

On test oracles for Simulink-like models

Paulo Augusto Nardi

On test oracles for Simulink-like models

Paulo Augusto Nardi

Advisor: Prof. Dr. Márcio Eduardo Delamaro

Co-advisor: Prof. Dr. Luciano Baresi

Doctoral dissertation submitted to the Instituto de

Ciências Matemáticas e de Computação - ICMC-USP,

in partial fulfillment of the requirements for the degree

of the Doctorate Program in Computer Science and

Computational Mathematics. FINAL VERSION.

USP – São Carlos

January 2014

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura:________________________

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados fornecidos pelo(a) autor(a)

NN233o
o

Nardi, Paulo Augusto
 On test oracles for Simulink-like models / Paulo
Augusto Nardi; orientador Márcio Eduardo Delamaro;
co-orientador Luciano Baresi. -- São Carlos, 2014.
 148 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2014.

 1. Test oracle. 2. Embedded system. 3. Simulink.
4. Software testing. 5. Software engineering. I.
Delamaro, Márcio Eduardo, orient. II. Baresi,
Luciano, co-orient. III. Título.

Oráculos de teste para modelos Simulink-like

Paulo Augusto Nardi

Orientador: Prof. Dr. Márcio Eduardo Delamaro

Co-orientador: Prof. Dr. Luciano Baresi

Tese apresentada ao Instituto de Ciências Matemáticas

e de Computação - ICMC-USP, como parte dos

requisitos para obtenção do título de Doutor em

Ciências - Ciências de Computação e Matemática

Computacional. VERSÃO REVISADA

USP – São Carlos

Janeiro de 2014

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura:________________________

Acknowledgments

I would like to thank my advisor, Professor Márcio Eduardo Delamaro, who encouraged
and inspired me throughout this course. I also thank Professor Luciano Baresi, who agreed
to supervise my visit to Politecnico di Milano, and co-advised this work.

My parents, for the education, creation and existence. My brothers, for the education
and friendship.

To Ana Paula, for everything.
My friends from Labes, who made this journey easier. In special: André Endo, Fabiano

Ferrari, Lucas Bueno, Marco Graciotto, Rafael Oliveira and Vinicius Durelli. My republic
fellow, Douglas Rodrigues, for his support and friendship.

To everyone who welcomed me in Milan. Especially: Leandro Sales Pinto and Lenina,
for their friendship, moments of relaxation, tips, tours, lunches, dinners, and technical
support. Matteo Rossi, for pointing issues, for the explanations and suggestions. Salvatore
and other colleagues from Dipartimento di Elettronica ed Informazione.

Denis and Mauro, for the friendship, hospitality and patience in trying to understand
me (io non uscho, io esco!). You were my family for nine months. Grazie mille!!!

The examining committee, Profs. Ph.D.’s Ellen Francine Barbosa, Paulo Cesar Masiero,
Paulo Henrique Monteiro Borba, Otavio Augusto Lazzarini Lemos and Valdivino Alexan-
dre de Santiago Junior.

Professor Adenilso da Silva Simão, José Carlos Maldonado and Eliane Martins, for the
suggestions in the qualifying examination.

Professor Renata Meneghetti, Rodrigo Mello, Rosana Braga and Rudinei Goularte,
for the disciplines taught in the course.

The ICMC and its employees, for the support. I thank AGX and Embraer for their
cooperation. And to all those who somehow made this journey possible.

Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq, process 144626/
2009-8) for the financial support throughout the PhD, and Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior (CAPES, process PDEE 6834-10-8) for the financial
support of the internship abroad.

i

ii

Agradecimentos

Quero agradecer, primeiramente, ao meu orientador, prof. Márcio Eduardo Delamaro,
que me encorajou e me inspirou ao longo deste curso. Agradeço também ao prof. Luciano
Baresi, que aceitou me supervisionar no doutorado sandúıche, na Politecnico di Milano,
e co-orientar este trabalho.

A meus pais, pela educação, criação e por existir. A meus irmãos, pela educação e
amizade.

À Ana Paula, por tudo.
Aos meus amigos do Labes, que fizeram desta caminhada uma viagem mais leve. Em

especial a: André Endo, Fabiano Ferrari, Lucas Bueno, Marco Graciotto, Rafael Oliveira e
Vińıcius Durelli. Ao companheiro de república, Douglas Rodrigues, pelo apoio e amizade.

A todos que me acolheram em Milão. Especialmente: Leandro Sales Pinto e Lenina,
pela amizade, momentos de descontração, dicas, passeios, almoços, jantas, e apoio técnico.
A Matteo Rossi, pelas questões levantadas, explicações e sugestões. A Salvatore e demais
colegas do Dipartimento di Elettronica ed Informazione.

A Denis e Mauro, pela amizade, hospitalidade e paciência em tentar me entender (io
non uscho, io esco!). Vocês foram minha famı́lia por 9 meses. Grazie mille!!!

À comissão julgadora desta tese, professores doutores Ellen Francine Barbosa, Paulo
Cesar Masiero, Paulo Henrique Monteiro Borba, Otavio Augusto Lazzarini Lemos e Val-
divino Alexandre de Santiago Junior.

Aos professores Adenilso da Silva Simão, José Carlos Maldonado e Eliane Martins,
pelas sugestões e cŕıticas pontuais no exame de qualificação.

Aos professores Renata Meneghetti, Rodrigo Mello, Rosana Braga e Rudinei Goularte,
pelas disciplinas ministradas no curso.

Ao ICMC, professores e funcionários, pelo pronto aux́ılio. Agradeço à AGX e Embraer
pela colaboração. E a todos aqueles que de algum modo fizeram posśıvel esta jornada.

Ao Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq, processo
144626/2009-8) pelo apoio financeiro ao longo do doutorado e à Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES, processo PDEE 6834-10-8) pelo apoio
financeiro do estágio no exterior.

iii

iv

No matter where you go, there you are.
-Author unknown

v

vi

Declaration

I confirm that this dissertation has not been submitted in support of an application for
another degree at this or any other teaching or research institution. It is the result of
my own work and the use of all material from other sources has been properly and fully
acknowledged. Research done in collaboration is also clearly indicated.

Excerpts of this dissertation have been either published or submitted for the appreci-
ation of editorial boards of journals, conferences and workshops, according to the list of
publications presented as follows. My contributions to each publication are listed as well.

Journal Papers

• Nardi, P. A.; Baresi, L.;Delamaro, M. E.:“On engineering test oracles for Simulink-like
models”

– Journal: Software: Practice and Experience

– Level of Contribution: High – The PhD candidate is the main investigator
and conducted the work together with his advisors.

Conference and Workshop Papers

• Nardi, P. A.; Baresi, L.;Delamaro, M. E.:“Specifying Automated Oracles for Simulink
Models”

– Event: 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2013)

– Level of Contribution: High – The PhD candidate is the main investigator
and conducted the work together with his advisors.

vii

viii

Abstract

Embedded systems are present in many fields of application where
failure may be critical. Such systems often possess characteristics
that hampers the testing activity, as large amount of produced data
and temporal requirements which must be specified and evaluated.

There are tools that support the development of models for anal-
ysis and simulation still in the design stage. After being evaluated,
a model may be used as basis to the implementation. In this case, it
is important to ensure that the model is consistent with the specifi-
cation. Otherwise, a divergence will be propagated to the final code.
Therefore, the model must be tested prior to the codification.

Simulink is a standard development and simulation tool for mod-
els of embedded systems. Its wide application in the industry has
promoted the creation of free-software alternatives, as XCos.

In the literature, there are researches which seek to improve the
testing activity for Simulink-like models. The proposed solutions
usually focus on test case selection strategies. However, little efforts
have been directed to the oracle problem, that is, the difficulty in
evaluating if an execution agrees with the specification.

The objective of this doctorate proposal is to provide an ora-
cle generation approach for Simulink-like models which addresses
the characteristics previously summarized. Specifically, it is pro-
posed a process, methods, procedures and a tool that enable the
partially-automated generation of oracles for such models. As a main
contribution, it is expected an improvement in the evaluation process
of embedded systems in terms of quality, cost and time.

ix

x

Resumo

Sistemas embarcados estão presentes em diversas áreas de aplicação
em que falhas podem ser cŕıticas. Tais sistemas frequentemente pos-
suem caracteŕısticas que tornam a fase de teste particularmente de-
safiadora, como a produção de grande quantidade de dados e requi-
sitos temporais que precisam ser validados de acordo com a especifi-
cação.

Existem ferramentas que auxiliam no desenvolvimento de mode-
los para análise e simulação do comportamento de sistemas embar-
cados ainda na fase de design. Após ser avaliado, o modelo pode ser
usado como base para a implementação. Neste caso, deve-se bus-
car garantir que um modelo esteja de acordo com a especificação.
Do contrário, tal divergência será propagada para a implementação.
Portanto, é importante que o modelo seja testado antes da fase de
implementação.

Simulink é uma ferramenta-padrão de desenvolvimento e simu-
lação de modelos de sistemas embarcados. Sua ampla aplicação na
indústria incentivou a criação de alternativas de software livres como
XCos.

Na literatura, existem pesquisas que visam a aprimorar a ativi-
dade de teste de modelos Simulink-like. As soluções propostas geral-
mente focam em estratégias de seleção de casos de teste. Mas pouco
esforço tem sido direcionado ao problema do oráculo, isto é, na difi-
culdade em avaliar se a execução está de acordo com a especificação.

O objetivo desta proposta de doutorado é prover uma abordagem
de geração de oráculos de teste para modelos simulink-like que con-
temple as caracteŕısticas previamente resumidas. Especificamente, é
proposto um processo, métodos, procedimentos e uma ferramenta que
viabilizem a geração parcialmente automatizada de oráculos de teste
para modelos Simulink-like. Como contribuição principal, é esper-
ada a melhora da qualidade, custo e tempo do processo de validação
de sistemas embarcados suportados por modelagem em Simulink e
ferramentas similares.

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives and Rationale . 3
1.3 Contributions . 3
1.4 Thesis Outline . 4

2 General Concepts 5
2.1 Software Testing . 5
2.2 Test Oracles . 6

2.2.1 Oracle Approaches . 6
2.2.2 Specification-Based Oracles . 7
2.2.3 Metamorphic Relation Based Oracles 12
2.2.4 Machine Learning Based Oracles 13
2.2.5 N-version Based Oracles . 14

2.3 Simulink . 14
2.4 Final Remarks . 17

3 Evaluating the Application of Test Oracles 19
3.1 Overview of Study Selection . 19
3.2 Identification of Oracle Categories . 20

3.2.1 Specification-Based Oracles . 22
3.2.2 Metamorphic Relation Based Oracles 24
3.2.3 Machine Learning Based Oracles 26
3.2.4 N-Version Based Oracles . 27

3.3 Limitations . 27
3.3.1 Limitations of Specification-Based Oracles 28
3.3.2 Limitations of Metamorphic Relation Based Oracles 29
3.3.3 Limitations of Machine Learning Based Oracles 29
3.3.4 Limitations of N-Version Based Oracles 30

3.4 Test Oracle Support Tools . 30
3.5 Quality Criteria Application . 33
3.6 Threats to Validity . 39
3.7 Final Remarks . 39

xiii

4 Designing an Oracle Generator 41
4.1 Oracle Process . 42
4.2 Information Definition . 44

4.2.1 Temporal Logic . 45
4.2.2 Information Structure . 47

4.3 Mapping . 51
4.4 Oracle Analysis . 53

4.4.1 Off-line Oracle Access . 53
4.4.2 On-line Oracle Access . 56
4.4.3 Oracle Assumption . 56

4.5 Final Remarks . 58

5 Automating an Oracle Generator 59
5.1 Features . 60
5.2 Running Example . 62

5.2.1 Attribute Definition and Mapping 63
5.2.2 Module Layer . 64
5.2.3 OIU Layer . 65
5.2.4 Behavior Layer . 68
5.2.5 Analysis Execution . 69

5.3 Assumptions may Impact the Results . 71
5.4 OIU: Trigger-Dependent Rules . 73
5.5 Final Remarks . 75

6 Apolom: Implementation and Limitations 77
6.1 The bridge Package . 77
6.2 The oracleinformation Package . 79
6.3 The oracleprocedure Package . 80

6.3.1 Detection of Spurious Occurrences 81
6.4 Limitations . 84
6.5 Final Remarks . 85

7 Empirical Evaluation 87
7.1 Issues and Hypothesis Statements . 87
7.2 Evaluation 1 . 89

7.2.1 Operation . 89
7.2.2 Simulation Time of Instrumented Models 91
7.2.3 Language Acceptance . 92
7.2.4 Threats to Validity . 92

7.3 Evaluation 2 . 92
7.3.1 Simulation . 93
7.3.2 System Description . 93
7.3.3 Common Development Team Concerns 96
7.3.4 Oracle Specification . 96
7.3.5 Results . 100
7.3.6 Threats to Validity . 101

7.4 Evaluation 3 . 102

xiv

7.4.1 Operation and Results . 102
7.4.2 Threats to Validity . 108

7.5 Evaluation 4 . 108
7.5.1 Operation . 108
7.5.2 Results . 109
7.5.3 Threats to Validity . 112

7.6 Final Remarks . 112

8 Other Available Approaches 113
8.1 Simulink Model Verification . 113
8.2 Simulink Verification and Validation . 117
8.3 Simulink Design Verifier . 117
8.4 REACTIS . 119
8.5 T-VEC . 121
8.6 Considerations . 122

9 Conclusions and Final Considerations 123
9.1 Contributions . 125
9.2 Limitations . 125
9.3 Possible Research Directions . 126

Bibliography 146

A Aviation Glossary 147

xv

xvi

List of Figures

2.1 A test oracle scenario (Source: Aichernig (1999)) 8
2.2 A wrapper (Source: Edwards (2001)) . 10
2.3 State Machines (Source: Andrews and Zhang (2003)) 11
2.4 Breaking detector. Source: (Chapoutot and Martel, 2009) 16

3.1 Publication by year . 20
3.2 Publication by year, by category . 21
3.3 Publications by year (Specification-based oracles) 23

4.1 Oracle definition process . 42
4.2 A model of a boiler control . 49
4.3 Modularization . 50
4.4 Modularization of Figure 4.2 . 51
4.5 Oracle Information layers . 51
4.6 Mapping options. Source: (Mathworks, 2013a) 52
4.7 Close interval of occurrences . 57
4.8 Undecidable relation between A and B . 57

5.1 Rule Wizard . 60
5.2 Mapping sample . 61
5.3 Instrumented model . 62
5.4 Model and folder selection . 63
5.5 Intrumentation editor . 64
5.6 Module editor . 64
5.7 A defined OIU . 65
5.8 OIU editor . 66
5.9 Behavior selection . 66
5.10 Parameter settings . 66
5.11 Shortcut selection . 67
5.12 Rule generation . 67
5.13 Behavior definition . 68
5.14 A tooltip . 69
5.15 Oracle setup . 69

xvii

5.16 The configuration . 70
5.17 Oracle report . 70
5.18 Oracle report: successive assumption . 72
5.19 Oracle report: overlapping assumption . 72
5.20 Oracle report: constraint failure . 73
5.21 Oracle report: critical failure . 74
5.22 Oracle report: constraint critical failure . 74

6.1 Driver package: parsers and converters . 78
6.2 Module structure . 79
6.3 OIU structure . 79
6.4 Successive assumption analysis . 82

7.1 Lorenz Equation . 90
7.2 Attribute definition and mapping . 90
7.3 Behavior of equation (2) . 91
7.4 UAV simulation: waypoints . 93
7.5 UAV simplified subsystem diagram . 94
7.6 Oracle Report . 101
7.7 Relation of performances with different MMS and SMS 104
7.8 Relation of performances when SMS is used 106
7.9 Lorenz Attractor example. Source: (Stewart, 1989) 109
7.10 Lorenz Attractor samples. 110

8.1 Simulink Model Verification . 113
8.2 Apolom report . 116
8.3 Simulink Design Verifier . 118
8.4 A valid proof . 119
8.5 A Design Verifier internal error . 119
8.6 Reactis stateflow requirement. Source: Reactive Systems (2012) 120
8.7 Reactis stateflow requirement. Source: Reactive Systems (2012) 120

xviii

List of Tables

2.1 Simulink blocks . 14
2.2 Inport, time and outport . 17

3.1 Relation between oracle categories . 21
3.2 Specification-based oracles . 22
3.3 Last years publications . 24
3.4 Oracle Support . 30
3.5 Quality criteria application . 34

4.1 TRIO Operators . 46
4.2 Added functions . 46

7.1 Issues and hypothesis statements . 87
7.2 Lorenz execution time . 103
7.3 Fast Jumper: data interval behind and beyond main memory space 105
7.4 Fast Jumper: large secondary memory space 107
7.5 Fast Jumper: a “real-world” study . 107
7.6 Selected mutant operators . 108

8.1 SMV blocks . 114

xix

xx

Abbreviations and Acronyms

ADT - Abstract data type
ANN - Artificial neural network
GUI - graphical user interface
IFN - Info-fuzzy network

JML - Java Modeling Language
MITL - Microsoft Transformation Language
MMS - Main memory space

NN - Neural network (as ANN)
OIU - Oracle information unit
RBF - Radial basis function
ROC - Receiver operating characteristic
SDL - Specification and Description Language
SDV - Simulink Design Verifier
SLA - Supervised learning algorithm
SMS - Secondary memory space
SMV - Simulink Model Verification
SOM - Self-organizing map
SUT - Software under test
SVM - Support vector machine
SVV - Simulink Verification and Validation
SWT - Standard Widget Toolkit
UAV - Unmanned aerial vehicle

VDM - Vienna Development Method

xxi

xxii

Chapter

1
Introduction

Embedded software are the core of many complex systems and their failure may result in

death, great economic losses, and severe environmental damages. The key role of these

systems, associated with the shortened development cycles within the development orga-

nizations and high customer expectations of quality (Lazić and Velašević, 2004), imposes

a very careful design and validation to discover potential problems as early as possible.

The design of embedded systems is usually performed through executable models that

simulate the behavior of the actual system. Examples of standard system modelers and

simulators are Simulink, a commercial tool 1, and free alternatives as XCos 2 and Scicos 3.

However, simulation is often not enough to assess the quality of designed models given

that existing defects may not be easy to detect. Moreover, the output data are too large

and complex to be analyzed and understood manually. The model quality, which reflects

on the system quality, should be assessed through suitable test campaigns (Reicherdt and

Glesner, 2012).

In the literature, there are two classical test problems: (i) the reliable test set prob-

lem (Chen et al., 2001a) – the definition of a finite test set that if passed would guarantee

the correctness of the program, and; (ii) the oracle problem (Weyuker, 1982) – the identi-

fication of a procedure to decide whether the obtained result matches the expected result.

Usually, the oracle role is played by a human tester.

1MathWorks: http://www.mathworks.com/products/simulink/
2The Scilab Consortium: http://www.scilab.org/scilab/gallery/xcos
3INRIA: http://www.scicos.org/

1

CHAPTER 1. INTRODUCTION

Whereas it is usually impossible to decide if a program is correct, the purpose of

software testing is to determine whether a program contains errors (Goodenough and

Gerhart, 1975). Therefore, test oracles are essential components in test harness because

it needs to report whether the test results are failures (Chan and Tse, 2013).

Model-driven testing comprises characteristics that hamper the test activity: (i) as

mentioned earlier, simulations usually involve large amounts of inputs and outputs which

leads to a costly and error-prone comparison process by manual means; (ii) the dynamical

nature of simulations commonly demands evaluation of requirements with temporal prop-

erties, which is hard to assess manually; and, (iii) similar behaviors may be challenging

to evaluate manually.

Considering the infeasibility of generating fully-automated oracles (the oracle problem)

and the difficulty in manually evaluating models of embedded systems, we hypothesize

that it is possible to reach a middle-ground solution: a partially-automated process of

oracle generation which is capable of improving the testing activity of embedded systems

by reducing its cost and increasing its effectiveness compared to manual evaluation, given

their already described characteristics.

This research addresses the oracle problem in model-driven development, specifically

for Simulink, a graphical system modeler and simulator widely adopted in industry. The

oracle problem and its limitations are evaluated in this thesis to provide a basis to the

proposition of an oracle engineering foundation which may conduct to the definition of

partially automated oracle generators for Simulink-like models.

1.1 Motivation

Embedded systems have become increasingly sophisticated and their failure may be critical

in many domains. Since it is usually impossible to guarantee error-free systems, the

relevance in the search for gaps and improvements in the testing activity is evident.

Many partial solutions on the oracle problem have been proposed, but they are rarely

treated as a whole. The tester should concentrate his/her efforts in planning the testing

activity, not in researching ways to integrate isolated solutions and different technologies

in a functional framework.

Simulink and free alternatives, as XCos, are a de-facto standard for the design and

simulation of embedded systems in many different domains. It is widely known that,

as later an error is discovered, more expensive is the cost to correct it. Therefore, it is

preferable to eliminate defects previously in the design stage then in the later steps.

2

CHAPTER 1. INTRODUCTION

Also, Simulink-like executions may generate large amounts of output. Oftentimes,

the testers assess the model correctness manually for a given test set, but this process is

usually slow, error-prone, and very expensive.

The motivation is to contribute to the embedded software development process by

defining an engineering process and developing supporting tools that allow the creation

of automated oracles for Simulink models.

1.2 Objectives and Rationale

This research aims to provide an approach to encompass the needs and vulnerabilities

previously described with a process, method, procedure and a tool, enablers of a partially

automated oracle generator for Simulink models. Thus, the generation of test oracles for

such models may be planned by the tester without the need to expend time and efforts

to research technologies and existing solutions, as ways to integrate them.

In addition, this thesis contributes with concepts that lead to an oracle engineering,

as well as the development and validation improvement of embedded systems supported

by Simulink-like modelers, in terms of time, cost and quality of results.

In contrast to manual approach, automated oracles can produce more reliable and

faster reports by allowing a greater amount of comparisons, covering more outputs, elim-

inating error-prone manual analysis, and detecting errors with more accuracy. Further-

more, testing cost can be reduced and productivity can be increased by comparing and

reporting errors faster than if done manually.

Simulink models simulate dynamical systems which are defined as a set of possible

states, together with a rule that determines the present state in terms of past states (Al-

ligood et al., 2000). Specifications based on temporal logics are often used to describe

allowable sequences of events (Baresi and Young, 2001). But the manual evaluation of a

model based on such specifications may be infeasible due to the large amounts of output

generated in a simulation. Hence, an automated comparison is even more opportune to

dynamical systems in which temporal properties must be represented.

1.3 Contributions

As result of this thesis, the expected contributions are: (i) a process to define oracles

for Simulink models; (ii) a method to generate specifications with high expressiveness

(including temporal property representation) and interpretable by an automated oracle;

(iii) a definition of an oracle procedure capable of analyzing a model execution with respect

3

CHAPTER 1. INTRODUCTION

to the given specification; (iv) a tool to provide empirical evidence of the viability of our

proposal; (v) extensibility of our proposal to other tools similar to Simulink, as XCos and

Scicos.

1.4 Thesis Outline

Chapter 2 provides an overview of the background concepts required for the under-

standing of this thesis. Chapter 3 is based on a study (Nardi and Delamaro, 2011)

which summarizes existing researches on the oracle problem, as well as possible gaps,

approaches and limitations.

Chapter 4 defines a process to the generation of an oracle for Simulink-like models,

together with a method to specify the information of interest and procedures to analyze

results with respect to the specification.

Chapter 5 presents an overview of Apolom, an oracle generator tool implemented to

assess the viability of this research, which supports all the process of the oracle generation.

It is also presented a running example with Apolom to illustrate a complete definition of

an oracle generator.

Chapter 6 details the implementation and limitations of Apolom to provide a per-

spective of the feasibility of the proposal and the obstacles to be overcome.

Chapter 7 brings four evaluations to assess the soundness of our proposal. It analyzes

(i) whether the oracle specification is practical; (ii) whether the oracle affects the original

model; (iii) whether the analysis time and cost are acceptable; and, (iv) whether the oracle

is effective.

Chapter 8 presents a comparison between our proposal and available approaches and

tools, to emphasize the innovative part of the research. Finally, Chapter 9 concludes

this thesis, presenting the conclusions and revising limitations and future works.

4

Chapter

2
General Concepts

Definitions of Software Engineering terms may vary in the literature and different research

groups may adopt divergent meanings for such terms. This chapter presents the basic

concepts to enable a common vocabulary for the understanding of this thesis.

Section 2.1 presents basic software testing concepts. Section 2.2 focuses on test oracles.

Section 2.3 introduces Simulink. Section 2.4 concludes this chapter.

2.1 Software Testing

Testing is the process of executing a program with the intent of finding errors and aims

to establish some degree of confidence that a program behaves as expected (Myers, 2004).

According to IEEE (2010), a fault is an incorrect step, process, or data definition in

a computer program. An error is the difference between obtained and expected results.

A failure is the termination of the ability of a product to perform a required function or

its inability to perform within previously specified limits. The distinction between error

and failure lies in the visibility: a failure is a notable event. For example, an error can

occur when computing the result of a function. If this error does not impact in the final

result and the requirements are preserved, there is no failure.

In the testing process, a program is executed with input data and generated output

data (obtained result) is compared with the specification (expected result). A test case is

5

CHAPTER 2. GENERAL CONCEPTS

a pair (i, O(i)), where i is an input data and O(i) is the expected result for i. A test set

represents all test cases used during the software testing.

This thesis focuses on the oracle problem. Therefore, data selection criteria and tech-

niques will not be discussed in this chapter.

2.2 Test Oracles

Oracle is a mechanism which determines whether the output produced by a program is

correct (Weyuker, 1982). This role is usually played by the tester.

An ideal oracle should be completely trusted (Mao et al., 2006a). The tester is

error-prone and the effort to identify the correct result in a reasonable amount of time

can affect negatively the test confidence which motivates the oracle automation research.

However, producing an automated oracle that maps all the possible input data to

their respective expected results is as impractical as producing an error-free program.

The following subsections describe the current approaches and categories that seek to

solve the oracle problem with some degree of automation.

2.2.1 Oracle Approaches

An oracle automation approach can be roughly classified into two groups: pseudo-oracles

and partial oracles.

A pseudo-oracle is a program written in parallel with the software under test, by a

second team, following the same specification (Davis and Weyuker, 1981). Third-party

components can be also considered, instead of double-coding (Hummel and Atkinson,

2005).

The pseudo-oracle output is considered as the expected result. Both are executed

and their respective results are compared. The comparison can eventually include an

acceptable margin of error. If there is a divergence between the results, the test fails.

There are a few limitations to the approach. Besides the burden of a double develop-

ment, there is no guarantee that the oracle is correct. Therefore, if an error is detected,

both must be debugged to verify in which one the fault is present.

Also, if the same fault is present in the oracle and in the software under test (SUT),

it may produce the same wrong result in both executions and the comparison will not

diverge, which will lead to a successful test, i.e., a false positive. Brown et al. (1992)

suggest, in addition to different teams for the oracle and SUT developments, a different

level of abstraction for the oracle implementation to reduce the chance that the same fault

is present in both codes.

6

CHAPTER 2. GENERAL CONCEPTS

A partial oracle is capable of identifying whether the result is incorrect, even without

the knowledge of the correct result (Weyuker, 1982). This is achieved by confronting the

obtained results with constraints, as invariants, pre and post conditions (Kim-Park et

al., 2009). In such case, the oracle identifies if the obtained result respects a set of rules

instead of comparing its concrete value with some previously calculated expected result.

The approach presented in this thesis can be classified as a partial oracle, since it

allows the tester to define constraints and relations between the data being processed in

a Simulink model.

The terms passive and active oracles are also common in the literature. An active

oracle mimics the behavior of a software component under test (Pasala et al., 2007). A

passive oracle verifies the component behavior, but does not reproduce it (Shukla et al.,

2005).

These concepts are transversal to the pseudo and partial oracles. A program written

in parallel, i.e. a pseudo-oracle, reproduces the behavior of a SUT, therefore, it is also an

active oracle. A pseudo-oracle that does not reproduce a result but compares it with a

set of constraints is also a passive oracle.

Regardless the oracle approach, the primary function of an oracle is the verdict. This

goal is fulfilled by analyzing some information and comparing it with the obtained result.

The basic components of an oracle are the oracle information and oracle procedure.

An oracle information represents the expected behavior (Memon et al., 2003b),

which is obtained from a specification, stored results, parallel program execution, meta-

morphic relations (discussed in the next section) or leaning machines. It can be a concrete

behavior – the expected result – or an abstract behavior, as an acceptable boundary limit

expressed by a constraint.

An oracle procedure compares the oracle information with the obtained result, which

can be performed in execution time (on-line) or after it (off-line) (Durrieu et al., 2008).

Next subsections discuss these different representations of oracle information and how

the oracle procedure uses it to report the test verdict.

2.2.2 Specification-Based Oracles

A formal specification offers an authoritative source of information about the correct

behavior of a system (Baharom and Shukur, 2009) and it can be described in different

levels of abstraction (Chen, 2002). Examples of specification languages are: Z notation,

Object Z, VDM, JML, state machines, Petri nets, MITL and SDL.

7

CHAPTER 2. GENERAL CONCEPTS

A specification can be used as oracle information. In such case, the oracle procedure

must be able to interpret the specification, which can require a compiler or interpreter,

as well as a mapping between implementation and specification.

To avoid misinterpretation between concepts, three definitions are here discerned

(based on IEEE (2010)): a system requirement is a condition or capability that must be

met or possessed by a system, product, service, result, or component to satisfy a contract,

standard, specification, or other formally imposed document. Requirements include the

quantified and documented needs, wants, and expectations of the sponsor, customer, and

other stakeholders; an oracle requirement is a requirement that must be evaluated by

the oracle; a system specification is a structured collection of information that embod-

ies the requirements of the system; and, oracle specification is a structured collection

of information that embodies the oracle requirements.

Mapping: to compare the expected and obtained results, the oracle procedure must

identify the relation between the implementation and the specification. There are many

mapping approaches, as retrieve functions, embedded assertions and wrappers.

Aichernig (1999) describes an oracle scenario in terms of abstract data, concrete data

and a mapping function (also called retrieve function): the implementation is executed

with an input data, called concrete test input. A function r (Figure 2.1, adapted from

Aichernig (1999)) maps the concrete input and output to its abstract representations in

the specification, called respectively abstract input and output, by converting the im-

plementation data (concrete) to the specification language data (abstract). A checker

validates the abstract input and output according to predefined rules. The test passes if

no rule is violated.

Figure 2.1: A test oracle scenario (Source: Aichernig (1999))

8

CHAPTER 2. GENERAL CONCEPTS

As an example of a test oracle process with retrieve function mapping, Jia (1993)

proposed the following steps: (i) a compiler reads the specification and the retrieve func-

tions, generating a test driver; (ii) SUT source-code and driver are compiled to generate

an executable tester; (iii) test cases are applied to the executable tester and the oracle

reports are produced.

A second mapping approach is related to the use of embedded assertion languages

(Baresi and Young, 2001) which are expressions to be embedded directly in program

code. They typically state properties to be checked at a particular control point in the

program, therefore, acting as a partial oracle. There are programming languages, as Java,

that natively support embedded assertions. Furthermore, there are specification notation

languages, as Anna (Luckham and Von Henke, 1985) and JML (Cheon and Leavens,

2002)(Leavens et al., 2006), that allow the writing of requirements as assertions inserted

within the code. In such cases, embedded assertions are mapped as reserved words,

recognized by an interpreter/compiler, inserted in specific points in the code where they

must be checked.

For example, a code recalculates a coordinate and has the following constraint: the

current coordinate can not be less than 5 before the calculation. One may introduce an

assertion in the SUT to ensure that an exception will rise if coordinate < 5, as presented

at line 2 in the next code.

1 int coordinate = keyboard.nextInt();

1 assert coordinate>=5;

2 float new_coordinate = calculate_coord(coordinate);

A wrapper is a checker that surrounds the component under test (Edwards, 2001)

without modifying its code. For example, given a class under test, a second one (the

wrapper) is created with the same interface as the original but with other methods which

are responsible to check some constraint. A test driver communicates with the wrapper

which checks whether the class under test agrees with the specified (Figure 2.2, adapted

from Edwards (2001)).

The representation layer is responsible by the data conversion from concrete to abstract

and the abstract layer compares it with the constraints, as pre and post conditions.

The public methods of the original class are duplicated or overridden in the wrapper

class. The wrapper controls the original class execution by calling its respective methods.

An example based on Shukla et al. (2005) is here presented: let us consider a class

under test which represents a list of integers, with an insert method. A wrapper class

inherits from the original class and overrides the insert method. Two other methods are

9

CHAPTER 2. GENERAL CONCEPTS

Figure 2.2: A wrapper (Source: Edwards (2001))

implemented in the wrapper: one identifies the number of elements of the integer list and

the other compares the number of elements before and after the insertion. The method

insert from the wrapper first checks the number of elements of the integer list by calling

its respective method, then it calls the superclass insert method and, finally, checks again

the number of elements of the list, comparing it with the first check. It is expected that

the second checking is equals to the first check plus one. Otherwise, the element insertion

has failed.

