown in Figure 2, we can generate different DBMS variants by composing a varying set of
feature modules. For example, we can generate a basic DBMS consisting only of the CORE

4 http://fosd.de/fcc/
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Fig. 2 Decomposition of classes (dashed rectangles) along features (horizontal layers).

Feature CORE

1 c l a s s DB {
2 b o o l Put(Key& key , Value& val) { ... }
3 };

Feature QUERYENGINE

5 r e f i n e s c l a s s DB {
6 QueryProcessor queryProc;
7 b o o l ProcessQuery(String& query) {
8 r e t u r n queryProc.Execute(String& query);
9 }

10 };

Feature TRANSACTION

12 r e f i n e s c l a s s DB {
13 Txn* BeginTransaction () { ... }
14 b o o l Put(Key& key , Value& val) {
15 ... / / t r a n s a c t i o n − s p e c i f i c c o d e
16 r e t u r n s u p e r ::Put(key ,val);
17 }
18 };

Fig. 3 FeatureC++ code of class DB decomposed along the three features CORE, QUERYENGINE, and
TRANSACTION.

implementation but we can also derive variants that include QUERYENGINE or TRANSAC-
TION by composing the corresponding feature modules.

With FeatureC++, the feature modules of an SPL can be bound either statically at com-
pile time or dynamically at load time or run time. To support static binding, the FeatureC++
compiler composes the code of a base classes and selected refinements into a single class.
Dynamic binding is implemented by a code transformation that uses the decorator pat-
tern [17] to generate a dynamically composable class fragment for each refinement [37].
We describe both transformations in the following and combine them to integrate static and
dynamic binding, as described afterwards.

3.2 Support for Static Feature Binding

To support static feature binding, the classes of an SPL have to be composed at compile time
according to the features selected in the configuration process. The FeatureC++ compiler
uses a source-to-source transformation from FeatureC++ to plain C++ code. It composes
the entire code of the base implementation of a class and its refinements of all selected
features into one compound C++ class. This compound class consists of:

– the union of all member variables,
– one method for each method refinement,
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1 c l a s s DB {
2 b o o l Put_Core(Key& key , Value& val) { ... }
3
4 Txn* BeginTransaction () { ... }
5
6 b o o l Put(Key& key , Value& val) {
7 ... / / T r a n s a c t i o n − s p e c i f i c c o d e
8 r e t u r n Put_Core(key ,val);
9 };

10 };

Fig. 4 Generated C++ source code of class DB using static binding of CORE and TRANSACTION.

– one constructor and destructor for each different constructor / destructor definition, and
– one method for each constructor / destructor refinement.

In Figure 4, we depict the generated C++ code of a DBMS variant that corresponds to
the FeatureC++ code of class DB in Figure 3. We show the generated code only for illus-
tration and it does not have to be read by a programmer that uses FeatureC++. The code
corresponds to a composition of the CORE implementation with feature TRANSACTION.
All methods and fields of the corresponding refinements of class DB (i.e., except the code of
feature QUERYENGINE) are composed into a single C++ class. The base implementation of
method Put (feature CORE) was renamed to Put_Core (Line 2) to provide a unique name
for every C++ method. It is called from its refinement in Line 8. Using this transformation
and by avoiding virtual methods (which are needed in a component-based approach), a C++
compiler can easily inline method refinements. For example, method Put_Core is inlined in
method Put and does not introduce any overhead for method calls. Based on such optimiza-
tions, we have shown that FeatureC++ generates code that achieves the same performance
as C++ code that does not provide such fine-grained customizability [35].

3.3 Support for Dynamic Feature Binding

For dynamic binding of features, we have to compose the classes of a program at run time
according to the dynamic feature selection. We achieve this dynamic composition of a class
by transforming each class refinement into a dynamically composable class fragment. For
example, when creating a DBMS with transaction management at run time, we have to
dynamically compose the base implementation of class DB (cf. Figure 3) with its refinement
in feature TRANSACTION. Similar to the Delegation Layers approach [32], we transform
the refinement chain of a class into a delegation hierarchy [37]. By using the decorator
pattern [17] for implementing refinements, we are able compose classes dynamically by
composing the generated decorators. Composing two features thus means to compose all
classes and class refinements of the features.

For illustration, we depict the class diagram of the transformed class DB in Figure 5.
The base code of class DB and all of its refinements have been transformed into decora-
tors (DB_Core, DB_QueryEngine, DB_Transaction). Each decorator belongs to a separate
feature. The concrete decorators provide the implementation of methods and method refine-
ments. For example, method Put (Line 2 in Figure 3) and its refinement in feature TRANS-
ACTION (Line 14) are transformed into methods of the concrete decorators DB_Core and
DB_Transaction (cf. Figure 5). The abstract decorator class DB_Decorator maintains a
reference to the predecessor refinement (super reference) and forwards operations to the



8

+Put()

DB_Core
+ProcessQuery()

DB_QueryEngine

+Put()
+ProcessQuery()
+BeginTransaction()

DB

-super
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+BeginTransaction()

DB_Decorator
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+BeginTransaction()
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Core QueryEngine Transaction

Fig. 5 Generated decorator hierarchy for class DB to support dynamic binding of the features QUERYENGINE
and TRANSACTION.

next decorator that are not implemented by its concrete decorator. Similarly, a method re-
finement invokes its refined method also by using the super reference of the decorator class.
To overcome the self problem when calling a method of the compound class [26] (open re-
cursion), each decorator additionally maintains a self pointer that refers to the compound
object and not the current concrete decorator. We use the generated decorator interface DB to
reference dynamically composed classes within the transformed code and also from external
source code. All created objects contain an additional proxy to support modifications of the
object at run time. The proxy is an empty decorator that only forwards method calls to the
decorator that implements the first class refinement.

Feature Classes. When dynamically creating a product from an SPL (a.k.a. SPL instance),
we compose multiple features according to a given configuration. Each feature usually con-
tains multiple classes and class refinements that have to be composed consistently at the
same time. We support this dynamic composition process by representing features as classes,
called feature classes. Feature classes are generated in the FeatureC++ code transformation
process. Much like ordinary classes and refinements, feature classes are also combined us-
ing the decorator pattern to enable class instantiation via delegation, as we describe below.
In Figure 6, we shown an example for the DBMS SPL. For each feature module (CORE,
QUERYENGINE, and TRANSACTION), we generate a feature decorator that inherits from an
abstract decorator DbFeature. The abstract decorator is the base class of all feature classes
of the product line. It maintains a super reference to the predecessor feature in a composed
variant. Instantiation of a feature thus means to create an object of the corresponding feature
class. Generating an SPL instance means to combine feature instances using super refer-
ences. Hence, an SPL instance is represented by a stack of feature instances. The features
are ordered according to the desired feature composition order.

