

Edinburgh Research Explorer

Monitoring energy hotspots in software

Citation for published version:
Noureddine, A, Rouvoy, R & Seinturier, L 2014, 'Monitoring energy hotspots in software', Automated
Software Engineering, pp. 1-42. https://doi.org/10.1007/s10515-014-0171-1

Digital Object Identifier (DOI):
10.1007/s10515-014-0171-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automated Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Apr. 2024

https://doi.org/10.1007/s10515-014-0171-1
https://doi.org/10.1007/s10515-014-0171-1
https://www.research.ed.ac.uk/en/publications/ea95ee2b-6fb6-4126-a5b7-f10373e8268a

Noname manuscript No.
(will be inserted by the editor)

Monitoring Energy Hotspots in Software

Energy Profiling of Software Code

Adel Noureddine · Romain Rouvoy ·
Lionel Seinturier

Received: date / Accepted: date

Abstract Green IT has emerged as a discipline concerned with the optimiza-
tion of software solutions with regards to their energy consumption. In this
domain, most of the state-of-the-art solutions concentrate on coarse-grained
approaches to monitor the energy consumption of a device or a process. In
this paper, we report on a fine-grained runtime energy monitoring framework
we developed to help developers to diagnose energy hotspots with a better
accuracy.

Concretely, our approach adopts a 2-layer architecture including OS-level
and process-level energy monitoring. OS-level energy monitoring estimates
the energy consumption of processes according to different hardware devices
(CPU, network card). Process-level energy monitoring focuses on Java-based
applications and builds on OS-level energy monitoring to provide an estimation
of energy consumption at the granularity of classes and methods. We argue
that this per-method analysis of energy consumption provides better insights
to the application in order to identify potential energy hotspots. In particular,
our preliminary validation demonstrates that we can monitor energy hotspots
of Jetty web servers and monitor their variations under stress scenarios.

Keywords Power Model, Power Monitoring, Energy Consumption

Adel Noureddine
INRIA Lille – Nord Europe, University Lille 1 - LIFL CNRS UMR 8022, France E-mail:
adel.noureddine@inria.fr

Romain Rouvoy
INRIA Lille – Nord Europe, University Lille 1 - LIFL CNRS UMR 8022, France E-mail:
romain.rouvoy@inria.fr

Lionel Seinturier
INRIA Lille – Nord Europe, University Lille 1 - LIFL CNRS UMR 8022, Institut Universi-
taire de France, France E-mail: lionel.seinturier@inria.fr

2 Adel Noureddine et al.

1 Introduction

Energy-aware software solutions are becoming broadly available, as energy
concerns is becoming mainstream. The increasing usage of computers and
other electronic devices (e.g., smartphones, sensors) is continuously impacting
our overall energy consumption. Predictions for the next 20 years outlook a
global rise of energy costs [18], in addition to an expected increase of the
carbon footprint of Information and Communications Technology (ICT) in
2020 [22]. Although ICT helps in reducing the energy footprint of other sectors
(such as with transportation or in buildings) [22], its power consumption is
predicted to rise and double from 168 Gigawatt (GW, or around 7%) to 433
GW (or more than 14.5%) of worldwide power consumption in 2020 [21].
These numbers illustrate the opportunities for efficient ICT solutions to reduce
energy consumption, and therefore help in reducing carbon emissions. Rising
energy costs in computers and mobile devices require the optimization and the
adaptation of computer systems. In this domain, research in Green IT already
proposes various approaches aiming at achieving energy savings in computers
and software. However, most of the state-of-the-art approaches either focus
only the hardware [11], or only offer coarse-grained energy estimation feedback
of software [7,5].

In this article, we therefore propose to gather fine-grained applications’
power feedback information at runtime and with similar accuracy as hard-
ware monitoring while using only a software approach. Our approach, called
e-Surgeon, consists of a system monitoring library (at the operating system
level), called PowerAPI, and a software monitoring agent (at the software
level), called Jalen. e-Surgeon estimates the power consumption of appli-
cations’ source code methods, in real-time, based on raw information collected
from hardware devices (e.g., CPU, network card) through the operating sys-
tem (for PowerAPI), and from raw information collected from software (CPU
time, bytes transmitted through network) through byte code instrumentation
or statistical sampling (for Jalen). We use both state-of-the-art power models
and propose new models for estimating the power consumption of software at
a finer grain.

As a first implementation, we target Java-based applications and we val-
idate our approach using standard application servers, such as the Jetty
Web Server1. Our preliminary results demonstrate that we can diagnose power
hotspots of Java-based applications at runtime, offering opportunities to re-
duce their power consumption.

Our work extends our previous propositions and experimentations in mea-
suring the impact of programming languages and algorithms in [12] with a
finer grain approach down to the code level. And also, it extends our work
on code level monitoring in [13] with new implementations that yields the
limitations of our previous approach. In addition, we propose an extension of

1 http://www.eclipse.org/jetty

Monitoring Energy Hotspots in Software 3

our preliminary approaches and results on modeling the energy consumption
evolution of software code based on input parameters [14].

The remainder of this article is organized as follows. In Section 2, we de-
scribe our motivations and the main challenges we tackle. Section 3 describes
the formulas and power models we propose to estimate the energy consump-
tion of software. Section 4 describes our approach, the design of our proposed
architecture and its implementation. In Section 5, we report on the prelimi-
nary results we obtained and we validate them using a stress benchmark for
the Jetty Web Server in Section 6. We discuss the results of our experimen-
tations in Section 7, while we discuss inferring the energy variation model of
software code in Section 8. Futures directions are discussed in Section 9, while
related work is discussed in Section 10. Finally we conclude in Section 11.

2 Motivation and Challenges

2.1 Motivation

Nowadays, power management of software and hardware is achieved either
through runtime coarse-grained monitoring, or through analyzing dump files of
the application’s resources utilization [11,19,9]. Although these approaches al-
low power management of software, they do not allow runtime and fine-grained
monitoring of the applications. Fine-grained monitoring and visualization have
many advantages: i) diagnose at a detailed level the power consumption and
detect power hotspots at the threads and methods level, ii) provide detailed
power information to be used for runtime power-aware software adaptation,
and iii) helps in providing insights to developers for producing power-efficient
code. The Green Challenge for USI 2010 [2] has identified that profiling appli-
cations to detect CPU hotspots is a winning strategy for limiting the power
consumption of applications. Therefore, we argue that a fine-grained approach
for proposing power-aware information is a keystone for future power-aware
systems and software.

2.2 Challenges

Hardware monitoring of energy is usually achieved through additional hard-
ware measurement equipment, such as multimeters or specialized integrated
circuits (see Section 10). This approach offers a precise and accurate measure-
ment of the power consumption of hardware components but at a cost of an
additional investment. However, it can neither monitor the power consump-
tion of software components, nor go into the details of software classes and
methods usages. We rather believe that a scalable approach can be better ob-
tained through a software-centric approach. Monitoring the power consump-
tion of software has to yield many challenges in order to build an accurate
software-centric approach. We outline some of the main difficulties that soft-
ware monitoring has to cope with if accurate monitoring is to be offered:

4 Adel Noureddine et al.

– Accuracy. The biggest problem that software monitoring tools face is
providing accurate estimations of power consumption based on various col-
lected information. Unlike hardware measurement, software approaches use
power models in order to provide an estimation of the power consumption
of software components. However, these estimations tend to have different
degrees of accuracy and overhead.

– Overhead. As software approaches monitor the executing software and
calculate a power estimation of their consumption, an overhead is therefore
always observed. The latter depends both on the degree of accuracy needed
and on the size of the monitoring tool and the monitored application. This
leads to a tradeoff between the accuracy requirements and the cost of the
software monitoring tool.

– Fine-grained. Many of the current approaches (see Section 10) stop their
power consumption estimation at the process level. Some of these ap-
proaches provide limited fine-grained but still raw values (such as execution
time of methods or active time of threads). However, providing fine-grained
estimation of the power consumption of software components is not as intu-
itive as mixing raw values and power models. The question arises to know
which raw values are needed. How can we collect them? Which power mod-
els can we use and in which context?

– Power Models. Models to estimate the power consumption have already
been proposed (see Section 10). However, most of these models are coarse-
grained and hardware related, such as providing general formulae for power
consumption of the hardware components (e.g., CPU, Network card). Mod-
els therefore need to be optimized for our context of fine-grained power
consumption computation.

– Hardware and Software relation. Energy, in the physical world, is ac-
tually consumed by hardware. We consider the energy consumption of soft-
ware as the energy consumed by hardware following a request of software.
In particular, if an application requires a certain number of CPU cycles for
computing a task, then the energy consumed by the CPU for these cycles is
considered the energy consumed by the application. Challenges arise when
hardware properties impact energy consumption unrelated to software. For
example, if some data were stored in a file or in the RAM memory, then the
CPU would require different amount of time for executing the same task,
therefore consuming more energy. Other factors also impact energy, such
as temperature, hardware characteristics (e.g., silicon capacitance, mate-
rial imperfections), that go beyond our scope of computer science and into
the scope of physics.

Laying these challenges, we propose in the next sections an approach named
e-Surgeon, for monitoring and profiling applications at runtime. In particu-
lar, we start with describing our power models, then the details of our reference
architecture and its implementation.

Monitoring Energy Hotspots in Software 5

3 Power Models

We propose a comprehensive power model using our proposed formulae as
well as formulae taken from the state-of-the-art. In [19], the energy cost of a
software is computed based on the following formula:

Esoftware = Ecomp + Ecom + Einfra (1)

Where Ecomp is the computational cost (i.e., CPU processing, memory access,
I/O operations), Ecom is the cost of exchanging data over the network, and
Einfra is the additional cost incurred by the OS and runtime platform (e.g.,
Java VM).

We base our model on a similar principle, taking into account the modular
aspect of the power calculation (e.g., the sum of the power consumption of
different hardware components). Infrastructure power, Einfra, is included in
the computational cost of our power models and in our prototype. Power (in
watt) is computed as the energy consumption (in joule) per unit of time (one
second). From this, we can abstract our global power formula to the following:

Psoftware = Pcomp + Pcom (2)

At this stage, we define two models, one for CPU computational costs and
one for network communication costs. Pcomp is therefore equal to the CPU
power consumed by software, and Pcom is equal to the power consumed by
the network card for transmitting software’s data. Next, we detail the CPU
and network power models we use in PowerAPI, and the CPU and network
power models we use in Jalen.