Specification paradigms: there are several specification languages and their respec-

tive paradigms reflect in many different oracle approaches. Examples of such specifications

are briefly described next.

Executable models: if a model is executable, it can reproduce the SUT behavior. An

oracle can use the model as oracle information and the simulation outcomes as expected

results. An oracle procedure compares its results with the SUT outcomes and report

an error if there is an unacceptable difference between them. For instance, Lasalle et

al. (2011) apply a Simulink model as oracle information and its simulation calculates

the expected results of a vehicle reaction with respect to the road characteristics when

steering.

State machines: a parser can be applied to generate an analyzer from the machine;

the SUT output is inserted into the analyzer; if the output is not expected in the machine,

an error is detected. The state machine is the oracle information and the analyzer is the

oracle procedure.

Andrews and Zhang (2003) give an example of state machines as oracle to test an

elevator system. The output is stored into a log file. The requirements are: (i) the

10

CHAPTER 2. GENERAL CONCEPTS

door must be closed if the elevator is moving; (ii) the elevator must be stopped when

the controller program terminates; (iii) the door must never be open for more than 30

seconds. The following log file is given:

call 3
go_up
reach 2
reach 3
stop
door_open 3 103325
door_close 3 103340
go_down

Two machines are created by the tester: one for requirements 1 and 2 (Figure 2.3a), and

another for requirement 3 (Figure 2.3b).

(a) Requirements 1 and 2 (b) Requirements 3

Figure 2.3: State Machines (Source: Andrews and Zhang (2003))

An analyzer receives as input the state machines and the log file. If the analyzer can not

recognize a line from the log or if there is no transition in the machine, the file is rejected and

an error is identified. Eventually, the analyzer may be prepared to ignore valid log lines that are

not represented in the state machines. In the example, call and reach are expected lines in the

log file, but they are not represented in the state machines. In this case, they must be ignored

by the analyzer instead of triggering an error.

Declarative paradigm: oracles in which the specification is written with a declarative lan-

guage, that is, a nonprocedural language that permits the user to declare a set of facts and to ex-

press queries or problems that use these facts (IEEE, 2010). Embedded assertions, OCL (Briand

and Labiche, 2001; Packevičius et al., 2007; Pilskalns et al., 2007) and Alloy (Svendsen et al.,

2011) are examples of declarative languages.

Object oriented: a specification can be written following concepts of object-oriented

paradigm, if the specification language allows it, as Object Z (McDonald et al., 1997; McDonald

and Strooper, 1998; McDonald et al., 2003).

11

CHAPTER 2. GENERAL CONCEPTS

Temporal logic: such specifications allow reasoning about time. A temporal logic language

may express time qualitatively, in which interval boundaries are defined in relation to other

events, and/or quantitatively, so time distances can be measured.

Temporal logic languages are commonly associated with models as state machines or Petri

nets. The former specifies temporal properties of a system and the models describe a system in

terms of abstract model which simulates its behavior.

Wang et al. (2005) present a case study with requirements of a landing control system (LCS)

of a lunar module, informally described as: “The occurrence of an error condition causes the

system to switch to the emergency landing mode within 60 milliseconds”. A safety property

based on that requirement of LCS is written as: “When a TimeInt reaches Control System and

the acceleration reading has not been completed, then Status changes to Emergency within 60

ms.” The variable TimeInt represents a timer that interrupts the Control System if a predefined

time is expired. Status represents the normal or emergency mode.

This safety property can be formally written in a temporal logic specification language, as

MITL:

2[0,∞]((TimerInt ∧ ¬Done)⇒ 3[0,60](Status = Emergency))

The square symbol means “always in an interval” and the diamond denotes “sometime in the

interval”. The authors propose an algorithm that translates the MITL specification into a timed

automata which is used as an oracle, as discussed on state machine oracles.

2.2.3 Metamorphic Relation Based Oracles

A metamorphic relation (MR) is an expected relation among the inputs and outputs of multiple

executions of the target program (Chen et al., 2003). As example, an implementation of a sine

function must always respect the following metamorphic relations: sin(x)− sin(x+ 2π) = 0. In

this example, the target program is the sine function and the difference between two executions

(with inputs x and x+2π, respectively) is always 0. If a set of metamorphic relations is identified

for a given program, then they can be used as oracle information. Such test is called metamorphic

test.

The concept of metamorphic test is presented by Chen et al. (1998): “Although it is impossi-

ble to know if the output of the application is correct for arbitrary input, often these applications

exhibit properties such that if the input or system state were modified in a certain way, it should

be possible to predict the new output, given the original output”.

With the previous example of sine function, even without the knowledge about the expected

results, it is known that the presented relation must be true for any value of x. The tester

defines test cases in which inputs are x and x + 2π. After executing the function with both

12

CHAPTER 2. GENERAL CONCEPTS

inputs, the tester subtracts the respective results. If the subtraction is different of 0 (or outside

an acceptable boundary limit), an error is revealed.

2.2.4 Machine Learning Based Oracles

Machine learning are computational methods using collected data (or training data) to improve

performance or to make predictions (Mohri et al., 2012). Supervised learning means that such

collected data are previously labeled and predictions can be made for posterior unlabeled data.

Thus, given the prediction feature, supervised learning algorithms (SLA) can be applied as

test oracles. In such approach, an SLA learns a behavior from test executions which are known

as correct and becomes an active oracle. Three classes of SLA found in the literature are: neural

network (NN), support vector machines (SVM) and info-fuzzy networks (IFN).

Neural networks are capable of simulating a software behavior (also called as pattern)

from pairs of input/output (Shahamiri et al., 2009) and they are applicable as continuous (Jin

et al., 2008) or discrete (Aggarwal et al., 2004) function approximators.

Two operations are involved with NNs: training and regression (or association, if used as

classifiers) (Jin et al., 2008). Given a training set of input/output pairs, a NN is capable of

finding the approximated function of a deterministic computational process. After trained, a

network is capable of relating (classifying) outputs for inputs that were not used in the training

operation.

The structure of a NN is composed by interconnected nodes (also known as neurons). The

node structure is usually disposed in different layers, in which all nodes from a previous layer

are connected to all nodes of the next layer. This organization allows a NN to approximate

non-linear functions (Alpaydin, 2010).

NN oracles are justified in tests where the original program is unavailable (Vanmali et al.,

2002).

SVM is used for classifying data objects and finding patterns in the classifications (Vapnik,

1995). It separates data from opposite classes with a hyper-plane located in the biggest possible

margin with respect to the samples from each class which lies closest to it. As NNs, a SVM

also depends on a training data, however, it consists of pairs of feature vector and its respective

expected class. The SVM uses the training data to find separating hyper-planes to classify the

feature vectors (Wang et al., 2011).

Info-fuzzy network is a directed rooted graph that represents a decision procedure (Agar-

wal et al., 2012). It involves data mining methodology, feature selection and classification.

Feature selection is the process of identifying the components of the input vector that are most

important in the decision process. IFNs have a single input layer, a variable number of hidden

layers and a single target layer as a NN, but with a root node. Also, each IFN hidden layer

represents an input attribute, not a weighted sum of input values (Agarwal, 2004).

13

CHAPTER 2. GENERAL CONCEPTS

2.2.5 N-version Based Oracles

An N-version based oracle comprises N independently written versions of a program, all con-

forming to the same functional specification (Eckhardt and Lee, 1985). If different outputs are

produced by any version, a majority vote decides which output is probably correct.

M-mp (m-model Program testing) is a variation of N-version, where different versions of

functions under test are implemented, instead of a complete system (Manolache and Kourie,

2001). The goal is reducing the test cost.

The paradigm and team diversity between versions and program under test aims to avoid

correlated defects: the closer are versions and program, greater the risk of a same defect being

present in more than one group (Manolache and Kourie, 2001).

Other similar approaches include: regression test, where older and stable versions, previously

tested, are used as oracles to test programs developed by iterative processes (Memon et al.,

2003b); and, the use of third-party components as test oracles (Hummel and Atkinson, 2005).

2.3 Simulink

This section presents basic concepts for the understanding of Simulink models. Most definitions

were extracted from the official documentation 1.

Simulink is a block diagram environment for multidomain simulation and Model-Based

Design which supports system-level design, automatic code generation and continuous test of

embedded systems (Mathworks, 2013b). It is part of Matlab toolbox.

A block diagram is composed by blocks and lines. A line represents a mathematic relation-

ship between signals. A signal is a time varying quantity that has values at all points in time.

A block may be an action over a signal (Matsumoto, 2008), also called nonvirtual blocks, or an

organizational element which plays no active role in the simulation (virtual blocks).

Blocks may be roughly classified as: sources, which provide input to other blocks; sinks,

which receive output from other blocks; and, operations, which process signals. Table 2.1

presents a summary of common Simulink blocks.

Table 2.1: Simulink blocks

Block Library Description

Inport Sources creates input port for subsystem or external input

Constant Sources generates constant value

From File Sources reads data from MAT-file

From Workspace Sources reads data from Matlab workspace

1http://www.mathworks.com/help/simulink/index.html

14

http://www.mathworks.com/help/simulink/index.html

CHAPTER 2. GENERAL CONCEPTS

Random Number Sources generates normally distributed random numbers

Outport Sinks creates output port for subsystem or external output

To File Sinks writes data to file

To Workspace Sinks writes data to Matlab workspace

Display Sinks show value of input

XY Graph Sinks display X-Y plot of signals

Product Others multiplies or divides its inputs

Gain Others multiplies input by a constant

Sum Others adds or subtracts its inputs

Logical Operator Others performs specified logical operation on inputs

Relational Operator Others performs specified relational operation on inputs

Switch Others switch output between first input and third input

based on value of second input

Unit Delay Others delays signal on sample period

Integrate Others integrates signal

Figure 2.4 shows an example of Simulink model. It represents a braking detector (Chapoutot

and Martel, 2009) with three subsystems. Figure 2.4a reproduces a breaking pedal as a mass-spring-

damper system: given a system composed by a mass m attached to a spring with spring constant

k and immerse on a viscous fluid of damping coefficient c, the oscillation in this system will be

damped by the presence of the fluid. Such system may be represented by the following equation:

ẍ = 1
m(F − bẋ− kx)

Where, ẍ is the acceleration, ẋ is the velocity, and x is the position.

The model for such equation (Figure 2.4a) contains a source block (In1) which repre-

sents the force applied to the pedal and a sink block (Out1). Operation blocks perform the

mass-spring-damper system: Gain2 block represents 1
m , where m = 2; second gain block repre-

sents the multiplication by the damping coefficient (b = 100); and, third gain block is the spring

constant (k = 250).

Model from Figure 2.4b represents a detector of the force applied to the pedal. If the force

is greater than a given threshold, breaking must be performed. And, Figure 2.4c reproduces the

composition of the system based on the previous models. In this figure, Pedal and Control are

virtual blocks. All output blocks within any subsystem are virtual because they do not play any

active role in the simulation, as such as all inputs from the presented models.

Simulink is part of Matlab and both environments may communicate. For example, it is

possible to define a matrix on Matlab and configure inport blocks of Simulink to use such

structure as data source. In the same way, it is possible to recover outport signals on Matlab.

15

CHAPTER 2. GENERAL CONCEPTS

(a) Breaking pedal

(b) Breaking control

(c) System

Figure 2.4: Breaking detector. Source: (Chapoutot and Martel, 2009)

Table 2.2 presents an example of simulation results from the introduced model. First column

represents the simulation input data given by a designer, which represent the force applied to

the pedal. Second column is the time steps and third column is the output, that is, whether the

break action was detected.

Although this example presents a time vector with integer values, usually Simulink expresses

time in intervals of 0.2 or 0.02 units.

The time of the next simulation step is determined by a component of the Simulink software

called solver. There are many available solver algorithms and they may be classified as fixed

or variable steps.

With fixed-step solvers, the step size remains constant while with variable-step, it may

vary. If a designer plans to generate code from the model, he/she should choose fixed-step

because one cannot map the variable-step size to a real-time clock. Variable-step solvers may

be selected if it is intended to shorten simulation time, because the algorithm can dynamically

adjust the step size as necessary, that is, if less time is needed to calculate the next step than a

fixed step value, it will be shorten.

All blocks from Figure 2.4 are part of the default Simulink library. But it is possible to

create new blocks and define their behaviors by the Matlab native language, or other languages

as C/C++, Fortran, Ada (Matsumoto, 2008) and state machines. It is also possible to acquire

16

CHAPTER 2. GENERAL CONCEPTS

Table 2.2: Inport, time and outport

(a)

In1
10
20
30
40
50
60
70
80
90
100
100
100
100
0
0

(b)

Time
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(c)

Out1
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0

libraries (also called blocksets) from third-parties, as UTRA FDD Blockset from Multiple Access

Communications Ltd, for 3GPP standard UMTS transmitter modeling; and WLAN Toolbox

from CommAccess Technologies, for generating, demodulating, and decoding high speed WLAN

waveforms compliant with IEEE Std. 802.11a/b/g.

2.4 Final Remarks

An ideal test oracle should always be able to assert the correctness of a SUT, given an input.

However, it is not possible to develop automated oracles with such characteristic for all systems.

An oracle may be developed from several approaches with different information representa-

tions and a procedure that compares such information with the SUT results.

The application of these approaches varies according to the test purpose and available re-

sources. Pseudo-oracles based on n-version, machine learning and of shelf components are usually

applied to regression test, when previous outputs, third-party components or other versions of

the same program are available.

But such oracles may not be always practical if there is no available version/program or if

the development cost is too high. In these cases, a possible solution is the use of partial oracles

based on specification or metamorphic relations which do not generate the expected results, but

identify if the obtained results agree with the specified.

Although Simulink may be used as an oracle to test the implementation, two facts motivate a

complete and deep test activity for such models: (i) Simulink allows automatic code-generation

17

CHAPTER 2. GENERAL CONCEPTS

from models. Therefore, if a model has defects, they will be propagated to the implementation;

and, (ii) model complexity may be great enough to require a test activity itself.

18

Chapter

3
Evaluating the Application of Test

Oracles

Chapter 2 discussed basic concepts and different oracle approaches. This chapter presents the

result of a study which aimed to identify a solid research base, limitations on oracle appliance

and the existence of supporting tools. The study followed the approach proposed by Biolchini

et al. (2007). The following questions were addressed:

1. What are the main studies on test oracles?

2. What are the limitations observed in using these oracles?

3. Are there tools that support such oracles?

Section 3.1 presents an overview of the planning and execution of the study. Section 3.2 dis-

cusses the results w.r.t. the identified works. Section 3.3 presents oracle limitations. Section 3.4

shows a table with a list of tools which support the oracle automation. Section 3.5 presents a

list of all selected works and their classifications based on quality criteria discussed in the next

section. Section 3.7 concludes the chapter.

3.1 Overview of Study Selection

For this study, five indexed repositories were used: IEEE, ACM, Springer, Scirus and Scopus.

Specialists were also considered in this study. The string applied in the electronic searches was:

19

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

(“automated oracle” || “test oracle” || “testing oracle” || “automated oracles” || “test oracles”

|| “testing oracles”)

The selection of the results was based on four criteria. Any paper which approaches at least

one of them was included. The criteria are: (i) how an oracle may be generated automatically;

(ii) how they may be defined, classified or applied; (iii) how oracles may be supported by tools;

(iv) what are their limitations.

The selected works were also classified with respect to five quality criteria. Despite the

name, the classification is not intended to generate a rank of relevancy in the Academy. The

goal of such classification is providing a fast guide for posterior reference. The criteria are: (i)

it mentions oracles for embedded systems; (ii) it mentions oracles for Simulink, Scicos or XCos;

(iii) it presents comparison between different oracle categories; (iv) it mentions oracle categories;

(v) it describes oracle limitations.

In the final selection, all pre-selected papers were fully read. Those which were not in line

with any of the inclusion criteria were discarded. A total of 157 papers were selected.

Figure 3.1: Publication by year

Figure 3.1 shows the relationship between years and publications. There is a heightened

interest on research related to test oracles in the last 10 years, notably after 2001. In the last

five years, 66 articles were published, representing 42.04% of the total published in 24 years.

Next subsections present the results by identified oracle categories, limitations and tools.

3.2 Identification of Oracle Categories

The identified oracle categories usually follow a taxonomy by oracle information, as presented in

Section 2.2: specification-based, metamorphic relations, n-version and machine learning. This

20

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Table 3.1: Relation between oracle categories

Category Articles %
Specification-based 109 69,43

Metamorphic relation 24 15,29
N-version or similar 14 8,92
Machine Learning 15 9,55

section presents statistical data extracted from the study and highlights the main distinctivity

of each approach.

Table 3.1 shows the number of publications per category. There were articles that reported

more than one class of oracles, therefore the category sum is not exactly 157 or 100%. Figure

3.2 presents the relationship between the number of articles and the year in which they were

published, by oracle category.

Figure 3.2: Publication by year, by category

Considering the inclusion criteria, and the sources used for the selection of articles, there

are publications of specification-based oracles since 1991 with at least one publication per year

except in 1995. The number of publications in the last five years is 41, which represents 37.61%

of publications in the last 21 years.

Studies of oracles based on metamorphic relations began in 2001 with highest number of

publications in 2006, 2009, 2010 and 2011. From the 24 published papers, eight have the same

main author (Chen), from 2001 to 2003. This same researcher has co-authored works in 2009,

2010 and 2011 and four other papers have, as authors, researchers who participated as co-authors

of Chen. The same network of researchers was responsible for 21 of the 24 published articles.

In relation to oracles based on machine learning, research production has increased, mainly

after 2006. From the 14 papers, four deal with continuous functions, 4 using the algorithm

of backpropagation and 2 using RBF (Radial Basis Function). One paper proposes the use of

multi-networks oracle: a set of neural networks working in parallel as a multi-network oracle

21

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

may gain more than 1% of precision and 10% less misclassification error rate in comparison with

a single-network oracle (Shahamiri et al., 2012). One paper describes the use of support vector

machines for reactive systems. Three papers describe approximators of discrete functions with

the algorithm of backpropagation and one with a SOM algorithm (Self-organizing map). Three

articles, from 2006 to 2007, belong to the same group of researchers and discuss approximators

of continuous functions with backpropagation and RBF.

Next subsections discuss each category results.

3.2.1 Specification-Based Oracles

This subsection summarizes the collected data from specification-based oracle researches, in-

cluding a brief description of different languages and approaches found in the study.

Table 3.2 lists several approaches to specification-based oracles and their number of papers.

The sum of related works does not match its total because there were works that referenced

more than one specification.

Table 3.2: Specification-based oracles

Temporal Specs. 12 GUI/LOI 11 Logs and statecharts 9
Z Notation 9 OCL 8 Algebraic Specs. 7

JML 6 Java assertions 5 Documentation 5
Model Transformation 3 Model Checking 2 VDM 2

Test Conditions 1 Anna 1 EASOF 1
Bit Wrappers 1 ASML 1 ConcurTaskTrees 1

CREOL 1 CTL 1 Dual Language 1
Complete Test Graphs 1 Eiffel 1 Prolog 1

Message Sequence Charts 1 IORL 1 Java Assertions 5
RSL/RAISE 1 SDL 1 TTCN-3 1

Prosper 1 WS-CDL 1 Esterel 1
TCL 1 ADEPT 1 SWRL 1

OSEK/PROMELA 1 Simulink 1 CTT 1
UML (sequence and interaction) 1

GUI/LOI is not a specification, but a classification of categories about oracle information

and oracle procedure in relation to levels of detail in the construction of oracles for testing

GUI applications (Graphical User Interface). They were included in this study because such

specification format can be easily adapted to represent any kind of constraints. The number of

papers is the largest in quantity and distribution over the years. The same researcher participates

as author in 90% of the published papers, being 20% as co-author.

Figure 3.3 shows that different specifications (grouped as Others) with no more than two

publications have been proposed for use in oracles, since 1991, notably in the last years.

From specifications with more than two publications, Z Notation and state machines have

been the most referenced both in absolute numbers and in distribution over the years. Three

articles about Z (33,33%) were written by the same authors.

22

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Figure 3.3: Publications by year (Specification-based oracles)

The first two studies on the use of state machines as oracles belong to the same authors

and represent 22,22% of the total, from 2002 to 2003. Research about such specification has

increased in recent years, however, the focus usually is not the oracle. For example, the main

goal of Yang et al. (2011) and Zhang et al. (2012) is addressing the problem of path infeasibility

in the process of test case generation on EFSM models. During the model execution, the outputs

associated with the collected test data can be used for the construction of an automated test

oracle. In both works, not many details are given about the oracle procedure.

OCL (Object Constraint Language) is an extension of UML proposed by the Object Man-

agement Group (OMG), to allow the definition of constraints. OCL can be used, for example, to

set limits of values to variables or pre and post-conditions of methods. Two research groups are

responsible for 50.00% of the published papers. The other articles were published by different

authors.

From the papers about algebraic specifications, 28.57% belong to the same group of re-

searchers, with a publication in 1992 and one in 2000.

With respect to documentation-based oracles, 60.00% of the publications belong to the same

research group from 1994 to 2010, 40.00% belong to a second group from 2008 to 2009, continuing

the work of the first one.

All papers on Object Z belong to the same research group.

From the 12 papers that discuss specifications with support for temporal logic, the following

languages were listed: MITL (Metric Interval Temporal Logic) (Wang et al., 2005), TRIO

(Hakansson et al., 2003) (Lin and Ho, 2001), EAGLE (Goldberg et al., 2005), Graphical

Interval Logic (Richardson, 1994), RTIL (Real-Time Interval Logic) (Richardson et al., 1992);

Wang et al. (2003) use a modified version of Z Notation for specifying temporal logic; two articles

23

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

address the use of Lustre, (Bouchet et al., 2008) and (Durrieu et al., 2008); one article (Lin,

2007) references ESML (Embedded Systems Modeling Language) and SIML (System Integration

Modeling Language); Lin and Ho (2000) use time Petri nets. In Barbosa et al. (2011), CTT

(ConcurTaskTrees) is applied as specification to test GUIs against erroneous user behaviors.

The high expressiveness of temporal specifications and the dynamical characteristic of Simulink

models made such group of languages specially notorious to our research, which is discussed

through this dissertation, mainly in Section 4.4, Section 4.2.1 and Chapter 7.

Table 3.3: Last years publications

Total Five Years Two Years
Temporal Spec. 12 08,33% 08,33%

GUI/LOI 11 18,18% 09,09%
State Machines 9 77,78% 44,44%

Z Notation 9 11,11% 11,11%
OCL 8 25,00% 00,00%

Algebraic 7 14,29% 00,00%
Documentation 5 60,00% 00,00%

Object Z 4 00,00% 00,00%
Others 38 47,37% 15,79%

Table 3.3 represents the percentage of published papers in the last five and two years, re-

spectively. There was one published work on Z notation in the last five years. There was also

only one paper on algebraic specifications published in the last five years. And there were no

published papers on Object Z in the last seven years. Results that have less than three publica-

tions which do not have relevant characteristics to embedded systems were grouped into “other

specifications” category during the process of data compilation.

3.2.2 Metamorphic Relation Based Oracles

Chen et al. (2002) present the application of metamorphic testing based oracle on a case study

to solve elliptic partial differential equation. The relationship identified can be used in other

numerical methods. Chen et al. (2003) give the same concept applied on (Chen et al., 2001b),

but with an example of a function for calculating power.

Gotlieb and Bernard (2006) applied the concept of exploitation of symmetries and random

testing in a framework that contains a semi-empirical model. This model helps to decide when

to stop testing and how to measure the quality of this test for JavaCard API, a technology that

allows applets to run on SmartCards and other devices of limited memory.

Mayer and Guderlei (2006b) use seven metamorphic relations to test image processing op-

erations by way of Euclidean distance transformation. The same authors (Mayer and Guderlei,

2006a) describe an empirical study on metamorphic testing with the use of Java applications

that calculate the determinant of a matrix. In conclusion, the authors suggested four rules:

24

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

metamorphic relations that are in the form of equalities are especially weak; if the relation is an

equation with linear combinations on each side and at least two terms to one side, then it is not

vulnerable to erroneous additions but it is vulnerable to erroneous multiplications; typically good

metamorphic relations contain much of the semantics of the software under test; metamorphic

relations similar to the strategy used for implementation are limited.

Hu et al. (2006) conducted an experiment to investigate the cost effectiveness of using meta-

morphic testing. The authors use thirty-eight graduate students and three open source programs.

As a result, they concluded that metamorphic testing is efficient and has the potential to detect

more failures than the method with assertion checking.

Zhang et al. (2009), which are in the same research group of Hu et al. (2006), present the

same experiment. The three programs are: Boyer, which returns the index of first occurrence

of a pattern in a string ; BooleanExpression, which validates boolean expressions; and, TxnTa-

bleSorter, an office application. Questions investigated in this paper, and the answers are: can

students appropriately apply metamorphic testing after being trained? Yes. Can they iden-

tify correctly and usefully metamorphic relations to the target program? Yes. Can the same

metamorphic relation be discovered by multiple students? Yes. What is the effort in terms of

cost, in applying metamorphic testing? According to the results, metamorphic testing has the

potential to detect more faults than assertion checking. On the other hand, may be less efficient

in terms of cost. In general, students identified a greater number of assertions than metamorphic

relations, although the number of metamorphic relations and assertions identified by students

varied significantly. The authors believe that metamorphic testing helps developers to increase

the level of abstraction better than assertions.

Ding et al. (2010) present the application of metamorphic testing on an image processing

program used to reconstruct 3D structure of biology cells. As example of metamorphic relations,

the tester adds mitochondria with different shapes to the cell images so that the 3D structures of

these new mitochondria can be built. Then, the 3D structure of those new added mitochondria

should be built as expected, the original 3D structures should not be changed, and the volume of

mitochondria is expected to increase. The same author (Ding et al., 2010) applies metamorphic

testing on a parallel Monte Carlo modeling program.

Sun et al. (2011) propose a framework of metamorphic testing for web services and present a

case study with an electronic payment service as subject program to show its feasibility. It does

not compare the results with other oracle classes, including manual comparison. The evaluation

is set using mutation score.

In Xie et al. (2012, 2011), the authors apply metamorphic testing as oracle on spectrum-based

fault localization strategy. A key concept applied to this strategy is program spectrum, which

is a signature of some aspect that characterizes a behavior of a program. Program spectra are

used on such strategy to identify the behavioral differences between old and new versions. For

example, path spectra trace the set of single loop intraprocedural paths as program executes.

Difference in program spectra between versions may indicate fault locations. The validation of

oracles on spectrum-based faults was executed with subjects considered not large-sized programs.

25

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Murphy et al. (2011) use metamorphic relation on oracles for health care software simulation.

3.2.3 Machine Learning Based Oracles

Vanmali et al. (2002) use an algorithm of backpropagation and state that such network can be

trained by outputs from older stable versions of a program. A trained network can be used as an

oracle to evaluate the correctness of new versions of a software, by simulating a model behavior,

even though that model cannot guarantee 100% correction over the original program. It may be

useful when older versions or trials are available for limited time or when their executions are

too costly.

Aggarwal et al. (2004), Chan et al. (2006) and Jin et al. (2008), address the use of neural

networks as oracles in problems involving classification. Two of these articles present as a case

study, an oracle for triangle classification into isosceles, scalene, equilateral or not a triangle.

Mao et al. (2006b) and Mao et al. (2006a) apply neural networks to test statistical software.

The authors assume that the relationship between inputs and outputs of an application under

test is, in nature, a function. The appeal of using neural networks is the ability to approximate

a function of any accuracy without the need to know the function.

Lu and Ye (2007) use RBF (Radial Basis Function) for construction of oracle similarly to Mao

et al. (2006b). Sangwan et al. (2011) also apply RBFs with the objective of finding whether

it can be used as a test oracle. They employ a triangle classification problem as experiment

subject, as in (Aggarwal et al., 2004), (Chan et al., 2006) and (Jin et al., 2008).

Shahamiri et al. (2010) use a feed-forward with backpropagation algorithm to simulate logical

software modules. The application used as case study was a registration-verifier. It is stated

that different thresholds define the oracle precision and influences on the oracle accuracy. As

higher the threshold, higher is the oracle precision. However, higher thresholds can make the

oracles point a faulty output as correct. In this sense, as higher the threshold, higher the

chance of faulty outputs being classified as expected outputs, therefore the oracle accuracy may

decrease. Lower thresholds can make the oracle point a correct output as a faulty one. The same

authors (Shahamiri et al., 2011, 2012) apply multi-network oracles, i.e., several standalone ANNs

integrated to automate the mapping between input and output. The case study subjects were

a web-based car insurance application and a student registration-verifier application (evaluated

with a golden and mutation versions of both programs). In the comparison with a single ANN,

they showed that the new approach is significantly more accurate. The experiment demonstrates

that a multi-network oracle needs less effort to learn, which results in a easier training process

w.r.t. a single network because the complexity of the SUT is distributed among the several

ANNs.

Wang et al. (2011) apply support vector machine as supervised learning algorithm (SLA) to

test reactive systems. In a first step, user guidance or assertions can be used to collect verdicts

to test traces. Such traces are converted into feature vectors to train the SLA, which is used

26

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

as a test oracle. In their experiment, statements (not presented in the paper) are inserted into

the SUTs to collect the verdicts. Also, bugs were implanted into the SUTs to check the correct

verdicts of the test oracle. The results show that the proposed technique incurs little burden

and overhead. The training time varies between 5 and 42 seconds and the testing time varies

between 2 and 29 seconds. The correct verdicts fluctuate between 92.88% and 96.52%. As future

work, they intend to clarify what basic features are needed for the testing of general reactive

systems.

Agarwal et al. (2012) compare ANN (backpropagation/gradient descent) and info-fuzzy net-

works (IFN) as test oracles. They use ROC analysis, training time and dispersion analysis to

conclude that IFN outperforms ANNs on faults and training time. They indicate IFN for test-

ing initial, less stable versions of a given application. And no significant difference was found

in classification accuracy and dispersion between ANN and IFN. As future work, they plan to

include different network architectures to the comparison.

3.2.4 N-Version Based Oracles

Shimeall and Leveson (1988) use the N-Version concept on programs of combat simulation

written in Pascal. Manolache and Kourie (2001) claim that M-mp, a variation of N-Version,

provides low cost based on the justification that a program model do not need to be equivalent

to the main program and only the function under test is implemented.

The idea of comparing results between two or more implementation can be extended to pro-

grams that already exist. A golden version of a program can be used as an oracle, for example in

regression testing, component harvesting (Hummel and Atkinson, 2005) or“Multiple-implementation

Testing” (MiT) (Taneja et al., 2010).

Tsai et al. (2005b) and Tsai et al. (2005a) propose a technique of majority voting to test a

large number of Web Services (WS) that already exist and belong to a single specification to

determine the oracle.

Hummel and Atkinson (2005) and Janjic et al. (2011) propose the creation of oracles from

the same basic technologies that can be used to find components for reuse (such as Extreme

Harvesting). Thus, it uses the components found in the searches combined as a pseudo-oracle

to measure the confidence of built components.

3.3 Limitations

This section discusses limitations on the use of test oracles found in the literature. An issue

shared with all kinds of oracles is the generalization problem. Even with large scale case studies,

it is recurrent the difficulty in generalizing experiment results. Two ways are usually taken:

proposals of future work to better evaluate the generalization (Agarwal et al., 2012; Sun et al.,

27

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

2011; Wang et al., 2011), or stating that the evaluation should investigate the potential of the

technique rather than providing a statement of general effectiveness (Fraser and Zeller, 2012).

3.3.1 Limitations of Specification-Based Oracles

Nadeem and Jaffar-ur Rehman (2005) point that if the specification is incorrect, then demon-

strating that the implementation conforms to the specification will not be of much use. Still,

the functional specifications usually describe what the system needs to do when valid entries

are given or certain conditions are met, but they usually omit a description of what the system

should do when an invalid input is given, which results in the fact that only positive tests are

performed. Similarly, for oracles based on algebraic specification, Bagge and Haveraaen (2009)

indicate that the tests are as effective as the axioms on which they are based.

Machado et al. (2005) state that producing a specification with the correct level of abstrac-

tion is crucial in specification-based testing. But producing a correct, consistent and complete

specification is difficult.

Bieman and Yin (1992) mention that an error in the specification will be propagated to the

implementation in case the programmer uses the same specification to develop the implemen-

tation. As the oracle may be the tester or an automated tool (an implementation), in both

cases errors may be present. Oracles can reduce performance when embedded in the code, but

removing them after the test phase can cause unexpected problems such as changing in some

reaction time, which may be critical for real-time systems.

According to Peters and Parnas (1994), there are restrictions on writing a documentation in

order to be used as an oracle. As an example, the use of primitive relational operators like “=”

is valid only for basic data types. For more complex types such as structures and objects, the

specifier should define “=” through an auxiliary predicate, such as absTypeEqual(), to validate

the equality to the abstract data type.