The dynamic composition process occurs at program startup or at runtime. At program
startup, an initial SPL instance is created automatically or manually and then executed [37].
For example, a user can provide a list of features as program arguments and the corre-
sponding SPL instance is then derived at load time. Manual creation of an SPL instance in
user-defined code is done by composing feature instances (i.e., objects of feature classes),
as described above.

Class Instantiation. We use a dynamically composed SPL instance to create objects of the
classes of an SPL at run time. Creating an object means to create and combine instances of its
class refinements (implemented as decorators; cf. Figure 5). The required base classes and
class refinements are automatically instantiated according to a dynamic feature selection.
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+NewDB()

Core

+NewDB()

QueryEngine

+NewDB()

DbFeature

+NewDB()

Transaction

-super

Fig. 6 Generated feature decorators. DbFeature is an abstract decorator for the features of the DBMS SPL.
The concrete decorators Core, QueryEngine, and Transaction implement feature specific code (e.g., for
class instantiation).

super : DB
 : DB_Core

super : DB
 : DB_Transaction

super : DB
 : DB_Core

super : DB
 : DB_QueryEngine

super : DB
 : DB_Transaction

obj1

obj2

Fig. 7 Object diagrams of the instances obj1 and obj2 of two different variants of class DB using three and
two features respectively.

This instantiation process is realized by generated factory methods of the corresponding
feature classes (e.g., NewDb() in Figure 6).

In Figure 7, we show two examples of objects of class DB that have different sets of re-
finements. Object obj1 uses the CORE implementation and refinements defined in features
QUERYENGINE and TRANSACTION. Object obj2 uses only the CORE implementation and
the refinement from feature TRANSACTION. Each instantiated refinement contains a super

reference (cf. Figure 5) pointing to the next refinement in the chain. For example, the super
pointer of the instance of DB QueryEngine refers to an instance of DB Core. The dynamically
composed objects can be used in the same way as an instance of a regular class. Further-
more, they can be modified at run time by adding or removing decorator instances. Such
modifications at runtime are possible because existing object references point to the first
decorator in the chain, which is an empty proxy that forwards method calls (omitted in Fig-
ure 7). The refinement chain thus corresponds to a linked list of class fragments. Changing
the configuration of the SPL corresponds to insertion, exchange, and deletion of elements of
the refinement list of the SPL classes.

3.4 Integrating Static and Dynamic Binding

So far, our approach allows programmers only to choose between static and dynamic binding
for the entire SPL and not for single features. As discussed in Section 2, this approach
is still not flexible enough for certain application scenarios. It results in a functional or
compositional overhead depending on the binding time. In previous work, we observed that
especially the compositional overhead limits applicability of a pure dynamic approach [37].
Next, we extend our approach to integrate both binding times.
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3.4.1 Dynamic Binding Units

We integrate static and dynamic binding by combining multiple dynamically bound features
into a single dynamic binding unit: Features that are always bound together, are merged at
compile time into a binding unit. This means a two step composition process: First, we use
static composition for the features of a binding unit and, second, we compose dynamic bind-
ing units in the running program. Static composition results in a prebound SPL consisting
of a set of dynamically composable binding units, each of which consists of possibly mul-
tiple statically composed features. As a binding unit may also contain only a single feature,
our approach still supports pure dynamic binding. Rather than manually developing bind-
ing units as components [24], we automate this process and generate them on demand at
deployment time. That is, a programmer implements an SPL once and chooses the binding
time per feature later. With binding units, we reduce the overhead for dynamic binding since
the features of a binding unit are statically composed. A binding unit can be bound at any
time after program startup.

In Figure 8, we show an example for generating dynamic binding units. DB′ and DB′′

denote two prebound SPLs (i.e., not concrete products) after static composition. Feature
HASH is not required and is thus not included in any of the prebound SPLs. In DB′, feature
B-TREE (an index structure for efficient data access) is always required and we thus com-
bine it with feature CORE into a single binding unit BASE. Similarly, TRANSACTION and
LOGGING are composed into binding unit TXN. Feature QUERYENGINE is assigned to a
distinct binding unit QE. This is different in DB′′, which contains the same features bound
differently. In DB′′, feature QUERYENGINE is not assigned to a distinct binding unit but
added to binding unit BASE. From each prebound DBMS, we can create a number of dif-
ferent DBMS (examples DB1–DB4) by dynamically composing the binding units according
to a given configuration (i.e., a list of desired binding units). Comparing DB2 and DB3, we
see that both provide the same functionality but feature QUERYENGINE is contained in a
distinct binding unit in DB2 and is bound statically in DB3, which leads to differences in
flexibility and resource consumption.

Product Derivation. In summary, the product derivation process of our integrated approach
can be divided into three steps: (1) configuration, (2) static transformation, and (3) dynamic
composition. In the first step (filled arrow in Figure 8), a user selects the potentially required
features and assigns each feature to a binding unit. In the subsequent static transformation
process, the compiler selects the required feature modules and generates dynamic binding
units5. The FeatureC++ compiler also generates code for composing the binding units at run
time. There are two extremes: first, a single binding unit may contain all selected features,
which results in a pure statically composed program without any code for dynamic binding.
Hence, the product derivation process is finished after static transformation. Second, each
binding unit may contain only a single feature resulting in a purely dynamically compos-
able SPL. Between these extremes (which mark the current state of the art), our extended
approach supports any combination of static and dynamic binding.

3.4.2 Compound Features and Feature Modeling

When generating dynamic binding units, we generate a prebound SPL with reduced dynamic
variability. To ensure consistency of the dynamic composition process, we verify a configu-

5 Dynamic binding units are stored in the binary of an application or in extension libraries. Currently, we
support Windows DLLs.
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Fig. 8 Examples for static transformations ( ) of a DBMS product line resulting in the prebound SPLs DB′

and DB′′, and subsequent dynamic composition ( ) resulting in the running programs DB1–DB4. Feature
HASH was not selected and is not included in any binding unit.

ration at run time before composing the binding units. This is done in a similar way as we
have shown for pure dynamic composition [37]. We use a feature model to avoid invalid
configurations. However, because merged features have to be bound as a whole, the final
dynamic composition process cannot be based on the SPL’s initial feature model. Hence, we
have to transform the feature model such that it contains only dynamic variability.

To this end, we represent the static composition process on the modeling level as a
transformation of the SPL’s feature model. In the following, we first introduce compound
features to represent binding units at the model level and then describe the required model
transformations.