3.1 PowerAPI Power Models

CPU Model

The CPU power consumed by a specific application (in our case we use process
PIDs) can be represented by the following formula:

PPID
CPU (d) = PCPU (d)× UPID

CPU (d) (3)

Where PPID
CPU (d) is the CPU power consumed by the specific process PID

during a given duration d, PCPU (d) is the overall CPU power during d and
UPID
CPU (d) represents the process CPU usage during d. Thus, our approach is

to estimate the power required by the CPU to execute the process PID. This
is achieved by computing the CPU percentage usage of the PID by the overall
CPU power during a given duration d. Next, we detail our model in order
to compute PCPU (d), the global CPU power, and UPID

CPU (d), the process CPU
usage.

6 Adel Noureddine et al.

Overall CPU power

The overall power consumption for the majority of modern processors (CMOS2)
follows the standard equation [15]:

P f,v
CPU = c× f × V 2 (4)

Where f is the frequency, V the voltage and c a constant value depending
on the hardware materials (such as the capacitance and the activity factor).
Thanks to this relation, we note that power consumption is not always linearly
dependent to the percentage of CPU utilization. This is due to DVFS (Dy-
namic Voltage and Frequency Scaling) and also to the fact that power depends
on the voltage (and subsequently the frequency) of the processor. For example,
a process at 100% CPU utilization will not necessarily consume more power
than a process running at 50% CPU utilization but with a higher voltage.
Therefore, a simple CPU utilization profiler is not enough in order to monitor
power consumption. Our power model takes into consideration these aspects
of the CPU and allows accurate power consumption monitoring.

According to formula (4), computing the overall CPU power for a given
time is equal to computing a static part (the constant c) and a dynamic
part (the frequency f and its associated voltage V). For the static part, the c
constant is a set of data describing the physical CPU (e.g., capacitance, activity
factor). Manufacturers may provide this constant, but in most cases this value
is missing. To alleviate this problem, we use the existing relation between the
overall power of a processor and its Thermal Design Power (TDP) value. TDP
represents the power the cooling system of a computer is required to dissipate
the heat produced by the processor. Therefore, the overall CPU power can be
associated with the TDP as described in the following formula [17]:

P fTDP ,VTDP

CPU ' 0.7× TDP (5)

Where fTDP and VTDP represent respectively the frequency and the voltage
of the processor within the TDP state. The benefit of using this formula is that
TDP is a value provided by most manufacturers. In our architecture, TDP is
stored in PowerAPI’s local database.

For the dynamic part, the frequency f is associated to a specific voltage
V. For a given voltage, one or more frequencies are associated. Thus, lowering
the voltage results in changing frequency. The other way around is also valid,
although in some cases a single voltage can support more than one frequency.
Frequencies used by a processor are provided by the operating system APIs,
while voltages are given by manufacturers.

Process CPU usage

In order to compute the CPU usage for a given process (identified by its PID),
we propose to calculate the ratio between the CPU time for this PID and the

2 Complementary Metal Oxide Semiconductor

Monitoring Energy Hotspots in Software 7

global CPU time (the time the processor is active for all processes) during a
duration d :

UPID
CPU (d) =

tPID
CPU

tCPU
(d) (6)

Our approach is inspired by well-known tools such as the Top Linux program3.
Thus, the CPU power consumption in a duration d and for a given frequency
f, P f

comp of formula (2) is equal to :

P f
comp =

0.7× TDP

fTDP × V 2
TDP

× f × V 2 × tPID
CPU

tCPU
(d) (7)

When the processor supports Dynamic Voltage and Frequency Scaling
(DVFS), the CPU power consumption for a process Pcomp is equal to the
average of the CPU power of each frequency balanced by the CPU time of all
frequencies:

Pcomp =

∑
f∈frequencies P

f
comp × tfCPU∑

f∈frequencies t
f
CPU

(8)

3.1.1 Network Model

The network power of a process is calculated using a formula similar to the
CPU power formula. We base our model on available information whether
they are collected at runtime or provided by manufacturers’ documentations.
As a first step, we focus on Ethernet network cards. A similar model using a
linear equation can be applied for wireless network cards [6], but we did not
investigate wireless cards yet. We obtain, from manufacturers’ documentations
the power consumed (in watt) for transmitting bytes for a certain duration
(typically one second) according to a given throughput mode of the network
card (e.g., 1 MB, 10 MB). Our network power model is therefore defined as:

Powernetwork
process =

∑
i∈states ti × Pi × d

ttotal
(9)

Where Pstate is the power consumed by the network card in the state i (pro-
vided by manufacturers), d is the duration of the monitoring cycle, and ttotal
is the total time spent in transmitting data using the network card.

In the next section, we detail the CPU and network power models in Jalen.

3.2 Jalen Power Models

3.2.1 CPU Model

Using the information collected from profiling applications and the monitored
system, we are able to calculate a reasonable estimation of the CPU time per

3 http://linux.die.net/man/1/top

8 Adel Noureddine et al.

method. And we use this information to compute the CPU power consumed per
method and thread. As application code is generally executed inside threads
(i.e., Java), we first calculate the power consumed per thread. For that, we
apply the following formula:

PowerCPU
thread =

TimeCPU
thread × PowerCPU

process

Durationcycle
(10)

Where TimeCPU
thread is the CPU time of the thread in the last monitoring cycle

(obtained from the environment, such as the OS or the JVM), PowerCPU
process

is the power consumed by the application process in the last monitoring cycle
(obtained from PowerAPI), and Durationcycle is the duration of the mon-
itoring cycle. We then filter the methods to get the list of methods running
in the last monitoring cycle (whether they are still running or not). For each
thread, we get the methods that it invoked from the list (a thread usually has
its own execution stack, which is made of frames. A frame represents a method
invocation). Furthermore, we estimate with a good accuracy the CPU time for
each method using the following formula:

TimeCPU
method =

Durationmethod × TimeCPU
thread∑

m∈Methods Durationm
(11)

Where Durationmethod is the execution time of the method in the last mon-
itoring cycle, and

∑
Durationmethods is the sum of the execution time of all

methods in the last monitoring cycle.
Finally, we calculate the power consumed per method using this formula:

PowerCPU
method =

TimeCPU
method × PowerCPU

thread

Durationcycle
(12)

3.2.2 Network Model

We calculate the network power using the number of bytes transmitted by
the application. We first calculate the number of bytes read/written in the
last monitoring cycle. Then, we collect the network power consumed by the
application process from our system library PowerAPI. The network power
consumed per method is therefore:

PowerNetwork
method =

Bytesmethod × PowerNetwork
process

Bytesprocess
(13)

Where Bytesmethod is the number of bytes read and written by the method,
PowerNetwork

process is the power consumed by the application, and Byteprocess is
the number of bytes read and written by all methods of the application.

The network power consumption per thread is therefore the sum of the
network power of all methods running in the thread as shown in the following
formula:

PowerNetwork
thread =

∑
PowerNetwork

methods (14)

In the next section, we describe the architecture and the implementation
of e-Surgeon.

Monitoring Energy Hotspots in Software 9

4 e-Surgeon Design and Approach

In this section, we present our power monitoring approach called e-Surgeon.
The e-Surgeon architecture is composed of two distinct but complementary
parts: a system-level power monitoring environment called PowerAPI; and a
software-level application profiling environment called Jalen. These two parts
work along each other in order to provide accurate runtime energy information
at the application level (threads and methods levels). Figure 1 depicts the
monitoring methodology of our approach, where the order of each step of the
approach is numerically marked in the figure. Blue boxes represent the existing
environment, such as applications and hardware, while the green ones represent
data and models we use to estimate energy consumption. The remaining boxes
represent the each of the steps of our architecture. These steps are implemented
in our parts, PowerAPI and Jalen. In details, we start first by monitoring
the hardware resources utilization (step 1 in Figure 1), for example, we monitor
the actual frequency and voltage of the CPU. In step 2, we use the collected
information in step 1 along with constructors documentations about hardware
in order to estimate the energy consumption of hardware, using our energy
models. In step 3, we apply a similar monitoring strategy as in step 1 in
order to monitor resources utilization by applications. Then, step 4 estimates
the energy consumption of software using our energy models and the energy
consumption calculated at step 2. Finally, we monitor resources utilization at
source code level in step 5, and estimate their energy consumption in step 6
using our energy models and the energy consumption calculated at step 4.

Hardware resources
utilization

Hardware energy
consumption

Software energy
consumption

Resources usage by
software

Software

Hardware & OS

Constructors
documentation

Energy models

Resources usage by
software code

Code energy
consumption

3

1

2

4

5 6

Fig. 1 e-Surgeon monitoring methodology.

10 Adel Noureddine et al.

4.1 PowerAPI

4.1.1 Architecture

PowerAPI is a system library providing a programming interface (API) to
monitor at runtime the power consumption of software at the granularity of
system processes. Each process can therefore be monitored for its power con-
sumption with a good estimation in comparison to using hardware power me-
ters. PowerAPI implements steps 1 to 4 in Figure 1. The library also offers
energy differentiation values based on hardware resources, such as giving the
energy consumed by the process on the CPU, or on the network or on other
supported hardware resources. In our approach, we consider an application as
a process, therefore if an application is executed in two processes, then the
total power consumption of the application is the sum of these two processes.
This additional calculation can be done manually, we prefer in our approach
to handle processes as independent entities. Note that if a process is using
system calls, then the power consumed by these calls is included to the power
of the process only if the operating system executes them in the same moni-
tored process. If these calls are executed in a separate process, then they are
not included in the results of the main monitored process. In particular, if the
application A calls a method sysCall that is part of the operating system’s
available API, then the energy consumed by sysCall is computed as being
consumed by the application A, if and only if the OS executes this system call
in the same process as the application.

PowerAPI’s architecture is modular as each of its components is repre-
sented as a power module (see Figure 2). It uses an event bus with the pub-
lish/subscribe paradigm in order for modules to communicate. First, sensors
modules (e.g., SCPU , SNetwork) are responsible for gathering operating system
and hardware related information. For example, the CPU sensor gathers the
time spent by the CPU, for the monitored process, at each of the processor
frequencies (when DVFS is supported). This information is then published to
all listening modules in the event bus.

The second step is where formulas modules listen to the published sensors
data, and estimate the power consumed for the monitored process. Formulas
modules use hardware characteristics (such as the CPU voltage for each fre-
quency, which are often provided by hardware constructors) in the calculation
as seen in Section 3.

Then, listeners modules listen to the event bus and gather the published
data of formulas modules. A CPU File listener module is therefore responsible
for writing to a file the CPU power consumption of the monitored process.
The All Graphic listener displays a graph that is updated with the power
consumption of the monitored process for all supported hardware components
(e.g., CPU, Network, etc.). The API allows users to query the different mod-
ules and get information about sensors, formulas, or directly get the energy
consumption through listeners. Next, we describe the implementation of Pow-
erAPI.

Monitoring Energy Hotspots in Software 11

Event Bus API

Listeners
CPU

Graphic

CPU
File

All
Console

All
Graphics

Sensors

Others

CPU

Network Formulas

Others

CPU

Network

Publish
Subscribe

Fig. 2 PowerAPI Reference Architecture. Each group of modules is displayed in a different
color for clarity.