Peters and Parnas (1998) elicited difficulties encountered on implementing an oracle: (i)

the documentation used to generate the oracle can be almost as complex as the program under

testing and must be checked carefully. Supporting this difficulty, Kim-Park et al. (2010) cite a

trade-off between specification precision and simplicity; (ii) an oracle procedure is a non-trivial

program, also needing to be checked carefully; (iii) finally, not all program behaviors can be

easily specified and checked using the proposed method.

According to Tu et al. (2009), it is not possible to use state machines to describe recursive

concepts. Another issue is that the set of states is not finite in some situations. It can also incur

in an state explosion, preventing the use of this kind of specification.

In the approach of Kanstren (2009), there are limitations as the need for a user to check the

model correctitude to validate it as an oracle. The author cites the lack of empirical studies on

the use of state machines.

28

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Andrews and Zhang (2003) include a limitation on the use of ADTs, which is the possibility

of the code being wrong. Also, the ADT specification used in the paper was small and simple.

For more complex specifications it may be difficult to write efficient log file analyzers.

In Mottu et al. (2008), the high complexity of a transformed model makes difficult the use

of oracles that check the validity of an entire model at once.

Stocks and Carrington (1993) advocate the use of formal specification with Z Notation, but

they do not discuss the problems of producing an oracle procedure. According to Gotlieb and

Bernard (2006) and Gargantini and Riccobene (2001), a limitation is the high cost relative to the

time spent in developing a specification based on notations such as Z. Coppit and Haddox-Schatz

(2005) show that the expressiveness of an assertion language can significantly affect the cost

of implementing it. There are certain issues that are raised in the programming code that

simply do not exist in the field of formal specifications and vice-versa. As example, given the

implementation, it can be useful to check if a list of objects is null before invoking a method to

add an element in the list. But in many formal specifications, there is no concept of null objects.

3.3.2 Limitations of Metamorphic Relation Based Oracles

According to Chen et al. (2003), metamorphic relations that cause higher “difference between

executions” tend to be better. But this concept was not explicitly set. More research should be

conducted to provide more explicit guidelines. Chan et al. (2006) state the choice of metamorphic

relations was based on experience of the testers which may be a bias to the results.

Murphy et al. (2009b) describe that metamorphic testing can be a manually intensive tech-

nique for complex cases. The transformation of input data may be arduous for large data sets

or practically impossible for entries that are not in a human readable format. Comparing the

outputs can be error-prone for large data sets especially if small variations in the results do not

mean error indication or when there is non-determinism in the results. The framework presented

by the authors does not support metamorphic relations as:

ShortestPath(A,C) = ShortestPath(A,B) + ShortestPath(B,C)

.

3.3.3 Limitations of Machine Learning Based Oracles

Neural networks do not test event flow (Shahamiri et al., 2009). According to Jin et al. (2008), the

input data may not be easily represented for use in neural networks, as characters and strings.

Still, different elements in the input vector may have unequal contribution to the network.

Deciding the structure of the network as the amount of layers and neurons may not be easy.

The selection of training sets from test cases is another key problem that must be considered

carefully: it should be previously evaluated, which implicates the use of other oracles.

29

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Lu and Ye (2007) conclude that the use of RBF is feasible as an oracle, but do not perform

comparison with other neural networks.

Shahamiri et al. (2010) discusses the relation between the chosen threshold value and the

neural network accuracy. It seems that there is no final answer to define an ideal initial network

settings and it may vary between applications or application domains.

3.3.4 Limitations of N-Version Based Oracles

This approach requires multiple implementations of the system functionality, it has high cost,

it does not test the flow of events and it is not reliable (Shahamiri et al., 2009). Shimeall and

Leveson (1988) mention that N-Version is not a substitute for functional tests.

3.4 Test Oracle Support Tools

Any means of automation associated with oracles was considered as a tool, including specification

language translators, development environments that support oracles and frameworks. Table 3.4

presents the list of tools, their descriptions and the papers where they were found.

Table 3.4: Oracle Support

Name References Description

Adept (Giannakopoulou et

al., 2011b)

Enables the development of executable specification for

HAI (human-automation interaction) domain.

BZTT (Miller and Strooper,

2003)

Tool that uses the specification to generate states for

testing. It uses constraint solvers to search for a se-

quence of operations that reach every state.

CaslTest (Machado et al.,

2005)

Test tool with support to Casl specification based ora-

cles.

Corduroy (Murphy et al.,

2009b)

Framework that converts metamorphic properties in

testing methods that can be runned using assertions

checking at run-time JML (JML runtime assertion

checking).

DART (Memon et al.,

2003a)

Regression testing framework for GUI applications as-

sociated with oracle. The oracle information can be

obtained from the execution of previous tests or speci-

fication (legal sequence of events).

Dresden

OCL

Toolkit

(Cheon and Avila,

2010)

Interprets OCL constraints from a UML model and gen-

erates AspectJ code.

30

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Name References Description

DSMDiff (Lin, 2007) Computes the difference between specific domain mod-

els, in model transformation.

Extreme

Harvesting

(Hummel and Atkin-

son, 2005)

Tool to find and collect pre-fabricated components for

reuse from the Internet.

FineFit/

Kodkod

(Faitelson and

Tyszberowicz, 2011)

FineFit translates a specification into a relational model

that serves as an oracle for testing object-oriented sys-

tems. Kodkod is a Java library that implements a

bounded relational constraint solver

IFAD

VDM-SL

(Aichernig, 1999) Set of tools that allows the interpretation and code gen-

eration of pre and post-conditions. It allows verification

through oracles based on post-conditions.

InTOL (Wang et al., 2011) Collects test traces. Used in a machine learning-based

oracle

JML

toolset

(Araujo et al.,

2011b)

A compiler of the toolset translates specifications into

runtime assertion checking code, producing Java classes

with executable assertions

JPaX (Xie and Memon,

2007)

Runtime monitoring tool.

JPF (Giannakopoulou et

al., 2011a)

A verification framework which checks state models for

Java bytecode

Jtoc (Qu et al., 2011) Uses java annotations and Java inner class to construct

contracts

KeYGenU (Gladisch et al.,

2010)

Chain-tool. KeY is a static checker that can automat-

ically prove properties. GenUTest is a capture and re-

play tool

LETO/

Ocasime

(Durrieu et al., 2008) Leto: Lustre-Based Test Oracle. Ocasime: offers facil-

ities for regression testing. Lustre: specification lan-

guage. Off-line tests. Test Schemes describe the test

objective. Schemes are composed of parameters, vari-

ables, computer help and expected result of the test

(temporal logics).

LUTESS (Bouchet et al.,

2008)

Test Environment (temporal logic).

MaC (Xie and Memon,

2007)

Runtime monitoring tool.

31

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Name References Description

MD-TEST (Baharom and

Shukur, 2009)

Tool that uses two types of documents: MIS, which

specifies a module by its observable behavior and MIDD

that provides information on internal data structure of

a module.

NeuronDot-

Net

(Shahamiri et al.,

2010)

Engine which can be used to build different types of

neural networks.

ORSTRA (Xie, 2006b) Support tool that checks results from regression test.

PATHS (Memon et al., 2000) GUI testing tool with support to AI and formal model

test oracles.

PGMGEM (Shukla et al., 2005) Testing tool that stores names of exceptions and uses

them to generate code exception handlers in a test

driver. A wrapper is proposed as an oracle for this

tool.

PLASMA (Goldberg et al.,

2005)

Route plan generation system, based on model. A

real-time verification based oracle is proposed for this

system.

Protégé/

SWRLTab/

Jess

(Bai et al., 2011) Protégé is an editor to create ontology models.

SWRLTab compiles rules. Jess engine interpretes the

SWRL (Semantic Web Rule Language)

Protest (Hoffman and

Strooper, 1991)

Set of Prolog programs that support the development

of test scripts and their applications to test modules

implemented in C.

Simulink (Lasalle et al., 2011) Simulink models are used as oracles

TAGS (Brown et al., 1992) Compiles IORL specification in Ada.

TAOS (Richardson, 1994) Test tool with support to GIL specification based man-

ual oracles.

µTest (Fraser and Zeller,

2012)

generates test suites for object-oriented classes. It is an

extention of Javalanche, which uses JUnit

TEAGER (Seifert, 2008) Test environment that allows execution of state ma-

chines specifications.

TOG (Peters and Parnas,

1994) (Alawneh and

Peters, 2010)

Test oracle generating tool, from a relational specifica-

tion of the program and tabular expressions.

TOM (Silva et al., 2008) Generates oracle specification based on state machines.

TOTEM (Briand and Labiche,

2001)

System test methodology based on UML in which the

information is derived from OCL.

32

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Name References Description

TROT (Hagar and M.,

1996)

Testing tools that support the creation of test oracles.

They check the correctitude of the equation implemen-

tation, based on Anna formal specification language.

T-Vec (Kuhn and Okum,

2006)

Development environment with associated specification

and verification method for critical systems.

Uimdriver (Li et al., 2011) It has a verifier which checks if the collected execution

traces are consistent with sequence diagrams and IODs

on temporal ordering of message interaction

USE (Pilskalns et al.,

2007)

Validation tool that checks the states of objects gener-

ated from class diagrams in relation to the OCL.

Warlock (McDonald et al.,

2003)

Prototype tool that supports a method for generating

test oracles for programs in C++ using the Object Z

specification language.

The identified tools are distributed by information category, as follows: 30 tools support

specification based oracles, in which 2 have temporal analysis capability (LUTESS and TAOS);

1 tool supports metamorphic relation oracles; 4 tools support machine learning oracles; 5 tools

assist regression test; and, 1 tool supports extreme harvesting oracles.

Many tools are used to evaluate some specific research topic and require great efforts to be

applied as a whole. For example, NeuronDotNet can be used to build neural networks, but the

effort to map it to a program or the adaptation to some specific domain or program language is

neglected.

Three tools are distinct by their close relation to Simulink: LETO, TAOS and T-VEC.

LETO is a test oracle for airbus critical systems which uses regression test and assertion

checks with Lustre programming language. Lustre has limited temporal support. TAOS supports

regression test (with an oracle procedure called Diff Checker), range checking for verification of

ranges of acceptable outputs and a prototype of GIL checker (Richardson, 1994).

Both LETO and TAOS are applied to embedded system tests, however they are used on

programming languages and are not focused on model-driven development. T-VEC is actually

used for Simulink model development and is discussed in Section 8.5.

3.5 Quality Criteria Application

In this section, a list of all selected articles and their respective relations with the quality criteria

is presented.

33

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

Table 3.5: Quality criteria application

C
ri

te
ri

on
1

C
ri

te
ri

on
2

C
ri

te
ri

on
3

C
ri

te
ri

on
4

C
ri

te
ri

on
5

D
y
n

a
m

ic
a
l

E
m

b
ed

d
ed

C
ri

ti
ca

l

R
ea

l-
T

im
e

S
im

u
li
n
k

S
ci

co
s

C
la

ss
ifi

ca
ti

on
C

om
p

a
ri

so
n

S
p

ec
ifi

ca
ti

o
n

M
et

am
o
rp

h
ic

R
el

at
io

n
s

M
a
ch

in
e

L
ea

rn
in

g

N
-V

er
si

on
or

si
m

il
ar

L
im

it
at

io
n

s

Aggarwal et al. (2004)
√ √

Agarwal et al. (2012)
√ √ √

Aichernig (1999)
√ √

Aichernig et al. (2009)
√ √

Alawneh and Peters (2010)
√

Almog and Heart (2010)
√

Andrews et al. (2002)
√

Andrews and Zhang (2003)
√ √

Antoy and Hamlet (1992)
√ √

Antoy and Hamlet (2000)
√ √

Araujo et al. (2011b)
√

Bagge and Haveraaen (2009)
√ √

Baharom and Shukur (2008)
√

Baharom and Shukur (2009)
√ √

Baharom and Shukur (2011)
√ √

Bai et al. (2011)
√ √

Barbosa et al. (2011)
√

Bieman and Yin (1992)
√

Bouchet et al. (2008)
√ √

Briand and Labiche (2001)
√

Briand and Labiche (2002)
√

Briand et al. (2003)
√ √

Brown et al. (1992)
√ √

Chan et al. (2006)
√

Chan et al. (2007b)
√ √

Chan et al. (2007a)
√ √

Chen et al. (2001b)
√ √

Chen et al. (2002)
√ √

Chen (2002)
√ √

Chen et al. (2003)
√ √

34

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

C
ri

te
ri

on
1

C
ri

te
ri

on
2

C
ri

te
ri

on
3

C
ri

te
ri

on
4

C
ri

te
ri

on
5

D
y
n

a
m

ic
a
l

E
m

b
ed

d
ed

C
ri

ti
ca

l

R
ea

l-
T

im
e

S
im

u
li
n
k

S
ci

co
s

C
la

ss
ifi

ca
ti

on
C

om
p
a
ri

so
n

S
p

ec
ifi

ca
ti

o
n

M
et

am
o
rp

h
ic

R
el

at
io

n
s

M
a
ch

in
e

L
ea

rn
in

g

N
-V

er
si

on
or

si
m

il
ar

L
im

it
at

io
n

s

Chen (2003)
√ √

Chen and Aoki (2011)
√ √

Cheon and Leavens (2002)
√

Cheon (2007)
√

Cheon and Avila (2010)
√

Cho and Lee (2005)
√ √ √

Coppit and Haddox-Schatz (2005)
√ √

Dan and Aichernig (2005)
√ √

Ding et al. (2010)
√ √

Ding et al. (2011)
√

Durrieu et al. (2008)
√ √ √ √

D’Souza and Gopinathan (2006)
√

Edwards (2001)
√

El Ariss et al. (2010)
√

Engels et al. (2007)
√

Faitelson and Tyszberowicz (2011)
√ √

Fraser and Zeller (2012)
√

Gargantini and Riccobene (2001)
√

Giannakopoulou et al. (2011b)
√

Giannakopoulou et al. (2011a)
√

Gibson et al. (2011)
√

Gladisch et al. (2010)
√ √ √

Goldberg et al. (2005)
√ √ √ √

Gotlieb and Bernard (2006)
√

Grieskamp et al. (2001)
√

Hagar and M. (1996)
√ √

Hakansson et al. (2003)
√ √

Hierons (2012)
√

Hoffman and Strooper (1991)
√

Hu et al. (2006)
√ √

Hummel and Atkinson (2005)
√ √

35

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

C
ri

te
ri

on
1

C
ri

te
ri

on
2

C
ri

te
ri

on
3

C
ri

te
ri

on
4

C
ri

te
ri

on
5

D
y
n

a
m

ic
a
l

E
m

b
ed

d
ed

C
ri

ti
ca

l

R
ea

l-
T

im
e

S
im

u
li
n
k

S
ci

co
s

C
la

ss
ifi

ca
ti

on
C

om
p

a
ri

so
n

S
p

ec
ifi

ca
ti

o
n

M
et

am
o
rp

h
ic

R
el

at
io

n
s

M
a
ch

in
e

L
ea

rn
in

g

N
-V

er
si

on
or

si
m

il
ar

L
im

it
at

io
n

s

Janjic et al. (2011)
√

Jia (1993)
√ √

Jin et al. (2008)
√ √

Jin et al. (2009)
√ √

Jonsson and Padilla (2001)
√

Kanstren (2009)
√

Kim-Park et al. (2010)
√ √

Kuhn and Okum (2006)
√ √

Kuo et al. (2010)
√ √

Lamancha et al. (2012)
√

Lasalle et al. (2011)
√ √

Li et al. (1997)
√ √

Li et al. (2011)
√

Lin et al. (1997)
√ √

Lin and Ho (2000)
√ √

Lin and Ho (2001)
√ √ √

Lin (2007)
√ √ √ √

Lozano et al. (2010)
√

Lu and Ye (2007)
√

Luqi et al. (1994)
√

Machado et al. (2005)
√ √

MacColl et al. (1998)
√

Manolache and Kourie (2001)
√

Mao et al. (2006b)
√ √

Mayer and Guderlei (2006b)
√ √

Mayer and Guderlei (2006a)
√

McDonald et al. (1997)
√ √

McDonald and Strooper (1998)
√ √

McDonald et al. (2003)
√ √

Memon et al. (2000)
√

Memon et al. (2003b)
√ √

36

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

C
ri

te
ri

on
1

C
ri

te
ri

on
2

C
ri

te
ri

on
3

C
ri

te
ri

on
4

C
ri

te
ri

on
5

D
y
n

a
m

ic
a
l

E
m

b
ed

d
ed

C
ri

ti
ca

l

R
ea

l-
T

im
e

S
im

u
li
n
k

S
ci

co
s

C
la

ss
ifi

ca
ti

on
C

om
p
a
ri

so
n

S
p

ec
ifi

ca
ti

o
n

M
et

am
o
rp

h
ic

R
el

at
io

n
s

M
a
ch

in
e

L
ea

rn
in

g

N
-V

er
si

on
or

si
m

il
ar

L
im

it
at

io
n

s

Memon et al. (2003a)
√

Memon and Xie (2004b)
√

Memon and Xie (2004a)
√ √

Memon and Xie (2005)
√ √

Memon et al. (2005)
√ √

Meyer et al. (2007)
√

Miller and Strooper (2003)
√

Mottu et al. (2008)
√ √

Murphy (2008)
√ √

Murphy et al. (2009a)
√ √

Murphy et al. (2009b)
√ √

Murphy et al. (2011)
√

Nadeem and Jaffar-ur Rehman (2005)
√

O’Malley (1996)
√ √

Packevičius et al. (2007)
√

Peters and Parnas (1994)
√ √

Peters and Parnas (1998)
√ √

Peters and Parnas (2002)
√

Pilskalns (2004)
√

Pilskalns et al. (2007)
√ √

Qu et al. (2011)
√

Rajan et al. (2010)
√ √

Richardson et al. (1992)
√ √

Richardson (1994)
√ √ √

Seifert (2008)
√ √

Sangwan et al. (2011)
√

Shahamiri et al. (2009)
√ √ √ √

Shahamiri et al. (2010)
√ √

Shahamiri et al. (2011)
√ √ √

Shahamiri et al. (2012)
√ √ √

Shimeall and Leveson (1988)
√ √

37

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

C
ri

te
ri

on
1

C
ri

te
ri

on
2

C
ri

te
ri

on
3

C
ri

te
ri

on
4

C
ri

te
ri

on
5

D
y
n

a
m

ic
a
l

E
m

b
ed

d
ed

C
ri

ti
ca

l

R
ea

l-
T

im
e

S
im

u
li
n
k

S
ci

co
s

C
la

ss
ifi

ca
ti

on
C

om
p

a
ri

so
n

S
p

ec
ifi

ca
ti

o
n

M
et

am
o
rp

h
ic

R
el

at
io

n
s

M
a
ch

in
e

L
ea

rn
in

g

N
-V

er
si

on
or

si
m

il
ar

L
im

it
at

io
n

s

Shrestha and Rutherford (2011)
√

Shukla et al. (2005)
√ √

Silva et al. (2008)
√ √

Skroch (2007)
√

Stocks and Carrington (1993)
√ √

Stocks and Carrington (1996)
√

Sun et al. (2011)
√

Svendsen et al. (2011)
√ √ √ √ √ √

Taneja et al. (2010)
√

Tiwari et al. (2011)
√ √

Tsai et al. (2005b)
√ √

Tsai et al. (2005a)
√ √

Tu et al. (2009)
√ √

Vanmali et al. (2002)
√

Wang et al. (2003)
√ √

Wang et al. (2005)
√ √ √

Wang et al. (2011)
√

Xie (2006a)
√ √

Xie (2006b)
√ √

Xie and Memon (2007)
√ √

Xie et al. (2009)
√

Xie et al. (2010)
√

Xie et al. (2011)
√ √

Xie et al. (2012)
√ √

Xing and Jiang (2009)
√

Yan (1999)
√

Yang et al. (2011)
√

Ye et al. (2006)
√

Yoo (2010)
√ √

Zhang et al. (2009)
√ √

Zhang et al. (2012)
√

38

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

C
ri

te
ri

on
1

C
ri

te
ri

on
2

C
ri

te
ri

on
3

C
ri

te
ri

on
4

C
ri

te
ri

on
5

D
y
n

a
m

ic
a
l

E
m

b
ed

d
ed

C
ri

ti
ca

l

R
ea

l-
T

im
e

S
im

u
li
n
k

S
ci

co
s

C
la

ss
ifi

ca
ti

on
C

om
p
a
ri

so
n

S
p

ec
ifi

ca
ti

o
n

M
et

am
o
rp

h
ic

R
el

at
io

n
s

M
a
ch

in
e

L
ea

rn
in

g

N
-V

er
si

on
or

si
m

il
ar

L
im

it
at

io
n

s

Zheng et al. (2011)
√

Zhou et al. (2010)
√

Zhu (2003)
√

It is possible to note the lack of comparative studies between oracles. From 157 papers, only

6 have significant comparison or mention some taxonomy of test oracles where 3 are written

by the same author. Also, 76 papers discusses their proposal limitations, which indicates that

51.59% of the presented works describe solutions but do not address their applicability deeply

enough to provide an insight into their threats to validity.

Also, 10.8% of the researched works focus on embedded systems, where only 1.2% provides

some limited temporal property validation, although they are not target on model-driven devel-

opment.

3.6 Threats to Validity

When executing a literature review, the search string may not represent all the universe of papers

related to the subject. In this study, the string restricts the number of papers to a manageable

level ensuring that they approach the addressed questions. In this way, for example, even if state

machines may be used to describe the oracle information, only papers which explicitly reference

them as oracles were considered. Therefore, related works which do not point specifically to the

oracle topic were excluded.

3.7 Final Remarks

This chapter presented a study to identify works based on three items of interest: types of test

oracles, their limitations and support tools.

Any oracle that could be adapted to Simulink-like models was considered, totaling 157

selected papers. Four types of oracles were identified: specification-based oracles (109 papers),

metamorphic relation oracles (24 papers), N-Version oracles similar approaches (14 papers)

39

CHAPTER 3. EVALUATING THE APPLICATION OF TEST ORACLES

and machine learning oracles (15 papers). From specification-based oracles, 5.73% refer to Z

Notation, the same proportion to state machines, 7.64% to temporal logic specifications, 5.09%

OCL, 4.46% refer to algebraic specifications, and 29.9% to other specifications with less than

six publications.

From the recurrent limitations in any specification languages, there is an emphasis on the fact

that if a specification is incorrect, this error will be propagated in the next stages of development.

Other limitations include the level of abstraction: differences in the layers of abstraction between

implementation and specification (or model) may require efforts to map between them regarding

the lack of representation of concepts present in one layer but not in the other. It may be also

difficult to express detailed specifications considering the time and cost for that. The higher is

the specification expressiveness, closer to the implementation is the amount of resources spent

to implement and verify it.

Limitations of oracles based on metamorphic relations include lack of guidelines for finding

the relations and their choices are based on the experience of the testers. Their use can be

also laborious for large systems. Regarding oracles based on machine learning, these are not

applicable to streams of events or non-deterministic systems, and there is a lack of studies that

indicate what type of network is best applied to different domains. Oracles based on N-Version

are expensive given the need to create several versions of the system.

This chapter presented a list of 42 test oracle support tools in which none addresses large

amounts of output neither enables expressive representation of temporal properties. Such tools

usually do not provide support to all the oracle generation process but aids to evaluate some

specific research topic. These findings evidence a gap which also motivates the development of

a special-purposed solution which tackles the already described characteristics in this research.

40

Chapter

4
Designing an Oracle Generator

As earlier stated in Section 2.2, when the tester usually plays the role of oracle such manual

activity is error-prone. Additionally, the effort to identify the correct result of a large set of

outputs in a reasonable amount of time may affect the test confidence.

Although the production of a perfect automated oracle is as impractical as producing an

error-free program, Chapter 3 showed that researches on oracle automation has increased in the

last decades, with notable growth in the last years. Such researches point to a middle-ground in

which several manual efforts may be replaced by automated means.

This chapter presents part of the core contribution of this thesis. It describes an oracle

engineering foundation to the partially-automated generation of test oracles for Simulink-like

models. The initial sources of information to the design of our proposal are described in Chap-

ter 3. Later sources were also used to assess our solution novelty and soundness, which are

described in Chapter 8.

Next sections present the oracle information structure, a mapping approach and procedures

to the oracle analysis. Thus, this chapter does not address the use of specification language,

which is discussed in the next chapter.

Section 4.1 presents an overview of our approach, with a process model. Section 4.2 describes

how the oracle information is structured. Section 4.3 discusses the mapping between oracle

information and model. Section 4.4 presents ways to analyze the simulation data with respect

to the oracle information. Section 4.5 concludes the chapter.

41

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

4.1 Oracle Process

The oracle definition process behind our solution, presented in Figure 4.1, is composed by three

steps: information definition, mapping, and analysis definition.

Figure 4.1: Oracle definition process

As previously discussed, the oracle information states what the expected outcome is and

how it should be analyzed with respect to the input data. Because it is a partial oracle the

information does not reflect the exact expected output but, instead, it determines constrains

that the output must obey.

Definition 1 - Information definition is the activity that provides the means to represent

the oracle information.

The oracle must be able to represent and interpret the model simulation outputs and in-

puts so that the results may be compared with their equivalent abstractions within the oracle

information. Such oracle references (here called as attributes) at some point need to be mapped

into the model. For instance, if the tester wants to evaluate that an alarm is on when smoke

is detected, then: (i) both Simulink model representations must be identified – which signals

represent alarm and smoke detection in the model; and, (ii) the oracle must be able to estab-

lish that, at each simulation instant, the values from such signals must be associated to their

respective representations (attributes) described in the oracle information.

Definition 2 - Mapping is the activity that enables the oracle to reference the model simulation

results.

An instrumented version of the model results from mapping attributes of the oracle infor-

mation onto the model. The oracle analysis states how to evaluate simulation data against

the information and how to store its results without inconsistencies entailed by possible future

changes in the information. For example, after the oracle analyzes a simulation and generates

a report, the tester may decide to change the evaluated requirement to test its results against

some different constraint limit. In this situation, if it is important to keep a record from older

42

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

analysis, the report must store all relevant analysis data, including the analyzed data, the ana-

lyzed requirements and the verdict in the moment when the analysis was performed. Otherwise,

when the tester decides to review an older result based on an updated requirement, it may reflect

an inconsistent report because the older result was analyzed with a different requirement.

Definition 3 - Analysis definition is the activity that provides means to allow the oracle to

interpret the oracle information and analyze the model simulation results with respect to such

information.

It is worthy to note that such process is paradigm-independent. The oracle information may

be represented by a specification language, a component with equivalent functionality, a neural

network or metamorphic relations (information origins are discussed in Chapter 2). In any case,

the information must be prepared and related to the model.

As example of a complete oracle definition process, the tester may specify the oracle infor-

mation through a specification language and map its requirements into the model. The mapping

generates an instrumented model which is executed within a simulation tool (as Simulink). The

instrumented model dumps the mapped points of interest as sequences of values that are then

retrieved by the oracle. The tester defines how the data must be analyzed and the oracle is

ready to compare the simulation result with the specified requirements.

The process foresees incremental information definition and mapping, in such a way that the

tester may define priority test requirements, map them, execute a test and, later, specify new

sets of requirements to be tested. New requirements do not imply in new mapping: this step

only needs to be executed on references to unmapped model inputs and outputs. After a cycle,

all steps may be modified in a new iteration without losing consistency with previous result. For

example, if a requirement is modified in a new cycle, the previous results may seem inconsistent

because they were generated with a different requirement. This issue must be handled in the

process (as it is described in Chapter 5).

Finally, the development of the early steps of an oracle generation should not impose the

presence of a Simulink model, so the oracle information may be planned during or before the

model development. Four scenarios were considered: (i) the tester does not have a high level

specification (in this case, a Simulink-like model is the higher level specification); (ii) the tester

has a high level specification, for instance, documents in natural language and a model; (iii) the

tester has a high level specification but not the model; or, (iv) the project is starting and no

model or requirement was yet formalized.

In the presented scenarios, two distinct combinations must be noted: presence or absence of

a high level specification, and presence or absence of a model.

The absence of an specification means that the oracle information may be planned as the

system specification or part of it. However, in the presence of a higher level specification, the

oracle information must reflect part or all the system specification, which may require a careful

verification and tracing between the oracle information and the system specification.

43

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

The absence of a model, as it was stated, should not restrict the first steps of an oracle

generation. Moreover, the oracle generation could be used as a framework to a test-driven

development, in which a model would be developed based on previously written test cases.

Next sections detail each step of the process.

4.2 Information Definition

An oracle information encompasses attributes, which provide an abstract view on the values of

interest, and rules, which use the attributes to state the required behaviors of a system.

Definition 4 - Rule is a representation of a system requirement which can be interpreted by

the oracle.

A rule can be any expression that relates to the data entering or exiting the model. Details

are given in Section 4.2.2 and the definition of system requirement is available in Section 2.2.2,

page 8.

Definition 5 - Oracle information attribute is the representation of (i) a signal value,

which is mappable onto a model’s signal; (ii) an instant value; or, (iii) a simulation time, at a

given oracle analysis instant.

Definition 6 - Oracle analysis instant is the current instant of the oracle analysis.

Since signals may vary over time (Mathworks, 2012), a sequence of values is generated for

each signal during a simulation.

Definition 7 - Sequence is a numerical series that represents all the values of an attribute

from the first to its last instant.

To illustrate such definitions, it is used an example of a reactor’s model with a signal that

renders a boiler pressure, simulated for 500 instants. Assuming each instant represents 0.2

seconds, the simulation would reproduce 100 seconds of simulation. At least three sequences can

be abstracted to the oracle information: the boiler temperature values during the simulation

(each value is represented by Definition 5(i) and all values in sequence portray Definition 7); the

instants from 0 to 500 (Definition 5(ii)); and, their respective simulation times from 0 to 100

seconds (Definition 5(iii)).

The contribution of the proposed solution for specifying oracles is twofold: it aims to provide

suitable means to reason on events and on their relations, but it also wants to suggest a method

to structure and organize an oracle definition, as it will be discussed in Section 4.2.2. Next section

presents more details about how rules may be described, as well as their temporal properties.

44

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

4.2.1 Temporal Logic

Simulink models simulate dynamical systems. A dynamical system is a set of possible states,

together with a rule that determines the present state in terms of past states (Alligood et al.,

2000). Such systems evolve in time (Jost, 2005).

Specifications based on temporal logics are often used to describe allowable sequences of

events (Baresi and Young, 2001). Temporal languages may express time qualitatively, in which

interval boundaries are defined in relation to other events, and quantitatively, so time distances

can be measured.

Qualitative operators provide ways to express properties like precedence, eventuality and

invariance. Quantitative operators grant the ability to state that a given property will hold k

time units from the current time instant (Felder and Morzenti, 1992).

TRIO (Ghezzi et al., 1990) is a first-order temporal specification language that provides

qualitative and quantitative operators, as well as propositional operators and existential and

universal quantifiers. A major goal of TRIO is the executability of specifications without giving

up the expressiveness derived from temporal quantification (Felder and Morzenti, 1992). These

characteristics led us to adopt this language to describe rules.

Any TRIO operator is derived from the basic temporal operator Dist(A, t), which states

that A must hold at instant t, where t may be negative, 0 or positive (for past, present and

future instants, respectively). For example, the following formula defines Futr operator:

Futr(A, t) ≡ Dist(A, t) ∧ t ≥ 0

In this way, TRIO is not limited to a preset list of temporal operators. Instead, a great

number of new operators can be derived from Dist, as:

UntilW (A1, t1, A2) ≡ ∃t2(Futr(A2, t2) ∧ ∀t′(t1 < t′ < t2 =⇒ Futr(A1, t
′)))

The formula intuitively means that A2 must hold in the future and A1 will hold from instant

t1 until then. A partial and incomplete list of TRIO temporal operators is listed in Table 4.1.

Given those operators, the following examples illustrate two requirements and their respective

TRIO representations:

Example 1. A trivial system that given an input (in(a)) produces an output (out(b))

exactly 300 instants in the future can be specified as:

in(a) =⇒ Dist(out(b), 300)

To simplify TRIO implementation, a subset of this language was actually considered. For

example, recursivity was not implemented.

45

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

Table 4.1: TRIO Operators

Operator Description

Always(A) A must hold in every time instant.

Past(A, t) A must hold at intant t in the past, where t must be greater or equals to 0.

SomF (A) A must hold sometime in the future.

SomP (A) A must hold sometime in the past.

Lasts(A, t) A must hold for the next t instants in the future.

Until(A1, A2) A2 must hold in the future and A1 will be true until then.

New functions were also added to the language, as presented in Table 4.2.

Table 4.2: Added functions

Function Description

NowOn(A) returns the number of instants that A holds consecutively starting
from the oracle analysis instant.

NowOnTimes(A, t) returns the instant in which A holds for the t-th time, starting from
the oracle analysis instant.

Instant() returns the oracle analysis instant.

Instants() returns the number of instants of the simulation under test.