Compound Features. We represent feature composition by treating features as functions that
modify other features or a base program [28,7]. The composition of one feature with another
feature results in a compound feature, which is the input for the subsequent composition
step. In our case, a dynamic binding unit is a compound feature that is bound at run time.
We denote static feature composition with operator • and dynamic feature composition with
operator ◦. This way, we can describe composition of programs DB1 and DB2 (cf. Figure 8)
as follows:

Base = BTree•Core (1)

QE = QueryEngine (2)

TXN = Logging•Transaction (3)

DB1 = TXN ◦Base (4)

= (Logging•Transaction)◦ (BTree•Core) (5)

DB2 = QE ◦Base (6)

= (QueryEngine)◦ (BTree•Core) (7)
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In this example, equations 1–3 describe static compositions resulting in the compound fea-
tures (i.e., dynamic binding units) Base, QE, and TXN. Equations 4 and 6 represent dynamic
compositions of compound features. Hence, a feature such as TRANSACTION is statically
bound with respect to its binding unit TXN (Equation 3) but is dynamically bound with
respect to the base program (Equation 4).

Note, when combining static and dynamic binding, we have to consider the order in
which features are composed. The reason is that composition of feature modules is not
necessarily commutative [7]. For example, when features TRANSACTION and BTREE ex-
tend the same method, their composition order may affect program behavior. Hence, when
changing the two binding units from equations (1) and (3) to Base = Transaction • Core
and Log = Logging • Btree, dynamic composition results in a different program:

DB1′ = (Logging•Btree)◦ (Transaction•Core). (8)

DB1′ differs in its behavior from DB1 if the composition of Btree and Transaction is not
commutative. However, we achieve commutativity when combining static and dynamic
binding using special code transformations, as we describe in Section 3.4.3.

Feature Models for Compound Features. After static composition, it may be necessary to
reason about the remaining dynamic variability, which is ideally done with feature model.
For example, it is easier to analyze dynamic variability (e.g., to check which configurations
are valid) when we have a feature model that includes compound features and that cor-
responds to the variability of the prebound SPL. This feature model is also reified at run
time for validating a configuration before dynamic composition (e.g., to safely reconfigure
a running system).

The combination of static binding and dynamic binding can be seen as a staged con-
figuration process, as described by Czarnecki et al. [16]. In our case, we have a two step
configuration process, in which we first bind features statically and then compose bind-
ing units dynamically. We represent this configuration process by transforming the feature
model accordingly. In contrast to the model transformations for staged configuration de-
scribed by Czarnecki et al. [16], we allow arbitrary configuration steps that are represented
by constraints [14,36]. Composition of multiple features into a compound feature is thus
represented by an equivalence constraint between the merged features. That is, when a user
selects one of the features of a compound feature, she has to select the other features as
well. In Figure 9 b, we depict an example for the static transformation of DB into DB′ (cf.
Figure 8). We represent compound feature TXN by constraint TRANSACTION⇔ LOG. Fur-
thermore, we remove feature HASH, which was not selected for composition. The resulting
feature model represents the dynamic variability. It forces a user to either select all merged
features of a binding unit or to select none of them. For example, features TRANSACTION

and LOG can only be selected in combination. However, this feature model is rather com-
plex compared to the actual variability. Furthermore, it does not explicitly show the new
compound features which may be needed for dynamic configuration.

We reduced the complexity of the feature model by adding the compound features and
by refactoring the model. The resulting feature model is depicted in Figure 9 c. In the fol-
lowing, we describe the required refactorings. Details of the refactoring steps can be derived
from [1].

1. In a first step, we remove dead features that cannot be selected. In our example, this
means that feature HASH is removed as it is an alternative to BTREE and cannot be
selected. When removing a dead feature, we also remove it from existing constraints to
other features (e.g., replacing it with false in boolean constraints).
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Fig. 9 Transformation of the feature model of a DBMS (a) when generating compound features CORE, TXN,
and QE. In (b), constraints have been added to represent the merge operation. The compound features are
added to the feature model in (c) and a refactoring is used to include the equivalence constraints. Mandatory
subfeatures of the compound features that do not provide variability have been removed in (d).

2. We remove a feature from the equivalence constraint of a compound feature if it is the
ancestor of one of the other features of the constraint. In turn, we have to mark the
features on the path between both in the feature model as mandatory. For example, we
mark features INDEX and BTREE as mandatory and remove the equivalence constraint
for compound feature CORE. Mandatory features that have been part of an alternative
group must always be selected. Hence, the remaining features of the group are dead and
have already been removed in step 1.

3. In steps 3–5, we add the compound features and restructure the feature diagram. First,
we create a new feature for each generated compound feature (e.g., feature QE in Fig-
ure 9 c). Each compound feature replaces one of the merged features. Usually, the com-
pound feature should replace the feature that is nearest to the root. The replaced feature
is added as a mandatory child since both have to be selected at the same time. For exam-
ple, we insert compound feature QE above QUERY. If one of the merged features is the
root of the tree, the compound feature may also be added as a child of the root to avoid
a different name for the root (cf. feature CORE in Figure 9 c).

4. Other merged features including their entire subtrees are moved to the corresponding
compound feature as mandatory child features (e.g., feature LOG in Figure 9 c). Addi-
tional constraints are added to maintain the relationships between the moved features
and their former parent features and siblings. In our example, we create the constraint
LOG⇒ DB’ because feature TXN was added as a parent of TRANSACTION.

5. Finally, we remove constraints that are not needed. Since the merged features are manda-
tory children of their compound feature, we remove the remaining equivalence con-
straints that have been used to represent merged features, as described in step 2. Further-
more, we can remove some constraints that have been added in step 4. For example, we
remove constraint LOG⇒ DB’ because DB’ is an ancestor of LOG.

After refactoring the feature model, the remaining variability is easier to recognize because
it is not hidden in constraints. The merged features can be removed from the feature model
or tool support can be used to suppress visualization of mandatory features. When remov-
ing features, their constraints have to be maintained: we have to update all constraints by
replacing the removed features with their compound feature. However, the original merged
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Fig. 10 Compound class DB (dashed box) after static composition and transfor-
mations to enable dynamic binding. Generated decorators are shown as white
boxes within light-gray binding units. Code of refinements is shown as gray
boxes.

features are still needed for further operations on the feature model. For example, defined
independently constraints (e.g., by a third party) may reference the original features.

3.4.3 Implementation: Generating Binding Units

As proof of concept, we implemented our approach on top of the FeatureC++ compiler. In
the following, we give a short overview of the code transformations used to combine both
types of composition at the class level.

When generating dynamic binding units, the FeatureC++ compiler transforms a class
(defined as several class refinements) of an SPL into dynamically composable class frag-
ments. The generated fragments correspond to the binding units that cut accross the class.
They are generated from the base class and its refinements in two steps: First, we merge
refinements belonging to features of the same binding unit into a single class (static com-
position) and, second, we generate code for dynamic binding of composed classes using the
decorator pattern, as described for dynamic composition (cf. Sec. 3.3). Hence, we do not
generate a decorator per refinement, but we group the refinements of a binding unit for each
class in a single decorator. In Figure 10, we show an example for the generated classes of
the binding units of DB′ for class DB (cf. Figure 8). The dynamically composable class DB

consists of an interface (DB), an abstract decorator (DB_Decorator), and three concrete dec-
orators (DB_Base, DB_QE, and DB_TXN). Code of multiple refinements is statically composed
into concrete decorators DB Base, DB QE, and DB TXN. For example, we merge refinements
defined in modules CORE and B-TREE of class DB into decorator DB_Base. The decorators
are combined at run time according to the selected dynamic binding units. For example, we
have to compose DB_Base and DB_TXN to yield DB1 of Figure 8.