4.1.2 Implementation

PowerAPI is implemented in Scala 4 and is based on an event-driven ar-
chitecture. PowerAPI is based on a modular and asynchronous event-driven
architecture using the Akka library 5. Its architecture is centralized around
a common event bus where each module can publish/subscribe to sending
events. One particularity of this architecture is that each module is in pas-
sive state and reacts to events sent by the common event bus. One objective
of PowerAPI is to provide a simple and efficient way to estimate the energy
consumption of a given process. Simple, because API is close to the user re-
quirement, and efficient, because the library is an actor-based framework in
which the user builds the library by choosing modules to consider for the user’s
particular requirements. PowerAPI is thus limited to the user’s needs, avoiding
any extra computational cost.

PowerAPI can be used either as a standalone application (for example,
running the program in a terminal), or as an API in other software. In the
latter case, the application loads and starts modules on demand. For example,
a Java application requiring monitoring the power consumption of a process
for the CPU component will load the CPU sensor and formula modules as
provided in the following listing:

PowerAPI . startEnergyModule (powerapi . formula . cpu . dv f s . CpuFormula . class) ;

Then, the application asks PowerAPI to start monitoring the process by
providing its Process ID (PID) as follows:

PowerAPI . s ta r tMon i to r ing (new powerapi . core . Process (PID) ,
Duration . c r e a t e (500 , ” m i l l i s e c ond s ”) , null ,
powerapi . l i s t e n e r . cpu . f i l e . CpuListener . class) ;

4 http://www.scala-lang.org/
5 http://akka.io/

12 Adel Noureddine et al.

PowerAPI will then load all modules, and starts monitoring the process PID
while writing to a file the power values each 500 milliseconds.

We provide a modular library where only parts of its components are
platform-dependent. Its modularity allows easy porting of the library while
retaining most of its power modeling code. Although PowerAPI works as a
standalone library, it is used in addition to our application power monitoring
component: Jalen.

4.2 Jalen

4.2.1 Architecture

Jalen is a software-level profiling architecture. It is responsible for profiling
running applications and estimating their energy consumption at a finer grain,
i.e., at threads or methods level. Jalen implements steps 5 and 6 in Figure 1.
Several profiling techniques can be used, such as byte code instrumentation or
sampling the application. Each of these methods has benefits and drawbacks.
Statistical sampling does not modify the code of the application, and provides
an overview of the application’s energy consumption. However, it is less ac-
curate than code instrumentation. Instrumentation injects profiling code into
the application’s code (or byte code), therefore allowing the profiler to capture
all the necessary events related to energy consumption. On the other hand,
instrumentation adds an overhead for running the additional code. This over-
head depends on the added code and may be constant or may vary between
executions (e.g., whether the added code execute method related tasks or not,
such as filling a map with data). Our approach, however, does not specify a
single method of profiling. We prefer to keep this as a technical choice during
implementation and to use dedicated APIs to communicate with the profiler
and the low-level monitoring environment

Java Virtual Machine

Java application

Code energy
consumption

Hardware & OS Application level
monitoring

Jalen

Fig. 3 The Jalen Architecture.

The profiling part introspects the application at runtime, collecting statis-
tics about its resources utilization. Information, such as methods durations,
CPU time, or the number of bytes transferred through the network card, are

Monitoring Energy Hotspots in Software 13

collected and classified at a finer grain, e.g., for each method of the applica-
tion. Next, a correlation phase takes place to correlate the application-specific
statistics with the process-level power information. Details on our power model
for the correlation are presented in Section 3. Finally, the per-method or per-
thread power consumption information is displayed to the user and can be
exposed as a service (to be used, for example, in an application’s autonomous
adaptation cycle). Figure 3 depicts the Jalen’s architecture for Java applica-
tions.

4.2.2 Implementation

We implement Jalen in the Java programming language, and as part of the
e-Surgeon architecture. The availability of a virtual machine helps also in
retrieving vital information for our model. Therefore, we decide to take advan-
tage of what a virtual machine can offer in term of specifications (in particular,
accurate CPU utilization of threads, a middle layer between software code and
hardware, byte code instrumentation and injection, etc.).

Jalen uses the per-process power information provided by PowerAPI,
and correlates it with information collected from the application monitoring
in order to provide per-method power information. Jalen is implemented as a
Java agent that hooks to the Java Virtual Machine during its start, and starts
monitoring and collecting energy related information of the monitored appli-
cation. We develop two versions, each with different approaches on collecting
and correlating information. The first version uses byte code instrumentation,
while the second uses statistical sampling. Each holds advantages and disad-
vantages when monitoring energy consumption of software, and can be better
applied than the other in certain contexts. Next, we explain in details each of
these implementations.

4.2.3 Instrumentation Version

The instrumentation version of Jalen uses byte code instrumentation tech-
niques, in order to collect resources usage information. In particular, we use
ASM [10,1] to inject monitoring code into the methods of legacy applications.
ASM 6 is a Java byte code manipulation and analysis framework. The instru-
mentation process goes as follows and is described in Figure 4.

Byte code injection

First, we inject monitoring code at the beginning and the end of each in-
strumented method. The latters are instrumented based on their name, class,
package or other characteristics such as their number of parameters. This fil-
tering is specified in the settings of Jalen agent.

6 ASM name is a reference to the asm keyword in C, and does not mean anything [10].

14 Adel Noureddine et al.

Java method 1

Code energy
consumption

Correlation & Computation

Jalen

Injected code

Injected code

Legacy code

Start

End

Java method n

Injected code

Injected code

Legacy code

Start

End

Collected data: time, bytes transmitted, etc.

…

Fig. 4 The Jalen instrumentation implementation.

The injection can either be at runtime, where the Jalen agent injects the
additional code when a class is first loaded; or offline, where a special tool is
used to inject code to the .class files of the program. The first approach is
therefore an agent that instruments byte code at runtime and estimates the
energy consumption, while the second approach is composed of two tools: an
application that instruments byte code offline, and an agent that estimates
the energy consumption at runtime. Both versions inject the same code and
provide the same calculations. The main advantage of the second approach is
its reduced overhead (as the instrumentation is done offline), and its ability to
instruments all classes including the ones loaded with a different class loader at
runtime (in which case, the first approach, as implemented, fails to instruments
them).

The additional code has a constant overhead because the code performs
similar tasks for all methods. In particular, it collects the methods name, its
execution time based on injected counters, and it’s position on the call tree.
An example of byte code instrumentation is shown in the following listing for
the solveHanoi method in a Towers of Hanoi program:

public stat ic void so lveHanoi (int arg0 , char arg1 , char arg2 ,
char arg3 , PrintStream arg4) {

MethodStats . onMethodEntry (3 , ”/TowersOfHanoi” , ” so lveHanoi ”) ;
i f (d i s k s >= 1) {

so lveHanoi (d i s k s − 1 , fromPole , withPole , toPole , ps) ;
moveDisk (fromPole , toPole , ps) ;
so lveHanoi (d i s k s − 1 , withPole , toPole , fromPole , ps) ;

}
MethodStats . onMethodExit (3) ;

}

Monitoring Energy Hotspots in Software 15

The source code for the two added method calls, onMethodEntry and
onMethodExist is provided in the following listing:

public stat ic void onMethodEntry (int id , S t r ing className ,
St r ing methodName) {

St r ingBu i ld e r fullMethodName = new St r ingBu i ld e r (className)
. append (’ . ’) . append (methodName) . append (’− ’)
. append (Thread . currentThread () . ge t Id ()) ;
MethodStats . addNewMethod(id , fullMethodName . toS t r i ng ()) ;
i f (depth < MAX CALL DEPTH) {

startTimes [depth] = System . nanoTime () ;
s tack [depth++] = MethodStats . getMethodInfo (id) ;

}
}

public stat ic void onMethodExit (int id) {
i f (depth == 0)

return ;
depth−−;
MethodInfo mi = stack [depth] ;
i f (mi == null)

return ;
Long executionTime = System . nanoTime () − startTimes [depth] ;
mi . nbCal l s++;
mi . al lTime += executionTime ;
i f (depth > 0) {

MethodInfo mip = stack [depth − 1] ;
i f (mip == null)

return ;
mip . addChildTime (mi , executionTime) ;
mi . netTime = mi . al lTime − mi . chi ldrenTotalTime ;

}
}

Collected information

The code injected at the beginning of methods collects information such as
the full name of the method, the timestamp of method’s execution and the
depth in the method call tree (to detect children method, i.e., methods that
are stared by an instrumented method). This information is useful for acknowl-
edging where energy is being consumed (e.g., the energy spend by a method
excluding the energy spend by its children methods). Depth, which starts at
0, is incremented at each method entry, and decremented on method exit.
Therefore, in an execution sequence, this value represent where the current
monitored method is in the call tree.

Call tree

The code injected at the end of methods also collects the timestamp of method’s
end, and takes into account the restoration of the call tree up one level (when a
method ends, the hand is given back to its parent method, or to main method).
This is because Java uses stack frames in its Java stack. Stack frames contain
the state of one Java method invocation. When a thread invokes a method,
the Java virtual machine pushes a new frame onto that thread’s Java stack.
When the method completes, the virtual machine pops and discards the frame

16 Adel Noureddine et al.

for that method. [20]. On method exit, we calculate the execution time of the
method excluding its children methods. The latter is calculated on the method
exit of each child, i.e., when a method exits, we check whether is has father
(depth - 1), then add its own execution time to its father’s MethodInfo ob-
ject (this object contains statistics about the method). As such, the execution
time of each method is calculated by subtracting the total execution time of
the method (between entry and exit) and the execution time of all of its chil-
dren. Therefore, our implementation monitors the energy consumption of a
method excluding its called methods (e.g., children methods).

Network information

Network information are gathered by using a delegator to route all method
call of sockets methods to a custom implementation where we add counters to
count the number of bytes send and received by each method. We use a delega-
tor class to route calls from the class SocketImpl7 to a custom implementation.
We override the methods getInputStream() and getOutputStream() to mon-
itor the number of bytes read and written to sockets. This information is then
correlated with the method names invoking the methods getInputStream()

or getOutputStream(), in order to get the number of bytes read/written by
method.

Applying energy models

Periodically, on each monitor cycle, or at the end of the program’s execution,
the Jalen agent processes the gathered data on each method invocation. It
applies our energy models and provides the energy consumed by each method
on the terminal or saved in a file.

4.2.4 Statistical Sampling Version

The statistical sampling version of Jalen collects information about running
methods from the JVM, and correlates them with our energy models. This
version follows a sampling strategy that is outlined in Figure 5:

– We first follow a two cycle approach: an application monitoring cycle where
power consumption of software is gathered from PowerAPI; and code
monitoring cycles where statistical information is collected on each running
method.