Clock() returns the simulation time at the oracle analysis instant.

The difference between Instant() and Clock() relies in the meaning of oracle analysis instant

and simulation time. An oracle analyzes a rule at each instant (oracle analysis instant), starting

from instant 0 until the last instant n (n ∈ N). In this way, a simulation contains n+ 1 instants.

Each instant represents a simulation time. For example, if each interval between instants is con-

figured as 0.2s in Simulink, then instant 0 represents 0.0s, instant 1 represents 0.2s and instant

2 represents 0.4s of simulation.

Example 2. A more complex requirement with a function from Table 4.2 is given next: if

the temperature of a system is greater than x for an interval of time (interval) of more than t1

instants, then a red indicator must be on to indicate a critical situation until it lowers to a safer

temperature. A safety protocol (safety) must be started within the next t2 instants and should

last the same number of instants as interval. Also, a yellow indicator must be on after the safe

temperature is reached and until the alarm is turned off. These constraints can be specified as:

46

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

Starts(greaterthan(temp;x)) ∧ interval = NowOn(greaterthan(temp;x)) > t1 =⇒

Lasts(on(red), interval − 1) ∧ ∃(Lasts(on(safety), interval − 1), 0, t2)∧

UntilW (on(yellow), instant() + interval, off(alarm))

The left part of connector ∧, in the first line, identifies the first instant (the starting

point) of an interval of occurrences in which temperature temp is greater than x. The

right side of the connector has an operator to count how many instants the temperature

is above x from the starting point and verifies whether it endures longer than it is allowed

(t1). If both conditions hold, then the second line guarantees that the red indicator is on

for the same interval of time as the temperature is critical. It also verifies whether safety

protocol is activated for the next t2 instants in the future and that it endures for the

same interval of time as interval. Line three verifies whether yellow indicator is turned

on from the next instant where the temperature is below the critical point until the alarm

is switched off.

Expressions may become complex to write. Methods to simplify and reduce temporal

expressions can be applied, as presented in (Baresi et al., 2009). In addition, a “library” of

expressions that represent standard behaviors in given domain might be very useful. Some

of these behaviors have been represented as built in expressions in our tool (Chapter 5),

as greaterthan, lessthan, ascendant, descendant and geocoord.

Next section discusses how rules may be structured.

4.2.2 Information Structure

Due to the complexity that a model may achieve, as well as its respective specification, it

was decided to organize the oracle information around three layers: requirements, behavior

and modularization.

The requirements layer is the core of the information structure and comprises the rules

that state the requirements on a system. Rules are grouped into oracle information units

(OIUs).

Definition 8 - OIU is a set composed by a main rule and, possibly, constraints and

safeguards.

Definition 9 - Constraints express rules that must be true when the main rule holds.

Definition 10 - Safeguards express what must be true if the main rule or constraints

are violated.

47

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

This organization is intended to alleviate the complexity of defining complex rules

by providing a built-in organization with trigger-dependent relations between simpler

rules. It also aims to alleviate the issue raised by Nadeem and Jaffar-ur Rehman (2005):

considering the works on automated oracles, specifications usually are not used to describe

what a system must do when invalid inputs are given. With an OIU, the tester may

describe safeguard rules that must be checked if a main rule (or constraint) is disrespected,

that is, if invalid inputs are given.

Definition 11 - Requirement layer is an abstraction which provides a defined struc-

ture to design requirements as rules and a violation report criterion.

The requirement of Example 2 is used as a base to the next explanation. In this

example, an OIU can be written as a main rule with no constraints and safeguards as

presented before, or it can be reorganized into smaller rules, if convenient.

For example, a main rule may state that the temperature should be always below a

critical level. A safeguard (S1) may state that, if the main rule is not respected, the

temperature may not be above the critical level for more than a given interval. Another

safeguard (S2) may imply that, if the critical level holds for longer than the given interval,

a safety protocol must be started within an acceptable delay (t2) and lasts for a given

interval. A constraint (C1) may state that if the alarm is off, the green indicator must be

on.

The organization into smaller rules allows the oracle to report either a success or

different types of violations: (i) critical failure, in which the main rule and at least one

safeguard are violated, (ii) constraint failure, in which the main rule holds true, at least

one constraint does not and all safeguards are respected; (iii) constraint critical failure,

in which the main rule holds true, at least one constraint does not hold and at least one

safeguard is disrespected; and, (iv) non-critical failure, when the main rule is violated but

all safeguards are respected.

The behavior layer provides recurring, readily-available, and reusable behaviors (as

macros or components) for OIUs. As instance, one may be interested in knowing when

values are greater than a threshold, or ascendant, or if they are functions of other values

provided by other signals. These general-purpose rules help to factorize common problems

and avoid re-stating them several times. They also contribute to the maintenance of the

information since a rule used many times only needs to be changed once.

A predicate is a boolean valued function P : X → {0, 1} (Haji-Valizadeh and Loparo,

1994). In this thesis, behavior is defined as follows:

Definition 12 - Behavior is a predicate which can be related to at least one sequence.

48

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

Definition 13 - Behavior layer is an abstraction which addresses the definition of

specific behaviors that must be identified in a sequence during the oracle analysis.

Definition 14 - Behavior-sequence pair is a tuple 〈behavior, (seq1, . . . , seqn)〉, where

a behavior references one or more sequences. It establishes that the oracle must identify

in which instants a behavior is true for a given sequence or sequences.

Figure 4.2 presents a Simulink model of a boiler control in which the requirement of

Example 1 must be applied. In such case, the temperature should be always below a

critical level.

Figure 4.2: A model of a boiler control

Applying the described concepts, a behavior (less than) may be analyzed over two

signals: Temperature and Critical level output signals. Therefore, the following tuple is

abstracted from the model: 〈less than, (Temperature, Critical level)〉.

It could also be described with only one signal (Temperature) and a constant (706).

Such behavior-sequence pair may be used in different rules on the proposed OIU discussed

for Example 1. Accordingly: in S1, the oracle must analyze whether the pair holds for

more than a given interval and, in S2, it must analyze whether the safety protocol starts

within an acceptable delay and if it lasts for a given interval.

Oftentimes, a rule may express relations between behavior-sequence pairs. For ex-

ample, if a behavior-sequence A holds, then a behavior-sequence B must hold for some

time.

Definition 15 - Implication rule is a rule that can be written with an implies logical

connective as P =⇒ Q where P and Q contain at least one behavior-sequence pair each.

49

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

A Simulink model may contain thousands of blocks and its respective oracle specifi-

cation may be large. The modularization layer addresses the organization of OIUs into

nodes of a tree structure to provide an hierarchical view and navigation of the oracle

information.

Definition 16 - Modularization layer is an abstraction which addresses the definition

of a tree structure for organizing OIUs.

Figure 4.3: Modularization

Figure 4.3 shows an example of modularization with three levels. The first level is

called Root. It contains three OIUs and two modules: Module 1 and Module 2. The

former has no OIUs but two modules, each one with an OIU. Module 2 contains two

OIUs. Other modules may be also defined in a tree hierarchy, as Module 3 and Module 4.

As already discussed, the oracle information definition should not be restricted to the

existence of a model. Four scenarios were considered: (i) the tester only has a Simulink

model, (ii) there is a Simulink model and a high level specification; (iii) there is only a

high level specification but no model; and, (iv) the project just started and no document

or model is present.

In the first scenario, it may be natural that the modularization follows approximately

the model subdivision structure – the model subsystems. For example, Figure 4.4 shows

a possible modularization of the model from Figure 4.2. An OIU which references three

subsystems (from Example 1) is defined in the root module. Three other modules were

created to comprise OIUs which test requirements specifically related to the respective

subsystems: controller, indicator and safety protocol.

But other modularization approaches may be applied. For example, if the tester

already has a documentation and its requirements are already modularized, he/she may

adopt such structure. Section 7.3 presents an experiment which contains a real-world

documentation used as basis to the modularization, instead of a subsystem modularization

approach.

50

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

Figure 4.4: Modularization of Figure 4.2

Figure 4.5: Oracle Information layers

In case no documentation or model exists, the development team may use the oracle

generator as a framework of test driven development.

Figure 4.5 illustrates the layers and their interrelations. The requirements layer, the

core of the oracle specification, represents the system requirements as Oracle Information

Units. An OIU may refer to one or more behaviors defined in the behavior layer and can

be reused in other units without being re-stated. OIUs can be also organized into a tree

structure.

This elicitation effort can be softened by a partially automated oracle generator tool,

as shown in Chapter 5.

4.3 Mapping

Mapping is the relation between a concrete data (signal) and its respective representation

in the oracle information (attribute). It allows the oracle procedure to extract the simula-

tion outputs and analyze them with respect to the oracle information. Relations may be

expressed as a table with two columns representing, respectively, signals and attributes,

in which each line describes a mapping.

Simulink-like tools (Chapter 2) have libraries with blocks which represent different

types of outputs and inputs, respectively named as sink and source libraries. Examples

of sink blocks are to file and to workspace. The former dumps the simulation data of a

signal into a file. The latter stores the data into a variable which can be accessed in the

Matlab interface (or other equivalent tool as Scilab and ScicosLab). But considering only

these libraries of blocks would narrow the test activity. As such blocks are system (or

51

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

subsystem) interfaces, their use would allow only functional (black box) testing or system

and a subset of integration testing.

However, if any signal of the model is subject to be mapped, it can increase the range

of testing options.

Figure 4.6: Mapping options. Source: (Mathworks, 2013a)

For example, Figure 4.6 presents a bouncing ball subsystem from MathWorks 1. If

the oracle only allows mapping between input and output blocks, the access to the model

would be limited only to the display (rightmost block) and Gravity block (leftmost block).

Otherwise, if any signal is mappable, the oracle may analyze the relation between any part

of the model, including relations between subsystems. It may be analyzed, as instance,

if Velocity block behaves correctly with relation to any of its three input signals and its

output signal.

When a simulation is performed, a sequence of values is produced for each signal in the

model and the oracle must be able to reference such values as an attribute in its analysis.

At each analysis instant, a mapped attribute must assume a value from a sequence. For

example, let us suppose that a simulation with 10 instants generates a sequence of 10

values uniformly distributed from 3 to 12 for signal Velocity and the tester wants to

evaluate some simple requirement as velocity must be less than 8. In such case, he/she

defines an attribute in the oracle information called velocity, maps it into the model and

uses the attribute in a rule as velocity < 8. The oracle analyzer must then recognize that

at instant 0, the mapped attribute velocity represents 3 and so on till instant 9, when the

attribute represents 12.

Therefore, the values of each mapped signal produced by the simulation must be

extracted by the oracle analyzer. The extraction proposed in this thesis is accomplished

by instrumenting each mapped signal in the model with blocks that produce log files

during the simulation. Each log file represents a mapped signal and named with a unique

label wich is registered in the mapping table. It allows the oracle to retrieve the data.

1http://www.mathworks.com/help/gauges/examples/bouncing-ball-subsystem.html

52

http://www.mathworks.com/help/gauges/examples/bouncing-ball-subsystem.html

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

A study presented in Section 7.2.2 indicates that such instrumentation does not affect

the simulation performance.

4.4 Oracle Analysis

An oracle procedure compares the oracle information with the obtained result (Durrieu

et al., 2008). As earlier discussed in Section 2.2.1, the access to the simulation outputs

may be off-line or on-line, which may reflect in the oracle analysis, resource demand and

on the sequence storage.

This section describes oracle procedures for both on-line and off-line sequence access.

It also points a difficulty in analyzing rules for a specific condition called close interval

and how it can be overcome by the procedure with oracle assumptions.

4.4.1 Off-line Oracle Access

If the sequence access is off-line, the simulation outputs are stored into some repository

and the oracle retrieves them during its analysis. A benefit of such approach is that all

the data is guaranteed to be available to the oracle. The oracle does not need to wait for

a simulation instant, as it may happen if a rule expresses some temporal property. In this

scenario, the analysis may require a value in the future (w.r.t. the analysis instant). For

example, given a requirement:

If A is true then B must be true in the next instant.

An on-line oracle procedure would not be able to analyze such requirement at the first

simulation instant where A is true, because the next instant is yet to be simulated. There-

fore, the oracle would have to wait until the next instant to evaluate if the requirement

is respected. However, an off-line oracle may search into the output repository to access

the next instant.

Since the output data represents values of each mapped signal for each instant, a

simulation may be composed by thousands of instants, producing the same number of

values per signal. If the oracle analyzes all the simulation instants, it may read thousands

of values of many sequences and the reading time cost may be a critical resource.

In this section, it is presented Fast Jumper, our proposed algorithm to read and write

a sequence of values of repositories, as log files. It takes advantage of multiple references

to a same sequence and benefits of shared memory spaces for temporal property analysis.

For illustration purpose, let 〈A, a〉, 〈B, b〉 and 〈C, a〉 be behavior-sequence pairs where:

A is a behavior that must be observed in a sequence a (for example, if pressure is greater

53

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

than 10 at some point in the sequence); B is a behavior related to a sequence b; and C is

related to sequence a.

And two abstractions of main rules:

(1) If 〈A, a〉 holds, 〈B, b〉 must hold (for each instant)

(2) If 〈C, a〉 holds at some instant, 〈C, a〉 must hold again at least once in the next X

instants, starting from the Y instant in the future

First rule references two sequences, a and b, and second rule references only sequence

a. Then, the same sequence (a) is referenced by two different rules. Also, the second rule

has a temporal property: the behavior C must occur again at least once in the next X

instants, starting from the Y th instant in the future w.r.t. the analysis instant.

The algorithm starts the analysis at instant 0 and continues till the last simulation

instant. At each analysis instant, it analyses all the existent rules.

Every sequence has a main memory space which stores a preset quantity Q of values

from a sequence. Q may be computed automatically based on the available memory

and the number of sequences mapped into the model. When the next analysis instant

corresponds to a value beyond the memory space, it is repopulated by the next Q values

in the sequence. A secondary memory space of size R, which may be attached to each

behavior-sequence pair, is used when the rule has temporal operators that reference values

beyond or before the main memory space boundary. R may be different of Q.

For example, let us consider Q = 500 values, R = 100 values, Y = 600 instants,

X = 1, 000 instants. For the sake of understanding, the second rule is rewritten as follows:

(2) If 〈C, a〉 holds, 〈C, a〉 must hold at least once in the next 1, 000 instants, starting

from the 600 instant in the future

The procedure starts the analysis at analysis instant = 0 (the first analysis instant).

At this moment, the first rule is analyzed. The first reading of a and b populates their

respective memory spaces with the first 500 values of each sequence from the log files

(Q = 500), as presented in the next code (lines 2 and 3):

1 retrieve_value_in_sequence(Attribute x){

2 if(current_MMS_index==Q || current_instant()==0){

3 MMS(x) = read_next_Q_values_from(log_file_x);

4 MMS_index=0;

5 }

6 return value_of(MMS(x),MMS_index);

7 }

54

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

MMS index is a counter that represents the value in the memory space with respect to the

current instant, that is, at each analysis instant, MMS index is incremented by 1. The values

are read and used in the comparison. Then, the second rule is analyzed. In this case, because a

has already a memory space, the respective value is read only from the memory space, not the

file (condition of line 2 is false).

When analyzing the second part of this rule, it must verify if the behavior occurs again in

the future, between instants 600 (analysis instant+ Y) and 1,000 (analysis instant+X).

Supposing that C holds at instants 0, 1 and 900, it means that the value of a at instant 900

is not in the main memory space, because its size is Q = 500. In this case, a secondary memory

space is created and populated with values from instant 900 to 999 (or 851 to 950, considering

900 as the middle of the secondary memory space).

After all the rules are analyzed at instant 0, the analysis instant is incremented by 1

(analysis instant = 1) and the analysis is executed again. At this instant, all the sequences are

in memory spaces.

Next code presents a simplified algorithm for retrieving values not in the analysis instant.

retrieve_value(Attribute x, Instant i){

if(current_MMS_index+i<Q && current_MMS_index+i>=0)

return value_of(MMS(x),current_instant()+i);

else if(current_SMS_index+i<R && current_SMS_index+i>=0)

return value_of(SMS(x),current_instant()+i);

else{

SMS(x) = read_next_R_values_from(log_file_x,current_instant()+i);

reset_SMS_index();

}

return value_of(SMS(x),current_instant());

}

First, the analyzer tries to retrieve the required value from the MMS. In case it is not in the

MMS, it tries to retrieve the value from the SMS. If it is not in the SMS, R values are read from

the log file into the SMS.

Analyzing all the rules for each instant, instead of analyzing one rule individually from

instant 0 to the last instant then another one, allows a better memory space usage: all the

rules that reference a same sequence share the same memory space. It prevents the algorithm

to access the log file and the memory space repopulation more than once for the same analysis

instant for interval of Q instants.

55

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

4.4.2 On-line Oracle Access

When the sequence access is on-line, the simulation outputs are sent directly to the oracle or it

can be stored into a repository and made available to the oracle at runtime. A benefit of such

access is that the analysis can be made on the fly and the tester does not need to wait for the

simulation ending to have the oracle report.

However, an issue with on-line access is the data unavailability. If a rule contains temporal

properties, as “in the next X instants in the future”, the oracle may have to wait until the

simulation reaches the X instants to access the required data and verify the rule.

The oracle may continue to analyze other rules while waiting for the unavailable data of a

specific rule and put it on a waiting queue. When the data is available, the rule in the queue

is verified. Thus, differently from the Fast Jumper algorithm, the rules are not analyzed all

for each instant. As consequence, the rules in the queue may not take advantage of the shared

main memory space if the waiting time exceeds the memory space size. Also, the oracle must

track the instant where the rules were queued and all the data needed to verify the rule from

the instant where it was put in the queue on.

A second solution is to stop the analysis until all the data is available, without a waiting

queue. It allows the use of the shared memory spaces, but it drives to an idle analysis time.

In both cases, main memory may become a critical resource if the simulation output is sent

directly to the oracle, without storing it first. The use of repositories even for on-line sequence

access prevents such memory issue.

4.4.3 Oracle Assumption

Rules with temporal properties may be difficult to write. It is particularly true when these

properties involve intervals of time.

Definition 17 - Interval of occurrences is a finite sequence of instants (ih, ih+1, ..., ih+l)

w.r.t. a sequence s, where l is an integer greater or equals to 0, and a behavior b is true for all

instants from (ih to ih+l), but not true at instants ih−1 (if ih is not the first analysis instant.

Otherwise, this last constraint is ignored) and not true at instant ih+l+1 (if ih+l+1 is not the last

analysis instant. Otherwise, this last constraint is ignored).

An interval of occurrences may be present multiple times in a sequence. For example,

Figure 4.7 represents a simulation scenario with two behavior-sequence pairs, A and B. Black

means that a pair holds at the respective instant. In this scenario, A holds at three intervals of

occurrences: from instant 0 to 6, 9 to 16 and 18 to 21.

When analyzing implication rules as A =⇒ B, the oracle must relate the occurrences of

a behavior-sequence pair A with the occurrences of other behavior-sequence pair B. However,

56

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

Figure 4.7: Close interval of occurrences

when multiple intervals of occurrences are too close each other, it may be impossible to the

oracle to identify such relation without previous instructions.

For instance, the rule “If A holds for an interval, B must hold for the same number of

instants, with a maximum delay of 5 instants” could be easily described with temporal logic or

timed automata if such behavior relation is expected just once or on distances greater than 5

instants between intervals of occurrences. But in the scenario of Figure 4.7, it is impossible to

decide what is the delay of B in relation to the second interval of occurrences of A.

Figure 4.8: Undecidable relation between A and B

Figure 4.8 helps to illustrate the undecidability of the same scenario: interval α represents a

delay before B starts holding in relation to A and it is possible to define the size of the subinterval

of B which may be related to the first interval of occurrence of A. But it is impossible to define

with precision in which instant B starts to hold in relation to the second occurrence of A.

Therefore, it is impossible, in the absence of some assumption, to define the size of γ. In the

same way, it is not possible to define the size of δ.

The oracle may consider that instants 4 to 10 of B are related with the first interval of oc-

currences of A and that instants 11 to 18 of B are related with the second interval of occurrences

of A. Or, the oracle could consider the same with the first relation between B and A, but that

instants 9 to 16 of B are related with the second interval of occurrences of A.

Such difference of assumptions may interfere in the oracle final report. With the former

(successive assumption), it implies that the scenario agrees with the rule, but at instant 24,

B is not related with any occurrence of A (here called spurious occurrence). With the latter

(overlapping assumption), B would not be related with A at instants 17, 22 and 24. In other

scenarios, the rule verdict could even vary from agreement to failure.

Definition 18 - When intervals of occurrences are too close so that ambiguous analysis inter-

pretation may be present, it is called close intervals.

Often a simple natural language description may be hard to formalize unambiguously for

such scenario and analysis assumptions must be made to reduce the formalization complexity.

57

CHAPTER 4. DESIGNING AN ORACLE GENERATOR

Spurious occurrences and the relation between intervals of occurrences are bound with the way

in which the oracle performs its analysis.

Definition 19 - An oracle assumption is an admissible inference that the oracle adopts dur-

ing the analysis in the presence of close intervals. It aims to reduce the rule formalization

complexity when close intervals are expected.

Definition 20 - When the oracle (i) analyzes an implication rule (A =⇒ B), (ii) relates

an analyzed instant of B with an interval of occurrences of A and (iii) infers that such instant

must be ignored when searching for the next relation between B and a subsequent interval of

occurrences of A, it is called a successive assumption.

Definition 21 - When the oracle (i) analyzes an implication rule (A =⇒ B), (ii) relates an

analyzed instant of B with an interval of occurrences of A and (iii) infers that already related

instants of B can also be related to a subsequent interval of occurrences of A, it is called an

overlapping assumption.

4.5 Final Remarks

This chapter describes an oracle engineering foundation to the partially-automated generation

of test oracles for Simulink-like models. The proposed approach is intended to contribute with

the test by providing a method to define an oracle information, mapping between model and

information with a proposal of instrumentation and an oracle procedure which analyzes the data

retrieved from a simulation w.r.t., possibly, temporal specifications. It also discusses solutions

for two main concerns: data access and assumptions over close intervals. Finally, 21 definitions

were listed in order to facilitate the understanding of the approach.

Many steps are automatable: (i.a) instrumentation may be accomplished automatically dur-

ing the mapping; (ii.a) simulation data recovery; (iii.a) the analysis and report may be automated

if the oracle information is expressed with enough formalism.

Manual efforts may be softened by support tools: (i.b) editors with high usability which

reproduce the process steps with simple options; (ii.b) wizards to compose the rules; (iii.b)

graphical representation of a model to support the mapping with the oracle information.

Next chapter presents Apolom, a tool implemented with the concepts here discussed, which

allow the definition of oracle information based on specification-languages with capacity to ex-

press temporal properties.

58

Chapter

5
Automating an Oracle Generator

Previous chapter presented the fundamental foundation concepts of Simulink-like oracle gener-

ation, enabler of oracle automation.

This chapter describes Apolom, an oracle generator tool that provides support to all three

activities of the oracle definition process (Chapter 4): the specification definition, the mapping

between specification and model, the configuration and simulation analysis.

Its oracle information and analyzer were implemented upon an specification-based language,

TRIO, due to its expressiveness and usability.

Apolom is an important contribution in two ways: it represents an instance of our approach,

that is, a demonstration that an oracle generator tool is feasible; and it is a vessel to the

evaluation study of the proposed solution (Chapter 7).

Section 5.1 presents the main features of Apolom highlighting the automated steps and how

manual efforts were softened by the tool. Section 5.2 describes its functionalities and graphical

interfaces with a running example. Section 5.3 discusses the impact of different oracle assump-

tions in the analysis result. Section 5.4 presents the trigger relation between rules within an

OIU. Section 5.5 concludes the chapter. Next chapter discusses implementation and limitations

of Apolom.

59

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

5.1 Features

The tool partially automates the oracle generation. The manual effort of the process includes

the specification writing and the mapping between a Simulink model and the specification. For

both steps, the tool provides means to alleviate the load over the tester.

Specification writing: this step is softened by editors disposed in a sequence that establish

a straight line through the generation process described in Section 4.1, starting at the attribute

definition and mapping, and passing by the module, behavior and OIU definitions.

Apolom also provides a Rule Wizard composed by two parts related by the propositional

connector implies (Figure 5.1(A)). In each side, it enables the definition of expressions that

embed the following triple: attributes (Figure 5.1(B)), behaviors (Figure 5.1(C)) and shortcuts

(Figure 5.1(D)).

Shortcuts are definitions commonly used in the base language (TRIO), for instance, during

an interval or with a maximum delay of.

Figure 5.1: Rule Wizard

After an attribute is defined, it is automatically listed (Figure 5.1(E)) by pressing the re-

spective component. The same occurs with the existing behaviors and shortcuts. In these cases,

they may require a parameter configuration. As instance, the following behavior can be defined

in the behavior editor:

compares(seq1, seq2; precision) =

[Current(seq1) >= Current(seq2)− precision AND

Current(seq1) <= Current(seq2) + precision]

It holds when a value from a sequence is equals to a value from another one, within

a margin of acceptance, at a given analysis instant. This margin is represented by a

parameter (precision), which is automatically presented in a window (as in Figure 5.1(F))

when its respective behavior is selected.

Such a behavior may be particularly useful on consistency checking, in which points

in the model must be verified in relation to design aspects which transcend the functional

60

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

requirements of a system. A real-world example is given in Section 7.3.2: a consistency

requirement states that a lever smoothing roll value from an airplane is the same in the

Pilot subsystem and in the Roll Controller subsystem, with a maximum tolerance of 2

degrees.

More triples 〈attribute, behavior, shortcut〉 may be added or removed by pressing the

respective buttons (Figure 5.1(G)). Once the rule wizard is set, the expression is generated

by pressing the generate expression button (Figure 5.1(H)).

Mapping: this step is softened by an editor that presents the diagram of the model

and the list of attributes of the specification. It allows the tester to select the line to be

mapped to an attribute directly from its diagram.

Figure 5.2: Mapping sample

Figure 5.2 shows an example of mapping. The attributes are listed in the Specification

box (upper left corner), from where one may define, delete, edit or select the respective

attribute to be mapped. The model lines (also called signals) are listed in the Model

Signals box (upper right corner) and presented in the center of the screen. The tester

can select the line to be mapped from both its list (Figure 5.2(B1)) or diagram (Figure

5.2(B2)). With attribute and line selected, the mapping is accomplished by pressing the

Insert button (Figure 5.2(C)).

The automatic steps of the oracle generation process include the model instrumen-

tation, trace recovery and oracle analysis.

Model instrumentation: for each mapped line, the oracle parses the original file of the

Simulink model and inserts a dumper block (Figure 5.3, circled in red) into a copy file –

the instrumented model. A dumper block is connected to a mapped line and sends the

line trace into a log file when the instrumented model is executed.

61

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

Figure 5.3: Instrumented model

Dumpers are subsystems composed by a Data Type Conversion block and a To File

block. The former converts the input type into a double. The latter dumps the line trace

into a file with unique name within the project folder.

Log recovery: at the end of the instrumented model simulation, each instrumented

line will generate a log file. If an attribute must be read during the oracle analysis, its

value is recovered from the log.

Oracle analysis: for each instant, the oracle analyzes all OIUs and reports whether

it is violated, following the violation level of Section 4.2.2: critical failure, constraint

failure, constraint critical failure or non-critical failure. It also reports which rules were

disrespected and the values of each related attributes. The procedure also stores the state

of the oracle during the analysis in a way that, if the information is changed, the report

will not present out-of-date, and inconsistent, results. The oracle analysis is described in

details in Section 4.4 (concepts) and Section 6.3 (implementation).

Next sections elucidate Apolom features, as its application with a running example.

5.2 Running Example

This section presents complete example of an oracle generation with Apolom, intended

to provide a clear overview of the previously described functionalities and operation. It

discusses each step of the oracle process and how it was adapted to the implementation.

The model under test was based on the scenario of Figure 4.7, in Section 4.4.3.

It simulates a boiler controller in which two lines must be inspected: pressure alarm

and pressure controller. The first line represents an alarm that has a true value when the

input pressure is above some preset limit or false otherwise. The second line represents the

controller warning and is true when the control is on. The boolean values are represented

by 0 or 1.

62

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

The requirement states that, if pressure alarm is on, then pressure controller must

be on within the next 3 instants for at least the same instants as the alarm.

The oracle project starts by selecting a project name and folder. The model may

be loaded later in the process (Figure 5.4).

Figure 5.4: Model and folder selection

The oracle definition follows three steps (Chapter 4): information definition, mapping,

and analysis configuration. The information definition relies on three layers, as described

in Section 4.2.2. In the tool, the layers are designed in the respective tabs – module, OIU

and behavior.

Next subsections present each step in details and the analysis execution.

5.2.1 Attribute Definition and Mapping

The mapping is a step that can be performed at any time after the specification attributes

are defined. It allows the tester to write the oracle specification without the presence of

a model, as discussed in the end of Section 4.1.

The Instrumentation tab (Figure 5.5 (A)) allows both actions: attribute definition

and mapping.

The attribute is defined by providing a name and adding it in the appropriated

section (Figure 5.5 (B) and (C)).

The mapping between an attribute and a line from the model is performed by select-

ing the line from a list or model diagram (Figure 5.5 (D)), the respective attribute and by

63

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

Figure 5.5: Intrumentation editor

pressing Insert (Figure 5.5 (F)). The relation is presented in a table in the upper-middle of

the screen (Figure 5.5 (E)). The model instrumentation is automatically executed during

the mapping.

5.2.2 Module Layer

Once the mapping is accomplished (or at least, attributes are defined), the tester may

move to the Module Editor tab (Figure 5.6 (A)) and define the module structure in the

bottom box, as proposed in Section 4.2.2. The first module in the tree structure is called

root. From this node, the tester may create other modules, submodules and OIUs.

Figure 5.6: Module editor

Given the simplicity of the example, which contains only one requirement, there will be

no modules, except for the root. The OIU representing the requirement must be defined

within its respective module. The tester selects the correct module and adds an OIU

into it by right-clicking in the proper box (Figure 5.6 (B)) and selecting a suitable name

(Figure 5.6 (C)).

64

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

An OIU is represented as shown in Figure 5.7.

Figure 5.7: A defined OIU

The tester can, then, access the OIU editor (Figure 5.8) by pressing the respective

OIU representation.

5.2.3 OIU Layer

An OIU is composed by a main rule and, possibly, constraints and safeguards (Definition 8,

page 47). Rules, in Apolom, are described as TRIO expressions. The language is here

called TRIO/Apolom given the adaptations and limitations of the implementation (as no

support to recursion).

A Rule Wizard was implemented to facilitate the tester work in defining TRIO expres-

sions. As stated in Section 5.1, it represents an expression with triples 〈attribute, behavior,
shortcut〉.

The tester starts with the selection of the rule type to be generated – the main rule,

constraint or safeguard – by pressing the respective button (in the example, Figure 5.8

(A)). Secondly, the first triple can be defined starting by selecting the sequence (here called

signal), as presented in Figure 5.8 (B) and (C)). The defined attributes are automatically

listed.

The second component from the triple can be selected in the same way as the line

(Figure 5.9 (A)).

All the available behaviors are automatically listed, as shown in Figure 5.9 (B).

In the example, the selected behavior, equals to, has a parameter called value:

equalsto(seq;value) = current(seq)==value

65

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

Figure 5.8: OIU editor

Figure 5.9: Behavior selection

In such case, the parameters are presented in a box (Figure 5.10 (A)). All parameter

types are considered as double, although it is possible to adjust the maximum precision

when comparing values.

Figure 5.10: Parameter settings

66

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

The last component of the triple, the shortcut, is selected as the previous ones (Fig-

ure 5.11 (A)).

Figure 5.11: Shortcut selection

The same concept may be applied in the right side of the rule. It is important to note

that the wizard does not generate only a rule with the format of tripleA implies tripleB. It

is possible to define rules without the implies connector by removing the triple from one

side (Figure 5.11 (B)). It is also possible to include more triples at any side (Figure 5.11

(C)) connected with other triples by OR and AND operators (Figure 5.11 (D)).

Figure 5.12: Rule generation

By pressing the Generate expression button (Figure 5.12 (A)), the rule is created (Fig-

ure 5.12 (B)). The tester may apply changes to the expression before saving it (Figure 5.12

(C)).

67

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

5.2.4 Behavior Layer

The behavior from the example is trivial and provided by the tool. However, the tester

may define a new behavior in its respective tab (Figure 5.13 (A)). The tool shows two

kinds of behavior writing modes: expressions or Java code (Figure 5.13 (B)), although the

latter is not yet supported. The tool was also designed to allow the addition of different

specification languages in the future, which will be selectable from the menu showed in

Figure 5.13 (C).

Figure 5.13: Behavior definition

To alleviate the burden of the writing, the editor presents the list of objects, navigators

and trio-based operators (Figure 5.13 (E)).