The code transformations are basically a combination of the transformations described
for pure static and dynamic binding. However, they differ in several ways and we present
the two most important differences next. In the the first example, we demonstrate how to
attain commutativity of class refinements. In the second example, we describe how the SPL
context is stored in generated classes.

Commutativity of Method Refinements. Since the application of method refinements is usu-
ally not commutative, we have to ensure that the application order of method refinements
does not change when combining static and dynamic extensions of the same class. An ex-
ample is shown in Figure 11: Method Put of class DB is extended in features LOGGING and
TRANSACTION. Both method extensions have to be executed bottom-up: first, the trans-
action code has to be executed (Line 12) and afterward the logging code (Line 6). If we
statically compose the CORE implementation and feature TRANSACTION into a single bind-
ing unit and feature LOGGING into a different binding unit, then dynamic composition of
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Feature CORE

1 c l a s s DB {
2 b o o l Put(Key& key , Value& val) { ... }
3 };

Feature LOGGING

4 r e f i n e s c l a s s DB {
5 b o o l Put(Key& key , Value& val) {
6 ... / / l o g g i n g − s p e c i f i c c o d e
7 r e t u r n s u p e r ::Put(key ,val);
8 };
9 };

Feature TRANSACTION

10 r e f i n e s c l a s s DB {
11 b o o l Put(Key& key , Value& val) {
12 ... / / t r a n s a c t i o n − s p e c i f i c c o d e
13 r e t u r n s u p e r ::Put(key ,val);
14 };
15 };

Fig. 11 FeatureC++ source code of class DB with method Put refined by two
features.

Binding Unit BASE

1 c l a s s DB_Base {
2 b o o l Put_Core(Key& key , Value& val) { ... }
3
4 b o o l Put_hook(Key& key , Value& val) {
5 r e t u r n Put_Core(key ,val);
6 }
7
8 b o o l Put(Key& key , Value& val) {
9 ... / / t r a n s a c t i o n − s p e c i f i c c o d e

10 r e t u r n Put_hook(key ,val);
11 };
12 };

Binding Unit TXN

13 c l a s s DB_Logging {
14 b o o l Put_hook(Key& key , Value& val) {
15 ... / / l o g g i n g − s p e c i f i c c o d e
16 r e t u r n super ->Put_hook(key ,val);
17 };
18 };

Fig. 12 Generated C++ code of class DB with a hook for method refinement.

the binding units changes the execution order of the method refinements. This results in an
invalid program because the transaction code is executed after the logging code.

To avoid this, we generate hook methods [5], as shown in the generated code in Fig-
ure 12. For example, we generate method Put hook (Lines 4–6), which is called instead of
method Put_Core (Line 10). The hook is overridden by feature LOGGING to execute the
logging specific code before executing the extended method (Line 16).

Storing SPL Context. Class instantiation in a dynamically composed program requires to
create an object that corresponds to the configuration of a concrete SPL instance. The in-
stance defines which decorators to use when creating the new object. Because there may
be more than one active SPL instance within a program, we need to know which instance
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to use when creating an object. For that reason, we store a reference to the corresponding
SPL instance within each object. For example, when creating an instance of class DB (cf.
Fig 10), the SPL instance DB1 defines the required binding units (BASE and TXN) and thus
the configuration of class DB.

For statically composed classes, this information is not needed because the type of a
class is determined statically and does not change according to a dynamically changing
SPL instance. For example, the type of class QueryProcessor in Figure 2 does not change
if features QUERYENGINE and TRANSACTION are part of the same binding unit. Hence,
there is no runtime variability for such a class and we do not need an SPL instance for
creating objects of the class. We thus evaluate whether a class (directly or indirectly) creates
instances of dynamically composed classes or not; if it does, it has to store a reference to the
corresponding SPL. For example, if class QueryProcessor is statically composed (because
it is only part of a single binding unit), it has to store a reference to its SPL instance only if
it creates objects of other dynamically composed classes.

Since the SPL reference is only needed when there are multiple instances of the same
SPL, we further optimize the generated objects when only a single instance is used. In
this case, we use a single global reference to the SPL instance to avoid the additional SPL
instance pointer per object. A user can make this decision at deployment time by choosing
between alternative code transformations.

3.4.4 Summary

When combining static and dynamic composition, the compiler merges multiple features
into a binding unit and generates code to support composition of binding units at run time.
Hence, a dynamically bound feature is statically composed with features of the same binding
unit; it may even use only static binding of its classes and class refinements with classes of
other features of the binding unit. To reason about the resulting dynamic variability, we ap-
ply the static composition process also to an SPL’s feature model. We transform the feature
model according to the generated binding units. The result is a feature model that provides
only dynamic variability. It can be used to analyze dynamic binding before generating bind-
ing units, to configure an SPL at run time (e.g., for a run time adaptation approach), and
to verify a dynamic composition before using it. Overall, our approach integrates static and
dynamic binding at the modeling level as well as at the implementation level. Hence, it pro-
vides a foundation for an SPL development process that is independent of the supported
binding time.

4 Case Studies and Evaluation

By means of two case studies, we demonstrate the applicability of our approach. We measure
the influence of different sizes and different numbers of dynamic binding units on resource
consumption. For our evaluation, we use two product lines that have been developed at the
University of Magdeburg. The first SPL is FAME-DBMS, a DBMS product line for resource-
constrained environments [35]. The second SPL is NanoMail, a customizable e-mail client.
The source code of both product lines is available on the web.6 We present the results for
both SPLs and discuss the reasons for the characteristics we observed.

6 http://wwwiti.cs.uni-magdeburg.de/˜rosenmue/dynamic/
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Fig. 13 Feature diagram of FAME-DBMS with binding units Base, TXN, Btree, QE, and Crypto. Binding unit
Crypto consists either of feature AES or DES. In our evaluation, we use feature AES.

4.1 Defining Binding Units

FAME-DBMS. FAME-DBMS is an embedded DBMS (i.e., it is embedded into an application
as a library). It was developed for devices with limited resources using static feature binding.
For compositional flexibility and to reduce the functional overhead, we use dynamic binding.
In Figure 13, we depict an excerpt of the feature model of FAME-DBMS and the binding
units used in our evaluation. We show only features that are relevant for our case study and
omit features that are always bound statically such as operating-system-related features. In
its current version, FAME-DBMS consists of 56 features with 12 400 lines of code (LOC).