– During the application monitoring cycle (typically at each 500 ms or 1 sec-
ond), we monitor the energy consumption of the entire application using
the approach implemented in PowerAPI. This provides us with the en-
ergy consumption of the application, which we will use as the total energy
consumption of all executed methods.

7 http://docs.oracle.com/javase/7/docs/api/java/net/SocketImpl.html

Monitoring Energy Hotspots in Software 17

Application

Code energy
consumption

Correlation & Computation

Jalen

Legacy method 1

Collected data: statistics on method, CPU
metrics, I/O metrics, API usage, etc.

Legacy method n

Application
monitoring cycle

Code monitoring
cycle

…

Fig. 5 The Jalen sampling implementation.

– The next step is to distribute the application energy consumption between
the application’s methods based on their execution. Concretely, we detect
the method currently being executed by looking at the JVM’s stack trace.
We frequently detect and calculate how many times each method is on the
top of the stack, typically each 10 ms (e.g., the code monitoring cycle).

– We then correlate theses statistics with the CPU time of threads (gathered
from the JVM), in order to estimate the energy consumption of methods.

– For example, two methods Blue and Red are executing for 10 seconds,
and the application cycle is 1 second and the code cycle is 10 milliseconds.
Each of these methods have different execution times and CPU utilization,
therefore both methods are scheduled and executed accordingly (for ex-
ample, method Blue waits for a network answer, thus the JVM executes
Red during the wait). The method Blue is detected at the top of the stack
10 times during the code cycles while Red is detected 12 times. Therefore,
the method Blue is awarded 45% of the energy, while the method Red is
awarded 55% of the energy consumed during the application monitoring
cycle (see Figure 6).

– For network energy, we detect and count the calls to Java’s JDK methods
responsible for network (such as java.net methods), and apply a similar
energy distribution as described in the previous steps excluding all methods
that do not call Java’s JDK network methods.

In the next section, we validate our e-Surgeon approach, and run exper-
imentations using our tools.

18 Adel Noureddine et al.

t t + d

Red
12 samplings

Blue
10 samplings

55% of energy 45% of energy

Fig. 6 The Jalen sampling approach.

5 Empirical Validation

We validate the accuracy and precision of our e-Surgeon prototype on a Dell
Precision T3400 workstation with an Intel Core 2 Quad processor (Q6600),
running Ubuntu Linux 11.04 and Java 1.6 We first evaluate our PowerAPI
library (see Section 5.1), and then evaluate our Jalen Java agent (see Sec-
tion 5.2). Based on these results, we conduct an analysis of a stress benchmark
on a Jetty Web Server (version 8.0.4.v20111024) in Section 6.

5.1 PowerAPI Validation

5.1.1 CPU Power

We first assess the accuracy of the results provided by our system library. We
compared the power values provided by PowerAPI with the actual power
consumption of the computer using a powermeter. In our tests we use Pow-
erSpy8, a Bluetooth powermeter. We compare the values of our library and
the powermeter in a stress test on Jetty Web Server using Apache JMe-
ter9 (see Figure 8), and using the Linux stress command10 (see Figure 7).
Note that due to synchronization time lag between PowerSpy and our li-
brary, values are shifted for a few seconds in the beginning of the monitoring.
These values are normalized in order to observe trends in the CPU power
consumption.

In particular, the powermeter monitors the energy consumption of the en-
tire computer, including all of its hardware components, all applications and
the operating system. In order to compare its values with our approach, we sub-
tract the energy consumption during idle time from the energy monitored when
running our experimentations. Concretely, on idle time, we measure the energy
consumed by the computer using the powermeter (e.g., E idleMeter). Then

8 http://www.alciom.com/en/products/powerspy2.html
9 http://jmeter.apache.org

10 http://linux.die.net/man/1/stress

Monitoring Energy Hotspots in Software 19

we run our experiments and measure again the energy of the computer (e.g.,
E totalMeter). The difference between these two values is the energy con-
sumed by the application (e.g., E appMeter = E totalMeter−E idleMeter).
However, this value corresponds to the energy for all hardware components
stressed by the application (e.g., CPU, memory, etc.). As we are only monitor-
ing select hardware components, such as only the CPU or the network card, we
decide to normalize the powermeter values based on the offset it has in com-
parison with our library (e.g., E offset = E totalMeter − E appLibrary).
Therefore, we verify that the values provided by our library are lower than
the E appMeter, and we argue that they represent a better estimation to
be used as a normalizing offset with the values of the powermeter. Ideally,
a comprehensive model that estimates the energy consumption of all hard-
ware components involved with an application execution should provide a
value equal to E appMeter. However, as we do not have such model (our
models are for the CPU and network so far), we tried to limit the impact of
other components. We are planning, as a future work, to improve our nor-
malizing approach by adding additional models for other hardware compo-
nents. Finally, we calculate the average of the difference between the values
of the powermeter and those of our library (e.g., AV G(E offset)). Then we
subtract for each measured value of the powermeter this calculated average
(E appMeterNormalized = E totalMeter −AV G(E offset)).

The results show minor variations between the values estimated by our
library, and the actual power consumption. The margin of error is estimated to
0.5% of the normalized and averaged values in the core stressing scenario (with
variations of up to 8% or 2 watts on average for individual measurements when
the Bluetooth synchronization lag is corrected). The error grows to nearly 3%
in the Jetty stress test (with variations of 13% or 3-4 watts on average for
individual measurements). We use the Linux Top program to compute the
CPU utilization of monitoring one process by PowerAPI and estimate it
at around 0.1%. Therefore, we can reasonably argue that using a software-
centric approach provides values that are accurate enough to be used by power
management software.

5.1.2 Impact of frequencies variation and multi-core

In order to understand the impact of changing frequencies and multi-cores,
we run experimentations on two popular video players, MPlayer and VLC.
MPlayer’s results (see Figure 9) are particularly interesting as they outline
the effects of DVFS. Our energy model takes into account this variability of
frequencies and voltages in the CPU, thus the variability of energy consump-
tion in complex software. Also, the Linux stress experiment in Figure 7 shows
the importance of multi-core in energy consumption. For a similar period of
time, energy consumption varies greatly when running one, two, three or all
the cores of the CPU.

On another example, we compared the energy consumption of VLC player
decoding a video, and an execution of the Tower of Hanoi program, both

20 Adel Noureddine et al.

running on a Dell OptiPlex 745 workstation computer with an Intel Core 2
Duo processor (E6600). The results in Figure 10 show the impact of running
applications under multiple frequencies (i.e., 1.6 GHz and 2.4 GHz). Although
both executions of VLC the two frequencies run the same program and decode
the same video, the difference in energy consumption shows clearly the energy
impact of DVFS as an approach to lower energy consumption (i.e., 3325 and
1716 joules, respectively).

In contrast, executing a CPU intensive application, such as the Towers
of Hanoi Java program, while forcing a specific frequency of the CPU also
outlines the impact of DVFS on energy consumption. The results show the

1400 20 40 60 80 100 120

80

0

10

20

30

40

50

60

70

Time (seconds)

Po
w

er
 (w

at
t)

Energy models

Power meter

1 CPU core

2 CPU cores

3 CPU cores

4 CPU cores

Fig. 7 Stressing the processor cores with the stress command.

1600 20 40 60 80 100 120 140

40

0

5

10

15

20

25

30

35

Time (seconds)

Po
w

er
 (w

at
t)

Energy models Power meter

Fig. 8 Running stress tests on Jetty using JMeter.

Monitoring Energy Hotspots in Software 21

1600 20 40 60 80 100 120 140

30

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Time (seconds)

Po
w

er
 (w

at
t)

Energy models

Power meter

Fig. 9 Running stress tests on MPlayer.

difference in CPU power consumption and execution time while running a
special version of the Tower of Hanoi algorithm (that writes to a file each step
of the algorithm) on two different frequencies. On the faster 2.4 GHz frequency,
the program consumes more energy per second and executes faster (totalling
3948 joules), while on the lower 1.6 GHz, it executes longer but with lower
power consumption (totalling 5092 joules). In this example, running faster even
at a higher frequencies results in better energy consumption than running at
a lower speed but nearly 40% longer.

These results show the validity of our approach and that a simple time
profiler is not enough to get energy insights because its does not take into
account DVFS and multi-core CPUs.

5.1.3 Network Power

We run a network stress test using Iperf11 and measure the power consump-
tion of Iperf’s CPU server on our host configuration. We send two sets of
TCP packets of 100MB each from a distributed client to our host server. We
used the default settings of Iperf, where also its CPU server executes follow-
ing a periodically cycle (every second). Our results show network consumption
around 0.017 watt compared to CPU consumption of Iperf process around
0.9 watt. These numbers show that, although CPU power is quite low (aver-
age around 0.9 watt) and the network card uses all its capacity, the consumed
network power is largely negligible compared to the consumed CPU power

11 http://www.manpagez.com/man/1/iperf

22 Adel Noureddine et al.

on our test server. This observation is in correlation with the literature [17].
Therefore, we mostly outline the results of our CPU experimentation.

2.4 GHz 1.6 GHz

Energy consumption and CPU frequencies

E
ne

rg
y

(jo
ul

e)

0
10

00
20

00
30

00
40

00
50

00

VLC
Towers of Hanoi

Fig. 10 An example of the impact of CPU frequencies on energy consumption.

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

1.2

Time (0.2 seconds)

P
ow

er
 (

w
at

t)

CPU
Network

Fig. 11 CPU and network power consumption in Iperf stress test.

Monitoring Energy Hotspots in Software 23

5.2 Jalen Validation

Both versions of Jalen, byte code instrumentation and statistical sampling,
uses PowerAPI as an application level library. We run two sets of experiments:
first, we measure the overhead and compare it to the overhead of software
profilers (also due to the absence of similar code level energy profilers); sec-
ond, we assess the accuracy by comparing the energy evolution with the CPU
time evolution of CPU intensive applications running at 100% CPU, and with
comparisons with another software profiler. The latter is relevant because we
identified in [12] that for software that run at 100% utilization of the CPU
all the time, there is a linear relation between their energy consumption and
their execution time.

We run our experiments on a Dell OptiPlex 745 workstation with an Intel
Core 2 Duo 6600 processor at 2.40 GHz and running Lubuntu Linux 13.04
64 bits, version 1.6-SNAPSHOT of PowerAPI, and Java 7. Energy data are
calculated each 500 milliseconds. Sampling interval is at 10 ms.

5.2.1 Accuracy

As no other software profiler provides energy consumption of software code, we
validate the accuracy of our approach by comparing energy consumption pro-
vided by our agent with CPU time. Therefore, we use the same CPU-intensive
application, the recursive Java version of the Towers of Hanoi program, in
order to demonstrate that the results provided by Jalen are accurate.