The tester may write the behavior in the field showed in Figure 5.13 (F). Comments in

green and blue present a description of the behavior’s format. The behavior must contain

a signature with a name and two types of parameters, separated by a semicolon: the

sequences in the behavior and variables (Figure 5.13 (G)). It may also contain a comment

between braces.

If more than one sequences or variables are necessary, they are separated by a comma.

It is important to note that the parameter name of a sequence is not related with the real

name of a sequence in a way that the same behavior may be used with different sequences.

The relation between behavior and sequence is accomplished automatically by the Rule

68

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

Wizard, or manually in the rule editor. In the expression in Figure 5.12, sequence pressure

is the argument related with parameter seq of Figure 5.13.

When the tester attempts to save a behavior (Figure 5.13 (D)), it is parsed and, in

case of errors, they are presented in the field of Figure 5.13 (H). The behavior is added to

the appropriated list (Figure 5.13 (I)) whether it is correct.

Figure 5.14: A tooltip

Apolom also provides tooltips for all behaviors, navigators and operators. The descrip-

tion made within braces in a behavior definition (Figure 5.13 (G)) is presented as tooltip.

For navigators and operators, the tooltips are built-in. Figure 5.14 shows an example of

tooltip for the Current navigator. It contains a brief description, a detailed explanation

and an example.

5.2.5 Analysis Execution

When the oracle information is defined, the tester may configure the analysis execution

(Figure 5.15 (A)).

Figure 5.15: Oracle setup

69

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

The configuration includes the max number of instants to be analyzed (Figure 5.16

(A)), failures (B), analysis of spurious occurrences (C) and the analysis assumption (D)

(Section 4.4.3).

Figure 5.16: The configuration

The analysis execution produces a report which results may depend on the oracle

assumption. In the first execution, the oracle must identify spurious values and adopt

successive assumption (Definition 20, page 58).

Figure 5.17: Oracle report

70

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

The main table from the oracle report (Figure 5.17 (A)) contains the description of

the failed OIU (C), the instant in which the OIU failed (D), and which rule has failed.

In the example, main rule failed at instant 0 (E). Selecting the respective line, a tooltip

is shown with the failure type (F), which rules were disrespected (G) and the sequences

related to the failed rules (H).

The sequence table (Figure 5.17 (B)) indicates the values of the involved sequences at

the instant when the failure occurred (I) and the values in the vicinity interval. It helps

the tester to identify in which instant and why a rule failed. For example, the first table

presents a failure at instant 0 and the disrespected rule. Selecting the instant, the second

table shows that at instant 0, in the first sequence, the value of pressure is 1. According

to the rule, it should be a time in the next 3 instants when controlled pressure should be

1. Analyzing the second sequence one can observe that it takes one more instant than the

expected to the controlled pressure turns on (when its value is 1).

Spurious occurrences (J) were found at instants 4, 5, 6, 7, 8, 17, 22, 24 and 25.

Because the first interval of occurrences of pressure (Definition 17) was not related with

controlled pressure, the occurrences of the latter from instants 4 to 8 were not related to

any occurrence of the former.

5.3 Assumptions may Impact the Results

Different oracle assumptions are proposed to reduce the formalization complexity of tem-

poral rules in a particular scenario called close intervals, as discussed in Section 4.4.3,

page 56. This section presents an example of how different oracle assumptions may im-

pact in the final report.

A slight change in the previous requirement helps to illustrate such impact: the pres-

sure controller must be on within the next 4 instants, and not 3, as previously required.

The result is displayed as in Figure 5.18, still considering successive assumption,

as explained next:

• First interval of occurrences from 0 to 6 of pressure will be related with interval

from 4 to 10 of controlled pressure;

• Second interval of occurrences from 9 to 16 of pressure will be related with interval

from 11 to 18 of controlled pressure;

• Third interval of occurrences from 18 to 21 of pressure will be related with interval

from 19 to 22 of controlled pressure;

71

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

• The occurrences of controlled pressure at instants 24 and 25 will not be related with

any occurrences of pressure, that is, they are listed as spurious values.

Figure 5.18: Oracle report: successive assumption

However, adopting overlappig assumption (Definition 21), the report will be differ-

ent, as shown in Figure 5.19.

Figure 5.19: Oracle report: overlapping assumption

In this case:

• First interval of occurrences of pressure will be related with interval from 4 to 10 of

controlled pressure;

• Second interval of occurrences from 9 to 16 of pressure will be related with interval

from 9 to 16 of controlled pressure;

• Third interval of occurrences from 18 to 21 of pressure will be related with interval

from 18 to 21 of controlled pressure;

72

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

• The occurrences of controlled pressure at instants 17, 22, 24 and 25 will not be

related with any occurrences of pressure, that is, they are listed as spurious values.

In both examples, the oracle reports are accurate. However, they reflect different

assumptions which impacts in the analysis mechanisms, possibly causing different results,

as illustrated.

5.4 OIU: Trigger-Dependent Rules

This section overviews the dependency mechanism between an OIU main rule, constraints

and safeguards.

A new constraint and safeguard was added to the already defined OIU from the last

example. The constraint states that alarm must be off when pressure is under a critical

level. And a safeguard states that if pressure is above the critical level for more than 8

instants and pressure is not controlled, then a safety protocol must be triggered.

First, a fault was inserted in the model so that the alarm remains on for two instants

after the second interval of occurrences in which pressure is above critical.

Figure 5.20 shows that a constraint was disrespected in both instants (21 and 22).

Selecting an instant, it also presents the failure type, the values of the related attributes

and which rule was disrespected.

Figure 5.20: Oracle report: constraint failure

To present critical failures in an OIU, a fault was inserted in the safeguard subsystem

in which the protocol is not triggered after pressure is above the critical for more than 8

instants. Another fault was also inserted in the model, so the pressure is not controlled

in relation to the second interval of occurrences of pressure causing a main rule failure.

73

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

Figure 5.21: Oracle report: critical failure

Figure 5.21 shows the critical failure. It reports that the main rule and a safety

protocol have failed. Additionally, three sequences are related with the failure: pressure,

controlled pressure and safety.

In the given scenario, it is not possible that constraint and safeguard are disrespected

at the same time if the main rule is respected. It is true because this constraint is only

checked when the pressure is under critical and the described safeguard depends on the

pressure to be critical to be evaluated.

Figure 5.22: Oracle report: constraint critical failure

74

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

But, forcing such combination of violation by changing one of the rules, a constraint

critical violation can be detected, as shown in Figure 5.22.

5.5 Final Remarks

This chapter presented an overview of Apolom, an oracle generator tool that provides

support to activities of the oracle definition process presented in Chapter 4. The manual

and automated features supported by the tool were described and a running example was

provided to a better understanding about its functionalities.

The main contribution of our tool is twofold: it evidences the feasibility of an oracle

generator implementation, respecting the previously proposed process; and, it is a vehicle

to the execution of four studies (Chapter 7) which assess the viability of our approach.

Next chapter details the implementation and limitation of Apolom.

75

CHAPTER 5. AUTOMATING AN ORACLE GENERATOR

76

Chapter

6
Apolom: Implementation and

Limitations

Apolom was implemented by the author of this thesis, in Java, for the period of one year.

It contains approximately 25000 lines of code and 525 classes which are grouped into three

main packages:

• bridge: implements the mapping between model and oracle;

• oracleinformation: implements the structure of the specification as OIU, Behavior,

Expression classes, and specification editors;

• oracleprocedure: implements the analysis engine, language parser and data access.

Next three sections describe each package in details. Section 6.4 presents Apolom

limitations.

6.1 The bridge Package

Simulink inspired the development of similar tools, as Scicos and XCos, both free software.

The implementation of Apolom was intended to facilitate the support to such tools in

the future. In this way, an intermediary model was defined, called ApolomTree, which

77

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

represents a generalization of Simulink, Scicos and XCos models. The drawing of a model

in Apolom, its navigation and management of the model instrumentation are set in the

intermediary model.

ApolomTree is a structure with access methods in which nodes represent blocks of the

original model and edges correspond to lines. Both elements contain basic properties to

allow the drawing of a model in Apolom and a unique identification of each block and line

for the instrumentation.

The bridge is composed by three packages:

• Data: represents ApolomTree model and a mapping table;

• Driver : converts a Simulink model into ApolomTree;

• Connector : maps the relation between ApolomTree and the oracle specification

attributes. It is also responsible by the instrumentation of the models.

Figure 6.1: Driver package: parsers and converters

Figure 6.1 presents a simplification of driver package. Modelparsers implements

parsers for each original format (Simulink and Scicos in the current version), and an

interface with a converter. Modelconverters is the package responsible by the transforma-

tion of an original model to ApolomTree.

Connector implements the instrumentation and mapping between model and spec-

ification. The pattern of the instrumentation is similar to the one presented in driver

package, that is, a factory instantiates an instrumenter object based on the model format.

However, only Simulink is supported in the current version.

78

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

6.2 The oracleinformation Package

This package implements the layers of the oracle information – modules, OIUs and be-

haviors – and their respective editors and Rule Wizard.

The modules are implemented as a tree structure in which a node is a Module class

(Figure 6.2). Each node has a hashset of module children, a father, name and a code.

Figure 6.2: Module structure

A behavior is composed by its name, description, signal names and values, parameter

names and values, an analysis array and an expression. When its expression is analyzed,

the oracle stores, in the array, whether the behavior holds for each instant.

An OIU component represents a main rule, constraint or safeguard. It is composed

by an expression (which represents a rule in TRIO/Apolom), a reference to the set of

behaviors present in the expression and an array which represents whether the expression

holds for each instant. An OIU is composed by a description, a main OIU component,

and two sets of OIU components representing the respective constraints and safeguards.

An OIU description contains a mapping between expressions and their descriptions for

the main rule, as for all constraints and safeguards. It also contains an unique cod and a

reference to its module. The relation between such classes is illustrated in Figure 6.3.

Figure 6.3: OIU structure

79

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

The OIU class is responsible only for the OIU result calculation, that is, if such unit

passed in the test or, otherwise, the type of violation (Section 4.2.2, page 48). The

OIU description encompasses the tracing between each rule and its natural language

description. These relations could be implemented directly in the OIUComponent, but

they were decoupled from such class as a design decision: it is intended to expand the

tracing from the rules to documents outside the oracle generator, as future work, and the

decoupling may avoid changing essential code.

6.3 The oracleprocedure Package

This package implements the analysis engine, the parser of the specification and the data

access. The engine contains a main controller, behavior analyzer, OIU analyzer and a

support analyzer.

Main controller defines the engine control flow and the execution of each analysis,

as follows:

1. input: OIU list;

2. extract all behavior-sequence pairs from each OIU in the list;

3. for each instant //behavior analysis

4. execute the analysis of each extracted behavior-sequence pair

5. output: behavior analysis

6. for each instant //OIU analysis

7. for each OIU from the list

8. execute the analysis of all rules;

9. output: violation report for the current OIU analysis;

10. if analyze_spurious

11. for each instant //Support analysis

12. retrieve the next OIU from the list;

13. retrieve all behavior-sequences from the current OIU;

14. for each behavior-sequence

15. if it holds at the current instant

16. verify if it is spurious

17. output: spurious analysis at the current instant

Each analysis (behaviors, rules and spurious values) is performed in sequence. When

analyzing a rule, all behaviors were already analyzed. Therefore, if more than one rule

references a same behavior, it will not require multiple analysis of the same behavior.

80

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

The OIU analysis is presented in more details in the next code:

1. analyze the main rule of the current OIU;

2. if it is the right side of an expression

3. mark the referenced behavior-sequence pairs;

4. analyze the set of constraints of the current OIU;

5. if it is the right side of an expression

6. mark the referenced behavior-sequence pairs;

7. analyze the set of safaguards;

8. if it is the right side of an expression

9. mark the referenced behavior-sequence pairs;

10. if success, return 4;

11. if only constraint fail, return 3;

12. if only constraint and safeguard fail, return 2;

13. if only main fail, return 1;

14. if main fail and safeguard fail, return 0;

An expression may have an implies connector. In such case, spurious occurrences can

be identified if behavior-sequence pairs of the right side of the connector are not related

with the left side. The detection of spurious occurrences is described in details in the next

section.

6.3.1 Detection of Spurious Occurrences

To describe the detection of spurious occurrences (Section 4.4.3, page 57), a concrete

example and the mechanism of detection is presented.

Concrete example

To this example, the requirement of Section 4.4.3 and two examples of behavior-sequence

pairs are used:

(3) Greater(sequence; value) = sequence > value

(4)Descendant(sequence) = ¬AtEnd(sequence)∧Current(sequence) > Next(sequence, 1)

Be A an instance of pair model (3):

Greater(seq a;10)

In the example, A is a pair composed by a behavior greater than 10 and sequence

seq a. B is an instance of pair model (4), where a sequence seq b has descendant value:

81

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

Descendant(seq b)

The requirement of Section 4.4.3 can be expressed as the following TRIO formula:

(5) Starts(A) ∧ howlong = NowOn(A) > 0 =⇒ ∃(Lasts(B, howlong − 1), 0, 5)

The left side of the formula expresses that in the instant when A starts to hold, the

variable howlong will represent how much instants A holds in sequence. It means that the

oracle procedure will analyze in which instants A will hold for some interval and for how

long. When the oracle finds such scenario, it will analyze the right side of the formula

which expresses that exists in the next 5 instants, a time where B lasts for the same

interval of A.

Mechanism of spurious occurrence detection

As described before, the oracle procedure will analyze such scenario differently, depend-

ing on the adopted assumption. For this example, let us consider successive assumption,

where the oracle must report that instant 24 has a spurious occurrence of B.

The spurious detection is executed in two steps: (i) during the OIU analysis, the pro-

cedure marks in which instants a pair behavior-sequence of the right side of an implies

connector is used in the evaluation of a rule; and, (ii) in the spurious analysis, the proce-

dure reports in which instants this same pair holds but it is not marked as used in the rule

evaluation. To illustrate the presented mechanism, let us consider the concrete example

at each oracle analysis.

Figure 6.4: Successive assumption analysis

The behavior analysis generates an array for each A and B pairs, with the instants

that they hold (green in Figure 6.4).

During the OIU analysis, the oracle procedure uses the results from the behavior

analysis, relates the occurrences of B with the occurrences of A and it does not allow that

any occurrence of B be related with more than one occurrence of A.

For example, in Figure 6.4, α is the instant when the first occurrence of B is related

with the first occurrence of A and β is the last occurrence of B which is related with

the last instant of the first interval of occurrences of A. Because the oracle assumption

is set as successive, the first occurrence of the second interval of occurrences of A will be

82

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

related with the next instant when B holds, after instant β. The last occurrence of B is

not related with any occurrence of A, thus, it is considered as a spurious value.

More specifically, based on the concrete example: the oracle procedure uses the results

from the behavior analysis to evaluate rule (5): it analyzes if pair A starts to hold at the

current instant, that is, A must hold at the present analysis instant but must not held at

the immediatly past instant. Also, operator NowOn() returns to variable howlong how

much instants A holds in sequence, when it starts to hold. For example, in Figure 4.7, at

analysis instant 0, the left side of rule (5) is true and operator NowOn() returns 7. The

left side is also true at instants 9 and 18, with NowOn() returning respectively 8 and 4.

If A starts to hold at a given analysis instant, the procedure analyzes the right side

whether B holds for the same number of instants of A, in the next 5 instants. Considering

Figure 4.7, at instant 0, the right side is true because there is a time in the the next 5

instants (at instant 4 in the future) where B holds for 7 instants (from instant 4 to 10).

In such case, the procedure registers in an array that B was analyzed in the right side for

such rule at instants 4 to 10.

The same occurs at instant 9 and 18, when the left side is true again. But because

successive assumption is in use in this example, the procedure will ignore the instants in

which B was already marked as analyzed. For example, at instant 9 the left side is true

(A holds for 8 instants) then the right side must be analyzed. At this point, the procedure

will search if B holds for 8 instants within the next 5 instants, starting from instant 9 –

the current analysis instant. However, because B was already analyzed from instant 4 to

10, the procedure will ignore instants 9 and 10 (when B actually holds, but is marked as

analyzed) and starts to analyze the right side from instant 11. Finally, because B holds

from instant 11 to 18, the right side is true, such instants are registered in the array B as

analyzed and the rule is respected. The same concept is applied at instant 18.

In the end of the OIU analysis, an array, bound to B and the current rule marks all

instants when B was used in the analysis. In the example, the array registers instants 4

to 22: interval from instant 4 to 10 of B is registered at analysis instant 0, when the left

side is true for the first time in the OIU analysis; interval from 11 to 18 of B is registered

when the left side is true at instant 9; and interval from 19 to 22 of B is registered at

analysis instant 18. One must note that instant 24 of B is not registered as used.

The spurious analysis compares such an array with the result of the behavior analysis

of B. It analyzes if there is an instant when B holds (behavior analysis) but is not

registered as used in the array created in the OIU analysis. If so, a spurious occurrence

is detected.

83

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

6.4 Limitations

Apolom is a tool designed and implemented by one person for the period of one year. Its

limitations are mostly regarded to time restriction and programming skills.

Interface limitations: the Rule Wizard does not allow the selection of more than one

attributes for the same behavior, if it is required. Therefore, the tester must add the re-

maining attributes to the generated expression. For example, behavior compares requires

two sequences:

compares(seq1,seq2;precision)

But, the Wizard mechanics allows the selection of only one attribute. It can be

overcome, in the future, by allowing the selection of multiples items within the list of

attributes.

Also, the tool was designed with SWT, an SO dependent widget toolkit. It implies

that the interface layout may differ from a SO to another.

A third interface limitation concerns to the presentation of the Simulink model. Al-

though it represents the block size and position accurately, the block picture may not

reflect the correct layout, drawing it as a generic white rectangle with black border. The

lines, also, may not be drawn with precision. Because the tool was designed to support

other models in the future, as Scicos, the model reading was standardized. A built-in

parser was designed by re-engineering and it is possible that unanticipated elements from

the model cause a fail in its reproduction.

Finally, it is not possible, for now, to edit the module or OIU position in the module

tree, after creating it.

Model changing: if a model is changed over the testing activity, it should not cause

consequences to the oracle, except if a mapped line is removed. To avoid instrumentation

errors, the tester must unmap the line from Apolom before removing the line in the

original model.

Language implementation: TRIO/Apolom was implemented with JavaCC. This parser

generator version has a limited backtracking support. An ambiguity was not solved in

time in relation to the use of parenthesis surrounding logical expressions and basic oper-

ations. The limitation was solved by using brackets around logical expressions instead of

parenthesis. The language also does not allow recursion or behaviors within behaviors.

File format incompatibility: Apolom supports Matlab 7.7.0 (version R2008b). New

Matlab versions use different file formats to log signal values which are not compatible

84

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

with Apolom. To bypass this issue using more recent Matlab releases, the generated files

must be loaded into Matlab and saved as an older file format.

Step solver: a solver is a Simulink software which determines the time of the next

simulation step. It has two modes: fixed-step and variable-step. The designer must

select fixed-step if the model is planned to be deployed, because one can not map the

variable-step size to the real-time clock. If the model is not intended to be deployed,

variable-step solver may be selected to shorten the simulation time in exchange for less

accuracy. Apolom only supports fixed-step solver.

We consider that all described limitations can be overcome and do not threaten the

approach feasibility.

6.5 Final Remarks

This chapter presented the implementation and limitation aspects of Apolom, an oracle

generator tool which represents an instance of this research. Its structure is composed by

three main packages: bridge, oracleinformation and oracleprocedure, responsables by the

mapping, oracle information representation and analysis, respectively.

Software testing is usually not practical or effective without support tools. The main

contribution of this chapter is to present the feasibility of developing a tool that supports

all proposed oracle definition activities. It also discusses key points of the implementation,

which may guide the development of similar tools or future extensions, as support for new

specification languages.

The discussed limitations of Apolom can be explained by the development conditions:

time and resources. Although the limitations indicate that this tool should be improved

to increase its effectiveness and usability, it also may evidence that a release tool could

be developed with no much effort by a small team within a short period with low cost.

Next chapter employs Apolom to empirically evaluate the proposed solution.

85

CHAPTER 6. APOLOM: IMPLEMENTATION AND LIMITATIONS

86

Chapter

7
Empirical Evaluation

This chapter presents four evaluation studies to verify the soundness of the proposed solu-

tion. It aims to analyze (i) whether an oracle generator tool is feasible; (ii) whether oracle

specification is practical; (iii) whether instrumentation added by the mapping interferes

with the actual simulation and delays it, that is, the probe-effect (McDowell and Helm-

bold, 1989); (iv) whether analysis time and resources are acceptable; and, (v) whether an

oracle for Simulink models is effective.

7.1 Issues and Hypothesis Statements

The objective of this section is providing a clear comprehension of each analyzed concern.

The issues, raised during the research, are here structured as presented in Table 7.1.

Table 7.1: Issues and hypothesis statements

Issue 1 There is no guarantee that the approach can be partially automated

as it is stated.

Question Is an oracle generator tool actually deployable?

87

CHAPTER 7. EMPIRICAL EVALUATION

Hypothesis

statements

• H0: an oracle generator tool is not deployable.

• H1: an oracle generator tool is deployable.

Issue 2 The simulated model that will be analyzed by the oracle is an

instrumented copy of the original. Instrumentation may cause

probe-effect.

Question Can instrumentation affect the simulation time significantly?

Hypothesis

statements

• H0: the instrumentation affects the simulation time signifi-

cantly.

• H1: the instrumentation does not affect the simulation time

significantly.

Issue 3 A Simulink-like model is a high-level representation of a system and

a formal specification language may not be attractive to be used.

Question Can a specification language be simple enough to be adopted by

the industry?

• Is a specification language always complex in comparison with

a Simulink-like model?

• Is it always hard to elaborate?

Hypothesis

statements

• H0a: the oracle specification language is always complex in com-

parison with a Simulink-like model.

• H1a: the oracle specification language may be simpler than a

Simulink-like model.

• H0b: the oracle specification language is hard to elaborate.

• H1b: the oracle specification language may be simple to elabo-

rate.

Issue 4 The oracle may take too much time and resources to analyze the

simulation against the specification.

Question Is the oracle analysis time and resources prohibitive?

88

CHAPTER 7. EMPIRICAL EVALUATION

Hypothesis

statements

• H0: The oracle analysis time and resources are, respectively, too

long and prohibitive.

• H1: The oracle analysis time and resources are acceptable.

Issue 5 An oracle generation demands effort from a testing team. At least

one tester must learn an oracle specification language and how to

operate a tool as Apolom. After becoming a specialist, he/she must

spend time to write a specification. An oracle generation may not

be attractive if its analysis effectiveness is not better than manual

comparison.

Question Can generated oracles be effective?

Hypothesis

statements

• H0: The oracle analysis is not better than manual analysis.

• H1: The oracle analysis may identify failures which would not

be easily found manually.

To answer the questions from Table 7.1, Apolom was implemented (Chapter 5), and

four evaluation studies were executed and detailed in the next sections. The implemen-

tation of Apolom supports hypothesis H1 from question 1.

7.2 Evaluation 1

This study aims to answer question 2 and 3. The independent variables are: Apolom tool,

the system description, student expertise, training time and hardware. The dependent

variables are: the model, the time to develop the oracle specification, time to find errors,

number of errors, oracle analysis time, execution of the original model and execution of

the instrumented model.

7.2.1 Operation

Sixteen PhD students participated on this experiment, in which 8 were trained in Simulink

and Apolom and 8 had no knowledge on both participating only in the study of the

language acceptance, Section 7.2.3. The trained group was asked to develop a Lorenz

Attractor on Simulink, based on the following system description: “the Lorenz Attractor

is composed by three equations”:

89

CHAPTER 7. EMPIRICAL EVALUATION

xi+1 = xi + (−10 ∗ (xi − yi)) ∗ 0.001 (7.1)

yi+1 = yi + (−xi ∗ zi + 28 ∗ xi − yi) ∗ 0.001 (7.2)

zi+1 = zi + (xi ∗ yi − 8 ∗ zi/3) ∗ 0.001 (7.3)

Two students did not model the specification correctly with Simulink.

The oracle specification was written by the author of this thesis – which plays the

role of the tool specialist. As example, Figure 7.1 represents a Simulink model of Lorenz

equation (2).

Figure 7.1: Lorenz Equation

The specification attributes were defined and mapped (Figure 7.2). The tester selected

the signals directly from the model visualization and mapped them to the respective

specification attributes list by selecting them and pressing the insert button.

Figure 7.2: Attribute definition and mapping

Three behaviors were defined, one for each Lorenz equation. Figure 7.3 presents the

representation of equation (2), named as LorenzY.

90

CHAPTER 7. EMPIRICAL EVALUATION

Figure 7.3: Behavior of equation (2)

After both models and oracle information are ready, the instrumented models were

executed. Next subsections details each evaluation.

7.2.2 Simulation Time of Instrumented Models

To explore the influence of the instrumentation in the simulation time and answer open

question 2, thirty-two simulations were executed on the original and the same number on

the instrumented model. Each simulation was configured with a total of 180,000 steps. In

a discrete real-time system, in Simulink, 1 second represents 5 steps by default – one step

represents 0.20 seconds. Then, 180,000 steps represent 1 hour of real-time simulation.

The hypotheses statements were translated to:

• H0: there is a difference between the average simulation time from the original

model and from the instrumented model (µoriginal 6= µinstrumented).

• H1: there is no real difference between the average simulation time from the original

model and from the instrumented model (µoriginal = µinstrumented).

There are three instrumented signals for the given specification, one for each variable

(x, y and z). The simulation time means and standard deviations for both original and

instrumented models were µoriginal = 14.5797, σoriginal = 0.0687, µinstrumented = 14.6047

and σinstrumented = 0.0779. A two-tail test, with α = 0.05, showed that both samples

are statistically equivalents with ρ-value = 0.1782. However, a threat to validity must

be eliminated: the three instrumented signals may not be significant to generalize the

experiment results. To allow a better generalization, one more case was created to increase

the number of instrumented signals to 20, representing 51.28% of the total signals in

the model. The instrumented copies were simulated 32 times, each, with means and

standard deviations of µoriginal = 14.53, σoriginal = 0.0967, µinstrumented = 14.5312 and

σinstrumented = 0.0638. After the executions, the two-tail test was applied to the new

results. It did not show statistical difference in relation to the original model, with α =

0.05 and ρ-value = 0.9515.

91

CHAPTER 7. EMPIRICAL EVALUATION

Both studies support hypothesis H1 from open question 2.

7.2.3 Language Acceptance

All students were submitted to the following question: “considering the original equation

(2) and its respective representation of Figure 7.1 and Figure 7.3, which one is easier to

read and write?” Seven of eight trained students answered the LorenzY representation,

which supports the hypothesis H1a and H1b from open question 3. The same question was

presented to the second group and all students answered the LorenzY representation as

the easier way to read and write the original requirement.

7.2.4 Threats to Validity

A threat to external validity is a condition that limits the ability to generalize the

results of an experiment to industrial practice (Wohlin et al., 2000).

There is a possible threat to external validity on issue 3 (Ha) analysis. An equation

was translated to a Simulink model and an oracle specification language, and compared

both readability. It may not be always easier to write systems specifications with the

oracle language if compared to a Simulink representation. In fact, the objective of the

experiment is not proving such statement, but demonstrating that it can be easier. And,

with a tool support, as the wizard presented in Figure 5.1 (page 60), it can be soften.

Another threat to external validity is the influence of the instrumentation over the

simulation time on more complex models. The analysis demonstrated that there is no

relevant variation between the original and instrumented model, when 20 signals are

instrumented in a small model. More complex models with more instrumented signals

may be used to allow a better generalization of the results.

7.3 Evaluation 2

The second study focused on questions 3 (mostly Hb) and 4. An introduction to the

model and the simulation is presented, as the formal and informal requirements and

the common development team concerns about the usual validation of the model. The

oracle specification is also presented. The results are based on the following dependent

variables: time to develop the oracle specification, analysis time, overall time and the

number of detected simulation errors.

92

CHAPTER 7. EMPIRICAL EVALUATION

7.3.1 Simulation

An UAV (Unmanned aerial vehicle) model was granted by AGX Technologies 1, under a

confidentiality agreement, as part of Tiriba Project (Branco et al., 2011). It is a large-scale

model (Mathworks, 2011) (Shailesh, 2011), with 6111 blocks. An aviation glossary is

available in Appendix A.

The vehicles are commercially known as AGPlane. These aircrafts are extensively used

in agricultural and environmental monitoring, but they can also be applied for security

and civil defense.

The model simulates an autonomous flight based on a preset flight plan consisted by

four waypoints. The flight plan is hard-coded in a block that represents the UAV memory.

The UAV must reach all waypoints, in sequence from 1 to 4 and return to 1. This

route must be accomplished twice. If the current course is in a closed-angle w.r.t. the

next waypoint, the UAV executes a correction maneuver (also called loop).

Figure 7.4: UAV simulation: waypoints

Figure 7.4 is presented by Simulink during the simulation. The red circles are the

waypoints. The green line is the expected route and the yellow line is the actual plane

route. The UAV starts close to waypoint 1 (W1) and executes a correction maneuver

to pass through W1 in a straight line in relation to the next waypoint (W2). When it

reaches W2, it also executes a correction maneuver to align itself in relation to waypoint

3 (W3). When it reaches W3 it does not need to correct itself with a loop because the

course w.r.t. the next waypoint has an obtuse angle. After W4, it returns to W1 and

repeats the same paths one more time.

7.3.2 System Description

The specification reflects both formal and informal requirements used by the model de-

velopment team to evaluate model consistency and simulation. It was divided in three

groups: safety requirements, waypoint requirements, and model consistency requirements.

Figure 7.5 presents a simplified representation of the model subsystems to help the

visualization of the next requirements (most names were eliminated to respect the confi-

dentiality agreement).

1http://www.agx.com.br

93

CHAPTER 7. EMPIRICAL EVALUATION

Figure 7.5: UAV simplified subsystem diagram

Safety requirements (R1)

1. The roll angle must be limited to 40 degrees;

2. The angle of attack may never exceed 20 degrees;

3. The airspeed must always be greater than 1.05 the stall velocity (Bennani and Looye,

1998). Vstall = 16.67m/s and Vsafe = 17.50m/s;

4. The vertical acceleration should be limited to 10m/s2.

Waypoint requirements (R2)

1. Each waypoint is represented by tree coordinates: longitude (degrees), latitude (de-

grees) and altitude (meters). The flight plan is composed by four waypoints:

• Waypoint 1 (W1): -122.3700, 37.6300 and 100;

• Waypoint 2 (W2): -122.3690, 37.6400 and 100;

• Waypoint 3 (W3): -122.3680, 37.6300 and 100;

• Waypoint 4 (W4): -122.3700, 37.6200 and 100.

2. The plane must pass through each waypoint, in sequence, and return to W1 ;

3. The same route must be executed 2 times;

4. Because the same route must be executed twice, W3 will be reached 2 times;

94

CHAPTER 7. EMPIRICAL EVALUATION

5. Because the same route must be executed twice, W1 will be reached 3 times;

6. Considering that a correction maneuver will make the plane pass through the same

waypoint twice, it is expected that W2 and W4 will be reached for 2 times each for

a completed circuite. Therefore, these waypoints will be visited 4 times each in the

simulation;

7. The flight time from W1 to W2 and from W3 to W4 must be less than 50 seconds;

8. The flight time from W2 to W3 and from W4 to W1 must be less than 90 seconds.

Model consistency requirements (R3)

1. The roll value must be the same in the Pilot subsystem and in the Roll Controller

subsystem;

2. The lever smoothing roll value must be the same in the Pilot subsystem and in the

Roll Controller subsystem, with a tolerance of 2 degrees;

3. The pitch value must be the same in the Pilot subsystem and in the Pitch Controller

subsystem;

4. The airspeed value must be the same in the root system and in the Speed Controller

subsystem, with a tolerance of 0.2m/s;

5. The climb value must be the same in the Pilot subsystem and in the Climb Controller

subsystem;

6. The difference between the autopilot roll command and the actual roll should not

be greater than 1 degree. It will be considered critical if it stands greater than 1

degree for more than 5 seconds or if it is greater than 2 degrees;

7. The difference between the autopilot pitch command and the actual pitch must be

less than 1.5;

8. The difference between the autopilot airspeed command and the actual airspeed

must be less than 5m/s;

9. The difference between the autopilot climb command and the actual climb must be

less than 1 degree.

95

CHAPTER 7. EMPIRICAL EVALUATION

7.3.3 Common Development Team Concerns

In interview, three drawbacks were emphasized by the development team: (i) “It is not

convenient to zoom in and zoom out the flight route to validate the simulation”; (ii)

“one has to follow the simulation to verify if the course is right and if the plane behaves

consistently with the expected”; (iii) “Sometimes an adjustment is made in the model and

it is interesting to observe how it reflects in the simulation. We identify the signals of

interest and we use a scope block or a graphical block to make the observation. But it is

not practical to check manually”.