For analyzing the influence of dynamic binding on resource consumption, we compare
different variants of FAME-DBMS that use the same 44 features, but we organized the fea-
tures in different binding units. The selection of features per binding unit is shown in Fig-
ure 13. It corresponds to configuration 5 in the following analysis. We describe the rationale
behind the definition of the sample binding units in the following overview:

– Binding unit BASE represents a basic DBMS that consists of an API for storing and
retrieving data. It can be used without additional binding units and provides high perfor-
mance due to pure static binding.

– Binding unit TXN provides transactional access to the database. Since features TRANS-
ACTION and RECOVERY require feature LOGGING, we merge all three features into a
single binding unit.

– QE is a customizable query engine that supports a subset of SQL by statically com-
posing only the required SQL features. In our implementation, dynamic composition
of SQL features is hard to achieve. The reason is that we statically compose the SQL
grammar from multiple features. We then generate the SQL parser from this composed
grammar at compile time. This demonstrates that pure dynamic binding is not always
possible without increasing the development effort significantly.

– CRYPTO is a binding unit for data encryption and decryption. Customization of ciphers
is done statically by choosing the encryption algorithms (e.g., AES or DES). This means
that we can exchange the encryption algorithm within the binding unit without modi-
fying the remaining DBMS. We may also provide two different CRYPTO binding units,
one with feature AES and one with DES. Moreover, a customer may provide an own
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Fig. 14 Binary size (base program and dynamic binding units) of five FAME-DBMS variants with an equal
feature selection and an increasing number of binding units.

encryption algorithm. Defining one binding unit for the DES and AES features would
also be possible, but in our case the ENCRYPTION feature abstracts from implementation
details of the algorithm resulting in a small and uniform interface.

– Finally, binding unit BTREE provides efficient data access via a B+tree index structure.
In a large DBMS, there may be a number of different alternative index structures. Using
a single binding unit per index structure allows us to activate only those index structures
that are needed for efficiently accessing the data (i.e., depending on the work load).

NanoMail. NanoMail is an e-mail client SPL with 25 features and 6 200 LOC. It comprises
different e-mail applications, from a simple MailNotify application that only notifies a user
if there is unread mail, up to a full mail client with mail storage in a database. Similarly to
FAME-DBMS, we compare variants with equal functionality (using 23 features) and varying
binding units. For dynamic binding, we defined the binding units DB and CLAMAV, which
provide database storage and virus filtering. Furthermore, for analyzing the impact of fine-
grained dynamic customization, we provide e-mail filters that are used like plugins. Each
filter is loaded as a single binding unit and users can add as many filters as needed. To
analyze the influence of a large number of binding units, we generate several mail filters and
measure the effect on startup time.

4.2 Resource Consumption

In the following, we analyze the resource consumption of different FAME-DBMS and
NanoMail variants depending on the binding units used. We compare binary size, working
memory usage, and performance of a varying number of binding units but we use always
the same features.7 Our aim is to identify how to combine static and dynamic binding to
optimize a program with respect to functional and compositional overhead.

In Figures 14–19, we depict the results of our analysis for five configurations of FAME-
DBMS and three configurations of NanoMail. In configuration 1, all features are statically

7 For our evaluation, we used an Intel Core 2 system with 2.4 GHz and Windows XP. For compilation,
we used the Microsoft C/C++ compiler v13.10.3077 and Incremental Linker v7.10.3077 (Visual C++ 2003).
We used compiler optimization flag /O2 (i.e., /Og/Oi/Ot/Oy/Ob2/GS/GF/Gy). We linked dynamically against
Microsoft’s C++ run time library and removed unreferenced functions and data with linker flag /OPT:REF.
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Fig. 15 Binary size of three variants of NanoMail with varying sets of binding units.

bound and compiled as a single binary. In each of the configurations 2–5 an additional bind-
ing unit (e.g., QE, TXN, CRYPTO, BTREE for FAME-DBMS) is extracted from the base bind-
ing unit and compiled as a distinct dynamically linked library (DLL). In the following, we
analyze binary size, memory consumption, and performance of both SPLs. We distinguish
between compositional and functional overhead (cf. Sec. 2) for each analyzed property.

4.2.1 Binary Size

By means of the binary size of FAME-DBMS, we first describe how we calculate the func-
tional and compositional overhead. Since the functional overhead depends on the features
actually used, we provide numbers for the maximal possible functional overhead. That is, we
compare a static variant including all features with the minimal dynamic variant without ad-
ditional binding units. The binary sizes of the configurations 1–5 of FAME-DBMS are shown
in Figure 14. The values represent executable code and static data stored in the binary files.
They do not include other libraries. For configuration 1, we generated a single binding unit
including all features and five binding units for configuration 5. From configuration 1, we
can only derive a single variant with a binary size of about 50 KB. Comparing configurations
1 and 5, we observe the following compositional and functional overhead:

– Comparing a complete variant of configuration 5 (83 KB) with configuration 1 (49 KB),
we observe a compositional overhead of about 40 % (83 KB - 49 KB = 34 KB). That is,
40 % of the code from configuration 5 is required for dynamic binding.

– Comparing configuration 1 (49 KB) and the smallest variant of configuration 5 (18 KB),
we observe a maximal possible functional overhead of about 64 % for configuration 1
(49 KB - 18 KB = 31 KB). That is, up to 64 % of the code of configuration 1 may not be
used for a particular task (e.g., basic data storage and retrieval without using SQL queries
and other features). The overhead depends on the number of features that are actually
used at a particular point in time. It is zero when all features are really in use. This
underlines that a configuration highly depends on the application scenario. To reduce
the binary size, we have to avoid any features that are not used and reduce dynamic
binding to a minimum.

In our case studies, we observe an increasing compositional overhead for an increasing
number of binding units. Especially when a binding unit extends many classes the effect is
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very strong. It is quite strong for FAME-DBMS (up to 40 %, cf. Figure 14) and very weak
for NanoMail (< 4 %).

The high relative overhead of 40 % for FAME-DBMS is mainly caused by its small bi-
nary size; the absolute overhead is 33.2 KB. The composition code makes up 21 KB (25 %
of the program size): About 5 KB generic code for dynamic binding (i.e., for loading and
composing binding units; base program - composition code in Figure 14) and additionally
between 3 KB and 5 KB overhead per binding unit (i.e., binding unit specific composition
code). The remaining overhead of 12 KB (15 % of the program size) is caused by the bind-
ing units CRYPTO (9 KB) and BTREE (3 KB). Reasons are missing compiler and linker
optimizations when dynamic binding is used. In Figure 14, we depict this unused code as
binding units - unreferenced code. For example, a method for calculating a hash sum with
a binary size of 7.5 KB is not used in our FAME-DBMS benchmark application. The linker
removes the method from the statically composed variant because it is never called. The
same method cannot be removed from binding unit CRYPTO because the compiler does not
know whether it is required by another binding unit or not. Hence, dynamic binding may
cause a functional overhead as well. This overhead is not caused by entire unused features
but by unreferenced methods.