We compare the energy information provided by the instrumentation ver-
sion of Jalen with the estimated CPU time of methods. Method
TowerOfHanoi.moveDisk consumes 83.34% of the CPU and of its energy, while
TowerOfHanoi.solveHanoi consumes 16.58%. Finally, the main method con-
sumes 0.06% of the energy. Results in Figure 12 show similar match between
CPU time and energy, which is what we anticipated as time and energy are
linear in this context.

The sampling version, on the other hand, does not use CPU time in order
to estimate the energy consumption of software code. Therefore, we decide
to compare it to HPROF profiler 12, a software CPU profiling tool that also
uses statistical sampling in estimating CPU usage of software code. The Java 2
Platform Standard Edition (J2SE) provides HPROF by default, as a command
line tool. This tool estimates the CPU utilization percentage of all methods
executing in the JVM. In contrast, Jalen can estimate the energy consump-
tion of all methods, but also filter this estimation to a selection of methods
(for example, limiting the estimation to the Tower of Hanoi’s methods while
excluding calls to the Java JDK’s methods).

We compare the energy consumption provided by Jalen with the output
information provided by HPROF. The results reported by HPROF show that
java.io.FileOutputStream.writeBytes method uses 97.33% of the CPU

12 http://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

24 Adel Noureddine et al.

moveDisk solveHanoi main

Towers of Hanoi, recursive algorithm

0
45

00
0

90
00

0
13

50
00

22
50

00
31

50
00

40
50

00

Energy (joule)
CPU Time (ms * 2)

Fig. 12 Comparison between energy consumption and CPU time of the recursive version
of the Towers of Hanoi program.

during the execution of the program. Sampling version of Jalen provides
an energy consumption of this method at 96.05%, thus a variation of 1.3%
between Jalen and HPROF.

However, Jalen can also filter methods, therefore, when excluding JDK’s
methods, the results show that TowersOfHanoi.moveDisk method consumes
99.92% of the energy. This is because TowersOfHanoi.moveDisk calls
java.io.FileOutputStream.writeBytes method (and other methods, such
as java.io.BufferedWriter.write or java.io.Writer.write) in order to
write the program’s results to a file. In addition, TowersOfHanoi.moveDisk
itself have a net energy consumption of 0.73% (HPROF reports 0.13% for this
method alone).

5.2.2 Overhead

The overhead of any energy profiler, or any software profiler, for that matter,
is crucial to its usability. In order to acknowledge the overhead of our agent
during execution, we calculate the time per individual request in Tomcat 7.0.42
using ApacheBench 2.3. On 10,000 requests, the base mean time per request
is at 4.157 ms in average. However, when using the sampling version, the
mean time per request is at 4.289 ms in average. HPROF also have a similar
overhead at around 4.336 ms in average. The instrumentation version has
a time per request of 9.532 ms in average. The overhead of the sampling
version is therefore at 3.17%, while the instrumentation version of Jalen has
an overhead of 129.29% in comparison to the base Tomcat (see Figure 13).

Although the overhead percentage of the instrumentation version is high,
it is similar to other software profilers that use also byte code instrumentation.

Monitoring Energy Hotspots in Software 25

Base
Jalen

Sampling HPROF
Jalen

Instrumentation JIP

Overhead of individual Tomcat requests

T
im

e
(m

s)

0
2

4
6

8
10

Fig. 13 Overhead of individual Tomcat requests using ApacheBench.

The Java Interactive Profiler or JIP 13 is a software profiler that uses similar
byte code instrumentation of methods, however it does not produce energy
related information. JIP 1.2 has a time per request of 8.241 ms in average in
our experiment, thus an overhead of 98.24%. These metrics show the cost of
instrumentation, and that our instrumentation version has an overhead similar
to other software profilers that use byte code instrumentation.

5.2.3 Impact of Byte Code Instrumentation

These numbers validate the accuracy of our statistical sampling, but they addi-
tionally validate the impact of byte code instrumentation. We note that special
care is required when analyzing information provided by the instrumentation
version of Jalen. Instrumentation adds a fixed and constant overhead to all
instrumented methods, therefore it is more visible (in total percentage) on
small methods, or frequently executed methods. Values should be normalized
by removing this constant overhead by a factor of the number of times the
method is called.

To outline this situation, we compare the energy consumption of Google
Guava’s Joiner.join method using the instrumentation version of Jalen
(see Figure 15), and the statistical sampling one (see Figure 14). The figure
reports the energy distribution of the methods called by Joiner.join method
on multiple executions. We increment the method’s string parameter value
and measure the energy consumption thereafter. The figure therefore shows
the energy consumption of the same method execution but with a varying
value of its string parameter. Both instrumentation and statistical sampling
versions show similar energy trendline and linear evolution of the energy con-
sumption. However, in the instrumentation version, small methods have high
energy consumption, in particular, Preconditions.checkNotNull method.
This latter is called four times in each join call (once in Joiner.iterable,
once in Joiner.appendTo, and twice in Joiner.toString), and does nothing

13 http://jiprof.sourceforge.net/

26 Adel Noureddine et al.

other than comparing if a parameter is equal to null. However, due to instru-
mentation, checkNotNull has an energy consumption ranging from 3% to 10%
of the total energy when varying the size of the strings to join.

40000 500 1000 1500 2000 2500 3000 3500

3400

0

500

1000

1500

2000

2500

3000

String size (number of characters)

En
er

gy
 (j

ou
le

)

com.google.common.base.Joiner$2.appendTo

Fig. 14 Energy consumption of methods called by Google Guava’s join method when vary-
ing its string parameter size, using statistical sampling version.

50000 500 1000 1500 2000 2500 3000 3500 4000 4500

22,000

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

20,000

String size (number of characters)

En
er

gy
 (j

ou
le

)

com.google.common.base.Joiner.appendTo

com.google.common.base.Preconditions.checkNotNull

Fig. 15 Energy consumption of methods called by Google Guava’s join method when vary-
ing its string parameter size, using instrumentation version.

5.2.4 Impact of Different Machines

Hardware components consume electrical energy. Our approach associates the
energy consumption of hardware to the software code that initiated the task
for hardware components. Therefore, energy consumption is highly dependent

Monitoring Energy Hotspots in Software 27

on hardware components. To illustrate the impact of changing machines to
energy consumption of software, we run the Xalan benchmark in the Dacapo
benchmark suite [4] on two host configurations: a Dell OptiPlex 745 work-
station with an Intel Core 2 Duo 6600 processor at 2.40 GHz and running
Lubuntu Linux 13.04 64 bits; and a MacBook Pro 5,3 with an Intel Core 2
Duo T9900 processor at 3.06 GHz and running Mac OS X 10.7.5. We use
version 9.12 of Dacapo, version 1.6-SNAPSHOT of PowerAPI, and Java 7 on
both configurations, with a sampling interval at 10 ms and energy data are
calculated each 500 ms.

E
le

m
Li

te
ra

lR
es

ul
t.e

xe
cu

te

T
ra

ns
fo

rm
er

Im
pl

.tr
an

sf
or

m

AV
T

P
ar

tX
P

at
h.

ev
al

ua
te

T
ra

ns
fo

rm
er

Im
pl

.r
es

et

C
ou

nt
er

sT
ab

le
.c

ou
nt

N
od

e

tr
an

sf
or

m
S

el
ec

te
dN

od
es

T
ra

ns
fo

rm
er

Im
pl

.<
in

it>

T
ra

ns
fo

rm
er

Im
pl

.tr
an

sf
or

m
N

od
e

cr
ea

te
S

er
ia

liz
at

io
nH

an
dl

er

E
le

m
C

ho
os

e.
ex

ec
ut

e

Energy consumption of Dacapo's Xalan benchmark

E
ne

rg
y

(p
er

ce
nt

ag
e

of
 to

ta
l)

0
5

10
15

20
25

30

Dell workstation
MacBook Pro

Fig. 16 Percentage of CPU energy consumption of the top 10 most energy consuming
methods of Xalan Dacapo benchmark, on a Dell workstation and on a MacBook Pro.

The results in Figure 16 of the first 10 methods show a similar energy
consumption trend. Both experiments outline
org.apache.xalan.templates.ElemLiteralResult.execute and
org.apache.xalan.transformer.TransformerImpl.transform as the most
consuming methods. The results show also similar energy percentage values
for these two methods, at 22.98% and 10.37% on the Dell workstation, and
26.95% and 14.02% on the MacBook Pro, respectively. On the other hand, raw
energy values in joules are different. While at the Dell workstation,
templates.ElemLiteralResult.execute consumes 55.9 joules, it consumes

28 Adel Noureddine et al.

31.5 joules on the MacBook Pro (25.24 joules and 16.6 joules for
transformer.TransformerImpl.transform, respectively).

These results outline the importance of using percentages when comparing
energy consuming of software code. This is mainly due to the different hard-
ware that machines use, thus consuming different amount of energy while still
keeping similar energy trends and distribution in software.

Due to the high overhead of the instrumentation version of Jalen and the
noise introduced by byte code instrumentation, we decide to use the statistical
sampling version of Jalen in the remainder of this chapter. In the next section,
we present and discuss the results of our approach on monitoring and detecting
energy hotspots of Jetty Web Server.

6 Energy Hotspots of Jetty

The goal of our approach is to detect where the energy is being spend in
software, or energy hotspots. This detection allows developers and other users
to understand where and how the energy is consumed, and also to detect
abnormal functioning in applications (e.g., energy bugs).

We illustrate our approach with an example of a complex application: Jetty
web server. We use version 9.0.4.v20130625 of Jetty distribution. As with our
previous experiences, we run our experiments on a Dell OptiPlex 745 work-
station with an Intel Core 2 Duo 6600 processor at 2.40 GHz and running
Lubuntu Linux 13.04 64 bits, version 1.6-SNAPSHOT of PowerAPI, and Java
7. Energy data are calculated each 500 milliseconds, and sampling interval is
at 10 ms.

Jetty web server is a lightweight application server and javax.servlet con-
tainer. It is an example of real world complex application, counting 105,156
source lines of code (SLOC) of Java in the version we use for our study. We
stress Jetty’s asynchronous REST web application example (async-rest) using
ApacheBench. The latter uses 25 concurrent users with 100,000 requests. We
run the experiment 5 times, for around 205 seconds in total execution time
(the first run at 54 seconds, then the others run at 37 seconds in average due
mainly to the Java JVM’s JIT functionality).

Results are presented in Figure 17. The graph portrays the top 10 most
consuming methods in term of CPU energy consumption in the X-axis. The Y-
axis represents the energy consumed during the execution of the experiment in
percentage of the total energy consumed at all measured Jetty methods. The
second set of bars in the Y-axis represents the number of invocations of the
methods. We normalize this number by dividing it by 1000 in order to have a
better overview in the graph. This invocation is gathered from the statistics
Jalen’s sampling version also provides.