To evaluate the distance in which the UAV pass through a waypoint, the tester may

zoom in (i) the image drawn in the simulation. This must be repeated at all waypoints

and, yet, a precise distance between UAV and waypoint is hardly achieved by visual

observation. Also, the UAV must repeat the same route twice and the line which represents

the UAV flight may be overlapped, making it difficult to visualize.

If the tester does not follow the simulation (ii), it is hard to evaluate whether the

UAV passes from a waypoint to other within the expected time and whether it flights as

expected.

The evaluation of the UAV simulation contains the following features:

• Its execution represents 10 minutes of flight;

• The simulation may take more than 17 minutes to be executed, depending on the

hardware resources;

• Considering only the signals associated with the system requirements presented in

the last section, the simulation produces over 741,031 output data to be evaluated.

The number of requirements is substantially large to be evaluated manually, consid-

ering the amount of generated outputs. Temporal requirements hamper the test activity

because the tester may need to check values in different points of the simulation. Also,

the simulation time may not be in proportion of 1:1, that is, 10 minutes of simulated

UAV flight may take 17 minutes to be accomplished. It makes difficult to check temporal

properties by observation.

All these discussed drawbacks make manual evaluation an ineffective activity and favor

the use of partially-automated oracle generators.

7.3.4 Oracle Specification

To translate the system description to the oracle specification (which corresponds to the

information definition from the proposed process), four steps were performed: the oracle

96

CHAPTER 7. EMPIRICAL EVALUATION

specification attribute identification, the modularization, the OIU definition and the be-

havior definition.

Oracle specification attribute and modularization

As the first step, the oracle specification attributes were identified, based on the system

description:

• In R1 1: roll angle from the root subsystem;

• In R1 2: angle of attack from the root subsystem;

• In R1 3: airspeed from the root subsystem;

• In R1 4: vertical acceleration from the root subsystem;

• In R2: longitude, latitude and altitude (waypoint coordinates);

• In R3 1: pilot subsystem roll (roll angle from R1 1) and controller roll;

• In R3 2: pilot subsystem lever smoothing roll command and controller lever smooth-

ing roll;

• In R3 3: pilot subsystem pitch and controller pitch;

• In R3 4: pilot subsystem airspeed and controller airspeed;

• In R3 5: pilot subsystem climb and controller pitch;

• In R3 6: autopilot roll command and actual roll (roll from root subsystem);

• In R3 7: autopilot pitch command and actual pitch (pitch from root subsystem);

• In R3 8: autopilot airspeed command and actual airspeed (airspeed from root sub-

system);

• In R3 9: autopilot climb command and actual climb (climb from root subsystem).

The second step is the module creation, one for each requirement group: safety, way-

points and model consistency.

Behavior and OIU definition

The third step was the OIU creation. Each OIU was created within its respective

module. All Trio expressions were generated with Rule Wizard, except for R2 4, R2 5,

97

CHAPTER 7. EMPIRICAL EVALUATION

R2 6 and R2 8 because the concept of X times in the simulation was not previously

foreseen. However, such concept can be inserted as a new Rule Wizard shortcut.

R1 1 : Dist(lessequalsthan(roll; 40), 0)AND

Dist(greaterequalsthan(roll;−40), 0)

In the expression R1 1, Dist(〈behavior〉, 0) means that a behavior must be true at the

analysis instant. Therefore, the roll angle must be less than or equals to 40 and greater

than or equals to -40 at the analysis instant.

R1 2 : Dist(lessequalsthan(attack; 20), 0)

The expression R1 2 means that, at the analysis instant, the angle of attack must be less

than or equals to 20.

R1 3 : Dist(greaterthan(airspeed; 17.50), 0)

The expression R1 3 means that, at the analysis instant, the airspeed must be greater

than 17.50m/s.

R1 4 : Dist(greaterequalsthan(verticalacc;−10), 0)

ANDDist(lessequalsthan(verticalacc; 10), 0)

The expression R1 4 means that, at the analysis instant, the vertical acceleration must

be greater or equals to −10m/s2 and less than or equals to 10m/s2.

R2 1, R2 2andR2 7 : Starts(

geocoord(longitude, latitude, altitude;

−122.37, 37.63, 100, 0.0001, 0.0001, 10))− >

Exists(Dist(geocoord(longitude, latitude, altitude;

−122.3690, 37.64, 100, 0.0001, 0.0001, 10), 0), 0, 2500)

Previous expression partially represents requirements R2 1, R2 2 and R2 7. It means

that, if the UAV pass through waypoint 1, there is an instant in the next 2500 instants

(50 seconds) when it will pass through waypoint 2.

The behavior geocoord returns true if the actual UAV’s longitude, latitude and altitude

are equals to the given values, within a margin of error of 10 meters for each coordinate.

The first three parameters correspond to the oracle specification attributes, i.e., the cur-

rent UAV position. Next three parameters correspond to the coordinates to be reached by

98

CHAPTER 7. EMPIRICAL EVALUATION

the UAV (a waypoint). The last three parameters correspond to the margin of acceptable

error (10 meters or 0.0001 degrees). In the simulation, a second is divided in 50 instants.

In this case, 50 seconds means 2500 instants. The behavior is expressed as:

B1 : geocoord(longitude, latitude, altitude;

xcoord, ycoord, zcoord, xprecision, yprecision, zprecision) =

[Current(longitude) <= xcoord+ xprecisionAND

Current(longitude) >= xcoord− xprecisionAND

Current(latitude) <= ycoord+ yprecisionAND

Current(latitude) >= ycoord− yprecisionAND

Current(altitude) <= zcoord+ zprecisionAND

Current(altitude) >= zcoord− zprecision]

With the same concept, three more OIUs were created to express the flight between

waypoints 2 to 3, waypoints 3 to 4 and waypoints 4 to 1.

R2 4 : Clock(longitude) == 0− > ExistsQ(Starts(

geocoord(longitude, latitude, altitude;

−122.3680, 37.6300, 100, 0.0001, 0.0001, 10)

), 0, 30000) == 2

ExistsQ returns the number of times that an expression holds in an interval of time.

In the above expression, this operator returns the number of times that the UAV passes

through a waypoint from the analysis instant to the end of the simulation. Clock returns

the simulation clock at the analysis instant. It guarantees that the right side of the

expression will be analyzed just once, in the first analysis instant. Otherwise, the whole

expression would be analyzed for all the simulation instants, which is not required.

The remaining waypoint requirements (R2 5 and R2 6 and R2 8) are similar to R2 4.

R3 1 : Dist(compares(roll, roll controller), 0)

Requirements from R3 group check the model consistency. Expression R3 1 compares

the actual UAV roll in two points in the model: in the pilot subsystem and in the roll

controller subsystem. They are supposed to have the same values. The same concept is

99

CHAPTER 7. EMPIRICAL EVALUATION

applied to requirements R3 2, R3 3, R3 4 and R3 5. The compares behavior is built-in

on Apolom.

R3 6 : Dist(greaterequalsthan(rolldifference;−1), 0)

ANDDist(lessequalsthan(rolldifference; 1), 0)

R3 6 indicates that the roll difference between the autopilot roll command and the

actual roll command should be less than or equals to 1 and greater than or equals to -1.

there is, also, two other requirements that are closely related to R 6: (i) if such difference

is greater than 1 for more than 5 seconds or (ii) if the difference is greater than 2 degrees,

it is considered a critical failure.

R3 6s1 : NowOn(lessthan(rolldifference;−1)) < 250

ANDNowOn(greaterthan(rolldifference; 1)) < 250

Expression R3 6s1 was defined as a safeguard, and it represents requirement (i).

R3 6s2 : Dist(greaterequalsthan(rolldifference;−2), 0)

ANDDist(lessequalsthan(rolldifference; 2), 0)

The safeguard expressed by R3 6s2 represents requirement (ii).

The same construction of R3 6, with different attributes and values, can be applied

to requirements R3 7, R3 8 and R3 9.

7.3.5 Results

The evaluation has two goals: investigating (i) whether the oracle specification elaboration

is practical or not, and (ii) whether the time and resources spent in the oracle analysis

are acceptable or not.

The oracle specification was created by the PhD student to analyze an industrial,

large-scale, model. The time to develop it, including the textual explanation of each rule,

was 54 minutes and 45 seconds. The partial times were: 2 minutes and 37 seconds to

define the attributes, 8 minutes and 41 seconds to map the attributes to the model, and

43 minutes and 27 seconds to define the OIUs and their descriptions. The average time

to translate a system requirement as part of the oracle specification was approximately 2

100

CHAPTER 7. EMPIRICAL EVALUATION

minutes and 30 seconds. Although a reference could not be found, it seems an acceptable

analysis time.

The elapsed time of the oracle analysis was 8, 436 milliseconds. The average CPU use

was 9.73%, the physical memory use was 153, 808 KB and the log file was 11.3 MB. These

data indicate low resource usage. The analyzed time and resources support hypothesis

H1 from issue 4.

After the analysis, Apolom identified violations on rules R3 2 and R3 6. Figure 7.6

presents the oracle report.

Figure 7.6: Oracle Report

In this example, the report shows that the main rule was violated, where the difference

between the roll autopilot command and the actual UAV roll exceeds 1 degree (approxi-

mately 1.04849 degrees at instant 4591). Figure 7.6 also indicates that the safeguard rules

were respected. In fact, the result showed that, even in the case of a system manually

tested for several times and now in use, Apolom could find unrevealed errors.

7.3.6 Threats to Validity

An external threat to validity concerns to the subject. It is expected that the tester should

have knowledge about the oracle specification language and the tool. The tool viability

was also demonstrated, but the acceptance in the industry was not yet analyzed. As a

next step, it is intended to present the tool to an aeronautics industry and measure its

acceptance.

101

CHAPTER 7. EMPIRICAL EVALUATION

7.4 Evaluation 3

This section presents a study on the proposed off-line oracle access algorithm, Fast Jumper

(Section 4.4.1). This algorithm was designed to improve accesses to a sequence of data in

which values must be read in sequence, but other values which are not in sequence must

also be read.

It may be a common scenario when temporal properties are evaluated. For example,

let us consider a sequence which represents values over time. If simple temporal properties

need to be checked as:

Verify if, in the next instant, A is greater than 10.

Then the analyzer may evaluate the expression (A > 10) for each next instant w.r.t the

analysis instant, from the first to the last, in sequence. However, more complex temporal

properties may demand that other values from the future or past must be analyzed at a

given analysis instant, as:

If A is greater than 10 in the current instant, verify if it is also greater than 10 in the

next 100000 instants, counting from the next 10000 instants

In such case, when an analyzer finds an instant in which A > 10 it must verify it again

from the 10, 000th to the 110, 000th value in the sequence.

This study analyzes the following question: can Fast Jumper provide any advantage

when compared with log reading without secondary memory spaces?

The independent variables are: Apolom tool, analyzed rules and Simulink models.

The dependent variable is: the oracle analysis time and space.

7.4.1 Operation and Results

For this experiment, two models were used: Lorenz and UAV. In both cases, Fast Jumper

was analyzed with different memory space sizes and with no secondary memory spaces.

Lorenz model: when the oracle analyzes the already described Lorenz specification,

at some analysis instant, its procedure reads values in the current instant and in the next

instant. For example, Equation 7.1 expresses an equation where next x (xi+1) depends

on the current x and y (xi and yi). Such equations may not be benefited by Fast Jumper

because it only needs to read values in sequence, that is, all data are close enough to

102

CHAPTER 7. EMPIRICAL EVALUATION

fit in a main memory space, which is usually provided by a language built-in buffer, as

BufferedReader or BufferedInputStream from Java.

The experiment with such rules evaluates whether the present proposal impacts nega-

tively when the oracle analyzes rules that do not require a secondary memory space. The

simulation was executed for 128,000 instants and analyzed with Apolom. Different con-

figurations of Main Memory Spaces (MMS) and Secondary Memory Spaces (SMS) were

used, by changing Apolom preset memory sizes.

This procedure was executed 32 times for each different memory space configuration.

Table 7.2 summarizes the extracted data.

Table 7.2: Lorenz execution time

Secondary Memory Space

none 1024 2048 8192

M
.

M
e
m

o
ry

S
p
a
c
e

none 5347 678 640 619

1024 706.6 618.2 619.1 599.3

2048 666.6 611.9 613.5 594.8

64000 606.9 586.7 596.2 586.5

512000 605.4 595.1 595.5 596.4

When no memory space was used, the average analysis time was 5347ms (more than 9 times

the best score). When using different combinations of memory spaces, the average did not vary

more than 5.5% from the best to the worst time. Using two tail test with α = 0.05 on the given

results, many configurations presented statistical equivalency using the same MMS and different

SMS:

• With no MMS: no result is statistically equivalent;

• With 1024 MMS: 1024 and 2048 SMS are statistically equivalents;

• With 2048 MMS: 1024 and 2048 SMS are statistically equivalents;

• With 64000 MMS: 1024 and 8192 SMS are statistically equivalents;

• With 512000 MMS: all results with SMS are statistically equivalents.

These results corroborate as expected: (i) when there is no MMS, then SMS is used and its

size has impact over the time analysis; (ii) when the same MMS size is applied, the impact of

SMS over rules which do not use them is small or virtually null (Figure 7.7).

103

CHAPTER 7. EMPIRICAL EVALUATION

Figure 7.7: Relation of performances with different MMS and SMS

The results also indicates that MMS size affects the analysis time, but with small impact

when considering the relation between MMS size and analysis time, as it can be observed in the

blue line on Figure 7.7.

Next execution set evaluates the impact of a more costly operator in the analysis time:

Dist(greaterthan(Y;-100),0) ->

Lasting(greaterthan(Y;-100),1000,1500) AND Lasting(greaterthan(Y;-100),-1500,-1000)

The expression above uses Lasting operator. It verifies whether a behavior holds within

an interval, which may be in the past and/or future. In this case the worst case scenario

was forced, that is, all instants within the intervals holds, so the analyzer must verify all

instants. Otherwise, if the analyzer detects that some instant does not hold within the

interval, it would stop the analysis.

This rule differs from the first on the use of secondary memory spaces. The first rule

does not use SMS because all required data are close enough to fit in the MMS. However,

this second rule will require analysis in the past and future w.r.t. the analysis instant:

1000th instant from the analysis instant to the 1500th in the future and in the past, which

will not fit in the MMS if its size is small. Table 7.3 presents the results.

The analysis takes approximately 8 minutes to be performed when no memory space

is used. When only SMS is used, the analysis time drops from 31.82 up to 69.77 times.

104

CHAPTER 7. EMPIRICAL EVALUATION

Table 7.3: Fast Jumper: data interval behind and beyond main memory space

Main Memory Secondary Memory Behavior analysis OIU analysis Total time

Space (bytes) Space (bytes) time (ms) time (ms) (ms)

none none 3688 494102 497790

none 1024 636 7799 8435

none 2048 638 7701 8339

none 8192 608 6531 7134

1024 none 668 502834 503502

1024 1024 612 7795 8407

1024 2048 593 7845 8738

1024 8192 582 6422 7004

2048 none 586 18168 18754

2048 1024 593 7661 8254

2048 2048 587 7500 8087

2048 8192 587 6359 6946

64000 none 536 7255 7791

64000 1024 571 6000 6571

64000 2048 578 6012 6590

64000 8192 568 6022 6591

512000 none 568 6084 6652

512000 1024 562 6087 6649

512000 2048 571 5995 6566

512000 8192 576 6099 6675

Figure 7.8 illustrates the performance with different memory configurations. When

MMS is not large enough to fit all data evolved in the expression and no SMS is provided,

the analysis time takes 8 minutes. When the MMS is large enough to fit part or all data,

the time drops drastically (Figure 7.8 (A)). Figure 7.8 (B) presents a more detailed re-

lation between memory configurations when MMS encompass at least part of the data.

It is possible to verify that better performances can be achieved with less memory using

105

CHAPTER 7. EMPIRICAL EVALUATION

SMS. When using large amounts of MMS (512,000 bytes), the SMS does not affect the

result because MMS is large enough to fit all the data.

Figure 7.8: Relation of performances when SMS is used

It is worthy to note that all behavior analysis in this study will not use SMS if MMS

is available. In this step, each equation will be analyzed w.r.t. (i) the analysis instant

and (ii) next instant (Equations 7.1 to 7.3). It explains why Behavior analysis column

does not present significant variations when SMS changes. However, as discussed before,

if no MMS is available, then SMS will be used instead and time will drop, as it is showed

in Table 7.3, from line two to five.

Only in the OIU analysis step, SMS will be allocated because the rule must be checked

thousands of instants in the past and future.

Table 7.4 presents a summary of times when using large SMSs. It is possible to note

that the difference of performances is not high. When the analysis uses only MMS (64000

and 512000 bytes), the best time is 6591ms. However, when SMS is used, the best time

is 6946ms. This leads to the following question: “why not using large MMS and no

SMS?”. The presented example uses intervals of time 1000 instants from the analysis

instant. Depending on the Simulink default configuration, such interval may represent

200 seconds or 20 seconds. A “real-world” requirement may demand intervals of much

more than 1000 instants. In such cases, the MMS should be substantially greater than

512000 bytes to fit all analyzed data. However, with the use of SMS, less memory space

needs to be provided with a comparable result.

For example, requirement R2 4 from Section 7.3.4 demands analysis at 30000 instants

in the future in a small trajectory of a UAV. Larger trajectories could take hours to the

UAV pass by two waypoints and it would require too large MMS to fit all values from the

analysis instant to the time in the future. It is possible to conclude that Fast Jumper has

a suitable result with spend of small uses of memory spaces.

106

CHAPTER 7. EMPIRICAL EVALUATION

Table 7.4: Fast Jumper: large secondary memory space

Main Memory Secondary Memory Behavior analysis OIU analysis Total time

Space (bytes) Space (bytes) time (ms) time (ms) (ms)

none 8192 608 6531 7134

1024 8192 582 6422 7004

2048 8192 587 6359 6946

64000 8192 568 6022 6591

512000 8192 576 6099 6675

When no SMS is used, analysis time is approximately 8.3 minutes. However, when SMS

is used, time drops at least 56.97 times, which evidences that Fast Jumper provides the

advantage of consuming less memory space and comparable time result when compared

to large MMS-only usage. It also supports H1 from question 4.

UAV model: this model was included in the experiment to provide results from a

more complex and“real-world”model with a larger number of rules. Table 7.5 summarizes

the results.

Table 7.5: Fast Jumper: a “real-world” study

Secondary Memory Space

none 1024 2048 8192

M
.

M
.

S
p
a
c
e

1024 3039 2819 2824 2812

2048 3022 2849 2920 3036

64000 2856 2865 2864 2869

512000 2935 2939 2915 2930

There is no significant difference between the use of SMS because values outside MMS

are seek only 16 times in the analysis, one for each time a Waypoint is reached and two

when counting each Waypoint.

107

CHAPTER 7. EMPIRICAL EVALUATION

7.4.2 Threats to Validity

The results evidence that Fast Jumper may improve analysis time with different configu-

rations and expressions, when values outside MMS are required. But a criterion to define

when a MMS is considered impractically-large and when Fast Jumper is better suited has

not been determined. Although such threshold is not yet defined, the proposed algorithm

seems to have a better relation between memory use and analysis time than using only

large MMS.

7.5 Evaluation 4

This study aims to answer question 5. Defects were introduced into copies of the original

model and it was evaluated whether the oracle can identify any errors derived from such

defects.

The independent variables are: Apolom tool, Simulink models, oracle specification and

tester expertise. The dependent variables are: number of killed mutants, manual evalu-

ation effectiveness, automated evaluation effectiveness and number of different detected

failures.

7.5.1 Operation

Mutants were generated from both Lorenz and UAV models. Then, manual and auto-

mated effectiveness were compared by investigating the relation between the number of

manual failure detection and automated failure detection.

The mutations were based on the operators proposed by Araujo et al. (2011a). Ta-

ble 7.6 shows the selected operators for each model.

Table 7.6: Selected mutant operators

Model Operator Description

Lorenz constant change increases or decreases the value of constants of a model.

Lorenz

and UAV

arithmetic op.

replacement

replacements among blocks Add, Sub, Product, Divide

and Gain.

UAV statement swap swaps first and third inputs of a Switch block,

108

CHAPTER 7. EMPIRICAL EVALUATION

The operators were selected by probabilistic sampling (two-stage sampling) as follows:

(i) two of the five classes of operators were sorted; (ii) one operator from each selected

class was sorted; (iii) eligible blocks in the original model were identified for each selected

operator; (iv) ten blocks were sorted for mutation from the eligible group for each selected

operator; (v) mutants were generated for each selected block for each operator, with a

total of 20 mutants for each model.

Lorenz: the simulation of this model plots a graphic with the shape of a butterfly.

Visually, it is expected a result as illustrated in Figure 7.9, from Stewart (1989).

Figure 7.9: Lorenz Attractor example. Source: (Stewart, 1989)

This model was used to illustrate the difficulty in predict dynamical systems which are

highly sensitive to initial conditions, as weather. Although the draw will have a butterfly

pattern, its sequence of values may change widely if any initial condition is changed.

Therefore, the visual evaluation is not of much use except to give an idea of its correct

“butterfly” behavior.

UAV: the simulation of this model presents a result as shown in Figure 7.4 and

explained in Section 7.3.1. The image presents a view of the passage of a UAV on four

waypoints and its correction maneuvers. But evaluating the results manually is difficult.

For example, the flight time between two waypoints may be laborious to assess because

the tester must identify the instants in which the plane passes between one point and

another and make the calculation. No facilities were provided to such manual analysis.

7.5.2 Results

Lorenz: first set of mutants (constant change operator) produced (i) 1 visibly wrong

result; (ii) 1 suspect result; and, (iii) 8 visibly acceptable results. Figure 7.10 presents the

original and 8 of 10 results.

Figure 7.10 (A) represents the original (correct) model. All other images are from

the first mutant set. Image (B) is particularly similar to the original. Image (f) clearly

presumes a failure and image (h) may raise suspicion. All other images may be considered

109

CHAPTER 7. EMPIRICAL EVALUATION

Figure 7.10: Lorenz Attractor samples.

viable solutions if no correct image (a golden version) is previously provided. However,

Apolom found failures in all mutants.

Second set of mutants (arithmetic op. replacement operator) produced 9 visibly wrong

results and 1 visibly acceptable result. Apolom found failure in all mutants.

It evidences that automated oracles may identify failures which would not be easily

found manually, supporting statement H1 from issue 5.

UAV: this model has a defect in relation to requirements R3 2 and R3 6 as reported

in Section 7.3.5. First set of mutants (statement swap operator) produced (i) 2 models

which could not be simulated, (ii) 4 simulations with visually detectable issues and (iii)

4 simulations with no apparent issues. Apolom detected problems in all cases w.r.t. re-

quirements R3 2 and R3 6. In group (iii), despite the fact there are no visually detectable

issues, Apolom identified rule violations in several instants, besides the already reported

ones:

• The plane passes by all waypoints, but does not complete the route twice, as it was

expected (failures on requirements R2 2toR2 6);

• The plane took more than 90 seconds to pass between waypoint 2 to 3 (failure in

requirement R1 8);

110

CHAPTER 7. EMPIRICAL EVALUATION

• The difference between autopilot climb command and the actual climb must be less

than 1, but it passed the threshold several times, up to 3.945 degrees (failure on

requirement R3 9);

• Airspeed value and airspeed difference between autopilot command and actual speed

were slightly disrespected (failures in requirements R3 4 and R 39);

• The difference between autopilot pitch command and actual pitch should not pass

1.5 degrees, but it passed up to 10 degrees (failure in requirement R3 7).

The other 3 models did not affect the results w.r.t. the oracle specification.

Second set of mutants (arithmetic op. replacement operator) produced 9 results with

no visually detectable issue and 1 result clearly wrong. From the former group, Apolom

could find failures in 2 models:

• Mutant A:

– Failure in reach waypoints in the expected time (Requirements R2 7 and R2 8)

– Failure in complete the route as expected (Requirements R2 3, R2 4, R2 5 and

R2 6);

– The difference between the autopilot airspeed command and the actual airspeed

should be less than 5m/s, but it exceeded 10m/s.

• Mutant B:

– Vertical acceleration should be limited to 10m/s2, but it exceeded 84m/s2

(Requirement R1 4);

– The difference between the autopilot climb command and the actual climb

should be less than 1, but it exceeded 1.6 (Requirement R3 9).

Seven mutants were not caught by the oracle. A mutant had its block changed from

sum to subtract. In this case, the output signals pass by a safeguard procedure in which

climb values above or below a threshold are replaced by a standard climb value. Other

mutant also had its operator block changed, but the blocks is unnecessary (or yet to be

implemented) because it originally sums a value with 0 and the mutant subtracts the

same value with 0 (in this case, they are equivalent). Five mutants are equivalent because

their respective changes affect blocks in which their signals are not yet used in this version

(disconnected lines).

Considering the mutant analysis, five of nine mutants are equivalent. From four

non-equivalent mutants, one was not caught by the oracle and manual evaluation because

111

CHAPTER 7. EMPIRICAL EVALUATION

it passes by a safeguard procedure which normalizes abnormal values. Three mutants were

identified by the oracle in which two of them were not identified by manual evaluation.

The results evidence that automated oracle analysis may detect failures which would

be impossible or impractical to identify manually. It supports hypothesis H1 from issue

5.

7.5.3 Threats to Validity

The oracle effectiveness may vary depending on how complete is the oracle specification,

which is discussed in Section 3.3.1. A complete specification, as presented in Lorenz study

reflects a highly effective oracle, detecting even many imperceptible failures by manual

approach. A less complete specification, as presented in UAV study, may decrease the

oracle effectiveness. However, it was also capable of detecting failures which would be

difficult or impractical to find by manual means. Studies with more variety of models can

provide a better generalization of the results.

7.6 Final Remarks

This chapter presented evidences which support the proposal viability. Five concerns were

aimed. They are related to the oracle implementation feasibility, probe-effect, specification

writing complexity, time and resource usage, and effectiveness.

Results from study 1 showed evidences that the proposed instrumentation may not af-

fect the simulation time as it was implemented. It also supported that oracle specification

may be simple.

Study 2 presented a “real-world” model with higher number of requirements. It evi-

denced that oracle specifications may be quickly written by a specialist and eventual rule

complexities may be softened by mechanisms as the proposed “Rule Wizard”.

Study 3 indicates that Fast Jumper may reduce analysis time, mainly when temporal

operators require values from outside the main memory space, that is, beyond or behind

the analysis instant vicinities.

Study 4 evidences that our proposal is capable to identify failures which could not be

found manually, which supports its effectiveness.

The studies also show that an oracle generator tool is deployable. It also may help to

soften the difficulty of writing formal specifications.

112

Chapter

8
Other Available Approaches

This chapter presents an overview of available tools with oracle support for Simulink. It

aims to highlight the innovative part of this work, which is the use of an oracle generation

approach in the context of Simulink models with temporal specification-based language.

8.1 Simulink Model Verification

Simulink provides a set of blocks to help the tester to check simple assertions. If an asser-

tion failures, a warning is raised and the Matlab prompts the instants when it occurred.

Figure 8.1: Simulink Model Verification

Figure 8.1 presents an example of a model (at the right) with two model verification

blocks, Check Input Resolution and Check Discrete Gradient. The former asserts that

113

CHAPTER 8. OTHER AVAILABLE APPROACHES

the signal must be equals to a constant value and the latter asserts that the difference

between two consecutive samples of a signal must be less than a constant value. A list of

warnings is available in the Command Window, which shows the failed assertion and the

instants when it occurred.

For each Simulink Model Verification block assertion there is an equivalent behavior

on the proposed approach. Table 8.1 presents the equivalence list.

Table 8.1: SMV blocks

Block Behavior Description

Check Dynamic

Range

betweenS(seq1,

seq2, seq3)

assert that a signal always lies between two other

signals

Check Static

Range

betweenC(seq;

val1, val2)

assert that a signal is always less than a constant

lower bound or greater than a constant upper

bound

Check Dynamic

Gap

gapS(seq1, seq2,

seq3)

assert that a signal is always less than a lower

bound signal and greater than a upper bound

signal

Check Static Gap gapC(seq; val1,

val2)

assert that a signal is always less than a constant

lower bound and greater than a constant upper

bound

Check Dynamic

Lower Bound

lessthanS(seq1,

seq2)

assert that the input signal is less than another

signal

Check Static

Lower Bound

lessthanC(seq;

val1)

assert that the input signal is less than a con-

stant

Check Dynamic

Upper Bound

greaterthanS(seq1,

seq2)

assert that the input signal is greater than an-

other signal

Check Static Up-

per Bound

greaterthanC(seq;

val1)

assert that the input signal is greater than a con-

stant

Check Input Reso-

lution

equalsto(seq,

<resolution>)

assert that the input signal has a specified reso-

lution

Check Discrete

Gradient

gradient(seq,

<maximum>)

assert that the absolute value of the difference

between successive samples of a discrete signal

is less than an upper bound

Assertion NOT equalsto(

seq, 0)

asserts that an input is non-zero

114

CHAPTER 8. OTHER AVAILABLE APPROACHES

The approach proposed in this thesis supports more expressive assertions (and an or-

acle procedure to analyze them). As instance, the tester may define in which intervals

some condition should be checked. Furthermore, it allows the use of temporal quanti-

fiers, which is not supported by Simulink Model Verification (SMV). Therefore, it is not

possible to represent complex temporal properties with SMV, as the discussed Example

1 (Section 4.2.2, page ??) and its rule representation presented in Section 4.2.1, page 46

(Example 2). In these examples, a behavior must be checked only if other behavior is

found and there is a temporal property which relates both behaviors.

The proposed procedure also allows the detection of spurious occurrences, as it is

discussed in Section 4.4.3. For example, a rule with implies connector denotes that if an

expression A holds (left side of the implication rule) then another expression B must hold

(right side of the implication). In this case, the proposed procedure analyzes whether B

holds if A holds, but it is also capable of relating the occurrences of B with respect to the

occurrences of A. Such feature allows the oracle procedure to identify when B holds and

it is not related to any occurrences of A, that is, spurious occurrences of B.

Given a requirement as “if there is smoke, the fire alarm must be on”, one may define

a rule as:

detected(smoke) =⇒ on(alarm)

It may be required to certify that alarm is always off if no smoke is detected. The

presented example is simple and a rule to identify such scenario could be easily defined

as:

¬detected(smoke) =⇒ off(alarm)

However, if alarm is on and no smoke is detected then this alarm state may be con-

sidered as a spurious occurrence of the first rule because it is an occurrence of on(alarm)

which is not related to an occurrence of detected(smoke). The proposed approach provides

a procedure to detect spurious occurrences (Section 4.4.3) without the need to write an

additional rule, as the second expression.

It is worthwhile to note that defining rules to identify spurious occurrences become

more complex as more elaborated is the rule, as the example presented in Section 4.2.1

(page 46). In this example, analysis of temporal properties is required which makes diffi-

cult the writing of a spurious detection rule. In fact, it may be impossible to determine

exactly which occurrences are spurious without an assumption, as it is discussed in Sec-

tion 4.4.3 (page 56) and exemplified in Section 5.3 (page 71) and Section 6.3.1 (page 81).

115

CHAPTER 8. OTHER AVAILABLE APPROACHES

The spurious detection is also a contribution to alleviate the burden of writing complex

assertions and Simulink Model Verification does not provide such mechanism.

Another novelty w.r.t. SMV is the trigger-dependency mechanism present within the

OIUs. Its description is presented in Section 4.2.2, page 47, and examples of its application

is found in Section 5.4, page 73 and Section 7.3.4, page 100 (R3 6s1 and R3 6s2).

The proposed approach allows modularized organization of its requirements. And,

finally, it enables one to implement a tool, as Apolom, with more detailed report of

the failed assertions (rules), with optional natural language description of each rule, the

respective failure instants, the related sequences and their values in the vicinity of such

instants (Figure 8.2).

Figure 8.2: Apolom report

The contributions of this work with respect to the Simulink Model Verification library

are here summarized: (i) higher expressiveness with quantitative and qualitative tem-

poral operators, existential and universal quantifiers and an oracle procedure to interpret

such expressions; (ii) detection of spurious occurrences, which reduces the need to

write rules; (iii) oracle assumptions that allow the tester to decide how the procedure

will analyze temporal properties; (iv) trigger-dependency between rules, which al-

lows the identification of different types of violation and the capability to express how

116

CHAPTER 8. OTHER AVAILABLE APPROACHES

a simulation should behave in case some property is violated, an limitation discussed

in Section 3.3.1, page 28; (v) modular organization of the oracle information; (vi) a

dedicated oracle environment which separates both concerns, simulation and testing.

An advantage of such contribution is that the tester may plan this step and write the

specification independently of the model until it is ready for testing; (vii) changing of

paradigm: a Simulink subsystem could be planned to represent a requirement, thus,

working as an oracle. But the changing of paradigm gives higher confidence that a same

error is not present both in the original model and oracle (Brown et al., 1992), as discussed

in Chapter 2.2.1; (viii) a more detailed report.

8.2 Simulink Verification and Validation

Simulink Verification and Validation (SVV) is a toolbox from MathWorks which auto-

mates requirements tracing, model coverage analysis, and modeling standards compliance

checking.