The possible functional overhead in static variants of both SPLs is very high (64 %–
94 %). The reason is that a large fraction of the binary code belongs to optional features.
Increasing the use of dynamic binding usually reduces this overhead. However, also insuf-
ficient customizability due to large binding units can cause a functional overhead when not
all features of a binding unit are used.

Both kinds of overhead can be reduced by adjusting the binding units. That is, a stake-
holder has to analyze the functional and compositional overhead per application scenario
to find the optimal tradeoff. When always using many of the binding units, the benefit of
dynamic binding with respect to resource consumption decreases. For example, the binding
units TXN and BTREE in FAME-DBMS cannot significantly reduce the functional overhead
but they increase the compositional overhead significantly. The size of the base program
is nearly the same in the configurations 4 and 5, but the additional binding unit BTREE in-
creases the overall size by 12 %. That is, if we bind the features of the binding units TXN and
BTREE statically (i.e., removing configurations 3 and 5), we do not cause a major functional
overhead but can reduce the compositional overhead significantly. Hence, a stakeholder has
to decide whether this flexibility is really needed by taking the resulting compositional over-
head into account.

4.2.2 Memory Usage

The memory usage of a program depends on allocated memory but also on the size of the
binary program code that is loaded into memory. For FAME-DBMS, we could not measure
any functional overhead of allocated memory because the memory is needed mainly for the
data buffer of the DBMS, which is independent of the feature selection. Further features
do not allocate a significant amount of additional memory. The functional overhead thus
only depends on the binary program size and dynamic binding cannot reduce the memory
consumption (cf. Figure 16). In NanoMail, memory allocation causes an additional memory
consumption between 1.3 MB and 9.8 MB depending on the binding units used. That is,
unused features allocate memory and cause a large functional overhead. On the contrary,
the varying binary size only has a small effect on memory consumption in NanoMail (about
28 %, cf. Figure 17).
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Fig. 16 Comparison of working memory usage of five FAME-DBMS variants with an equal feature selection
and an increasing number of binding units. Full program variants include all dynamic binding units. Base
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Fig. 17 Consumed working memory in NanoMail for variants with different binding units.

The compositional overhead of allocated memory especially increases if a program cre-
ates a large number of small objects that are dynamically composed. The reason is that the
size of a class instance increases for each binding unit that crosscuts the class. This overhead
is very high for small objects. The size Sdyn and the overhead Odyn of a dynamically bound
object can be calculated with the following formula:

Sdyn = Sdata +Odyn (9)

Odyn = 12(nBU +1) (10)

Sdata is the data size (i.e., the size of the object with static binding). nBU is the number of
loaded binding units that crosscut the class. The constant 12 represents the number of bytes
a binding unit requires to store a self pointer, a super pointer, and a pointer to its virtual
function table (each pointer has a size of 4 byte). The constant 1 represents the additional
proxy that we use to enable reconfiguration at run time. The proxy could be removed for
SPLs that are not reconfigured once they are instantiated. Overall, the size of an object
increases by 12 byte to enable dynamic binding and linearly increases by 12 byte for each
additional binding unit.
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Large binding units increase the functional overhead only if a small number of their
features is actually used. The compositional overhead in FAME-DBMS is more important
than the functional overhead; the opposite is true for NanoMail. The differences between
the SPLs show that there is no general solution and there is space for domain-specific opti-
mizations.

A binding unit also increases memory consumption due to the compositional overhead
of its binary size (cf. Sec. 4.2.1) because the executable code is loaded into memory. We
analyzed the overhead for loading a large number of binding units by adding several e-mail
filters to NanoMail (up to 60 mail filters).8 The results are shown in Figure 18. Besides a
general overhead for dynamic binding (transition from 0 to 1 filters), we observe a linear
increase of 21 KB per filter (i.e., per binding unit). For binding units that consume a small
amount of memory, this is a large overhead. By generating one binding unit for multiple
filters (i.e., merging the filters), this overhead can be avoided. For binding units that consume
a large amount of memory, such as the virus filter in NanoMail, dynamic binding causes an
acceptable overhead of only about 4 % compared to the memory consumption of the binding
unit.

4.2.3 Performance

We measured the performance of FAME-DBMS using a benchmark for reading and writing
data.9 As shown in Figure 19, the performance decreases with an increasing number of bind-
ing units. Comparing dynamic variants with pure static binding, we observe a performance
reduction between 5 % (2 binding units) and 28 % (5 binding units). The reason for this in-
creasing compositional overhead are method inlinings that could not be applied and more
indirections for method calls compared to static variants. Both are caused by generated code
for dynamic binding: composition of classes at run time is achieved with virtual methods in
decorators, which add an indirection and hinder inlining of method extensions.

In FAME-DBMS, 100 % of method refinements are inlined when using static binding.
This decreases to about 95 % for configuration 2 and further to 86 % for configuration 5.

8 We generated empty filter stubs to measure only the overhead for dynamic composition.
9 We used random key-value-pairs for reading and writing 10.000 records of type string via the B-Tree

index.
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Fig. 19 Comparison of benchmarks for reading and writing of different variants of FAME-DBMS. The per-
formance relative to static binding is shown. 100 % means about 3.0 Mio queries / s for reading and 0.8 Mio
queries / s for writing.

Each method refinement that is not inlined is replaced by a virtual method and thus decreases
performance. Binding unit BTREE substantially increases the overhead (cf. configuration 5
in Figure 19). The reason is that it refines methods that are invoked multiple times for a
single read or write operation. Hence, we should create only a distinct binding unit for the
Btree if this flexibility is really needed (e.g., when we have to decide at run time which kind
of index to use).

Static and dynamic binding may also affect the startup time of a program for loading
binary code from DLLs and for initialization of unused code. Due to the fairly small binary
size of binding units, we observed only an slightly increased startup time. The compositional
overhead for loading binding units is about 30 ms per additional binding unit. We observed a
functional overhead (intitialization code of features) of about 2 s for the largest binding unit
in NanoMail (the CLAMAV virus filter). Hence, the compositional overhead with respect to
program startup is very small and can be ignored in many application scenarios. In contrast,
the functional overhead for initialization of a binding unit may be important for application
scenarios that require to restart a program frequently.

To summarize, the influence of dynamic binding is quite high when a feature refines
frequently called methods. This is may be caused by a high number of method extensions
(e.g., in many binding units), but it may also be caused by a few refinements of performance
critical methods as shown for the Btree in FAME-DBMS. Again, the best size for a binding
unit has to be determined per SPL and application scenario. Merging binding units can
remove dynamic method refinements. The load time of a program can only be reduced
significantly if the execution of complex initialization code can be avoided or if large parts
of a program do not have to be loaded at startup. The number of binding units is usually
not important. For example, 30 binding units result in an overhead of about one second for
starting the programs of our case study.