The first observation is that the 10 most energy consuming methods of
Jetty in this experiment consume the vast majority of the energy, 92.18%.
Specifically, two methods consume nearly 60% of the energy:
util.BlockingArrayQueue.poll (29.92%) and

Monitoring Energy Hotspots in Software 29

B
lo

ck
in

gA
rr

ay
Q

ue
ue

.p
ol

l

Ja
rF

ile
R

es
ou

rc
e.

ex
is

ts

Ja
rF

ile
R

es
ou

rc
e.

ne
w

C
on

ne
ct

io
n

S
el

ec
to

rM
an

ag
er

$M
an

ag
ed

S
el

ec
to

r.
se

le
ct

C
ha

nn
el

E
nd

P
oi

nt
.fl

us
h

S
er

ve
rC

on
ne

ct
or

.a
cc

ep
t

S
el

ec
to

rM
an

ag
er

$M
an

ag
ed

S
el

ec
to

r.
w

ak
eu

p

C
ha

nn
el

E
nd

P
oi

nt
.s

hu
td

ow
nO

ut
pu

t

F
ile

R
es

ou
rc

e.
no

rm
al

iz
eU

R
I

F
ile

R
es

ou
rc

e.
is

D
ire

ct
or

y

Energy consumption and number of invocation in Jetty

0
10

20
30

40
50

Energy of total in percentage
Number of invocations (n/1000)

Fig. 17 Energy consumption of the 10 most energy consuming methods of Jetty in our
experiment.

util.resource.JarFileResource.exists (29.88%).
Five other methods (util.resource.JarFileResource.newConnection,
io.SelectorManager$ManagedSelector.select,
io.ChannelEndPoint.flush, server.ServerConnector.accept, and
io.SelectorManager$ManagedSelector.wakeup) consume between 3% and
11%, while the energy consumption of the remaining methods is negligible
(less then 1%).

In contrast, the same methods are also the most invoked. Nevertheless,
two methods have a high invocation number with lower energy consump-
tion. This is the case for io.SelectorManager$ManagedSelector.select and
server.ServerConnector.accept methods. The former is the most invoked,
43,624 times and consumes 7% of the total energy (or 487.34 joules on our
configuration). The latter is invoked 13,250 times and consumes 3.38% of the
total energy (or 236.28 joules).

30 Adel Noureddine et al.

In order to understand better the energy hotspots in software, we intro-
duce energy per invocation (epi) unit, which is the energy consumed by one
invocation of a method, and is calculated by dividing the energy consumption
by the number of invocation. The two most invoked methods have therefore
a low epi in comparison with less invoked methods (and sometimes less en-
ergy consuming methods). Figure 18 outlines the epi of the 10 most energy
consuming methods in our experiment. We observe that in average, the epi of
most methods is between 0.4 and 0.5 joule, with the notable exception of the
two most invoked methods.

B
lo

ck
in

gA
rr

ay
Q

ue
ue

.p
ol

l

Ja
rF

ile
R

es
ou

rc
e.

ex
is

ts

Ja
rF

ile
R

es
ou

rc
e.

ne
w

C
on

ne
ct

io
n

S
el

ec
to

rM
an

ag
er

.s
el

ec
t

C
ha

nn
el

E
nd

P
oi

nt
.fl

us
h

se
rv

er
.S

er
ve

rC
on

ne
ct

or
.a

cc
ep

t

S
el

ec
to

rM
an

ag
er

.w
ak

eu
p

C
ha

nn
el

E
nd

P
oi

nt
.s

hu
td

ow
nO

ut
pu

t

F
ile

R
es

ou
rc

e.
no

rm
al

iz
eU

R
I

F
ile

R
es

ou
rc

e.
is

D
ire

ct
or

y

Energy per invocation

E
ne

rg
y

(jo
ul

e)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 18 Energy per invocation (epi) of the 10 most energy consuming methods of Jetty in
our experiment.

In addition to detecting hotspots at the methods level, our approach can
detect most energy consuming classes. Figure 19 outlines the 6 most consuming
classes of Jetty during our experimentation. These 6 classes consume together
96.02% of the total energy consumed by Jetty classes. The remaining 129
classes consume the rest, 3.97%. We observe that two classes consumes more
than 70% of the energy: util.resource.JarFileResource (40.93%, 2 meth-
ods invoked) and util.BlockingArrayQueue (30.07%, 4 methods invoked).
These two classes are averaged sized classes with the former counting 291
SLOC and the latter 691 SLOC.

Monitoring Energy Hotspots in Software 31

util.resources.JarFileResource
 41%

util.BlockingArrayQueue
 30%

io.selectorManager$ManagedSelector
 10%

io.ChannelEndPoint, 7%

util.resource.FileResource
 4%

server.ServerConnector
 4%

Others, 4%

Energy of Jetty classes in percentage

Fig. 19 Energy consumption in percentage of the 6 most energy consuming classes of Jetty
in our experiment.

Our benchmark stress scenario can explain these results. The former stresses
Jetty’s asynchronous rest web application example. This web application uses
Jetty asynchronous HTTP client and the asynchronous servlets 3.0 API, to call
an eBay restful web service as explained in 14. When the initial request passes
to the servlet, it is detected as the first dispatch, thus the request is suspended
and a queue list (to accumulate results of requests) is added as a request at-
tribute. This explains the energy consumption of util.BlockingArrayQueue
class and its methods. After the suspension, the servlet creates and sends an
asynchronous HTTP exchange for each request, and when all responses are
received, the results are retrieved and a response is generated. The calls for
util.resource.JarFileResource class, and its exists method which checks
whether a represented resource jar exists, and its newConnection method that
is used for connecting to JAR resources, are explained by the need to access
Jetty’s own jar files and the web application’s jar files. The experiment is run
multiple times, and the asynchronous example is a relatively a small exam-
ple, therefore this jar access is notable in term of total energy consumption
percentage.

We believe that this information can help the developers to investigate
alternative implementations of the most consuming classes and methods in
order to reduce their power footprint. By keeping track of the power footprint
of classes and methods, we think that development tools (e.g., coding com-
pletion systems, documentation, debuggers, etc.) could be extended to help
developers build greener software.

14 http://webtide.intalio.com/2013/04/async-rest-jetty-9/

32 Adel Noureddine et al.

7 Discussions

Our results show that we can identify energy hotspots in applications, and in
Jetty web server in particular. However, and even though we used a bench-
mark imitating a real-case scenario, we are aware that our results should not
be generalized without further consideration.

7.1 Prefer Percentages Over Energy Raw Values

First, our aim was to observe trends in energy consumption (which is the
reason of using percentages when comparing methods and classes). Energy
consumption of software code is measured in joules, and is the energy consumed
by hardware due to tasks initiated by software. As such, changing hardware
will also change the raw energy values even for the same software code. The
same experiment run on different hardware produces different energy values
due to the physical nature of hardware components (for example, running the
same program on a laptop or on a server).

However, percentages values do not change with hardware, as software
code is running the same tasks and using hardware resources accordingly. Our
experiment in Figure 16 illustrates the limited impact of changing hardware
on the percentage distribution of the energy consumption in software code.
The goal of our approach is to observe trends in energy consumption and
profile applications to detect energy hotspots. Therefore, we argue that using
percentages when comparing energy consumption of methods and classes is
more useful and representative than raw values. Our approach is thus useful
in profiling applications in order to find the origin of energy leaks. Developers
can then provide hotfixes for the application in order to reduce its energy
footprint.

7.2 Overhead and Instrumentation Noise Are Not to be Ignored

Second, one major advantage of using the statistical sampling version of Jalen
is its negligible overhead cost. Our results show a low overhead for sampling
(at around 3%), in comparison to the high overhead of instrumentation (at
around 130%). This overhead cripples any real world uses of instrumentation
for energy measurements. However, we found that sampling provides also accu-
rate enough values for detecting energy trends and energy hotspots. Therefore,
using statistical sampling offers the best tradeoff between accuracy of results
and low overhead.

Besides execution overhead, byte code instrumentation pollutes the energy
results of each method by the energy cost of the instrumentation code itself.
Without normalizing the results and removing this additional cost (that is
dependent on the energy cost of the instrumentation code, and on the number
of times it is executed), energy results are not correctly reported as we report

Monitoring Energy Hotspots in Software 33

in our experimentation. The energy consumption of small methods is reported
as higher than it is, and frequently executed methods have a high overhead
due to the additional cost of multiple execution of the instrumentation code.

7.3 The Need for Energy Variation Modeling

Our experiments report on the energy distribution and hotspots of software
code in a specified context. We are able to detect and identify the most energy
consuming methods or classes. However, this identification is for a fixed set of
parameters and configuration. Our approach is similar to screenshots, where
we take an energy snapshot of software code. Although this is useful for en-
ergy debugging and optimization, it lacks execution variability. For example,
we provide the energy variation model of methods based on the variation of
their parameters. This provides a relational table between methods and their
energy model, thus allowing developers to the best energy efficient method for
their programs. Developers will have empirical energy models that will allow
them to choose the most power efficient software library and configurations
for their usage in their software. In the next section, we illustrate and detail
our approach for this research direction.

8 Inferring Energy Consumption of Software Libraries

Measuring energy consumption of software provides a snapshot of the energy
profile of such software under one particular execution. The energy reported
by our e-Surgeon approach is static, e.g., values are related to a specific
execution of software in a specific configuration. Changing a parameter in a
method or modifying input parameters will therefore require a new execution
of the application in order to get its energy consumption. We propose to infer
the energy variation model of software based on their input parameters. We
first present a motivation scenario using the RSA asymmetric algorithm [16],
then we detail our approach for inferring energy variation based on input
parameters, and present our framework called Jalen Unit.

8.1 RSA Asymmetric Algorithm

We take an RSA asymmetric encryption/decryption algorithm [16] and mea-
sure its energy consumption while varying the length of the RSA public and
private keys. The algorithm generates an RSA key, then encrypt and decrypt
10 times a random BigInteger with a bit length of 10,000. We use our Pow-
erAPI library to measure the energy consumption of the RSA algorithm.

The experimentation is done on a Dell OptiPlex 745 with an Intel Core 2
Duo 6600 processor at 2.40 GHz and running Lubuntu Linux 13.04, version
1.6-SNAPSHOT of PowerAPI, the statistical sampling version of Jalen and

34 Adel Noureddine et al.

Java 7. We collect energy data each 500 milliseconds for PowerAPI, and the
sampling rate for Jalen is at 10 milliseconds.

The results, in Figure 20, show an exponential rise in the energy consump-
tion of the RSA algorithm when increasing the RSA key length.