The checking is performed by the Model Advisor, which verify a model or subsystem for

conditions and configuration settings that can result in inaccurate or inefficient simulation,

such as unconnected lines, disabled or unresolved library links and optimization settings.

The model coverage analysis checks for metrics as: cyclomatic complexity, decision,

signal range and condition coverage.

SVV provides a library with a System Requirement block. It lists all the system

requirements associated with the model or subsystem depicted in the current diagram.

The tester must link each requirement with its respective representation in a document

and with objects in the model. It allows the tester to navigate between the model and

the specification.

This toolbox may be considered as a complementary solution to the present approach.

It provides model coverage and compliance checking which the present approach does not

support. SVV also encompass tracing capabilities.

The contributions of this work with respect to the Simulink Verification and Validation

toolbox are the same discussed in Section 8.1.

8.3 Simulink Design Verifier

This product from MathWorks provides formal verification on Simulink models. With

static code analysis, it detects and proves the absence of overflow, divide-by-zero, out-of-bounds

array access, and other run-time errors. Simulink Design Verifier (SDV) also generates a

counter example if a property can not be proved.

117

CHAPTER 8. OTHER AVAILABLE APPROACHES

The properties are written with one of five blocks from SDV library. As example,

given by MathWorks, one may want to prove that a signal is always less or equals to 0

(Figure 8.3).

Figure 8.3: Simulink Design Verifier

Compare to Zero block generates 1 if the respective condition is true or 0 otherwise. P

is a Proof Objective block from SDV library, which defines a property that a signal must

satisfy. Since the objective is to prove that the input signal is always less or equals to 0

then the signal from the comparison block must always be 1 (true). Therefore, P block

is set as 1.

The tester starts the proof verification from the tool menu and the algorithm tries to

generate a counter example that prevents the proof. Figure 8.3 shows a counter example

which demonstrates that the required property will not be satisfied if the input signal is

equals to 99.

On the other hand, if the input block is replaced by a constant block which generates

always 0, the analysis result will not find any counter example, since it is guaranteed that

the signal will never be different of 0.

Figure 8.4 presents a valid proof that the property will be always respected.

However, this approach has limitations: the Design Verifier does not analyze models

which do not represent a single output function, as the Lorenz model; It only analyzes

models configured to run as fixed-step; An error was also found during the analysis, when

replacing the input block for other source blocks as Ramp (Figure 8.5).

Error code 8 represents an internal error in the Simulink Design Verifier analysis engine.

The product support asks to contact MathWorks and send the model for analysis.

This work focuses on the oracle problem, a specific domain of software testing, which

differs from formal method by the static nature of the latter. Both are complementary

and the merits of their comparison are not approached.

118

CHAPTER 8. OTHER AVAILABLE APPROACHES

Figure 8.4: A valid proof

Figure 8.5: A Design Verifier internal error

The contributions of this work with respect to Simulink Design Verifier are also the

same discussed in Section 8.1.

8.4 REACTIS

Reactis is a commercial tool which can be used to validate Simulink models and testing

for its conformance. It is composed by three main components: simulator, tester and

validator.

Reactis Simulator provides means to model debug, as breakpoints, single-step execu-

tion and coverage tracking. Reactis Tester automatically generates test cases from models

which can be used to check conformance between model and implementation. Reactis Val-

idator checks for violations of user-defined assertions.

Such assertions may be defined as C functions or state machines (the latter, with

a Matlab environment called stateflow). An example of assertion is given in its user’s

guide (Reactive Systems, 2012):

When active, cruise control shall not permit actual, desired speeds to differ by more

than 1 mph for more than 3 seconds.

A state machine definition is given in Figure 8.6.

119

CHAPTER 8. OTHER AVAILABLE APPROACHES

Figure 8.6: Reactis stateflow requirement. Source: Reactive Systems (2012)

Another assertion representation, written in C, is given in Figure 8.7.

Figure 8.7: Reactis stateflow requirement. Source: Reactive Systems (2012)

The same assertion, in TRIO/Apolom is written as:

120

CHAPTER 8. OTHER AVAILABLE APPROACHES

Starts(equals(speedcheck,1)) AND h=nowOn(equals(speedcheck,1))->

NOT Exists(Lasts(diffG(speed,dSpeed;1),14),0,h-16)

The complexity of the TRIO/Apolom expression is notably simpler than stateflow and

C examples.

Reactis has a better implementation of model presentation than Apolom. How-

ever, it does not provide means to structure the specification, as modularization and

trigger-dependent rules. Also, it does not provide algorithms to deal with different anal-

ysis assumptions or expressive temporal property evaluation and detection of spurious

occurrences.

The contributions of this work with respect to Reactis are the same discussed in

Section 8.1. In addition, Reactis does not seem to support extensibility to other tools as

Scicos or XCos and it is not free.

8.5 T-VEC

T-VEC is an integrated development environment and associated specification and ver-

ification method (Blackburn and Busser, 1996). The tool allows the generation of test

inputs, expected outputs, and a mapping of each test to the associated requirement.

As an oracle, it can detect computation errors and domain errors within the specifi-

cation. The former occurs when the correct path through the program is taken, but the

output is incorrect due to faults in the computation along the path (Howden, 1976; Zeil,

1989). A domain error occurs when an incorrect output is generated due to executing the

wrong path through a program (Howden, 1976).

Other important concepts associated with T-Vec are:

• Ground term: an input variable used in a relation with a constant

• Ground clause: a variable and/or function used in a relation with a constant

• Clause: a relation between any combination of two or more input variables and/or

functions

A test vector generation example is given by Blackburn and Busser (1996) with the fol-

lowing specification fragment:

x ≥ 5 ∧

x+ y ≥ 6 ∧

x− y ≤ z ∧

sin(z) ≥ 0.5

121

CHAPTER 8. OTHER AVAILABLE APPROACHES

T-Vec initially identify the initial domain for each variable. Then, it limits such

domains based on all ground terms. For example, it analyzes first line (which is a ground

term) and limits the low bound of x domain to 5. Next step limits the domains based on

ground clauses, in which the low bound of y domain is set to 1, so it can satisfy second line

from the specification fragment. It also limits low bound of z based on sin(z) ≥ 0.5. The

analyzer defines the domain limits for all the other clauses. Using low and high bounds,

as heuristic methods to select other values within the domain, the inputs are selected and

expected outputs are calculated for the output variables. Such text vector can then be

applied to an implementation or a Simulink-model.

T-Vec is also capable of identify specification inconsistencies: if it is impossible to

identify a subdomain for a variable, a specification inconsistency is detected. For example,

it would be impossible to identify a subdomain for z if the third clause had a multiply

operator instead of subtract because x ∗ y would have a subdomain low bound of 5 (5 ∗
1), which is outside z domain. Therefore, z could never be greater than 5, which is a

specification inconsistency.

The contributions of this work with respect to T-Vec are the same discussed in Sec-

tion 8.1 and Section 8.4, except for modularization, which is also provided by this tool.

8.6 Considerations

This chapter presented an overview of available approaches with some level of oracle

support for Simulink and highlighted the innovative part of this work in relation to them,

which are: higher expressiveness, detection of spurious occurrences, oracle assumptions,

trigger-dependency between rules, modular organization (except for T-Vec), dedicated

oracle environment (except for REACTIS and T-Vec), changing of paradigm and detailed

report on simulation failures with respect to the specification.

T-Vec and Reactis are well stated commercial products developed by large teams, and

it is not intended to diminish their qualities and importance in the industry. However,

the proposed oracle procedure supports temporal language analysis, detection of spurious

occurrence, different analysis assumptions and the specification writing is softened by a

Rule Wizard. Also, the proposed approach is presented in details and Apolom is available

as a free and open source tool.

122

Chapter

9
Conclusions and Final Considerations

The importance of the testing activity is widely known. Several techniques and criteria

have been proposed in order to find errors and increase the confidence over a system in

development. Nevertheless, testing is not trivial and if part of the task is not automated,

the cost of such activity may be high given the time restrictions and potential human

mistakes. Therefore, support tools are essential to increase the quality of final systems

by providing more rigor and precision and by eliminating error-prone manual analysis.

Furthermore, it can reduce the costs associated with testing, and they would also foster

a gain in productivity.

The development of embedded systems – as avionics, automotive and telco – are

usually supported by modeling, analysis and simulation tools which allow the developer

to define and evaluate a system behavior before it is implemented and deployed in its

target hardware. Simulink, as other similar tools, is a de-facto standard for design and

simulation of embedded systems in many different domains.

The simulation of a modeled system may require and produce, respectively, a large

number of input and output. It hampers an adequate data selection and output evaluation.

This thesis addresses the oracle problem. Usually, the oracle role is played by a human

tester. This research contributes in the definition of an approach which is a foundation

to an engineering, allower of oracle generator automation.

123

CHAPTER 9. CONCLUSIONS AND FINAL CONSIDERATIONS

An iterative oracle process provides the overview of three basic activities of an oracle

generation. It includes the definition of its information, the mapping between such infor-

mation and the original model under test, and the definition of the analysis assumption

which implicates how the oracle should analyze the sequences produced in the simulation.

The process foresees the incremental definition of the information by providing means to

modify it without impacting the result consistency.

The oracle information must be formal enough to be analyzed by automated means. In

this sense, this thesis also provides a method to specify the requirements of interest which

can be interpreted by an oracle procedure. Although our proposal is language-independent,

TRIO is here considered as a language of choice given its high expressiveness and easy

syntax.

Also, the mapping between model and specification is a fundamental part of the pro-

cess. Simulink-like tools have libraries with blocks which represent different types of

output. But relying only on such blocks would allow only system and interface testing.

Unit testing and a larger variety of integration testing can be guaranteed by providing

the mapping between the specification and any signal from the model.

Since the oracle problem resides in the identification of a procedure to decide whether

the obtained result matches the expected result, it is essential that the oracle is able to

acknowledge the requirement and analyze the output properly. This thesis proposes a

procedure and assumptions to analyze the results.

The availability of a tool which automates part of the oracle definition and the analysis

granted an empirical evaluation of the thesis. Four studies with Apolom, a tool based

on this research, showed that applying the proposed solution is viable and can actually

reduce the time to identify errors and increase the potential to find them.

First study demonstrated that the probe-effect is not an issue for the proposed solution

of mapping. It also evidences that the oracle specification may be relatively simple to

elaborate.

Second study was executed with a large-scale real-world model. It supported the

evidence that a specification can be simple to elaborate, as well as the time and cost are

acceptable. Lastly, it showed that an automated oracle may be an efficient way to find

uncovered errors.

Third study indicated that Fast Jumper is a viable solution to access large amounts

of sequential and not sequential values for the analysis of temporal properties.

Fourth study resorted on mutation test to indicate the efficiency in finding errors.

It evidences that an automated oracle may find errors which could not be practical by

manual means.

124

CHAPTER 9. CONCLUSIONS AND FINAL CONSIDERATIONS

9.1 Contributions

The thesis first contribution is a technical report on test oracles (Nardi and Delamaro,

2011), which may be used as a basis to other researches on specification-based oracles, as

well as other oracle information paradigms, whereas it encompasses oracle studies with

machine learning, metamorphic relations and n-version-like oracles.

A foundation to oracle engineering was defined, providing automation capability with

high expressiveness to Simulink-like models. It overcomes limitations of productivity

as error-prone comparisons, time and resource issues (Chapter 7). The process model

(Chapter 4) guides a tester on the steps to define an oracle; the information definition

method (Section 4.2) provides an structured and easy approach which may be applied

to executable specification languages, therefore, allowing automated comparison between

specification and simulation. The basic structure, the OIU, provides a dependency mecha-

nism between rules which grants different levels of failure reports, requirement design and

softens a common issue pointed by Nadeem and Jaffar-ur Rehman (2005) on the study of

automated oracles: in this context specifications usually do not describe what a system

needs to do when invalid input is given. Modules allow the organization of requirements

into a tree structure, providing a comprehensive arrangement of OIUs; the procedure

(Chapter 4.4) encloses algorithms that provide different comparison assumptions, which

may soften the burden of writing a requirement.

The proposed solution extensibility is twofold: it is language-independent, which allows

the inclusion of other specification languages, and it is easily extensible to other similar

tools as XCos and SCicos.

A tool (Section 5) was implemented to allow the thesis evaluation. It is capable of

analyzing Simulink models and may serve as a prototype to oracle generation tools.

9.2 Limitations

The definition of the oracle engineering was based primarily on the study of gaps in other

approaches (Chapter 3 and Chapter 8) and on interview with development teams from the

industry, namely: AGX and Embraer teams. Although it covers a large range of academic

studies, the generalization of our approach is threatened by other needs in the industry,

besides the ones considered from the quoted teams. Thus, as long as more needs are

gathered from industry or researchers, it is planned to re-evaluate the presented solution

to enhance it, if needed.

The main features of this approach were tested in several models; however, the evalu-

ation of this thesis was based on two models. Even though the second and third studies

125

CHAPTER 9. CONCLUSIONS AND FINAL CONSIDERATIONS

were performed with a real-world model of large-scale and real requirements, the accuracy

of the results is threatened by the small variety of domains.

Apolom is a tool designed and implemented by one person for the period of one year.

Its limitations are mostly regarded to time restriction and programming skills.

If a model is changed during the testing activity, it should not cause consequences to

the oracle, except if a mapped line is removed. To avoid instrumentation errors, a tool

should check if mapped lines were removed from the original model and alert the tester.

We consider that all described limitations can be overcome and it does not invalidate

the proposed approach.

9.3 Possible Research Directions

As possible activities to be continued from the present thesis, more experiments in different

domains are highlighted to improve the generalization of the results.

It is intended to explore the tool usability with an improved Rule Wizard. In inter-

views, it was one of the most noted features. When the interviewed testers were asked

about obstacles to employ an automated oracle approach, many considered the cost to

learn a specification language as the preponderant drawback.

Another possible improvement in the tool is extending the language with more built-in

functions. Also, the support to XCos and Scicos, as the inclusion of other languages may

improve the acceptance in the academy and industry.

Although the oracle allows trace between the specification and informal written re-

quirements, it does not support trace with outside documents. Such direction is an inter-

esting complement to the oracle automation.

Finally, other oracle information sources are complementary to the specification-based

paradigm. Researches on the integration between different types of oracle may prove to

be a challenging, yet promising field.

126

Bibliography

Agarwal, D. A comparative study of artificial neural networks and info fuzzy networks

on their use in software testing. Doctoral Dissertation, University of South Florida,

2004.

Agarwal, D.; Tamir, D.; Last, M.; Kandel, A. A comparative study of artifi-

cial neural networks and info-fuzzy networks as automated oracles in software testing.

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,

v. 42, n. 5, p. 1183 –1193, 2012.

Aggarwal, K. K.; Singh, Y.; Kaur, A.; Sangwan, O. P. A neural net based

approach to test oracle. SIGSOFT Softw. Eng. Notes, v. 29, n. 3, p. 1–6, 2004.

Aichernig, B. Automated black-box testing with abstract vdm oracle. In: Computer

Safety, Reliability and Security, v. 1698 de Lecture Notes in Computer Science, Springer

Berlin Heidelberg, p. 250–259, 1999.

Available on: http://dx.doi.org/10.1007/3-540-48249-0_22

Aichernig, B. K.; Griesmayer, A.; Johnsen, E. B.; Schlatte, R.; Stam, A.

Conformance testing of distributed concurrent systems with executable designs. For-

mal Methods for Components and Objects: 7th International Symposium, FMCO 2008,

Sophia Antipolis, France, October 21-23, 2008, Revised Lectures, p. 61–81, 2009.

Alawneh, S.; Peters, D. Specification-based test oracles with junit. In: 23rd

Canadian Conference on Electrical and Computer Engineering (CCECE), 2010, p. 1–7.

Alligood, K. T.; Sauer, T. D.; Yorke, J. A. Chaos: an introduction to dynamical

systems. New York: Springer-Verlag, 2000.

127

http://dx.doi.org/10.1007/3-540-48249-0_22

BIBLIOGRAPHY

Almog, D.; Heart, T. Developing the basic verification action (bva) structure towards

test oracle automation. In: International Conference on Computational Intelligence

and Software Engineering (CiSE), 2010, p. 1 –4.

Alpaydin, E. Introduction to machine learning. 2nd ed. The MIT Press, 2010.

Andrews, J.; Fu, R.; Liu, V. Adding value to formal test oracles. In: ASE

2002: Proceedings of the 17th IEEE International Conference on Automated Software

Engineering., 2002, p. 275–278.

Andrews, J.; Zhang, Y. General test result checking with log file analysis. IEEE

Transactions on Software Engineering, v. 29, n. 7, p. 634–648, 2003.

Antoy, S.; Hamlet, D. Self-checking against formal specifications. In: ICCI ’92:

Proceedings of the Fourth International Conference on Computing and Information.,

1992, p. 355–360.

Antoy, S.; Hamlet, D. Automatically checking an implementation against its formal

specification. IEEE Transactions on Software Engineering, v. 26, n. 1, p. 55–69, 2000.

Araujo, R. F.; Vincenzi, A. M. R.; Delebecque, F.; Maldonado, J. C.; De-

lamaro, M. E. Devising mutant operators for dynamic systems models by applying

the hazop study. In: Proceeding of the Sixth International Conference on Software

Engineering Advances, 2011a, p. 58–64.

Araujo, W.; Briand, L.; Labiche, Y. On the effectiveness of contracts as test

oracles in the detection and diagnosis of race conditions and deadlocks in concurrent

object-oriented software. In: International Symposium on Empirical Software Engi-

neering and Measurement (ESEM), 2011, 2011b, p. 10 –19.

Bagge, A.; Haveraaen, M. Axiom-based transformations: Optimisation and testing.

Electron. Notes Theor. Comput. Sci., 2009.

Baharom, S.; Shukur, Z. The conceptual design of module documentation based

testing tool. Journal of Computer Science, v. 4, n. 6, p. 454–462, cited By (since 1996)

1, 2008.

Baharom, S.; Shukur, Z. Utilizing an abstraction relation document in grey-box

testing approach. In: ICEEI ’09: International Conference on Electrical Engineering

and Informatics., 2009, p. 304–308.

Baharom, S.; Shukur, Z. An experimental assessment of module

documentation-based testing. Information and Software Technology, v. 53, n. 7,

128

BIBLIOGRAPHY

p. 747–760, cited By (since 1996) 1, 2011.

Available on: http://www.scopus.com/inward/record.url?eid=2-s2.

0-79955065276&partnerID=40&md5=a2df94b2348a733997f602a106f8519c

Bai, X.; Hou, K.; Lu, H.; Zhang, Y.; Hu, L.; Ye, H. Semantic-based test oracles.

In: Computer Software and Applications Conference (COMPSAC), 2011 IEEE 35th

Annual, 2011, p. 640 –649.

Barbosa, A.; Paiva, A. C.; Campos, J. C. Test case generation from mutated

task models. In: Proceedings of the 3rd ACM SIGCHI symposium on Engineering

interactive computing systems, EICS ’11, New York, NY, USA: ACM, 2011, p. 175–184

(EICS ’11,).

Available on: http://doi.acm.org/10.1145/1996461.1996516

Baresi, L.; Bianculli, D.; Guinea, S.; Spoletini, P. Keep it small, keep it real:

Efficient run-time verification of web service compositions. In: Lee, D.; Lopes, A.;

Poetzsch-Heffter, A., eds. Formal Techniques for Distributed Systems, v. 5522 de

Lecture Notes in Computer Science, Springer Berlin Heidelberg, p. 26–40, 2009.

Available on: http://dx.doi.org/10.1007/978-3-642-02138-1_2

Baresi, L.; Young, M. Test oracles. Technical Report CIS-TR-01-02, University of

Oregon, Dept. of Computer and Information Science, Eugene, Oregon, U.S.A., http:

//www.cs.uoregon.edu/~michal/pubs/oracles.html, 2001.

Bennani, S.; Looye, G. H. N. Design of flight control laws for a civil aircraft using

µ-synthesis. 1998.

Bieman, J.; Yin, H. Designing for software testability using automated oracles. In:

Test Conference, 1992. Proceedings., International, 1992, p. 900–.

Biolchini, J. C. d. A.; Mian, P. G.; Natali, A. C. C.; Conte, T. U.; Travassos,

G. H. Scientific research ontology to support systematic review in software engineering.

Adv. Eng. Inform., v. 21, n. 2, p. 133–151, 2007.

Blackburn, M. R.; Busser, R. D. T-vec: A tool for developing critical systems.

In: In Proceedings of the 1996 Annual Conference on Computer Assurance (COMPASS

96, IEEE Computer Society Press, 1996, p. 237–249.

Bouchet, J.; Madani, L.; Nigay, L.; Oriat, C.; Parissis, I. Formal testing of mul-

timodal interactive systems. Engineering Interactive Systems: EIS 2007 Joint Working

Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain, March 22-24,

2007. Selected Papers, p. 36–52, 2008.

129

http://www.scopus.com/inward/record.url?eid=2-s2.0-79955065276&partnerID=40&md5=a2df94b2348a733997f602a106f8519c
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955065276&partnerID=40&md5=a2df94b2348a733997f602a106f8519c
http://doi.acm.org/10.1145/1996461.1996516
http://dx.doi.org/10.1007/978-3-642-02138-1_2
http://www.cs.uoregon.edu/~michal/pubs/oracles.html
http://www.cs.uoregon.edu/~michal/pubs/oracles.html

BIBLIOGRAPHY

Branco, K.; Pelizzoni, J.; Oliveira Neris, L.; Trindade, O.; Osorio, F.;

Wolf, D. Tiriba - a new approach of uav based on model driven development

and multiprocessors. In: Robotics and Automation (ICRA), 2011 IEEE International

Conference on, 2011, p. 1 –4.

Briand, L.; Labiche, Y. A uml-based approach to system testing. 2001.

Available on: http://dx.doi.org/10.1007/3-540-45441-1_15

Briand, L.; Labiche, Y. A uml-based approach to system testing. Software and

Systems Modeling, v. 1, n. 1, p. 10–42, 2002.

Available on: http://dx.doi.org/10.1007/s10270-002-0004-8

Briand, L.; Labiche, Y.; Sun, H. Investigating the use of analysis contracts to

improve the testability of object-oriented code. Software - Practice and Experience,

v. 33, n. 7, p. 637–672, cited By (since 1996) 14, 2003.

Brown, D.; Roggio, R.; Cross, J.H., I.; McCreary, C. An automated oracle for

software testing. IEEE Transactions on Reliability, v. 41, n. 2, p. 272–280, 1992.

Chan, W.; Chen, T.; Cheung, S.; Tse, T.; Zhang, Z. Towards the testing of

power-aware software applications for wireless sensor networks. 2007a.

Available on: http://dx.doi.org/10.1007/978-3-540-73230-3_7

Chan, W.; Ho, J.; Tse, T. Piping classification to metamorphic testing: An empirical

study towards better effectiveness for the identification of failures in mesh simplification

programs. In: Computer Software and Applications Conference, 2007. COMPSAC

2007. 31st Annual International, 2007b, p. 397–404.

Chan, W.; Tse, T. Oracles are hardly attain’d, and hardly understood: confessions

of software testing researchers. In: The Symposium on Engineering Test Harness

(TSETH ’13), in Proceedings of the 13th International Conference on Quality Software

(QSIC ’13), IEEE Computer Society, Los Alamitos, CA, 2013.

Chan, W. K.; Cheng, M. Y.; Cheung, S. C.; Tse, T. H. Automatic goal-oriented

classification of failure behaviors for testing xml-based multimedia software applications:

an experimental case study. J. Syst. Softw., v. 79, n. 5, p. 602–612, 2006.

Chapoutot, A.; Martel, M. Abstract simulation: A static analysis of simulink

models. In: ICESS ’09: International Conference on Embedded Software and Systems.,

2009, p. 83 –92.

130

http://dx.doi.org/10.1007/3-540-45441-1_15
http://dx.doi.org/10.1007/s10270-002-0004-8
http://dx.doi.org/10.1007/978-3-540-73230-3_7

BIBLIOGRAPHY

Chen, J.; Aoki, T. Conformance testing for osek/vdx operating system using model

checking. In: Software Engineering Conference (APSEC), 2011 18th Asia Pacific,

2011, p. 274 –281.

Chen, J.a, S. S. b. Specification-based testing for gui-based applications. Software

Quality Journal, v. 10, n. 3, p. 205–224, cited By (since 1996) 10, 2002.

Chen, T.; Feng, J.; Tse, T. Metamophic testing of programs on partial differential

equations: A case study. In: Proceedings - IEEE Computer Society’s International

Computer Software and Applications Conference, Oxford, 2002, p. 327–333.

Chen, T.; Kuo, F.-C.; Tse, T.; Zhou, Z. Q. Metamorphic testing and beyond. In:

Software Technology and Engineering Practice, 2003. Eleventh Annual International

Workshop on, 2003, p. 94–100.

Chen, T.; Tse, T.; Zhou, Z. Fault-based testing in the absence of an oracle. In:

Computer Software and Applications Conference, 2001. COMPSAC 2001. 25th Annual

International, 2001a, p. 172 –178.

Chen, T.Y.a, T. T. Z. Z. Fault-based testing without the need of oracles. Information

and Software Technology, v. 45, n. 1, p. 1–9, cited By (since 1996) 16, 2003.

Chen, T. Y.; Cheung, S. C.; Yiu, S. M. Metamorphic testing: a new approach for

generating next test cases. asa, 1998.

Chen, T. Y.; Tse, T. H.; Zhou, Z. Fault-based testing in the absence of an ora-

cle. In: Proceedings - IEEE Computer Society’s International Computer Software and

Applications Conference, Chicago, IL, 2001b, p. 172–178.

Cheon, Y. Abstraction in assertion-based test oracles. In: Quality Software, 2007.

QSIC ’07. Seventh International Conference on, 2007, p. 410–414.

Cheon, Y.; Avila, C. Automating java program testing using ocl and aspectj. In: Sev-

enth International Conference on Information Technology: New Generations (ITNG).,

2010, p. 1020 –1025.

Cheon, Y.; Leavens, G. A simple and practical approach to unit testing: The jml

and junit way. In: ECOOP 2002 Object-Oriented Programming, 2002, p. 1789–1901.

Cho, S. M.; Lee, J. W. Lightweight specification-based testing of memory cards: A

case study. Electron. Notes Theor. Comput. Sci., v. 111, p. 73–91, 2005.

131

BIBLIOGRAPHY

Coppit, D.; Haddox-Schatz, J. On the use of specification-based assertions as test

oracles. In: Software Engineering Workshop, 2005. 29th Annual IEEE/NASA, 2005,

p. 305–314.

Dan, L.; Aichernig, B. K. Combining algebraic and model-based test case generation.

2005.

Available on: http://www.springerlink.com/content/qnfpx7hkqphryx3l

Davis, M. D.; Weyuker, E. J. Pseudo-oracles for non-testable programs. In: ACM

’81: Proceedings of the ACM ’81 conference, New York, NY, USA: ACM, 1981, p.

254–257.

Ding, J.; Wu, T.; Lu, J.; Hu, X.-H. Self-checked metamorphic testing of an image

processing program. In: Fourth International Conference on Secure Software Integra-

tion and Reliability Improvement (SSIRI)., 2010, p. 190 –197.

Ding, J.; Wu, T.; Wu, D.; Lu, J. Q.; Hu, X.-H. Metamorphic testing of a

monte carlo modeling program. In: Proceedings of the 6th International Workshop on

Automation of Software Test, AST ’11, New York, NY, USA: ACM, 2011, p. 1–7 (AST

’11,).

Available on: http://doi.acm.org/10.1145/1982595.1982597

D’Souza, D.; Gopinathan, M. Computing complete test graphs for hierarchical sys-

tems. In: SEFM’06: Fourth IEEE International Conference on Software Engineering

and Formal Methods., 2006, p. 70–79.

Durrieu, G.; Waeselynck, H.; Wiels, V. Leto - a lutre-based test oracle for airbus

critical systems. Formal Methods for Industrial Critical Systems: 13th International

Workshop, FMICS 2008, 2008.

Eckhardt, D.E., J.; Lee, L. D. A theoretical basis for the analysis of multiversion

software subject to coincident errors. Software Engineering, IEEE Transactions on,

v. SE-11, n. 12, p. 1511–1517, 1985.

Edwards, S. A framework for practical, automated black-box testing of

component-based software. Software Testing Verification and Reliability, v. 11, n. 2,

p. 97–111, cited By (since 1996) 25, 2001.

El Ariss, O.; Xu, D.; Dandey, S.; Vender, B.; McClean, P.; Slator, B. A

systematic capture and replay strategy for testing complex gui based java applications.

In: Seventh International Conference on Information Technology: New Generations

(ITNG)., 2010, p. 1038 –1043.

132

http://www.springerlink.com/content/qnfpx7hkqphryx3l
http://doi.acm.org/10.1145/1982595.1982597

BIBLIOGRAPHY

Engels, G.; Galdali, B.; Lohmann, M. Towards model-driven unit testing. 2007.

Available on: http://dx.doi.org/10.1007/978-3-540-69489-2_23

Faitelson, D.; Tyszberowicz, S. Data refinement based testing. Interna-

tional Journal of Systems Assurance Engineering and Management, v. 2, p. 144–154,

10.1007/s13198-011-0060-y, 2011.

Available on: http://dx.doi.org/10.1007/s13198-011-0060-y

Felder, M.; Morzenti, A. Validating real-time systems by history-checking TRIO

specifications. In: Software Engineering, 1992. International Conference on, 1992, p.

199 –211.

Fraser, G.; Zeller, A. Mutation-driven generation of unit tests and oracles. Soft-

ware Engineering, IEEE Transactions on, v. 38, n. 2, p. 278 –292, 2012.

Gargantini, A.; Riccobene, E. Asm-based testing: Coverage criteria and auto-

matic test sequence generation. Journal of Universal Computer Science, v. 7, n. 11,

p. 1050–1067, cited By (since 1996) 22, 2001.

Ghezzi, C.; Mandrioli, D.; Morzenti, A. Trio: A logic language for executable

specifications of real-time systems. J. Syst. Softw., v. 12, 1990.

Giannakopoulou, D.; Bushnell, D.; Schumann, J.; Erzberger, H.; Heere,

K. Formal testing for separation assurance. Annals of Mathematics and Artificial

Intelligence, v. 63, p. 5–30, 10.1007/s10472-011-9224-3, 2011a.

Available on: http://dx.doi.org/10.1007/s10472-011-9224-3

Giannakopoulou, D.; Rungta, N.; Feary, M. Automated test case generation for

an autopilot requirement prototype. In: Systems, Man, and Cybernetics (SMC), 2011

IEEE International Conference on, 2011b, p. 1825 –1830.

Gibson, J.; Raffy, J.-L.; Lallet, E. Formal object-oriented development of a voting

system test oracle. Innovations in Systems and Software Engineering, v. 7, p. 237–245,

10.1007/s11334-011-0167-y, 2011.

Available on: http://dx.doi.org/10.1007/s11334-011-0167-y

Gladisch, C.; Tyszberowicz, S.; Beckert, B.; Yehudai, A. Generating re-

gression unit tests using a combination of verification and capture & replay. In:

Proceedings of the 4th international conference on Tests and proofs, TAP’10, Berlin,

Heidelberg: Springer-Verlag, 2010, p. 61–76 (TAP’10,).

Goldberg, A.; Havelund, K.; McGann, C. Runtime verification for autonomous

spacecraft software. In: Aerospace Conference, 2005 IEEE, 2005, p. 507–516.

133

http://dx.doi.org/10.1007/978-3-540-69489-2_23
http://dx.doi.org/10.1007/s13198-011-0060-y
http://dx.doi.org/10.1007/s10472-011-9224-3
http://dx.doi.org/10.1007/s11334-011-0167-y

BIBLIOGRAPHY

Goodenough, J. B.; Gerhart, S. L. Toward a theory of test data selection. SIG-

PLAN Not., v. 10, n. 6, p. 493–510, 1975.

Available on: http://doi.acm.org/10.1145/390016.808473

Gotlieb, A.; Bernard, P. A semi-empirical model of test quality in symmetric

testing: Application to testing java card apis. In: Quality Software, 2006. QSIC 2006.

Sixth International Conference on, 2006, p. 329–336.

Grieskamp, W.; Lepper, M.; Schulte, W.; Tillmann, N. Testable use cases in

the abstract state machine language. In: Quality Software, 2001. Proceedings.Second

Asia-Pacific Conference on, 2001, p. 167–172.

Hagar, J. B.; M., B. J. Using formal specifications as oracles for system-critical

software. ACM Ada Letters, v. 6, p. 55–72, 1996.

Haji-Valizadeh, A.; Loparo, K. Decentralized supervisory predicate control of

discrete event dynamical systems. In: American Control Conference, 1994, 1994, p.

1099 – 1103 vol.1.

Hakansson, J.; Jonsson, B.; Lundqvist, O. Generating online test oracles from

temporal logic specifications. International Journal on Software Tools for Technology

Transfer (STTT), v. 4, n. 4, p. 456–471, 2003.