5 Discussion

In this section, we discuss the results of our evaluation and analyze how customizability and
SPL development is influenced by our approach. Finally, we derive a guideline for building
SPLs that support static and dynamic binding.
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Fig. 20 Relative size of three objects with a data size of 4, 16, and 64 bytes for an increasing number of
dynamic extensions (i.e., crosscutting binding units).

5.1 Resource Consumption

Our evaluation has shown that, depending on the binding time, a compositional and func-
tional overhead occurs in a running program with regard to binary size, memory consump-
tion, and performance. The compositional overhead caused by a binding unit depends on
its entanglement with other binding units. That is, method calls across the boundary of a
binding unit (i.e., via its interface) introduce an execution time overhead. The interface of
a binding unit consists of virtual methods to enable dynamic binding. This hinders method
inlining, introduces indirections, and increases the size of generated code as well as the size
of objects in a running program. Hence, a binding unit should contain feature sets that are
used in combination. For example, the effect on memory consumption is very high when
allocating a large number of small objects. In Figure 20, we depict the computed relative
size (cf. Equation 9) of three different objects with 4, 16, and 64 bytes user data with an
increasing number of dynamic extensions (i.e., dynamic binding units that crosscut the ob-
ject). For an object with 4 byte user data, two dynamic extensions increase the object size
by a factor of 10. If such objects are the main cause of memory consumption of a program
then the memory consumption also increases by a factor of 10. For larger objects, this effect
is much smaller. Combining static and dynamic binding reduces the number of dynamic
binding units and can thus highly decrease the memory consumption.

However, large binding units introduce a potential functional overhead due to features
that are not used. Splitting binding units can reduce the functional overhead, but we have
shown that this effect can be smaller than the introduced compositional overhead. Further-
more, we have shown that dynamic binding may also introduce an overhead due to unused
methods that can be removed by the linker when using static binding. An advantage of our
approach is that it allows a programmer to find a balance between compositional and func-
tional overhead that is suitable for her needs.

As shown in Figure 21, our approach provides pure static and pure dynamic composition
(lower left and upper right points) as well as all combinations with varying sets of binding
units (shown as triangle). When creating binding units, the compositional overhead can be
reduced for a constant number of dynamically bound features by increasing the number
of features per binding unit (arrow in upper part of Figure 21). The functional overhead
can be reduced in two ways (lower left arrows): On the one hand, increasing the number of
dynamically bound features (i.e., moving features from the base program into a binding unit)
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Fig. 21 Combining static and dynamic binding to support a varying number and size of binding units.

reduces the size of the base program. On the other hand, increasing the number of dynamic
binding units (i.e., splitting the binding units) reduces the size of each binding unit.

Optimizing Resource Consumption. Our approach and its current implementation does not
provide an optimized solution for every application scenario. To optimize memory con-
sumption and execution time, we already provide different code transformations to generate
applications that use a single SPL instance only or programs that use multiple instances of
an SPL (cf. Sec. 3.4.3). However, we can further optimize the code transformation process
to reduce the compositional overhead caused by dynamic binding. For example, we can re-
duce memory consumption by allocating a dynamically composed object in a single block
of memory instead of multiple blocks – one for each decorator. This allows us to reduce the
object size by removing the super and self pointers. Instead, we can compute the memory
addresses of the super object and the compound object for each compound class at instan-
tiation time, as it is also done for inheritance by C++ compilers [27]. Hence, the memory
consumption of small dynamically composed objects (e.g., as shown in Figure 20) could be
reduced to about one third. However, this solution is only better suited for SPL configuration
at load time. Using this approach for reconfiguration at run time (e.g., adding a new refine-
ment to an already existing object) means that we have to reallocate the whole object when
its size increases (i.e., when a new feature is loaded). This may highly increase the time
required for adaptation. Hence, such optimizations are usually well suited for a particular
application scenarios only.

5.2 Customizability and SPL Development

Granularity and Flexibility. Due to the dynamic binding capabilities of FeatureC++, a de-
veloper can achieve extensibility of a program after deployment. Additionally, features can
be bound statically, which supports fine-grained extensions without increasing the execu-
tion time. For example, the B-Tree in FAME-DBMS is built from many small features (e.g.,
features for write support) that can be statically configured. This allows us to achieve a per-
formance and memory consumption comparable to static binding with the C preprocessor,
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as we have shown in previous work [35]. Fine-grained extensions and dynamic binding
are opposite optimization goals with respect to performance and memory consumption. The
more fine-grained the extensions are, the more memory and computing power is required
for dynamic binding (cf. Figure 20). Our approach allows a programmer to combine both
binding times as needed per application scenario.

Reuse. The combination of both binding times increases reuse possibilities in different ap-
plication scenarios. For example, we can statically bind all features of FAME-DBMS for
deeply embedded devices and support dynamic binding for other platforms. Furthermore,
binding time flexibility enables reuse of features across different SPLs that use different
binding times. For example, we can reuse a feature that implements a communication proto-
col in an e-mail client SPL that uses dynamic binding and also in an e-mail server that uses
static binding.

Crosscutting Features. With our approach, static binding can also be used for crosscutting
features that are spread across multiple dynamic binding units. These features are usually
implemented with preprocessors [19] or design patterns [30,41]. Adding or removing such
features is possible by rebuilding the affected binding units. For example, in FAME-DBMS,
WRITESUPPORT is a crosscutting feature that affects several binding units such as the query
engine, indexes, etc. Using FeatureC++, we can add or remove this feature and have to
rebuild only the affected binding units.

Development and Maintenance. Using a single mechanism for implementing features (i.e.,
feature modules) also simplifies SPL development. A programmer may combine Fea-
tureC++ with other variability mechanisms (design patterns, macros, #ifdefs, etc.) or may
replace other mechanisms by feature modules. Especially the use of #ifdefs can be reduced
to improve the comprehensibility of source code. Binding time flexibility can also sim-
plify maintenance of an SPL. For example, dynamic binding can be replaced temporarily by
static binding for debugging purposes to avoid the complexity of dynamic binding. Finally,
the presented approach can also be applied if initially only static binding is required. In this
case, it simplifies adoption of dynamic binding (e.g., in later versions of an SPL, as shown
for FAME-DBMS).

5.3 A Guideline for Defining Binding Units

When configuring an SPL for static and dynamic binding, we have to answer two questions:
Which features have to be bound dynamically? Which dynamically bound features should
be composed into the same binding unit? With our approach, a domain expert can decide
this per application scenario. Static binding does not exhibit any compositional overhead.
It is usually the best choice if extensibility after deployment or at run time is not required.
The remaining challenge for a domain expert is to find proper binding units for dynamically
bound features to provide the required flexibility while minimizing the overhead. Therefore,
resource consumption of different feature combinations has to be analyzed, which means a
high effort and may be impractical. The following rules can be used to find good feature
combinations for binding units more easily:

1. As a simple rule, a large number as well as a large size of binding units should be
avoided because the first increases the compositional overhead and the latter increases
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the functional overhead. However, as depicted in Figure 21, this cannot be a fixed rule
because reducing one overhead may increase the other.