40961024 1500 2000 2500 3000 3500

1800

0

200

400

600

800

1000

1200

1400

1600

RSA key length

En
er

gy
 (j

ou
le

)

Energy of RSA asymmetric encryption/decryption

Fig. 20 Evolution of the energy consumption of RSA asymmetric encryption/decryption
according to key length.

Even though these numbers show the evolution of the energy consumption
of the RSA algorithm, we want to understand which portion of the code is
responsible for the exponential increase. Therefore, we use Jalen to measure
the energy consumption of the classes and methods of the RSA algorithm.
Results, in Figure 21, show that two methods are responsible for the ma-
jority of the energy consumption: java.math.BigInteger.oddModPow, and
java.math.BigInteger.montReduce. From these methods, oddModPow have
a clear exponential increase, while montReduce follows a logarithmic growth.

RSA encryption/decryption algorithm is an exponential one as described
in [16]. Therefore, our experiment results provide additional validation to our
measurement approach. In particular, the method responsible for the exponen-
tial growth in energy consumption in our implementation of RSA algorithm is
the method that does the exponential calculation, oddModPow.

These libraries are used by other software and therefore, improvement in
their energy efficiency would benefit to a large pool of applications. Thus, what
is the power consumption model of software libraries? How much a library call
consumes? What is the impact of varying invocation parameters in a method
of an API? Which library providing the same functionalities is more energy
efficient?

These questions motivate us to propose a new approach called Jalen
Unit [14]. It is our energy framework that generates energy models for soft-
ware code based on empirical benchmarks.

Monitoring Energy Hotspots in Software 35

40961024 1500 2000 2500 3000 3500

1060

0

100

200

300

400

500

600

700

800

900

1000

RSA key length

En
er

gy
 (j

ou
le

)

Energy of top 20 most consumption methods for RSA

java.math.BigInteger.oddModPow

java.math.BigInteger.montReduce

Fig. 21 Evolution of the energy consumption of RSA asymmetric encryption/decryption
according to key length.

8.2 Jalen Unit

Jalen Unit provides benchmarks for modeling the energy consumption of
software methods through automatic benchmarking. For instance, it generates
individual benchmarks for each method in a software library, and for each of
its parameters. These benchmarks stress the method based on a set of input
values for its parameters. These values are determined through different injec-
tors, and multi-parameters methods are managed through different strategies.
Next, all generated benchmarks are executed. For each, we measure its energy
consumption, then the results are aggregated and analyzed to produce the
method’s energy profile and variation model.

Concretely, Jalen Unit cycles through every package, class, and method
in a Java library. For each method and each of its parameters, an energy
benchmark is created following a variation strategy for the benchmarked pa-
rameter. The benchmark is then executed and Jalen is used to measure its
energy consumption. Finally, energy data for the benchmark and the varia-
tion of parameters is reported in an output file that is later plotted as a graph.
The variation strategies of each parameter are done through injectors imple-
mented for Java primitive and object types. The framework can, therefore,
be extended with application-specific injectors describing alternative variation
strategies. Java objects can be benchmarked automatically if their injector
model is implemented in the framework.

The initial implementation of Jalen Unit provides injectors for primitive
types: Integer, Double, Long, Float, Boolean, and Character, in addition
to the String class. We prefer to implement our own injector instead of using
existing injectors, such as YETI [3] which performs random testing, because
we want to provide different strategies for benchmarking and testing methods.

36 Adel Noureddine et al.

This provides a good strategy for detecting abnormal behavior in software
code, such as exceptions or huge CPU load for certain values. However, it
does not offer a comprehensive strategy for evaluating the energy variation
of methods by input parameters. For example, we develop an injector for in-
tegers where the integer values evolve with an increment, from a start value
to a final value (e.g., integer values from 10 to 100 with a hop of 10 leads
to 10 benchmarks with values of 10, 20, . . . to 100). Another injector for in-
tegers evolves the integer randomly using the Math.random method in Java.
Although integers are all of the same size, changing their value impacts the
execution of methods, therefore their energy consumption. For example, an
integer parameter that is used as a final value to a for-loop may have a high
impact because increasing its value implies that tasks are being executed for
longer period of time and consuming more energy.

Injectors for other types also implement different variation strategies, such
as varying the length of a string parameter randomly, or from a start value
to a final value, or choosing the characters of the string from a subset of the
alphabet. The variation strategies are endless, and offer the advantage of better
flexibility and extendibility of the framework. This flexibility is also useful for
domain specific applications, where random testing is not representative of
the real world workload. By providing an extensible framework and providing
freedom of choice in method variation model strategies, we propose a solution
that can be customized for specific needs. Therefore, better representative
energy variation models can be empirically achieved.

Concretely, an injector is a Java class implementing the Iterator and
JalenModel interfaces. The latter adds additional methods to the iterator
next and hasNext methods, such as a getDefaultValue method that returns
an object of a default value of the injector. The following listing provides an
excerpt of code of the default integer injector (syntax modified and shortened
for space concerns):

public IntegerModel (int s ta r t , int end , int i nc) ;
public boolean hasNext ()

return this . cur rent <= this . end ;
public Object next () {

int r e s u l t = this . cur rent ;
this . cur rent += this . i nc ;
return r e s u l t ;

}
public Object getDefau l tValue ()

return this . s t a r t ;

Multi-parameters methods are managed by varying one parameter at a
time, while the others use a default value. Others strategies are possible, such
as varying multiple parameters while fixing the values of some, or modifying
all parameters randomly. We are aware that more comprehensive strategies are
required for a refined energy variation model, therefore our multi-parameters
strategy is just an initial implementation for handling the complexity of mul-
tiple parameters.

Monitoring Energy Hotspots in Software 37

Benchmarks are then run and their energy consumption is measured using
Jalen. Finally, the generated energy results are aggregated and the energy
variation model of methods is inferred.

8.3 Limitations

Our framework allows the generation of an energy variation model for meth-
ods based on the values of their parameters. Although our results are promis-
ing [14], some limitations are to be noted and offer additional challenges for
future directions.

First, our approach benchmarks methods individually, therefore the in-
teractions between methods and parameters are not fully studied using our
framework. The impact of methods interactions is complex and interesting in
order to have a better understanding of energy consumption in software, and
will be addressed as a future work.

Second, our framework offers manual analysis of energy variation results.
In particular, we would like to add automatic analysis of the measured em-
pirical data. In an ideal situation, a mathematical formula, or set of formulas,
would be generated automatically in order to relate the energy consumption
of software methods with the values of their input parameters.

CPU, 88%

Disk, 12%

Towers of Hanoi, energy in joules

Fig. 22 CPU and disk energy consumption of the Towers of Hanoi algorithm.

Finally, our framework infers energy variation models based on CPU en-
ergy. However, additional hardware components have a non-negligible energy
consumption. In our experimentations, we detected that Ethernet network en-
ergy is negligible compared to the CPU (see Figure 11). On the other hand,
our initial work in adding additional sensors shows that the energy consump-
tion of the hard disk is not negligible. Figure 22 shows that energy consumed
by the Towers of Hanoi program is divided as 88% for the CPU (doing the
calculations, CPU cycles for preparing to write each step of the algorithm to
a file), and 12% for the disk (actual writing of each step of the algorithm to a

38 Adel Noureddine et al.

file stored on the hard disk). The figure outlines that other components then
the CPU have a non-negligible impact on energy consumption, even though
we measured a CPU-intensive application. On the other hand, our experience
in Figure 22 also uses non-negligible amounts of data in the memory. Our
approach and model do not yet acknowledge the impact of energy consump-
tion of memory access. But it is also crucial to note that the location where
the application’s data are stored and accessed may have an impact on energy
consumption. Whether the computation requires access to the main memory
in RAM or the CPU memory cache, the energy consumed by the system, but
also by the CPU alone, may be different. The time to read a data stored on
the hard disk, RAM memory, or the CPU memory cache is variable, and the
more time the CPU waits the more energy it will be consuming. Therefore,
it is important to study the effects of other hardware components, not just
on energy consumption, but also on the energy variation model of methods in
relation to the values of their input parameters.

9 Future Directions

Our study aims at providing a representation of the energy consumption of
CPU- and network- intensive software at different levels of granularity (e.g.,
application, source code). In the future, we plan to extend our approach to
measure hardware components that contribute to a high percentage in en-
ergy consumption of applications [17], which are, in addition to the CPU, the
memory and the disk.

We are also planning to develop additional sensors for different hardware
configurations and environments because energy consumption depends on the
hardware environment (e.g., modules compatible with Windows, Mac OS, and
different hardware models). Developing sensors and modules for virtual ma-
chines allows our model to reduce its dependency on hardware parameters
(e.g., dealing with the diversity of hardware is therefore left to the virtual
machine), and consider energy accounting issues in the context of green com-
puting environments.

In addition, our current approach lacks intelligent analysis of the results. In
particular, it only provides energy information about software code while the
developer has to interpret and analyze the results. Monitoring applications at
runtime allow users and developers to acknowledge the energy cost of their ap-
plications. Software can then be diagnosed and its energy efficiency improved.
However, what if developers had tools to empirically measure the energy con-
sumption of their code, and get empirical data about the energy evolution
trends of their code? These data can therefore be used to diagnose the code
to detect energy bugs, understand the energy distribution of the application,
or establish an energy profile or classification of software.

Another challenging future work is to provide an abstraction of the energy
consumption in relation to hardware. The energy consumption of an applica-
tion depends on multiple factors, including the hardware configuration itself,

Monitoring Energy Hotspots in Software 39

but also the execution scenario. For example, if certain data is stored on the
processor cache, then energy consumption may be lower as there will be less
energy lost while waiting to read the data. In addition, using a different set of
values for an application’s input parameters would lead to a different energy
consumption. In our work, we propose a first step in this direction by using
percentages instead of raw values, and by inferring the energy consumption of
software libraries through empirical benchmarking.

10 Related Work

In this section, we outline the relevant related works to energy modeling,
energy monitoring and metering, power-related tools at the system level, and
application profiling tools, in particular for Java applications.

10.1 Energy Metering and Modeling

Monitoring energy consumption of hardware components usually requires a
hardware investment, like a multimeter or a specialized integrated circuit.
For example in [11], the energy management and preprocessing capabilities
is integrated in a dedicated ASIC (Application Specific Integrated Circuit). It
continuously monitors the energy levels and performs power scheduling for the
platform. However, this method has the main drawback of being difficult to up-
grade to newer and more precise monitoring and it requires that the hardware
component be built with the dedicated ASIC, thus making any evolution im-
possible without replacing the whole hardware. On the other hand, an external
monitoring device provides the same accuracy as ASIC circuits and does not
prohibit energy monitoring evolutions. The previous monitoring approaches
retrieve energy measures about hardware components only. However, knowing
the energy consumption of software services and components requires an esti-
mation of that consumption. This estimation is based on calculation formulae
as in [19] and [9].