Available on: http://dx.doi.org/10.1007/s10009-003-0107-8

Hierons, R. Oracles for distributed testing. Software Engineering, IEEE Transactions

on, v. 38, n. 3, p. 629 –641, 2012.

Hoffman, D.; Strooper, P. Automated module testing in prolog. IEEE Transac-

tions on Software Engineering, v. 17, n. 9, p. 934–943, 1991.

Howden, W. Reliability of the path analysis testing strategy. Software Engineering,

IEEE Transactions on, v. SE-2, n. 3, p. 208 – 215, 1976.

Hu, P.; Zhang, Z.; Chan, W.; Tse, T. An empirical comparison between direct and

indirect test result checking approaches. In: Proceedings of the Third International

Workshop on Software Quality Assurance, SOQUA 2006, Portland, OR, 2006, p. 6–13.

Hummel, O.; Atkinson, C. Automated harvesting of test oracles for reliability testing.

In: Computer Software and Applications Conference, 2005. COMPSAC 2005. 29th

Annual International, 2005, p. 196–202 Vol. 1.

IEEE Systems and software engineering – vocabulary. ISO/IEC/IEEE 24765:2010(E),

p. 1 –418, 2010.

134

http://doi.acm.org/10.1145/390016.808473
http://dx.doi.org/10.1007/s10009-003-0107-8

BIBLIOGRAPHY

Janjic, W.; Barth, F.; Hummel, O.; Atkinson, C. Discrepancy discovery

in search-enhanced testing. In: Proceedings of the 3rd International Workshop on

Search-Driven Development: Users, Infrastructure, Tools, and Evaluation, SUITE ’11,

New York, NY, USA: ACM, 2011, p. 21–24 (SUITE ’11,).

Available on: http://doi.acm.org/10.1145/1985429.1985435

Jia, X. Model-based formal specification directed testing of abstract data types. In:

Computer Software and Applications Conference, 1993. COMPSAC 93. Proceedings.,

Seventeenth Annual International, 1993, p. 360–366.

Jin, H.; Wang, Y.; Chen, N.-W.; Gou, Z.-J.; Wang, S. Artificial neural network

for automatic test oracles generation. In: Computer Science and Software Engineering,

2008 International Conference on, 2008, p. 727–730.

Jin, H.; Wang, Y.; Chen, N.-W.; Wang, S.; Zeng, L.-M. Predication of program

behaviours for functionality testing. In: Proceedings of the 2009 First IEEE Inter-

national Conference on Information Science and Engineering, ICISE ’09, Washington,

DC, USA: IEEE Computer Society, 2009, p. 4993–4996 (ICISE ’09,).

Jonsson, B.; Padilla, G. An execution semantics for msc-2000. 2001.

Available on: http://dx.doi.org/10.1007/3-540-48213-X_23

Jost, J. Dynamical systems : examples of complex behaviour. Springer, 2005.

Kanstren, T. Program comprehension for user-assisted test oracle generation. In:

ICSEA ’09: Fourth International Conference on Software Engineering Advances., 2009,

p. 118–127.

Kim-Park, D.; Riva, C.; Tuya, J. A partial test oracle for xml query testing.

In: Testing: Academic and Industrial Conference - Practice and Research Techniques,

2009. TAIC PART ’09., 2009, p. 13 –20.

Kim-Park, D. S.; Riva, C.; Tuya, J. An automated test oracle for xml processing

programs. In: Proceedings of the First International Workshop on Software Test

Output Validation, STOV ’10, New York, NY, USA: ACM, 2010, p. 5–12 (STOV ’10,

).

Kuhn, D. R.; Okum, V. Pseudo-exhaustive testing for software. In: Software Engi-

neering Workshop, 2006. SEW ’06. 30th Annual IEEE/NASA, 2006, p. 153–158.

Kuo, F.-C.; Zhou, Z.; Ma, J.; Zhang, G. Metamorphic testing of decision support

systems: a case study. Software, IET, v. 4, n. 4, p. 294 –301, 2010.

135

http://doi.acm.org/10.1145/1985429.1985435
http://dx.doi.org/10.1007/3-540-48213-X_23

BIBLIOGRAPHY

Lamancha, B.; Polo, M.; Caivano, D.; Piattini, M.; Visaggio, G. Automated

generation of test oracles using a model-driven approach. Information and Software

Technology, cited By (since 1996) 0; Article in Press, 2012.

Available on: http://www.scopus.com/inward/record.url?eid=2-s2.

0-84867042335&partnerID=40&md5=bf954e08591fce5c57de8927ed1ea66b

Lasalle, J.; Peureux, F.; Guillet, J. Automatic test concretization to supply

end-to-end mbt for automotive mechatronic systems. In: Proceedings of the First

International Workshop on End-to-End Test Script Engineering, ETSE ’11, New York,

NY, USA: ACM, 2011, p. 16–23 (ETSE ’11,).

Available on: http://doi.acm.org/10.1145/2002931.2002934

Lazić, L.; Velašević, D. Applying simulation and design of experiments to the

embedded software testing process: Research articles. Softw. Test. Verif. Reliab.,

v. 14, n. 4, p. 257–282, 2004.

Available on: http://dx.doi.org/10.1002/stvr.v14:4

Leavens, G. T.; Baker, A. L.; Ruby, C. Preliminary design of jml: a behavioral

interface specification language for java. SIGSOFT Softw. Eng. Notes, v. 31, n. 3,

p. 1–38, 2006.

Available on: http://dx.doi.org/10.1145/1127878.1127884

Li, J.; Liu, H.; Seviora, R. Constructing automated protocol testing oracles to

accommodate specification nondeterminism. In: Proceedings of the Sixth International

Conference on Computer Communications and Networks., 1997, p. 532–537.

Li, X.; Qiu, X.; Wang, L.; Chen, X.; Zhou, Z.; Yu, L.; Zhao, J. Uml interaction

model-driven runtime verification of java programs. Software, IET, v. 5, n. 2, p. 142

–156, 2011.

Lin, J.-C.; Ho, I. A new perspective on formal testing method for real-time software.

In: Euromicro Conference, 2000. Proceedings of the 26th, 2000, p. 270–276 vol.2.

Lin, J.-C.; Ho, I. Generating timed test cases with oracles for real-time software.

Advances in Engineering Software, v. 32, n. 9, p. 705–715, 2001.

Lin, J.-C.; Yeh, P.-L.; Yang, S.-C. Promoting the software design for testability

towards a partial test oracle. In: Software Technology and Engineering Practice, 1997.

Proceedings., Eighth IEEE International Workshop on [incorporating Computer Aided

Software Engineering], 1997, p. 209–214.

136

http://www.scopus.com/inward/record.url?eid=2-s2.0-84867042335&partnerID=40&md5=bf954e08591fce5c57de8927ed1ea66b
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867042335&partnerID=40&md5=bf954e08591fce5c57de8927ed1ea66b
http://doi.acm.org/10.1145/2002931.2002934
http://dx.doi.org/10.1002/stvr.v14:4
http://dx.doi.org/10.1145/1127878.1127884

BIBLIOGRAPHY

Lin, Y. A model transformation approach to automated model evolution. Doctoral Dis-

sertation, University of Alabama at Birmingham, Birmingham, AL, USA, adviser-Gray,

Jeffrey G., 2007.

Lozano, R. C. n.; Schulte, C.; Wahlberg, L. Testing continuous double auc-

tions with a constraint-based oracle. In: Proceedings of the 16th international confer-

ence on Principles and practice of constraint programming, CP’10, Berlin, Heidelberg:

Springer-Verlag, 2010, p. 613–627 (CP’10,).

Lu, Y.; Ye, M. Oracle model based on rbf neural networks for automated software

testing. Information Technology Journal, v. 6, n. 3, p. 469–474, cited By (since 1996)

1, 2007.

Luckham, D.; Von Henke, F. An overview of anna, a specification language for ada.

Software, IEEE, v. 2, n. 2, p. 9–22, 1985.

Luqi; Yang, H.; Yang, X. Constructing an automated testing oracle: an effort to

produce reliable software. In: Computer Software and Applications Conference, 1994.

COMPSAC 94. Proceedings., Eighteenth Annual International, 1994, p. 228–233.

MacColl, I.; Murray, L.; Strooper, P.; Carrington, D. Specification-based

class testing: a case study. In: Proceedings of the Second International Conference on

Formal Engineering Methods., 1998, p. 222–231.

Machado, P. D. L.; Oliveira, E. A. S.; Barbosa, P. E. S.; Rodrigues, C. L.

Testing from structured algebraic specifications: The veritas case study. Electron.

Notes Theor. Comput. Sci., v. 130, p. 235–261, 2005.

Manolache, L.; Kourie, D. Software testing using model programs. Software -

Practice and Experience, v. 31, n. 13, p. 1211–1236, cited By (since 1996) 2, 2001.

Mao, Y.; Boqin, F.; Li, Z.; Yao, L. Automated test oracle based on neural networks.

In: Cognitive Informatics, 2006. ICCI 2006. 5th IEEE International Conference on,

2006a, p. 517–522.

Mao, Y.; Boqin, F.; Li, Z.; Yao, L. Neural networks based automated test oracle

for software testing. 2006b.

Available on: http://dx.doi.org/10.1007/11893295_55

Mathworks Best practices for large-scale modeling access on sep, 2012.

http://www.mathworks.co.uk/company/events/conferences/matlab-tour/

proceedings/best-practices-for-large-scale-modeling.pdf, 2011.

137

http://dx.doi.org/10.1007/11893295_55
http://www.mathworks.co.uk/company/events/conferences/matlab-tour/proceedings/best-practices-for-large-scale-modeling.pdf
http://www.mathworks.co.uk/company/events/conferences/matlab-tour/proceedings/best-practices-for-large-scale-modeling.pdf

BIBLIOGRAPHY

Mathworks About model verification blocks. r2011b docu-

mentation: Signal basics. access on jun, 2012. Available at

http://www.mathworks.com/help/toolbox/simulink/ug/f15-99132.html, 2012.

Mathworks Documentation center: Bouncing ball subsystem. r2013a

documentation: Gauges blockset. access on may, 2013. Available at

http://www.mathworks.com/help/gauges/examples/bouncing-ball-subsystem.html,

2013a.

Mathworks Simulink: simulation and model-based design. r2013a overview. access on

may, 2013. Available at http://www.mathworks.com/products/simulink/, 2013b.

Matsumoto, l. Y. Simulink 7.2: Guia prático. Editora Érica, 2008.

Mayer, J.; Guderlei, R. An empirical study on the selection of good metamorphic

relations. In: Computer Software and Applications Conference, 2006. COMPSAC ’06.

30th Annual International, 2006a, p. 475–484.

Mayer, J.; Guderlei, R. On random testing of image processing applications. In:

Quality Software, 2006. QSIC 2006. Sixth International Conference on, 2006b, p. 85–92.

McDonald, J.; Murray, L.; Strooper, P. Translating object-z specifications to

object-oriented test oracles. Asia-Pacific Software Engineering Conference, p. 414–423,

1997.

McDonald, J.; Strooper, P. Translating object-z specifications to passive test

oracles. In: Proceedings of the Second International Conference on Formal Engineering

Methods., 1998, p. 165–174.

McDonald, J.; Strooper, P.; Hoffman, D. Tool support for generating passive

c++ test oracles from object-z specifications. In: Software Engineering Conference,

2003. Tenth Asia-Pacific, 2003, p. 322–331.

McDowell, C. E.; Helmbold, D. P. Debugging concurrent programs. ACM

Comput. Surv., v. 21, n. 4, p. 593–622, 1989.

Available on: http://doi.acm.org/10.1145/76894.76897

Memon, A.; Banerjee, I.; Hashmi, N.; Nagarajan, A. Dart: a framework for re-

gression testing ”nightly/daily builds” of gui applications. In: ICSM 2003: Proceedings

of the International Conference on Software Maintenance., 2003a, p. 410–419.

138

http://doi.acm.org/10.1145/76894.76897

BIBLIOGRAPHY

Memon, A.; Banerjee, I.; Nagarajan, A. What test oracle should i use for effective

gui testing? In: Proceedings of the 18th IEEE International Conference on Automated

Software Engineering., 2003b, p. 164–173.

Memon, A.; Nagarajan, A.; Xie, Q. Automating regression testing for evolving gui

software. Journal of Software Maintenance, v. 17, n. 1, p. 27–64, 2005.

Memon, A.; Xie, Q. Empirical evaluation of the fault-detection effectiveness of smoke

regression test cases for gui-based software. In: Proceedings of the 20th IEEE Inter-

national Conference on Software Maintenance, 2004a, p. 8–17.

Memon, A.; Xie, Q. Using transient/persistent errors to develop automated test

oracles for event-driven software. In: Proceedings of the 19th International Conference

on Automated Software Engineering, 2004b, p. 186–195.

Memon, A.; Xie, Q. Studying the fault-detection effectiveness of gui test cases for

rapidly evolving software. IEEE Transactions on Software Engineering, v. 31, n. 10,

p. 884–896, 2005.

Memon, A. M.; Pollack, M. E.; Soffa, M. L. Automated test oracles for guis. In:

SIGSOFT ’00/FSE-8: Proceedings of the 8th ACM SIGSOFT international symposium

on Foundations of software engineering, New York, NY, USA: ACM, 2000, p. 30–39.

Meyer, B.; Ciupa, I.; Leitner, A.; Liu, L. Automatic testing of object-oriented

software. 2007.

Available on: http://dx.doi.org/10.1007/978-3-540-69507-3_9

Miller, T.; Strooper, P. Supporting the software testing process through specifi-

cation animation. In: Proceedings of the First International Conference on Software

Engineering and Formal Methods, 2003, p. 14–23.

Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of machine learning.

The MIT Press, 2012.

Mottu, J.-M.; Baudry, B.; Traon, Y. Model transformation testing: oracle issue.

In: ICSTW’08: IEEE International Conference on Software Testing Verification and

Validation Workshop., 2008, p. 105–112.

Murphy, C. Using runtime testing to detect defects in applications without test oracles.

In: FSEDS ’08: Proceedings of the 2008 Foundations of Software Engineering Doctoral

Symposium, New York, NY, USA: ACM, 2008, p. 21–24.

139

http://dx.doi.org/10.1007/978-3-540-69507-3_9

BIBLIOGRAPHY

Murphy, C.; Raunak, M. S.; King, A.; Chen, S.; Imbriano, C.; Kaiser, G.;

Lee, I.; Sokolsky, O.; Clarke, L.; Osterweil, L. On effective testing of health

care simulation software. In: Proceedings of the 3rd Workshop on Software Engineering

in Health Care, SEHC ’11, New York, NY, USA: ACM, 2011, p. 40–47 (SEHC ’11,).

Available on: http://doi.acm.org/10.1145/1987993.1988003

Murphy, C.; Shen, K.; Kaiser, G. Automatic system testing of programs without

test oracles. In: ISSTA ’09: Proceedings of the eighteenth international symposium on

Software testing and analysis, New York, NY, USA: ACM, 2009a, p. 189–200.

Murphy, C.; Shen, K.; Kaiser, G. Using jml runtime assertion checking to automate

metamorphic testing in applications without test oracles. In: ICST ’09: International

Conference on Software Testing Verification and Validation., 2009b, p. 436–445.

Myers, G. The art of software testing. John Wiley and Sons, 2004.

Nadeem, A.; Rehman, M. Testaf: A test automation framework for class testing

using object-oriented formal specifications. Journal of Universal Computer Science,

v. 11, n. 6, p. 962–985, cited By (since 1996) 0, 2005.

Nardi, P. A.; Delamaro, M. E. Test oracles associated with dynamical system

models. Technical Report, Universidade de São Paulo/São Carlos - ICMC, 2011.

O’Malley, T. O. A model of specification-based test oracles. Doctoral Dissertation,

University of California, Irvine, chair-Richardson, Debra J., 1996.

Packevičius, v.; Ušaniov, A.; Bareǐsa, E. Software testing using imprecise ocl

constraints as oracles. In: CompSysTech ’07: Proceedings of the 2007 international

conference on Computer systems and technologies, New York, NY, USA: ACM, 2007,

p. 1–6.

Pasala, A.; Rao, S.; Gupta, A.; Gunturu, S. On the validation of

api execution-sequence to assess the correctness of application upon cots up-

grades deployment. In: ICCBSS ’07: Sixth International IEEE Conference o

Commercial-off-the-Shelf (COTS)-Based Software Systems., 2007, p. 225–232.

Peters, D.; Parnas, D. Using test oracles generated from program documentation.

IEEE Transactions on Software Engineering, v. 24, n. 3, p. 161–173, 1998.

Peters, D.; Parnas, D. L. Generating a test oracle from program documentation:

work in progress. In: ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT international

symposium on Software testing and analysis, New York, NY, USA: ACM, 1994, p. 58–65.

140

http://doi.acm.org/10.1145/1987993.1988003

BIBLIOGRAPHY

Peters, D. b.; Parnas, D. c. Requirements-based monitors for real-time systems.

IEEE Transactions on Software Engineering, v. 28, n. 2, p. 146–158, cited By (since

1996) 12, 2002.

Pilskalns, O.; Andrews, A.; Knight, A.; Ghosh, S.; France, R. Testing uml

designs. Inf. Softw. Technol., v. 49, n. 8, p. 892–912, 2007.

Pilskalns, O. J. Unified modeling language design testing and analysis. Doctoral Dis-

sertation, Washington State University, Pullman, WA, USA, chair-Andrews, Anneliese,

2004.

Qu, G.; Guo, S.-T.; Zhang, H. A practical approach to assertion testing framework

based on inner class. In: Software Engineering and Service Science (ICSESS), 2011

IEEE 2nd International Conference on, 2011, p. 133 –137.

Rajan, A.; Bousquet, L.; Ledru, Y.; Vega, G.; Richier, J.-L. Assertion-based

test oracles for home automation systems. In: Proceedings of the 7th International

Workshop on Model-Based Methodologies for Pervasive and Embedded Software, MOM-

PES ’10, New York, NY, USA: ACM, 2010, p. 45–52 (MOMPES ’10,).

Available on: http://doi.acm.org/10.1145/1865875.1865882

Reactive Systems Reactis user’s guide. Reactive Systems, inc, 2012.

Reicherdt, R.; Glesner, S. Slicing matlab simulink models. In: 34th International

Conference on Software Engineering (ICSE), 2012, p. 551 –561.

Richardson, D.; Aha, S.; O’Malley, T. Specification-based test oracles for reactive

systems. In: International Conference on Software Engineering., 1992, p. 105–118.

Richardson, D. J. Taos: Testing with analysis and oracle support. In: ISSTA ’94:

Proceedings of the 1994 ACM SIGSOFT international symposium on Software testing

and analysis, New York, NY, USA: ACM, 1994, p. 138–153.

Sangwan, O. P.; Bhatia, P. K.; Singh, Y. Radial basis function neural network

based approach to test oracle. SIGSOFT Softw. Eng. Notes, v. 36, n. 5, p. 1–5, 2011.

Available on: http://doi.acm.org/10.1145/2020976.2020992

Seifert, D. Conformance testing based on uml state machines. In: ICFEM ’08:

Proceedings of the 10th International Conference on Formal Methods and Software En-

gineering, Berlin, Heidelberg: Springer-Verlag, 2008, p. 45–65.

Shahamiri, S.; Kadir, W.; Ibrahim, S.; Hashim, S. An automated framework for

software test oracle. Information and Software Technology, v. 53, n. 7, p. 774–788,

141

http://doi.acm.org/10.1145/1865875.1865882
http://doi.acm.org/10.1145/2020976.2020992

BIBLIOGRAPHY

cited By (since 1996) 3, 2011.

Available on: http://www.scopus.com/inward/record.url?eid=2-s2.

0-79955055107&partnerID=40&md5=42afa6184a97f0086c450e9d916f34ab

Shahamiri, S.; Kadir, W.; Mohd-Hashim, S. A comparative study on automated

software test oracle methods. In: ICSEA ’09: Fourth International Conference on

Software Engineering Advances., 2009, p. 140–145.

Shahamiri, S.; Wan Kadir, W.; Ibrahim, S. A single-network ann-based oracle

to verify logical software modules. In: 2nd International Conference on Software

Technology and Engineering (ICSTE)., 2010, p. V2–272 –V2–276.

Shahamiri, S.; Wan-Kadir, W.; Ibrahim, S.; Hashim, S. Artificial neural networks

as multi-networks automated test oracle. Automated Software Engineering, v. 19,

p. 303–334, 10.1007/s10515-011-0094-z, 2012.

Available on: http://dx.doi.org/10.1007/s10515-011-0094-z

Shailesh, S. Ease of analysing large signal modeling. S. E. Asia eNews, access on

Sep, 2012. Available at http://techsource-asia.com/edm/2011Aug/ideas.html, 2011.

Shawcross, P. Flightpath glossary of aviation terms. Cambridge University Press,

2011.

Available on: http://www.cambridge.org/gb/elt/catalogue/subject/project/

custom/item6604469/Flightpath-Glossary-of-Aviation-Terms/

Shimeall, T.; Leveson, N. An empirical comparison of software fault tolerance and

fault elimination. In: Software Testing, Verification, and Analysis, 1988., Proceedings

of the Second Workshop on, 1988, p. 180–187.

Shrestha, K.; Rutherford, M. An empirical evaluation of assertions as oracles. In:

Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth International

Conference on, 2011, p. 110 –119.

Shukla, R.; Carrington, D.; Strooper, P. A passive test oracle using a compo-

nent’s api. In: Software Engineering Conference, 2005. APSEC ’05. 12th Asia-Pacific,

2005, p. 7 pp.–.

Silva, J.; Campos, J.; Paiva, A. Model-based user interface testing with spec ex-

plorer and concurtasktrees. Electronic Notes in Theoretical Computer Science, v. 208,

p. 77–93, 2008.

142

http://www.scopus.com/inward/record.url?eid=2-s2.0-79955055107&partnerID=40&md5=42afa6184a97f0086c450e9d916f34ab
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955055107&partnerID=40&md5=42afa6184a97f0086c450e9d916f34ab
http://dx.doi.org/10.1007/s10515-011-0094-z
http://www.cambridge.org/gb/elt/catalogue/subject/project/custom/item6604469/Flightpath-Glossary-of-Aviation-Terms/
http://www.cambridge.org/gb/elt/catalogue/subject/project/custom/item6604469/Flightpath-Glossary-of-Aviation-Terms/

BIBLIOGRAPHY

Skroch, O. Validation of component-based software with a customer centric domain

level approach. In: Engineering of Computer-Based Systems, 2007. ECBS ’07. 14th

Annual IEEE International Conference and Workshops on the, 2007, p. 459–466.

Stewart, I. Does god play dice: The new mathematics of chaos. Blackwell Publishing,

1989.

Stocks, P.; Carrington, D. Test templates: a specification-based testing framework.

In: Software Engineering, 1993. Proceedings., 15th International Conference on, 1993,

p. 405–414.

Stocks, P.; Carrington, D. A framework for specification-based testing. IEEE

Transactions on Software Engineering, v. 22, n. 11, p. 777–793, 1996.

Sun, C.; Wang, G.; Mu, B.; Liu, H.; Wang, Z.; Chen, T. Metamorphic testing

for web services: Framework and a case study. In: Web Services (ICWS), 2011 IEEE

International Conference on, 2011, p. 283 –290.

Svendsen, A.; Haugen, O.; Møller-Pedersen, B. Specifying a testing oracle

for train stations. In: Proceedings of the 8th International Workshop on Model-Driven

Engineering, Verification and Validation, MoDeVVa, New York, NY, USA: ACM, 2011,

p. 5:1–5:6 (MoDeVVa,).

Available on: http://doi.acm.org/10.1145/2095654.2095661

Taneja, K.; Li, N.; Marri, M. R.; Xie, T.; Tillmann, N. Mitv:

multiple-implementation testing of user-input validators for web applications. In: Pro-

ceedings of the IEEE/ACM international conference on Automated software engineer-

ing, ASE ’10, New York, NY, USA: ACM, 2010, p. 131–134 (ASE ’10,).

Tiwari, S.; Mishra, K.; Kumar, A.; Misra, A. Spectrum-based fault localization

in regression testing. In: Information Technology: New Generations (ITNG), 2011

Eighth International Conference on, 2011, p. 191 –195.

Tsai, W.-T.; Chen, Y.; Paul, R.; Huang, H.; Zhou, X.; Wei, X. Adaptive

testing, oracle generation, and test case ranking for web services. In: Computer Soft-

ware and Applications Conference, 2005. COMPSAC 2005. 29th Annual International,

2005a, p. 101–106 Vol. 2.

Tsai, W.-T.; Chen, Y.; Zhang, D.; Huang, H. Voting multi-dimensional data

with deviations for web services under group testing. In: 25th IEEE International

Conference on Distributed Computing Systems Workshops., 2005b, p. 65–71.

143

http://doi.acm.org/10.1145/2095654.2095661

BIBLIOGRAPHY

Tu, D.; Chen, R.; Du, Z.; Liu, Y. A method of log file analysis for test oracle. In:

International Conference on Scalable Computing and Communications; Eighth Interna-

tional Conference on Embedded Computing. SCALCOM-EMBEDDEDCOM’09., 2009,

p. 351–354.

Vanmali, M.; Last, M.; Kandel, A. Using a neural network in the software testing

process. International Journal of Intelligent Systems, v. 17, n. 1, p. 45–62, cited By

(since 1996) 8, 2002.

Vapnik, V. N. The nature of statistical learning theory. New York, NY, USA:

Springer-Verlag New York, Inc., 1995.

Wang, F.; Yao, L.-W.; Wu, J.-H. Intelligent test oracle construction for reactive

systems without explicit specifications. In: Dependable, Autonomic and Secure Com-

puting (DASC), 2011 IEEE Ninth International Conference on, 2011, p. 89 –96.

Wang, X.; Yan, Q.; Mao, X.; Qi, Z. Generating test oracle for role binding in

multi-agent systems. In: Software Engineering Conference, 2003. Tenth Asia-Pacific,

2003, p. 108–114.

Wang, X.; Zhi-Chang; Li, Q. S. An optimized method for automatic test oracle

generation from real-time specification. In: ICECCS 2005: Proceedings of the 10th

IEEE International Conference on Engineering of Complex Computer Systems., 2005,

p. 440–449.

Weyuker, E. J. On testing non-testable programs. The Computer Journal, v. 25,

n. 4, p. 465–470, 1982.

Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, C.; Regnell, B.; Wesslén,

A. Experimentation in Software Engineering: an Introduction. Kluver Academic

Publishers, 2000.

Xie, Q. Developing cost-effective model-based techniques for gui testing. Doc-

toral Dissertation, University of Maryland at College Park, College Park, MD, USA,

adviser-Memon, Atif, 2006a.

Xie, Q.; Memon, A. M. Designing and comparing automated test oracles for gui-based

software applications. ACM Trans. Softw. Eng. Methodol., v. 16, n. 1, p. 4, 2007.

Xie, T. Augmenting automatically generated unit-test suites with regression oracle

checking. 2006b.

Available on: http://dx.doi.org/10.1007/11785477_23

144

http://dx.doi.org/10.1007/11785477_23

BIBLIOGRAPHY

Xie, X.; Ho, J.; Murphy, C.; Kaiser, G.; Xu, B.; Chen, T. Y. Application

of metamorphic testing to supervised classifiers. In: QSIC ’09: 9th International

Conference on Quality Software., 2009, p. 135–144.

Xie, X.; Ho, J. W. K.; Murphy, C.; Kaiser, G.; Xu, B.; Chen, T. Y. Testing

and validating machine learning classifiers by metamorphic testing. Journal of Systems

and Software, article in Press, 2010.

Xie, X.; Wong, W.; Chen, T.; Xu, B. Metamorphic slice: An application in

spectrum-based fault localization. Information and Software Technology, cited By

(since 1996) 0; Article in Press, 2012.

Available on: http://www.scopus.com/inward/record.url?eid=2-s2.

0-84866085646&partnerID=40&md5=a01ccf36a2b9efe4bb04b6ac1d33a962

Xie, X.; Wong, W.; Chen, T. Y.; Xu, B. Spectrum-based fault localization: Testing

oracles are no longer mandatory. In: Quality Software (QSIC), 2011 11th International

Conference on, 2011, p. 1 –10.

Xing, X.; Jiang, F. Gui test case definition with ttcn-3. In: CiSE 2009: International

Conference on Computational Intelligence and Software Engineering., 2009, p. 1–5.

Yan, C. H. The application of an algebraic design method to deal with oracle problem in

object-oriented class level testing. In: IEEE SMC ’99: Conference Proceedings of the

IEEE International Conference on Systems, Man, and Cybernetics., 1999, p. 928–932

vol.1.

Yang, R.; Chen, Z.; Xu, B.; Wong, W.; Zhang, J. Improve the effectiveness of test

case generation on efsm via automatic path feasibility analysis. In: High-Assurance

Systems Engineering (HASE), 2011 IEEE 13th International Symposium on, 2011, p.

17 –24.

Ye, M.; Feng, B.; Zhu, L.; Lin, Y. Automated test oracle based on neural networks.

In: ICCI 2006: 5th IEEE International Conference on Cognitive Informatics., 2006, p.

517–522.

Yoo, S. Metamorphic testing of stochastic optimisation. In: Third International

Conference on Software Testing, Verification, and Validation Workshops (ICSTW).,

2010, p. 192 –201.

Zeil, S. Perturbation techniques for detecting domain errors. Software Engineering,

IEEE Transactions on, v. 15, n. 6, p. 737–746, 1989.

145

http://www.scopus.com/inward/record.url?eid=2-s2.0-84866085646&partnerID=40&md5=a01ccf36a2b9efe4bb04b6ac1d33a962
http://www.scopus.com/inward/record.url?eid=2-s2.0-84866085646&partnerID=40&md5=a01ccf36a2b9efe4bb04b6ac1d33a962

BIBLIOGRAPHY

Zhang, J.; Yang, R.; Chen, Z.; Zhao, Z.; Xu, B. Automated efsm-based test

case generation with scatter search. In: Automation of Software Test (AST), 2012 7th

International Workshop on, 2012, p. 76 –82.

Zhang, Z.-Y.; Chan, W.; Tse, T.; Hu, P. Experimental study to compare the

use of metamorphic testing and assertion checking. Ruan Jian Xue Bao/Journal of

Software, v. 20, n. 10, p. 2637–2654, cited By (since 1996) 0, 2009.

Zheng, W.; Ma, H.; Lyu, M.; Xie, T.; King, I. Mining test oracles of web

search engines. In: Automated Software Engineering (ASE), 2011 26th IEEE/ACM

International Conference on, 2011, p. 408 –411.

Zhou, L.; Ping, J.; Xiao, H.; Wang, Z.; Pu, G.; Ding, Z. Automatically testing

web services choreography with assertions. In: Dong, J.; Zhu, H., eds. Formal

Methods and Software Engineering, Springer Berlin, 2010, p. 138–154 (Lecture Notes in

Computer Science, v.6447).

Zhu, H. A note on test oracles and semantics of algebraic specifications. In: Quality

Software, 2003. Proceedings. Third International Conference on, 2003, p. 91–98.

146

Appendix

A

Aviation Glossary

The aviation terms here presented were extracted from Flightpath Glossary of Aviation

Terms 1 (Shawcross, 2011).

Angle of attack The angle between the chord line of the wing of an aircraft and the

vector representing the relative motion between the aircraft and the

atmosphere. Information from the angle of attack sensor, or alpha probe,

is used to trigger a stall warning.

Pitch angle the acute angle between the longitudinal axis of an aircraft or spacecraft

and the direction of the wind relative to the vehicle.

Pitch axis axis perpendicular to the yaw axis and is parallel to the plane of the

wings with its origin at the center of gravity and directed towards the

right wing tip.

Pitch motion an up or down movement of the nose of the aircraft w.r.t. the pitch axis.

Roll angle the acute angle between the roll axis of an aircraft or spacecraft and a

horizontal plane.

1Available on: http://www.cambridge.org/gb/elt/catalogue/subject/project/custom/item6604469/
Flightpath-Glossary-of-Aviation-Terms/

147

APPENDIX A. AVIATION GLOSSARY

Roll axis axis perpendicular to the other pitch and yaw axes with its origin at the

center of gravity, and is directed towards the nose of the aircraft.

Rolling motion an up and down movement of the wing tips of the aircraft, w.r.t. the

roll axis.

Stall a condition of an aircraft in flight in which a reduction in speed or

an increase in the aircraft’s angle of attack causes a sudden loss of lift

resulting in a downward plunge.

Waypoint a point on the journey to the final destination.

Yaw angle the acute angle between the yaw axis of an aircraft or spacecraft and a

given reference direction, as viewed from above.

Yaw axis axis perpendicular to the plane of the wings with its origin at the center

of gravity and directed towards the bottom of the aircraft.

Yaw motion a movement of the nose of the aircraft from side to side, w.r.t. the yaw

axis.

148