2. Analyzing the feature model helps to find features that should be combined in a binding
unit. For example, a feature and all its children should usually be part of the same bind-
ing unit. Similarly, a requires constraint between two features indicates that the features
are used in combination and may also be combined into the same binding unit.

3. Furthermore, we can analyze the source code of features. A high degree of coupling
between features indicates which features are commonly used together [3]. Hence, it
can be beneficial to merge them into a single binding unit. Crosscutting features should
be bound statically if possible. An automated analysis of coupling and cohesion could
be used to provide an initial assignment of dynamically bound features to binding units.

4. Implementation knowledge can be used to find features and methods that are important
with respect to performance and memory consumption. For example, frequently called
hot spot methods should ideally be bound statically. If this is not possible, they should
be defined in a single binding unit only. This causes the method to be bound dynamically
but avoids a decomposition of the method into multiple fragments. Similarly, when al-
locating a large number of small objects (such as list elements), the corresponding class
should be defined in a single binding unit.

To further reduce the overhead of a program, different optimizations of binding units are
possible. For example, overlapping binding units (i.e., binding units that use an overlapping
set of features) can be created to provide binding units with a small interface or to reduce
the number of binding units. Another optimization is to split or merge binding units when
the requirements have changed over time or when an analysis at runtime has identified how
the binding units are actually used. For example, binding units that are often or always used
in combination can be merged into a single binding unit without changing the source code.

6 Related Work

There are approaches for software composition that employ different techniques or
paradigms to support different binding times. For example, CaesarJ [8] supports static com-
position based on virtual classes and dynamic deployment of aspects. Object Teams support
dynamic binding of teams, which can be used to represent features of an SPL [22]. Further-
more, activation teams are statically instantiated. These in turn activate other teams at run
time. Both approaches require to know the binding time of an implementation unit at design
time. In contrast, we can choose the binding time at deployment time to enable reuse of
source code even when using different binding times.

Zdun et al. introduce transitive mixins to generalize composition of classes and ob-
jects [42]. The implementation provided in [42] is built on top of a dynamic approach that
does not support static composition. Chakravarthy et al. provide with Edicts an approach
that supports different binding times using design patterns that are applied to a program
by means of aspects [13]. Configuration is done by switching between Edicts. Czarnecki et
al. describe how to parameterize the binding time using C++ templates [15]. They provide a
configurable binding time (e.g., for class extensions) with a template-based program genera-
tor. The OSGi10 standard also allows static and dynamic composition of components, called
bundles. However, it is a component-based approach that does not allow a system to be
decomposed into fine-grained (crosscutting) features. Other approaches support static and

10 http://www.osgi.org
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dynamic binding of aspects. AspectC++ supports weaving at run time and compile time for
the same aspect [18]. AspectJ supports weaving advice at compile-time, after compile-time,
and at load time.11 PROSE [31], Steamloom [11], Hotwave [40], and other AspectJ-based
approaches support weaving at run time and may be combined with AspectJ’s static weav-
ing. These AOP approaches can be used to support multiple class extensions at the same
time as in FOP.

In contrast to FeatureC++, the approaches above do not provide a mechanism for feature
composition according to a feature model, which is necessary for validation. Nevertheless,
they can be combined with tools that support configuration and static composition of SPLs
such as pure::variants [34]. However, the approaches do not provide a mechanism for con-
figuration at run time that is based on a feature model. Similar to our approach, the mecha-
nisms combine static and dynamic binding. Approaches such as Edicts and AspectC++ can
be used to bind a feature statically or dynamically with the base program without changing
the implementation. However, they do not provide means to statically merge an arbitrary
set of dynamically bound features into a single binding unit and compose the binding units
dynamically. One reason is that these approaches do not preserve the execution order of
method extensions when mixing both binding times in this way. Applying static binding first
and dynamic binding afterwards changes the feature composition order (all static features
are bound before dynamic features). This in turn may change the behavior of methods that
are refined by statically and dynamically bound features (e.g., statically and dynamically
weaved aspects that have the same join point). We solve this by generating hook methods,
as described in Section 3.4.3.

Lee et al. suggest to decide before SPL development which features to implement in
one component and to combine the resulting components at run time [24]. Griss argues that
components and novel approaches to software composition should be combined to develop
SPLs [19]. He discusses different approaches that may be used to customize components
when the feature selection changes. Our approach goes into the same direction. It uses only
a single implementation technique that supports static and dynamic binding. We also think
that components have to be planned before SPL development, but the selection of concrete
features and component customization has to happen at deployment time.

Our approach is partially based on the Delegation Layers approach [32], which supports
dynamic binding of features. Several other collaboration-based approaches and layered de-
signs such as Jak [9], Java Layers [12], Jiazzi [29], Mixin Layers [38], Aspectual Feature
Modules [6], Aspectual Collaborations [25], and Context-oriented Programming [21] also
support either static or dynamic composition. In contrast to these approaches, our approach
integrates static and dynamic binding.

FeatureC++ supports composition at run time but is not a full-fledged solution for run
time adaptation of SPLs. For example, we do not provide an infrastructure for context de-
pendent activation and deactivation of features. It is not without reason that there is a whole
branch of research on run time adaptable SPLs [20]. Nevertheless, solutions for run time
adaptation can be built on top of FeatureC++ to combine traditional SPLs with run time
adaptable SPLs and to additionally support static customization of components.

11 http://eclipse.org/aspectj
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7 Conclusion and Perspective

We have presented an approach that seamlessly integrates static and dynamic feature binding
at implementation and modeling level. Our approach allows developers to statically generate
dynamic binding units that can be composed at load time or at run time of a program. The
approach overcomes limitations of pure static and pure dynamic binding and can be used to
replace existing approaches by using only a single implementation mechanism. We provide
means to:

– develop the features of an SPL using a single implementation mechanism that is inde-
pendent of the binding time,

– choose the binding time per feature after development,
– generate dynamic binding units by composing multiple features to optimize resource

consumption.
Compared to alternative solutions for implementing static and dynamic feature binding, our
approach simplifies several aspects of SPL development. With respect to resource consump-
tion, we found a tradeoff between functional overhead caused by static binding and com-
positional overhead caused by dynamic binding. Finding the optimal binding time for the
features of an SPL is a difficult task. Varying requirements on flexibility between different
application scenarios further complicate the decision. Our proposal of generating dynamic
binding units, allows an SPL developer to choose the binding time per feature even after
development and for each application scenario individually.

In future work, we plan to integrate our approach with component-based software de-
velopment (e.g., to simplify component integration and to avoid dynamic binding of com-
ponents if it is not required). This means that a binding unit has to clearly define an interface
that can be used by other binding units.
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