In [19], the authors propose formulae to compute the energy cost of a soft-
ware component as the sum of its computational and communication energy
costs. For a Java application running in a virtual machine, the authors take
into account the cost of the virtual machine and eventually the cost of the
called OS routines. Our model is based on a similar principle, although we
abstract the cost of the infrastructure in our computational costs. However,
the authors calculate the energy cost of components in terms of the cost of its
interfaces (i.e., a method in most cases). The latter is calculated as an estima-
tion of the energy cost of executing Java’s 256 bytes code types, JVM’s native
methods, and the cost of threads synchronization. Our computation model is
based on runtime power consumption. The CPU power consumed by a method
is its percentage share of the power consumed by the application, calculated
using the actual CPU time and utilization of the method. On the other hand,

40 Adel Noureddine et al.

our network model is similar to theirs, as both are based on the size of data
transmitted (send/receive) during the invocation of the program. Still, we use
runtime-monitored values to calculate power consumption, while they use es-
timations at construction time albeit refined at runtime. In [9], the authors
take into account the cost of the wait and idle states of the application (e.g.,
an application consumes energy when waiting for a message on the network).
We also take these states into account by only using the actual time spent
running on a resource (i.e., CPU, network card). In [7], the authors propose a
tool, PowerScope, for profiling energy usages of applications. This tool uses
a digital multimeter to sample the energy consumption and a separate com-
puter to control the multimeter and to store the collected data. PowerScope
can sample the energy usage by process. This sampling is more accurate than
energy estimation, although it still needs a hardware investment.

10.2 System Level Tools

pTop [5] is a process-level power profiling tool. Similar to the Linux Top
program, the tool provides the power consumption (in Joules) of the running
processes. For each process, it gives the power consumption of the CPU, the
network interface, the computer memory and the hard disk. The tool consists
in a daemon running in the kernel space and continuously profiling resource
utilization of each process. It obtains these information by accessing the /proc
directory. For the CPU, it also uses TDP provided by constructors in the
energy consumption calculations. It then calculates the amount of energy con-
sumed by each application in a t interval of time. It also consists of a display
utility similar to the Linux Top utility.

Our approach is more flexible and fine-grained than pTop. Not only we
offer process-level power information, but we also go deep into the application
in order to profile and report thread and method-level power consumptions.
Furthermore, the system level part of e-Surgeon offers better flexibility and
on-demand scaling of the tool. Monitoring modules can be shutdown or started
depending on the context: on limited resources devices, modules, such as the
network or hard disk modules, can be shutdown in order to monitor only the
CPU. When more resources become available, these modules will be re-started.
Other situations are also possible, such as situations where the user is only
interested in monitoring the CPU or the network energy consumption. Pow-
erAPI also adapts to its monitored environment thanks to its auto-calibration
process, in particular by using calibration data stored in its database. Our flex-
ible and modular approach therefore offers these functionalities, and extends
them to not only OS processes, but also inside Java-based applications profil-
ing.

In addition to pTop, several utilities exist on Linux for resource profiling.
For example, cpufrequtils15, in particular cpufreq-info to get kernel in-
formation about the CPU (i.e., frequency), and cpufreq-set to modify CPU

15 http://kernel.org/pub/linux/utils/kernel/cpufreq/cpufrequtils.html

Monitoring Energy Hotspots in Software 41

settings such as the frequency. iostat16 that is used to get devices’ and parti-
tions’ input/output (I/O) performance information, as well as CPU statistics.
Other utilities [8] also exist with similar functionalities, such as sar, mpstat,
or the system monitoring applications available in Gnome, KDE or Windows.
However, all of these utilities only offer raw data (e.g., CPU frequency, utilized
memory) and do not offer power information.

10.3 Application Profiling Tools

Several open-source or commercial Java profiling tools already propose some
statistics of Java applications. Tools, such as VisualVM17, Java Interac-
tive Profiler (JIP)18, or the Oktech Profiler19, offer coarse-grained
information on the application and fine-grained resource utilization statistics.
However, they fail in providing power consumption information of the appli-
cation at the granularity of threads or methods. For example, the profiler of
VisualVM only provides self wall time (e.g., time spend between the entry
and exit of the method) for its instrumented methods. We rather provide run-
time values for the duration of execution of methods in a monitoring cycle,
and give a good estimation of the CPU time of these methods. These tools
also lack of providing network related information, such as the number of bytes
transmitted by methods and thus the power consumed.

11 Conclusion and Future Work

In this paper, we report on the e-Surgeon runtime energy monitoring solu-
tion. It allows gathering and calculating the power consumption at processes
and methods level. Its modular architecture allows runtime context-based
adaptations of the monitoring environment itself, leveraging performance and
accuracy at the wish of the application or the user. We also propose power
models to calculate the power consumption. Our models use and extend the
state-of-the-art models and formulae, and port them to a fine-grained context.
Our initial results show the potential of our approach for diagnosing, at run-
time, energy hotspots of Java-based applications. In particular, our approach
detects methods and classes responsible for the most energy consumption. We
define energy per invocation as a more representative energy measurement
unit, and we argue to use percentage values over raw energy values. Finally,
our work opens windows into energy evolution modeling, where we empirically
model the evolution of energy consumption based on input parameters.

16 http://linux.die.net/man/1/iostat
17 http://visualvm.java.net
18 http://jiprof.sourceforge.net
19 http://code.google.com/p/oktech-profiler

42 Adel Noureddine et al.

As for future work, we plan to: i) propose more power models for other
hardware resources (in particular, memory and disk); ii) as application servers
are more and more running on virtual machines, we plan to implement spe-
cific sensors to these environments and experiment our model and approach
on them; and iii) use e-Surgeon and power-aware information to adapt ap-
plications at runtime based on power concerns.

References

1. Asm. http://asm.ow2.org/
2. The Green Challenge for USI 2010. http://sites.google.com/a/octo.com/

green-challenge

3. York Extensible Testing Infrastructure. https://code.google.com/p/yeti-test/
4. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R.,

Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M.,
Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage,
D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking development and
analysis. In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-Oriented Programing, Systems, Languages, and Applications, pp. 169–190. ACM
Press, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1167473.1167488

5. Do, T., Rawshdeh, S., Shi, W.: pTop: A Process-level Power Profiling Tool. In: Hot-
Power’09: Proceedings of the 2nd Workshop on Power Aware Computing and Systems.
Big Sky, MT, USA (2009)

6. Feeney, L., Nilsson, M.: Investigating the energy consumption of a wireless network
interface in an ad hoc networking environment. In: INFOCOM’01: Proceesing of the
Twentieth Annual Joint Conference of the IEEE Computer and Communications Soci-
eties, vol. 3, pp. 1548–1557 (2001). DOI 10.1109/INFCOM.2001.916651

7. Flinn, J., Satyanarayanan, M.: PowerScope: A Tool for Profiling the Energy Usage of
Mobile Applications. In: WMCSA’99: Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications, p. 2. IEEE Computer Society, Washington,
DC, USA (1999)

8. Gite, V.: How do I Find Out Linux CPU Utilization? http://www.cyberciti.biz/tips/

how-do-i-find-out-linux-cpu-utilization.html

9. Kansal, A., Zhao, F.: Fine-grained energy profiling for power-aware application design.
SIGMETRICS Perform. Eval. Rev. 36(2), 26–31 (2008). DOI 10.1145/1453175.1453180

10. Kuleshov, E.: Using the ASM framework to implement common java bytecode trans-
formation patterns. In: AOSD’07: Proceedings of the 6th International Conference on
Aspect-Oriented Software Development. Vancouver, Canada (2007)

11. McIntire, D., Stathopoulos, T., Kaiser, W.: ETOP: sensor network application energy
profiling on the LEAP2 platform. In: IPSN’07: Proceedings of the 6th international
conference on Information processing in sensor networks, pp. 576–577. ACM, New York,
NY, USA (2007). DOI http://doi.acm.org/10.1145/1236360.1236448

12. Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: A preliminary study of the
impact of software engineering on greenit. In: 1st International Workshop on Green and
Sustainable Software (GREENS’12), pp. 21–27 (2012). DOI 10.1109/GREENS.2012.
6224251

13. Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: Runtime monitoring of software
energy hotspots. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pp. 160–169. ACM, New York, NY, USA
(2012). DOI 10.1145/2351676.2351699. URL http://doi.acm.org/10.1145/2351676.

2351699

14. Noureddine, A., Rouvoy, R., Seinturier, L.: Unit testing of energy consumption of soft-
ware libraries. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting, SAC 2014. ACM, New York, NY, USA (2014)

Monitoring Energy Hotspots in Software 43

15. Pouwelse, J., Langendoen, K., Sips, H.: Dynamic voltage scaling on a low-power micro-
processor. In: MMSA’00: Proceesings of the 2nd International Symposium on Mobile
Multimedia Systems and Applications, pp. 157–164. Delft, The Netherlands (2000).
URL http://www.pds.ewi.tudelft.nl/~koen/papers/mmsa.ps.gz

16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). DOI 10.1145/359340.
359342. URL http://doi.acm.org/10.1145/359340.359342

17. Rivoire, S., Shah, M.A., Ranganathan, P., Kozyrakis, C.: JouleSort: a balanced energy-
efficiency benchmark. In: SIGMOD’07: Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data, pp. 365–376. ACM, New York, NY, USA
(2007). DOI 10.1145/1247480.1247522

18. Ruhl, C., Appleby, P., Fennema, J., Naumov, A., Schaffer, M.: Economic development
and the demand for energy: A historical perspective on the next 20 years. Energy
Policy 50(0), 109 – 116 (2012). DOI 10.1016/j.enpol.2012.07.039. URL http://www.

sciencedirect.com/science/article/pii/S0301421512006313

19. Seo, C., Malek, S., Medvidovic, N.: An energy consumption framework for distributed
java-based systems. In: ASE’07: Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering, pp. 421–424. ACM, New York,
NY, USA (2007). DOI 10.1145/1321631.1321699

20. Venners, B.: Inside the Java Virtual Machine, 1st edn. McGraw-Hill Professional (1999)
21. Vereecken, W., Van Heddeghem, W., Colle, D., Pickavet, M., Demeester, P.: Overall

ict footprint and green communication technologies. In: ISCCSP’10: Proceedings of the
4th International Symposium on Communications, Control and Signal Processing, pp.
1 –6 (2010). DOI 10.1109/ISCCSP.2010.5463327

22. Webb, M.: SMART 2020: enabling the low carbon economy in the information age, a
report by The Climate Group on behalf of the Global eSustainability Initiative (GeSI).
GeSI (2008)

